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Abstract
The first paper published on Abstract Stone Duality showed that the overt discrete objects

(those admitting ∃ and = internally) form a pretopos, i.e. a category with finite limits, stable

disjoint coproducts and stable effective quotients of equivalence relations. Using an N-indexed

least fixed point axiom, here we show that this full subcategory is an arithmetic universe, hav-

ing a free semilattice (“collection of Kuratowski-finite subsets”) and a free monoid (“collection

of lists”) on any overt discrete object. Each finite subset is represented by its pair (�, ♦)

of modal operators, although a tight correspondence with these depends on a stronger Scott-

continuity axiom. Topologically, such subsets are both compact and open and also involve

proper open maps. In applications of ASD this can eliminate lists in favour of a continuation-

passing interpretation.
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1 Introduction

In Abstract Stone Duality the topology on a space X is treated as an exponential ΣX with a
λ-calculus rather than as a lattice with arbitrary joins. This has given accounts of the category
of locally compact spaces, both over an elementary topos [H], and for a logic in which the maps
N→ N are precisely the provably total general recursive functions [G].

Remark 1.1 It is an important feature of ASD that its spaces do not have “underlying sets” of
points — or even of open subspaces, as in locale theory. ASD is a direct axiomatisation of the
category S of “spaces”, amongst which the “discrete” ones serve in the role of “sets”. However, as
we take the word discrete to mean that there is an internal notion of equality, (=X) : X ×X → Σ
(i.e. the diagonal X ⊂ X × X is open), we actually say overt discrete , meaning that there is
also an “existential quantifier”, ∃X : ΣX → Σ.

Remark 1.2 Having postulated a notion of the category of “sets” in this roundabout fashion,
i.e. as the full subcategory E of overt discrete types in a certain λ-calculus, we are faced with the
challenge of showing that it has enough of the usual features of set theory or categorical logic to
warrant the name, as none of these went in as ingredients. In fact, E is a topos if we assume the
existence of “underlying sets”, i.e. a right adjoint to the inclusion E ↪→ S [H], so it is important not
to make such an assumption if we want to develop a computational axiomatisation of topology.

Giraud’s theorem, which characterised Grothendieck toposes in terms of the limits and (in-
finitary) colimits that they admit, suggested the first categorical approximation to the “finitary”
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aspects of the category of sets: a pretopos is a category with finite limits, stable disjoint co-
products and stable effective quotients of equivalence relations. Then André Joyal introduced
arithmetic universes to prove Gödel’s incompleteness theorem in a categorical style: they have
just enough structure to form the free internal thing of the same kind. Specifically, an arithmetic
universe is a pretopos with free internal monoids (ListX), from which the free internal arithmetic
universe can be obtained by means of generators and relations.

Actually, these structures are just what is taught in a first year “discrete math” course intended
for computer scientists, i.e. one in which only the collection of listable subsets is considered, instead
of a full set-theoretic powerset. We shall argue in future work (on the construction of S from E)
that the other substitutes for the powerset, i.e. the collections of recursively enumerable and of
decidable subsets of X, are the non-discrete spaces ΣX and 2X . If ΣX had an underlying set, this
would be the usual powerset of X.

Remark 1.3 Unfortunately, despite their 30-year history, knowledge of arithmetic universes cir-
culates literally by word of mouth. The only only refereed (or even obtainable) papers on them
are those by Maria Emilia Maietti, who provided a Martin-Löf-style type theory for them [6]. She
claims that her notion of arithmetic universe [7] is stronger than that used here. Indeed, some
disagreement over detail is known by those who have worked with arithmetic universes — but
they hardly help matters by failing to write any papers. However, the best way to settle doubts
over correct definitions in mathematics is to prove their equivalence with other structures that
come from other intuitions. The construction in this paper of an arithmetic universe from a model
of ASD and the proposed converse will, I believe, not only serve this purpose, but also provide a
more expressive calculus than Maietti’s, allowing domain-theoretic methods to be used to define
structures within arithmetic universes more fluently.

Remark 1.4 In ASD the full subcategory of overt discrete objects is already known to be a
pretopos [C], so the present work is concerned with the free monoid and the free semilattice (KX).

Note, however, that, as an existential question, this is redundant in the two cases on which we
usually focus: in the classical models (the source of our intuitions) E is a topos, whilst in the free
one (the target of our computations) every object of E is a subquotient of N by an open partial
equivalence relation; in both cases lists can be encoded in well known ways.

This paper is also arguably unnecessary from a topological point of view, in that the existence
of the free monoid could reasonably be taken as another axiom, so our conclusion is merely that
this axiom is redundant.

Nevertheless, ASD sets itself apart from other approaches to topology by having a freestanding
(technically) elementary axiomatisation that does not rely on a pre-existing category of sets or
spaces. The intention is to use this as a route to computation, so our representation of KX is of
interest even when we already know abstractly that it exists.

Remark 1.5 The two semilattice structures that we use most often are ∧ and ∨ in powers of Σ,
and it turns out that these are jointly faithful, indeed that KX is a subspace of Ω ≡ ΣΣX ×ΣΣX ,
where each finite subset ` is represented by the two modal operators,

[`] ≡ λφ. ∀x ∈ `. φx and 〈`〉 ≡ λφ. ∃x ∈ `. φx.

It is well known that modal logic is related to the three powerdomains, in one of which the
inclusion order agrees with the intrinsic one, in another they are contravariant, whilst in the third
inclusion inclusion involves both the intrinsic order and its opposite [4, 9, 10]. However, we only
consider the convex powerdomain of an (overt) discrete space. The reason for this lack of ambition
is that this paper forms part of the “bootstrapping” of the theory of ASD: much more can be done
using the whole thing, in particular [G]; the analogous structure in an Hausdorff space such as R is
considered in [I]. Also, we represent elements of the powerdomain by modal operators, whereas the
works cited use them to generate its topology, relying on the prior existence of the free semilattice.
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Remark 1.6 Our translation of finite subsets into higher order λ-terms may be of computational
value, like other examples of the continuation passing style . The theory of locally compact
spaces is developed in [G] using bases of open and compact subspaces, and that paper concludes
with a sketch of how continuous functions (for example R→ R) might be manipulated computa-
tionally using relations. Unfortunately, at least as the theory is expressed there, such bases have
to be indexed by (finitary) lattices, and heavy use is made of the free distributive lattice generated
by an overt discrete object. This may be constructed via the free semilattice, whose elements
might in turn be represented as lists, but possibly at quite a heavy computational cost.

On the other hand, as functional programmers know very well, there are plenty of situations
in which (nested) lists provide excellent data structures. For this, it would be absurd to take a
diversion via logic, especially by means of the construction that we use in Sections 8–9. What
this paper provides, therefore, is a choice between lists (as traditionally implemented) and a
mathematically isomorphic structure that encodes finite subsets using modal logic, λ-calculus and
continuation-passing. Empirical study will be needed to make this choice in particular applications.

Remark 1.7 Returning to type theory, the disagreement with Maietti regarding the definition
of an arithmetic universe appears to concern parametric list types, which are not covered in this
paper. Certainly these are needed, but there are ways of obtaining them without first developing
dependent spaces in general.

A family of overt discrete objects indexed by another such object is given, as in a topos, by
any map δ : X → N , where X[n] ≡ δ−1(n). (We call δ the “display” map [8, Chapter VIII].)
Then ListX[n] is given by the display N + P → N , where

P - N

ListX
? Listδ- ListN -- KN

{|−|}

?

provides the non-empty lists and the extra term N the empty ones.

Remark 1.8 Another connection between our construction and domain theory is that it uses the
methods of that subject. Specifically, the ASD calculus provides for the introduction of subtypes
of a given ambient type Ω, defined by an endomorphism E of ΣΩ. In this paper we obtain that
endomorphism as the least fixed point of an operator $ of yet higher type.

To do this, a fixed point axiom must be added to what [C] used to show that E is a pretopos.
To construct KX and ListX it is enough to assume

Axiom 1.9 The “linear countable” fixed point axiom is

Γ, n : N ` φn : ΣU Γ, n : N ` φn ≤ φ(n+ 1) : ΣU

Γ, F : ΣU → ΣV ` F (∃n. φn) = ∃n. F (φn) : ΣV

However, in order to obtain all of the topological results that we expect [G], and in particular
to show that every pair (�,♦) of operators satisfying the modal laws actually corresponds to a
listable subset(Section 11), the following stronger1 assumption is needed. Despite the conceptual

1The fixed point axiom says that F preserves countable directed joins, but in the classical models uncountable
directed joins are also needed. Recall, for example, that in universal algebra the free functor for a theory of infinite
arity κ preserves κ-filtered colimits of diagrams of any size λ. The two versions of our axiom correspond very
roughly to the roles of these two cardinal parameters in the classical case.
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simplification that it would bring throughout this paper, we are unable even to state it before
proving our main result, as it involves either ListX or KX.

Axiom 1.10 The Scott-continuity axiom is

Γ, ` : KX ` φ` : ΣU Γ, `1, `2 : KX ` φ`1 ∨ φ`2 ≤ φ`1+`2

Γ, ` : KX ` α` : Σ Γ ` α nil = > Γ, `1, `2 : KX ` α`1+`2 = α`1 ∧ α`2
Γ, F : ΣU → ΣV ` F (∃`. α` ∧ φ`) = ∃`. α` ∧ Fφ`.

A family (α`, φ`) satisfying the five premises is called a directed diagram . In the free model
every overt discrete object such as KX is a subquotient of N; in this case general Scott-continuity
may be derived from the fixed point axiom above. In other models, such as the classical ones, a
Scott-continuity axiom is needed for each overt discrete object X.

Remark 1.11 This brings us back to the study of general models of ASD (for which the existential
question about KX and ListX is not trivial). Besides the free and classical ones, we may obtain
other models by strengthening the axioms with more ways of forming types, terms or equations.
For example, the “underlying set” is a new type [H]. An oracle for termination would say that the
(already definable) space T̄ of codes for non-terminating programs is overt, providing a new term
∃T̄ : ΣT̄ → Σ.

The very meaning of the assertions that we made in the opening paragraph depends on what
we can prove about equality of terms. A morphism of the category is a class of terms that are
provably equivalent according to a certain logic, whilst a partial morphism f : N⇀ N is total by
definition iff there is a proof that Σf satisfies a certain equation [D]. Since the definitions of prime
and nucleus [A, B] depend on equations, if the logic proves more of them then it also defines more
terms and (sub)types.

What counts as a legitimate proof (in particular of the equality of two terms) is an issue that
we have to consider more carefully in this paper than has been done hitherto in the ASD literature,
because this is the first serious use that we have made of recursion and induction over N. That is
the subject of the next section.

Section 3 gives the intuition and notation for the construction of KX and its modal logic, which
are developed in Sections 4–6. Section 7 considers the properties of K as a functor. The universal
property of KX as the free semilattice is, however, only proved in Section 10, being derived from
that for ListX, which we construct in Sections 8–9. Section 11 reconsiders the sense in which KX
is a finite powerset.

2 Proofs and natural numbers in ASD

Before we begin the construction of the free monoid and semilattice, we have to consider the
form of proofs in the λ-calculus for ASD more carefully than has been done in previous papers.
Nevertheless, our purpose is a domain-theoretic construction, not a proof-theoretic analysis of
ASD, so we shall not give the complete set of rules. See in particular [B, §8] for a summary of the
λ-calculus for {X | E} that handles the monadic property.

The main issue to be considered is induction over N, the point being that the definition of
the natural numbers object is not adequate as it is usually given. It is well known that an object
Γ of parameters has to be added explicitly to the definition when we work in a category that is
not cartesian closed. Similarly, equational hypotheses have to be considered explicitly when the
category does not have all equalisers.

Axiom 2.1 The λ-calculus for ASD consists of types, terms and equations. Its judgements assert
that
• types such as 0, 1, N, Σ, X × Y , ΣX and {X | E} are well formed,
• terms are well formed and of particular types, or
• equations hold between terms.
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Such judgements about terms and equations are made in certain contexts, i.e. on the assumption
that their free variables have certain types.

However, even though the definition of the subtype {X | E} involves the term E, we insist (as
the theory is currently formulated) that it be formed in the empty (global) context, i.e. without
free variables. Even the pure syntax of dependent type theories is very complicated, and becomes
more so in a semantic situation, where we have to choose a class of display maps [8, Chapter
VIII]. Of course, we must also perform the semantic calculations, which form the main task of this
paper. Families of overt and compact objects are encoded as open and proper maps respectively
[C, §7].

Judgements are therefore of the four forms

` X type, Γ ` a : X, Γ ` a = b : X and Γ ` α ≤ β : X.

The last of these arises from the lattice structure on types of the form ΣU , where (α ≤ β) means
α = (α ∧ β) or β = (α ∨ β). The order can be extended to other objects, but we shall not need
that.

In this paper we find that equations (and inequalities) are also needed as assumptions. In other
words, the context Γ may include equations and inequalities between terms, as well as a list of
typed variables. Any provable judgement attests to the validity of a certain fragment of reasoning
from its hypotheses to its conclusions, so, as we want to form bigger arguments by concatenating
such fragments (i.e. by means of a cut rule), all forms of assertion that are allowed as conclusions
should also be allowed as hypotheses. In particular this is needed for induction over N, which
internalises the process of concatenation. (Adding such hypotheses to Martin-Löf type theory
leads to undecidability [2, §3.2], but the ASD calculus is Turing-complete by design anyway.)

Axiom 2.2 Terms of type Σ may be seen as predicates in coherent logic:
(a) > and ⊥;
(b) α ∧ β and α ∨ β, where α, β : Σ;
(c) φa, where φ : ΣX and a : X;
(d) (a =X b), where a, b : X, and X is discrete (such as N but not R or 2N);
(e) (a 6=X b), where X is a Hausdorff type (such as N, R or 2N);
(f) ∃Xφ ≡ ∃x. φx, where φ : ΣX and X is an overt type (N, R, 2N);
(g) ∀Xφ ≡ ∀x. φx, where φ : ΣX and X is a compact type (such as [0, 1] ⊂ R or 2N but not N).
We shall find that a type X has all four properties (d–g) iff it is finite, whilst it is Kuratowski -finite
iff it has properties (d,f,g), that notion being the main subject of this paper. Terms of type φ : ΣX

are formed with a λ-calculus. As usual, the introduction of λx, ∃x or ∀x discharges the variable
from the context, which must therefore contain no equational assumption in which x is free.

Remark 2.3 Notice that this logic does not include implication. Indeed, every term is monotone
considered as a function of its free variables of type ΣU . But a strictly limited form of implication
is allowed in that assumptions and conclusions of judgements may be of the form α ≤ β : ΣU , so
judgements may be of the form

. . . , α ≤ β : ΣU , . . . ` γ ≤ δ : ΣV ,

which means (∀u. αu⇒ βu)⇒ (∀v. γv ⇒ δv) in traditional notation.
When we need to make an assertion α that is a term of type Σ, we shall often follow mathe-

matical idiom by saying simply “α” alone; by this we mean the judgement Γ ` α = > : Σ, where
the context Γ has been established implicitly in the argument.

Of course, any equation or inequality that is an assumption may be used directly as the
conclusion of an “identity” or “axiom” judgement, or may be discharged by a “cut” rule. They
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are also discharged by logical rules that we now give.

Axiom 2.4 Even though we cannot define a term α ⇒ β of type Σ, the usual rule for it does
introduce an inequality, in both an intuitionistic way and an apparently classical one:

Γ, α = > : Σ ` β = > : Σ

Γ ` α ≤ β : Σ

Γ, α = ⊥ : Σ ` β = ⊥ : Σ

Γ ` α ≥ β : Σ
The intuitionistic rule is equivalent to the Euclidean principle ,

F : ΣΣ, α : Σ ` α ∧ Fα = α ∧ F>,
and the other rule to its lattice dual. Writing α and ¬β for α = > and β = ⊥, together they yield
rules similar to those for negation in Gerhard Gentzen’s classical sequent calculus.

They and monotonicity are together equivalent to the Phoa principle ,

F : ΣΣ, α : Σ ` Fα = F⊥ ∨ α ∧ F>.
Note that these things are valid in intuitionistic locale theory [C, Section 5]. The Euclidean
principle is equivalent (in the context of the monadicity assumption) to saying that > : Σ classifies
a certain class of monos in S, which we call open , whilst its dual says that ⊥ : Σ classifies closed
inclusions.

An example of the first principle that’s obvious in the abstract but may look strange when it’s
used in practice is the rule (where X and Y are discrete)

Γ, a = b : X ` c = d : Y

Γ ` (a =X b) ≤ (c =Y d) : Σ
�

Turning to recursion and induction, we have to reconsider the definition of N in a category
without equalisers, such as that of locally compact spaces. See also [1] and [5, §II.4].

Axiom 2.5 The recursion scheme introduces terms of any type X, dependent on n : N:
Γ ` z : X Γ, n : N, x : X ` s(n, x) : X

Γ, n : N ` rec(n, z, s) : X
Its meaning is given by the β-rules

Γ ` rec(0, z, s) = z : X
Γ, n : N ` rec(n+ 1, z, s) = s

(
n, rec(n, z, s)

)
.

This is called recursion at type X, the point being that as the class of types at which the
recursion scheme is asserted grows, so considerably does the power of the logic.

The corresponding diagrammatic property is

Γ
0 - Γ× N �

id× succ
Γ× N

X

rec

?

.................
� s

z
-

Γ× N×X.

(id, rec)

?

.................

If the category is cartesian closed then this diagram may be rewritten with N×XΓ in place of X,
the object Γ itself being removed from the top line. Symbolically, this means that the parameters
can be embedded in both the data and the new term by means of λ-abstraction. If, as in ASD,
the category (has finite products but) is not cartesian closed then the object Γ of parameters is
needed.

Axiom 2.6 The equational induction scheme for Γ, n : N ` an, bn : X:
Γ ` a0 = b0 : X Γ, n : N, an = bn : X ` an+1 = bn+1 : X

Γ, n : N ` an = bn : X
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Notice that this says nothing about where an and bn themselves came from. If they had been
defined by the same base and step data on X, an η-rule or uniqueness hypothesis in the recursion
scheme above would have made them equal. However, the scheme is more general than that: the
term an need not arise directly from recursion, but may perhaps be of the form f

(
rec(n, z, s)

)
where f is some function, whilst bn is some unrelated f ′

(
rec(n, z′, s′)

)
.

Remark 2.7 Just as the generalisation with parameters was redundant in a cartesian closed
category, so the equational induction scheme can be derived from the usual universal property of
N when the category has equalisers:

E ≡ {(γ, n) | an(γ) = bn(γ) : X}- - Γ× N
an-

bn
- X.

The base case says that (id, 0) : Γ→ Γ×N factors through E, whilst the induction step says that
id× succ restricts to a map E → E. Then Axiom 2.5 provides

recE : Γ× N→ E.

This is inverse to the inclusion, one equation being given by uniqueness of

recN : Γ× N→ Γ× N

and the other by the fact that E � Γ× N is mono. �

The equational induction scheme (and its equivalent version for inequalities αn ≤ βn) will be
used in Propositions 4.4, 4.12, 5.9 and 7.10, and we shall deduce its analogue for lists and finite
subsets in Propositions 9.7 and 10.11. It ought to have been stated as [A, Remark 2.5], since it
was actually used in [A, Lemmas 8.9 and 9.6] and [B, Lemma 8.14].

Since the proof given for [A, 9.6] was sketchy and contained other errors, we give the correct
version here by way of an example of equational induction. It turns recursion at type N into
recursion at type ΣN, as part of the process of bringing descriptions (the m. ) to the outside of a
term.

Lemma 2.8 Γ ` rn ≡ rec
(
n, z, λn′u. s(n′, u)

)
= the m. ρ(n,m), where

ζ ≡ (λm. m = z),
σ(n, φ) ≡

(
λm. ∃m′. φm′ ∧m = s(n,m′)

)
ρ(n,m) ≡ rec(n, ζ, σ)m.

Proof The base case (in context Γ) is

λm. ρ(0,m) ≡ λm. rec(0, ζ, σ)m = λm. ζm β-rule
≡ λm. (m = z) def ζ
= λm. (m = r0) β-rule

The induction step, with the hypothesis λm′. ρ(n,m′) = λm′. (m = rn′), is

λm. ρ(n+ 1,m) ≡ λm. rec(n+ 1, ζ, σ)m
= λm. σ

(
n, rec(n, ζ, σ)

)
m β-rule

= λm. ∃m′. rec(n, ζ, σ)m′ ∧
(
m = s(n,m′)

)
def σ

≡ λm. ∃m′. ρ(n,m′) ∧
(
m = s(n,m′)

)
= λm. ∃m′. (m′ = rn) ∧

(
m = s(n,m′)

)
hypothesis

= λm.
(
m = s(n, rn)

)
equality rules

= λm.
(
m = r(n+ 1)

)
β-rule

So Γ, n : N ` λm. ρ(n,m) = λm. (m = rn) : Σ by Axiom 2.6. �
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Remark 2.9 Recall from [B, Section 8] that the rules for the introduction of focus and admit
terms have equational premises. This now means that there are such terms that are only defined
in certain contexts that contain particular equational assumptions.

Recall, however, from op. cit. that, for any term Γ ` α : Σ, there is another term Γ ` ᾱ : Σ not
involving focus or admit, with the property that Γ ` α = ᾱ : Σ. (In fact, ᾱ is obtained, essentially,
by erasing admit.) Now, as ᾱ does not contain focus or admit, no equational hypotheses are ever
used in its formation, and so it is defined in the context Γ̄ without them. �

Corollary 2.10 Σ is injective in the category of contexts (possibly involving equations) and
substitutions. �

Remark 2.11 How might such equational hypotheses be interpreted in a category S that does
not necessarily have all equalisers? The obvious way is that, for f1, f2 : X → A and g1, g2 : X → B
in S, the statement

x : X, f1x = f2 : A ` g1x = g2x : B

means that

for every a : Γ→ X in S, if (f1 · h) = (f2 · h) then (g1 · h) = (g2 · h).

The restricted λ-calculus was formally extended with (abstract) sobriety [A] and monadicity [B].
This interpretation of equational hypotheses could be used to make another similar formal exten-
sion.

However, the result of such an extension would be an account of spatial locales (equivalently,
sober spaces — in the traditional sense rather than that of [A]), not general ones. This is be-
cause the generality of the test object Γ is spurious: locally compact locales have enough points
(classically, at least), and so this formula only uses the global points of Γ to test the equations.
Equalisers (and, in fact, products) of locales and sober spaces are not the same [3, §II 2.13].

Remark 2.12 The category whose objects are contexts with equations has finite products, but
it no longer has the exponentials Σ(−) that originally motivated ASD — these are only defined
on the subcategory of contexts without equations. The problem is inescapable since, as we have
just noted, such hypotheses have already been used, albeit inadvertently. This means that the
theory really captures, not the category of locally compact spaces on its own, but that category
embedded in either the category of locales or or spatial locales.

Nevertheless, the way forward is not to rewrite what has been done in this hybrid fashion,
but to study the (substantially) larger structure that includes both equalisers and exponentials.
Preliminary investigations of this structure, relating not only to the whole of the category of
locales but also to cartesian closed extensions, may be found in [H]. However, this structure not
only contains spaces of a much more general kind, but also captures a much stronger logic of
(implications amongst) equations. This means that, in order to nail down the precise equivalence
with arithmetic universes (Remark 1.3), the proposed converse construction will probably be of a
category analogous to spatial locales.

But for the purposes of the present paper, the equational hypotheses are simply a device for
managing proofs.

3 Finite subsets as modal operators

Throughout, let X be an overt discrete space. Its typical values will be called x, y, etc. and its
predicates φ, ψ, etc. We shall construct an object KX and then show that it is the free semilattice
on X. Although KX is intended to be the space of Kuratowski-finite subsets of X, we shall use list
notation for it, writing ` : KX for a typical value. So nil , {|x|} : KX denote the empty and singleton
subsets, + is union and x :: ` = {|x|}+`. Note that we also use {x} for λy. (x =X y) : ΣX . We shall
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actually need to switch back and forth between KX and ListX, and between the “mathematical”
notion of monoid based on the + operation and the “computer science” notion based on ::.

Remark 3.1 KX will be constructed as a Σ-split subspace of Ω ≡ ΣΣX × ΣΣX .
The typical values of Ω will be called L = (N,P ), where the letters stand for necessity and

possibility , as the central idea is to represent a subset ` : KX by means of its modal operators

[`], 〈`〉 : ΣΣX , which also vary negatively and positively with respect to the inclusion of lists.
Along with P : ΣΣX we shall also make frequent use of π ≡ λx. P{x} : ΣX .

Remark 3.2 If we already had KX and ListX at our disposal, we would define

[`] ≡ λφ. ∀x ∈ `. φx and 〈`〉 ≡ λφ. ∃x ∈ `. φx,
and the membership predicate (x ∈ `) ≡ π`x = P{x}, where P ≡ 〈`〉. Then

[ nil ] = λφ.> 〈 nil 〉 = λφ.⊥ π nil = λy.⊥
[x :: `] = φx ∧ [`]φ 〈x :: `〉 = φx ∨ 〈`〉φ πx::` = λy. (x = y) ∨ π`y

[`1 + `2] = [`1] ∧ [`2] 〈`1 + `2〉 = 〈`1〉 ∨ 〈`2〉 π`1+`2 = π`1 ∨ π`2 ,

so that [{|x|}] = 〈{|x|}〉 = ηx = λφ. φx and π{|x|} = {x}. Also

(`1 ⊂ `2) ≡ ∀x ∈ `1. ∃y ∈ `2. (x =X y) ≡ [`1](λx. 〈`2〉{x}) ≡ [`1]π2

and (`1 = `2) ≡ (`1 ⊂ `2) ∧ (`2 ⊂ `1), which are values of type Σ. Finally, the “Curried” opera-
tions �φ ≡ λ`. [`]φ and ♦φ ≡ λ`. 〈`〉φ generate the topology on the powerdomains (Remark 1.5),
but are not very useful here.

Notation 3.3 As we want to construct KX as a subspace of Ω, we need to extend this notation
to L ≡ (N,P ) : Ω ≡ ΣΣX × ΣΣX . For the modal notation itself, we simply use [ ] and 〈 〉 for the
product projections, so �φL ≡ [L]φ ≡ Nφ and ♦φL ≡ 〈L〉φ ≡ Pφ. Then we define

nil ≡ (>,⊥) : Ω
x :: (N,P ) ≡ (x :: N, x :: P ) ≡ (λφ. Nφ ∧ φx, λφ. Pφ ∨ φx)
(N1, P1) + (N2, P2) ≡ (N1 ∧N2, P1 ∨ P2)

≡ (λφ. N1φ ∧N2φ, λφ. P1φ ∨ P2φ)
x ∈ L ≡ 〈L〉{x} ≡ P{x} ≡ πx

L1 ⊂ L2 ≡ [L1](λx. 〈L2〉{x}) ≡ N1(λx. P2{x}) ≡ N1π2

L1 ∼ L2 ≡ (L1 ⊂ L2) ∧ (L2 ⊂ L1)
L ∼ nil = [L]⊥ ≡ N⊥
L 6∼ nil = 〈L〉> ≡ P>.

Clearly + is an associative, commutative, idempotent binary operation on Ω, and nil is a unit
for it, with nil ⊂ L; we shall derive their other algebraic properties of + and ⊂ shortly. Notice,
however, that for P they behave like ∨ and ≤, but for N they are like ∧ and ≥. This means that
they are not intrinsic structure on Ω (as ≤, ∨ and ∧ are in Σ), but imposed on it by specifying
certain maps.

The ∧/∨-ambiguity in the :: notation will always be resolved by the context, but we shall not
risk confusion by further overloading of the important sign for equality.

Plainly not every pair (N,P ) will arise as ([`], 〈`〉) from a finite subset.

Definition 3.4 We say that the pair Γ ` (N,P ) : Ω is modal if N and P satisfy
N> = > P⊥ = ⊥

N(φ ∧ ψ) = Nφ ∧Nψ P (φ ∨ ψ) = Pφ ∨ Pψ
N(φ ∨ ψ) ≤ Nφ ∨ Pψ P (φ ∧ ψ) ≥ Pφ ∧Nψ

N(λx. P{x}) = > Pφ = ∃x. φx ∧ P{x}.
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The last law, which recovers P from π ≡ λx. P{x}, implies that P preserves ⊥, ∨ and ∃. Recalling
the classical connection between finiteness and Scott continuity, it is perhaps not surprising that
Axiom 1.10 provides converses. If P is Scott continuous and preserves ⊥ and ∨ then it also
preserves ∃ and satisfies the last law. From Scott-continuity of N , Theorem 11.7 shows that the
modal laws exactly characterise Kuratowski-finite subsets.

In view of the number of things to be checked, we shall omit most of the proofs that pairs
(N,P ) are modal, recommending them as exercises. Note that the sixth and fifth laws usually
require the Euclidean principle and its dual respectively.

When the ambient space is Hausdorff instead of discrete (e.g. R), the seventh law is replaced
by P (λx. N{x}), where {x} ≡ (λy. x 6= y) [I].

Lemma 3.5 Modal operators satisfy the Frobenius law and its dual:

φ : ΣX , σ : Σ ` P (σ ∧ φ) = σ ∧ Pφ and N(σ ∨ φ) = σ ∨Nφ.

Proof By the Phoa principle (Axiom 2.4), since P⊥ = ⊥ and N> = >. �

Lemma 3.6 If (N,P ) is modal then P{x} ∧Nφ ≤ φx.

Proof
P{x} ∧Nφ ≤ P ({x} ∧ φ)

≡ P
(
λy. (x = y) ∧ φy

)
= ∃y. P{y} ∧ (x = y) ∧ φy
= P{x} ∧ φx ≤ φx �

Using these laws we can already recover the algebraic structure of KX.

Proposition 3.7 Definable finite subsets give rise to modal pairs because
(a) nil ≡ (>,⊥) is modal;
(b) x : X ` {|x|} ≡ (λφ. φx, λφ. φx) is modal;
(c) if Γ ` (N1, P1), (N2, P2) : Ω are modal then so is (N1, P1) + (N2, P2). �

A similar study of the intersection operation raises topological questions.

Proposition 3.8 There is a greatest modal (N,P ) iff X is compact , in which case N = ∀X ,
P = ∃X and π = >.

Proof Suppose that there is a bound for all singletons:

λx.
(
{|x|} ⊂ (N,P )

)
= λx. [{|x|}](λy. P{y}) = λx. P{x} = π.

Hence if (N,P ) is the greatest modal pair then π = >. In this case,

P = λφ. ∃x. πx ∧ φx = λφ. ∃x. φx = ∃X .

Also, x : X, φ : ΣX ` Nφ = Nφ ∧ P{x} = φx,

so Σ!Xσ ≡ λx. σ ≤ φ iff σ ≤ N(λx. σ) ≤ Nφ ≤ φx, which means that Σ!X a N , i.e. N = ∀X and
X is compact.

Now N(λx. ∃X{x}) = N(λx. ∃y. x = y) = N> = > so if X is compact then (N,P ) ⊂
(∀X ,∃X). This pair is modal because, in particular,

∃x. (φx ∧ ψx) ≥ ∃x. φx ∧ (∀y. ψy) ≥ (∃x. φx) ∧ (∀y. ψy)

∀x. (φx ∨ ψx) ≤ ∀x. φx ∨ (∃y. ψy) ≤ (∀x. φx) ∨ (∃y. ψy)
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by the Frobenius law and its dual. �

Proposition 3.9 If (=X) is decidable (in which case we say that X is Hausdorff as well as
discrete) and (N1, P1) and (N2, P2) are modal then so is (N,P ), where

Nφ = N1

(
λx. φx ∨N2(λy. x 6= y)

)
Pφ = P1

(
λx. φx ∧ P2(λy. x = y)

)
= ∃x. P1{x} ∧ P2{x} ∧ φx,

and this is the meet with respect to ⊂. Decidability is necessary because, if {|x|} and {|y|} have a
meet (N,P ) that is modal, then N⊥ = (x 6= y), so (x =X y) is decidable. Intersection of decidable
lists can also be defined by a “filtering” program — after we have proved that recursion is valid.�

The modal laws are also enough to ensure that ∼ provides the internal equality for KX.

Proposition 3.10 Let Γ ` L1, L2 : Ω be modal. Then these are equivalent:

(L1 ⊂ L2) = > 〈L1〉 ≤ 〈L2〉 π1 ≤ π2 [L2] ≤ [L1].

Proof By the 8th modal law, P1 ≤ P2 iff π1 ≤ π2. Recall that

(L1 ⊂ L2) ≡ [L1](λx. 〈L2〉{x}) ≡ N1(λx. P2{x}) ≡ N1π2.

By the 7th modal law this is implied by π1 ≤ π2 since > = N1π1 ≤ N1π2 ≡ (L1 ⊂ L2), or by
N2 ≤ N1 since > = N2π2 ≤ N1π2 ≡ (L1 ⊂ L2).

Conversely, from L1 ⊂ L2, we deduce successively that

Γ, φ : ΣX , N2φ = > ` π2 ≤ φ Lemma 3.6
Γ, N1π2 = > ` π1 ≤ π2 similarly
Γ, N1π2 = > ` P1 ≤ P2 8th modal law
Γ, N1π2 = >, φ : ΣX , N2φ = > ` π1 ≤ π2 ≤ φ
Γ, N1π2 = >, φ : ΣX , N2φ = > ` N1π1 ≤ N1φ monotonicity
Γ, N1π2 = >, φ : ΣX , N2φ = > ` > ≤ N1φ 7th modal law
Γ, N1π2 = >, φ : ΣX ` N2φ ≤ N1φ Axiom 2.4
Γ, N1π2 = > ` N2 ≤ N1 �

Corollary 3.11 Amongst modal pairs, ∼ provides the internal equality relation, whilst ⊂ is the
imposed partial order for which the imposed semilattice structure + is the join.

Proof The relation ⊂ is reflexive and transitive because the equivalent conditions on [L] or 〈L〉
are. We have Γ ` (L1 ∼ L2) ≡ (L1 ⊂ L2) ∧ (L2 ⊂ L1) = > iff Γ ` [L1] ≥ [L2], [L1] ≤ [L2],
〈L1〉 ≥ 〈L2〉 and 〈L1〉 ≤ 〈L2〉, which happens iff Γ ` L1 = L2 : Ω. As for the relationship with +,

(L1 ⊂ L2) = > a` 〈L1〉 ≤ 〈L2〉, [L1] ≥ [L2]
a` 〈L2〉 = 〈L1〉 ∨ 〈L2〉, [L2] = [L1] ∧ [L2]
a` L2 = L1 + L2 �

Proposition 3.12 If (N,P ) are modal then
(
(N,P ) ∼ nil

)
is decidable:(

(N,P ) ∼ nil
)

= N⊥ and
(
(N,P ) 6∼ nil

)
= P> = ∃x. x ∈ L.

Proof From the modal laws, N⊥ ∨ P> ≥ N(⊥ ∨ >) = N> = > and N⊥ ∧ P> ≤
P (⊥ ∧ >) = P⊥ = ⊥. On the other hand,

(
(N,P ) ∼ nil

)
= N⊥ by definition, whilst

P> = P (∃x. {x}x) = ∃x. P{x} = ∃x. x ∈ L. �

Corollary 3.13 K0 = 1 and K1 = 2.
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Proof Ω0 = ΣΣ0 × ΣΣ0 ∼= Σ × Σ and Ω1 = ΣΣ1 × ΣΣ1 ∼= ΣΣ × ΣΣ. By the Phoa
principle and the constraints N> = >, P⊥ = ⊥, N⊥ ∧ P> = ⊥ and N⊥ ∨ P> = >, we have(
(N,P ) ∼ (>,⊥)

)
∨
(
(N,P ) ∼ (id, id)

)
. �

Although we have seen that the modal laws characterise the algebraic structure of KX, we still
have to show that it is
(a) a Σ-split subspace of Ω, as modal laws just define an equaliser;
(b) the free semilattice on X, with induction and recursion, and
(c) overt, making the quantifier ∃` : KX in Axiom 1.10 legitimate.
We shall do this by developing another characterisation of KX.

4 Fixed point properties

Since it is the purpose of the paper to define the space of Kuratowski-finite subsets, we have to
eliminate them from the notation in the previous section. We illustrate this first with the extension
of the existential quantifier on ∃ : ΣKX → Σ to an operator E : ΣΩ → Σ.

Remark 4.1 Transforming ∃`. θ` into θ nil ∨ ∃x. ∃`. θ(x :: `), we have

∃KXθ ≡ ∃`. θ` = θ nil ∨ ∃x. ∃`. θ(x :: `)
= θ nil ∨ ∃x. ∃KX

(
λ`. θ(x :: `)

)
≡ θ nil ∨ ∃x. ∃KX(Sxθ).

We can therefore define E as the least fixed point of E = λΘ.Θ nil ∨ ∃x.E(SxΘ), where we
write Θ for a typical value of type ΣΩ or predicate on Ω. Notice that unwinding this fixed point
equation reveals the list representation of subsets that we had managed to conceal behind the
semilattice structure in the previous section.

Notation 4.2 The shift operator S : X × ΣΩ → ΣΩ is defined by

SxΘ(N,P ) ≡ Θ(x :: N,x :: P ) ≡ Θ(λφ. Nφ ∧ φx, λφ. Pφ ∨ φx),

and the exception operator S : X × ΣΣX → ΣΣX by

SxNφ ≡ N(λy. x = y ∨ φy).

Remark 4.3 Similarly, to prove that the embedding i : KX � Ω is Σ-split, we must also show
how to extend any predicate θ from KX to Ω, by means of a morphism I : ΣKX → ΣΩ. The
composite E ≡ I · Σi is called a nucleus (Definition 5.1), starting from which, [B] shows how to
define KX formally as a subspace of Ω. Like E, E will be defined by a fixed point equation, the
idea being that

IθL ≡ ∃`. (L ∼ `) ∧ θ`, so EΘL ≡ ∃`. (L ∼ `) ∧ Θ([`], 〈`〉).

We can expand this as before, since
(
(N,P ) ∼ `

)
= Nπ` ∧ [`]πP :

EΘ(N,P ) = ∃`. Nπ` ∧ [`]πP ∧Θ([`], 〈`〉)
= Nπ nil ∧ [ nil ]πP ∧Θ nil

∨ ∃x. ∃`. Nπx::` ∧ [x :: `]πP ∧Θ([x :: `], 〈x :: `〉)
= (N⊥ ∧> ∧Θ nil )

∨ ∃x. ∃`. SxNπ` ∧ P{x} ∧ [`]πP ∧ SxΘ([`], 〈`〉)
= (N⊥ ∧Θ nil ) ∨ ∃x. P{x} ∧ E(SxΘ)(SxN,P ). �

The reasoning that has led up to this fixed point equation depends on the prior existence of
lists, so we have to start again from this formula as our “guess” for the definition of the nucleus E .
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First let us recall the fixed point property itself, which follows from Axiom 1.9, but also uses
equational induction (Axiom 2.6).

Proposition 4.4 Let A = ΣU and Γ ` F : AA. Then Γ ` α ≡ ∃n. Fn⊥ : A satisfies Γ ` Fα = α.
Moreover, if Γ ` β : A is a pre-fixed point , that is, Γ ` Fβ ≤ β, then Γ ` α ≤ β. �

Definition 4.5 Let E∞ and E∞ be the least fixed points of their respective equations above. In
the next section we shall prove that E∞ is a nucleus on Ω, also satisfying

` E∞ ≤ id and x : X, Θ : ΣΩ ` E∞(SxΘ) ≤ Sx($E∞Θ),

so we define KX ≡ {Ω | E∞}. We call Γ ` L : Ω admissible if E∞ admits it:

Γ, Θ : ΣΩ ` E∞ΘL = ΘL.

In Section 6 we shall show that all admissible L are modal, so we have the benefit of the algebraic
structure that we described in the previous section.

Lemma 4.6 If Θ ≤ λL. σ then E∞Θ ≤ σ.

Proof First, E0Θ = Θ nil ≤ σ. Now, if E ≤ λΘ. σ then E(SxΘ) ≤ σ, so

ΦE ≡ λΘ.Θ nil ∨ ∃x.E(SxΘ) ≤ λΘ. σ.

This amounts to saying that Φ(λΘ. σ) ≤ (λΘ. σ), i.e. that λΘ. σ is a pre-fixed point of Φ; then
by Proposition 4.4, the least fixed point E∞ satisfies E∞ ≤ λΘ. σ. �

Lemma 4.7 E∞ΘL ≤ E∞Θ.

Proof First, E0ΘL = Θ nil ∧ [L]⊥ ≤ Θ nil = E0Θ ≤ E∞Θ, so E0 ≤ λΘL.E∞Θ. Now
suppose that E ≤ λΘL.E∞Θ. Then

$EΘL = Θ nil ∧ [L]⊥ ∨ ∃x. E(SxΘ)(SxN,P ) ∧ P{x}
≤ E∞Θ ∨ ∃x.E∞(SxΘ) = ΦE∞Θ = E∞Θ.

Again we have shown that λΘL.E∞Θ is a pre-fixed point of $, so it is greater than the least fixed
point, E∞. �

Lemma 4.8 E∞ = E∞ · E∞.

Proof First, E0Θ = Θ nil = E0Θ nil = E0(E0Θ) ≤ E∞(E∞Θ).
Now suppose that E ≤ E∞ · E∞. Then

ΦEΘ = Θ nil ∨ ∃x.E(SxΘ)
≤ E∞(E∞Θ) ∨ ∃x.E∞

(
E∞(SxΘ)

)
hypothesis

≤ E∞(E∞Θ) ∨ ∃x.E∞
(
Sx($E∞Θ)

)
Definition 4.5

= ΦE∞($E∞Θ) = E∞(E∞Θ),

i.e. E∞ · E∞ is a pre-fixed point of Φ, so E∞ ≤ E∞ · E∞, but they are equal since E∞ ≤ id. �

Proposition 4.9 KX ⊂ Ω is overt (not open), with existential quantifier and ♦-modal operator

∃KX ≡ E · I a Σ!KX and E = ∃KX · Σi.

Proof We require θ ≤ λ`. σ iff ∃`. θ` ≤ σ. Forwards, Θ ≤ λL. σ ` E∞Θ ≤ σ (Lemma 4.6).
Conversely, E∞ΘL ≤ E∞Θ = E∞(E∞Θ) (Lemmas 4.7 and 4.8). From this we also have
∃KX · Σi = E∞ · I · Σi = E∞ · E∞ = E∞. �
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Besides equational and fixed point induction (Axiom 2.6 and Proposition 4.4), we shall need
two other principles in the rest of the paper. The idea of the first one is that Θ>L means ∃`. L ∼ `,
and in fact Θ> = E∞>.

Lemma 4.10 Let ` Θ> : ΣΩ be the least solution of

Θ>(N,P ) = N⊥ ∨ ∃x.Θ>(SxN,P ) ∧ P{x}.

Then L : KX ` Θ>L = >, i.e. Θ>(N,P ) = > for all admissible (N,P ). �

Proposition 4.11 We have the induction scheme

Γ ` Θ : ΣΩ Γ ` Θ nil = >

Γ, L : Ω, ΘL = > ` Θ(x :: L) = >
============================

Γ ` Θ ≤ SxΘ

Γ, L : KX ` ΘL = >
Proof Θ(N,P ) ≥ $E∞Θ(N,P )

= E0Θ(N,P ) ∨ ∃x. E∞(SxΘ)(SxN,P ) ∧ P{x}
≥ N⊥ ∨ ∃x. E∞Θ(SxN,P ) ∧ P{x}

but Θ> is the least (pre)fixed point of this, so Θ> ≤ Θ. Hence if (N,P ) is admissible then
Θ(N,P ) ≥ Θ>(N,P ) = >. �

Although the form of this result is very familiar, its usefulness is rather limited, as it only tells
us about open subspaces. Ultimately, Corollary 10.12 will provide an induction scheme of the
form that any subspace that includes nil and is closed under :: is the whole space. The principle
that we shall invoke repeatedly in Section 6 is the following.

Proposition 4.12 Let Γ ` Θ,Φ : ΣΩ (i.e. particular Θ and Φ are given). Then

Γ, L : Ω ` E0ΘL ≤ ΦL
Γ, E ≤ id nucleus, L : Ω, EΘL ≤ ΦL ` $EΘL ≤ ΦL

Γ, L : KX ` ΘL ≤ ΦL

i.e. ΘL ≤ ΦL for all admissible L.

Proof By equational induction (Axiom 2.6), Γ, n : N ` $nE0Θ ≤ Φ, so Γ ` E∞Θ =
∃n. $nE0Θ ≤ Φ. Hence if L is admissible then ΘL = E∞ΘL ≤ ΦL. �

5 Stages in the construction

Definition 5.1 Recall from [B] that Γ ` E : ΣΩ → ΣΩ is a nucleus on Ω if

Γ, H : Σ3Ω ` E
(
λL:Ω. H(λΘ:ΣΩ. (EΘL))

)
L = E

(
λL:Ω. H(λΘ:ΣΩ. ΘL)

)
L.

Beware that we have shamelessly appropriated this word from locale theory, in which a nucleus j
satisfies id ≤ j ≤ j2. Nuclei in ASD need not in general be order-related to id, but those in this
paper will satisfy E ≤ id.

A nucleus Γ ` E : ΣΩ → ΣΩ on Ω admits a term Γ ` L : Ω if

Γ, Θ : ΣΩ ` EΘL = ΘL or Γ ` λΘ. EΘL = λΘ.ΘL.
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If the context Γ is empty, [B] allows us to introduce a subtype i : {Ω | E}� Ω with Σ-splitting I
for which E = I ·Σi. Then L belongs to the subtype iff E admits it. In this paper we shall need to
define nuclei in non-trivial contexts, but we will not introduce the corresponding dependent types.

Definition 5.2 Following Remark 4.3, we construct the subspace KX ⊂ Ω using the nucleus E∞
that is defined as the least fixed point of the operator $ : (ΣΩ → ΣΩ)→ (ΣΩ → ΣΩ), where

$EΘ(N,P ) = E0Θ(N,P ) ∨ ∃x. E(SxΘ)(SxN,P ) ∧ P{x}

and E0 ≡ $⊥ ≡ λΘL. [L]⊥ ∧Θ nil ≡ λΘNP. N⊥ ∧Θ(>,⊥).

The objects X(n) ≡ {Ω | $nE0} that are obtained as the successive unwindings of this equation
intuitively represent the collections of subsets of X with at most n elements.

Lemma 5.3 F> ∧ F⊥ ≤ FF .

Proof Apply Axiom 2.4 to F⊥ = > ` > = F ` F> = FF . �

This result shows how the singleton { nil } is embedded as a subspace of Ω.

Lemma 5.4 The singleton i : { nil }- - Ω is a Σ-split subspace, where

σ : Σ{ nil } ` Iσ ≡ λNP. σ ∧N⊥
Θ : ΣΩ ` E0Θ ≡ I(ΣiΘ) = λNP.Θ nil ∧N⊥.

Moreover E0 ≤ id, so I a Σi, and if E is any nucleus on Ω that admits nil then E0 ≤ E . �

Lemma 5.5 Θ(N,x :: P ) ∧ P{x} = Θ(N,P ) ∧ P{x}
(x :: SxN) = (x :: N) ≤ N ≤ SxN = Sx(x :: N)

P ≤ (x :: P ) (x :: P ){x} = > P{x} ∧ φx ≤ Pφ
Proof Apply Axiom 2.4 to

φx = > ` Nφ = SxNφ, {x} ≤ φ and P{x} = > ` x ::: P = P. �

Lemma 5.6 E(SxΘ) ≤ Sx($EΘ). �

Lemma 5.7 If E ≤ id then $E ≤ id. �

Lemma 5.8 If E is a nucleus with E ≤ id then so is $E .

Proof Expanding the definition of the outer $E , in which H : Σ3Ω,

$E
(
λL. H(λΘ. ($EΘL))

)
(N,P )

= E0
(
λL. H(λΘ. ($EΘL))

)
∨ ∃x. E

(
Sx(λL. $EH(λΘ.ΘL))

)
(SxN,P ) ∧ P{x},

and we have to show that we may delete the inner ones. First note that Θ nil ≤ $EΘ nil ≤ Θ nil ,
by Definition 5.2 and Lemma 5.7. Then

E0(λL′. H(λΘ. $EΘL′))
= λL.

(
λL′. H(λΘ. $EΘL′)

)
nil ∧ [L]⊥

= λL. H(λΘ. $EΘ nil ∧ [L]⊥)
= λL. H(λΘ.Θ nil ) ∧ [L]⊥ above
= λL.

(
λL′. H(λΘ.ΘL′)

)
nil ∧ [L]⊥

= E0
(
λL′. H(λΘ.ΘL′)

)
E
(
Sx(λL. H(λΘ.ΘL))

)
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≥ E
(
Sx(λL. H(λΘ. $EΘL))

)
$E ≤ id

= E
(
λL. H(λΘ. $EΘ(x :: L)))

)
def Sx

≥ E
(
λL. H(λΘ. E(SxΘ)L)

)
Lemma 5.6

= E
(
λL. (H · ΣSx)(λΘ. EΘL)

)
def Σ(−)

= E
(
λL. (H · ΣSx)(λΘ.ΘL)

)
E nucleus wrt H · ΣSx

= E
(
λL. H(λΘ. (SxΘ)L)

)
def Σ(−)

= E
(
λL. H(λΘ.Θ(x :: L))

)
def Sx

= E
(
Sx(λL. H(λΘ.ΘL))

)
def Sx �

As we have said, the ASD calculus does not currently allow us to defineX(n) as a type dependent
on n, but we can at least introduce $nE0 as a term dependent on n.

Proposition 5.9 n : N ` $nE0 : ΣΩ → ΣΩ are nuclei with n : N ` $nE0 ≤ $n+1E0 ≤ id.

Proof The term n : N ` $nE0 is formed by recursion. The base case of the induction is that
` E0 ≤ id is a nucleus, which is Lemma 5.4. The induction step,

E : (ΣΩ)(ΣΩ), E ≤ id, E nucleus ` E ≤ $E ≤ id, $E nucleus,

was proved in Lemmas 5.7 and 5.8; it has equations as hypotheses and conclusions. From these
things we may deduce the result by equational induction on N (Axiom 2.6). �

Proposition 5.10 ` E∞ ≡ ∃n. $nE0 is a nucleus with E∞ ≤ id.

Proof By the previous result, $nE0 = $n+1⊥ is an ascending chain of nuclei with $nE0 ≤ id.
Writing

E : (ΣΩ)(ΣΩ) ` FE , GE : Σ

for the two sides of Definition 5.1 for a nucleus, Axiom 1.9 gives

` FE∞ = F (∃n. $nE0) = ∃n. F ($nE0)
= ∃n. G($nE0) = G(∃n. $nE0) = GE∞,

so E∞ is a nucleus. Lemma 5.7 showed that $id ≤ id, so id is a pre-fixed point of $, whence E∞ ≤ id
by Proposition 4.4. �

This justifies Definition 4.5 and so the other results of the last section, apart from showing
that all definable finite subsets give rise to admissible pairs.

Lemma 5.11 $E admits nil , since Θ nil ≤ $EΘ nil ≤ Θ nil . �

Lemma 5.12 If E admits L then $E admits x :: L.

Proof Θ(x :: L) = (SxΘ)L = E(SxΘ)L
≤ Sx($EΘ)L = $EΘ(x :: L)
≤ (SxΘ)L.

So Θ : ΣΩ ` Θ(x :: L) = EΘ(x :: L) as required. �

Lemma 5.13 If ` E ≤ id is a nucleus then the pair

1
nil- {Ω | $E} �::

X × {Ω | E}

is jointly Σ-split epi.
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Proof We have just shown that the two maps are well defined. In the diagram

{Ω | $E} ��
nil , ::

1 +X × {Ω | E}

Σ{Ω|$E}
- Σ nil , ::

-
�� Σ× ΣX×{Ω|E}

ΣΩ

$E

66

?

?

Θ 7→ (Θ nil , λxL. E(SxΘ)L) -
�
λL. σ ∧ [L]⊥ ∨ ∃x. Φx(Sx[L], 〈L〉) ∧ 〈L〉{x} ←7 (σ,Φ)

Σ× ΣX×Ω

id× EX
66

?

?

we have to show that the inverse image map is given by the formula shown, and is split mono.

Let Θ : Σ{Ω|$E}, x : X and L : {Ω | E}, i.e. E admits L. This means that

Θ(x :: L) = SxΘL = E(SxΘ)L = ΦxL,

which justifies the inverse image map. Now the composite takes

Θ 7→ (σ,Φ) 7→ λL. σ ∧ [L]⊥ ∨ ∃x. Φx(Sx[L], 〈L〉) ∧ 〈L〉{x}
= λL.Θ nil ∧ [L]⊥ ∨ ∃x. E(SxΘ)(Sx[L], 〈L〉) ∧ 〈L〉{x},

which is $EΘ, but the hypothesis on Θ says that Θ = $EΘ. �

Hence 1 +X � X(1), 1 +X +X2 � X(2), 1 +X +X2 +X3 � X(3), ...

Proposition 5.14 The pair 1
nil- KX �

::
X × KX is jointly Σ-split epi. �

6 Admissible implies modal

Now we use the induction scheme in Proposition 4.12 to prove that all admissible pairs Γ ` (N,P ) :
KX satisfy the modal laws, starting with the properties of the “possibility” operator P .

Lemma 6.1 ΣX / ΣΣX by π 7→ λφ. ∃x. φx ∧ πx and P 7→ λx. P{x}. �

Indeed, if (N,P ) is admissible then P is recovered from π:

Lemma 6.2

L : KX, φ : ΣX ` 〈L〉φ = ∃x. 〈L〉{x} ∧ φx ≡ ∃x. πx ∧ φx ≡ ∃x. x ∈ L ∧ φx.

Proof (∃x. P{x} ∧ φx) ≤ Pφ by Lemma 5.5, so we have to prove ≥.
Consider Θ ≡ λNP. Pφ and Φ ≡ λNP. ∃y. P{y} ∧ φy in the context Γ ≡ [φ : ΣX ]. Then

` E0Θ ≤ Φ and E , EΘ ≤ Φ ` $EΘ ≤ Φ. Hence L : KX, φ : ΣX ` 〈L〉φ ≡ ΘL ≤ ΦL ≡
∃x. 〈L〉{x} ∧ φx by Proposition 4.12. �

Corollary 6.3 〈L〉⊥ = ⊥, 〈L〉(φ ∨ ψ) = 〈L〉φ ∨ 〈L〉ψ 〈L〉(φ ∧ π) = 〈L〉φ. �
Next we consider the “necessity” operator N .

Lemma 6.4 (N,P ) : KX ` Nπ ≡ N(λx. P{x}) = >, so (N,P ) ∼ (N,P ).

Proof Consider Θ(N,P ) = N(λx. P{x}). Then Θ nil = > and

(SxΘ)(N,P ) = (x :: N)
(
λy. (x :: P ){y}

)
= N(λy. P{y} ∨ y = x) ∧ (P{x} ∨ x = x)
≥ N(λy. P{y}) = Θ(N,P ),

so by Proposition 4.11, H(N,P ) = > for all admissible (N,P ). �
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Lemma 6.5 If L : KX then [L] preserves finite meets.

Proof We can show that N> = > using Θ(N,P ) ≡ N> in Proposition 4.11. For Nφ ∧Nψ ≤
N(φ ∧ ψ) consider Θ(N,P ) ≡ Nφ ∧Nψ and Φ(N,P ) ≡ N(φ ∧ ψ) in Proposition 4.12. �

Corollary 6.6 [L]> = >, [L](φ ∧ ψ) = [L]φ ∧ [L]ψ and [L](φ ∧ π) = [L]φ.

Proof The last uses Lemma 6.4. �

Lemma 6.7 L : KX, x : X, φ : ΣX ` x ∈ L ∧ [L]φ ≤ φx, where (x ∈ L) ≡ 〈L〉{x}.
Proof With L = (N,P ), this says that Nφ ∧ P{x} ≤ φx.

Consider Θ(N,P ) = Nφ ∧ P{x} and Φ(N,P ) = φx in Proposition 4.12. �

Corollary 6.8 [L](φ ∨ ψ) ≤ [L]φ ∨ 〈L〉ψ and 〈L〉(φ ∧ ψ) ≥ 〈L〉φ ∧ [L]ψ. �

Theorem 6.9 KX is overt discrete and has no proper open subalgebra for nil and ::.

Proof We have just shown that all L : KX are modal. For modal L1, L2, Proposition 3.10 said
that L1 = L2 : Ω iff (L1 ∼ L2) = >, which is an open equivalence relation. Proposition 4.9 said
that KX is overt. Lemmas 5.11–5.12 provided the algebra structure and Corollary 4.11 said that
this is minimal. �

Unfortunately + is missing: we are not yet in a position to show that L1 + L2 is admissible
when L1 and L2 are. This is because if L1 : X(n) and L2 : X(m) we would expect L1+L2 : X(n+m),
whereas our method of induction only takes us from n to n + 1. We shall show that + is well
defined in Lemma 10.9, using the recursion scheme for nil and ::, but that is still a long way ahead.

7 K as a functor

We must show how K acts on f : X → Y between overt discrete objects, but we shall also prove
that it preserves monos and inverse images, and that it takes coproducts (X = Y +Z) to products
(KY ×KZ). This means that any Kuratowski-finite subset L : KX may be partitioned between Y
and Z. (We already know from Corollary 3.13 that K0 = 1.)

Remark 7.1 Recall that f : X → Y acts contravariantly on predicates, turning ψ : ΣY into
Σfψ ≡ λx. ψ(fx) : ΣX , but covariantly on modal operators, so P : ΣΣX becomes

Σ2fP ≡ ΣΣfP ≡ P · Σf ≡ λψ. P (Σfψ) ≡ λψ. P
(
λx. ψ(fx)

)
,

i.e. the composite with the inverse image Σf along f . In the case of an inclusion i : Y ↪→ X, we
may similarly compose with the direct image ∃i a Σi, i.e.

(P · ∃i)ψ ≡ P (λx. ∃y. x = iy ∧ ψy).

In the case of the coproduct, Y ⊂ X = Y + Z is also closed, with Σi a ∀i. For ψ : ΣY and y : Y ,
∀iψ(iy) = ψy, whilst for z : Z, ∀iψ(jz) = >, so

(N · ∀i)ψ = N
(
λx. (∃y. x = iy ∧ ψy) ∨ (∃z. x = jz)

)
.

Locale theorists will recognise this construction as a special case of the relationship with open
proper maps that we shall discuss in Section 11.

Lemma 7.2 If Γ ` (N,P ) : ΩX is modal then so are Γ ` Kf(N,P ) ≡ (N · Σf , P · Σf ) and
Ki−1(N,P ) ≡ (N · ∀i, P · ∃i) : ΩY . �

But we have to show that they are admissible to KY whenever L : KX. Writing R(N,P ) for
either of them, we shall do the two cases in parallel, the analogy being that the second is for a
partial map f : X ⇀ Y with decidable support (the “inverse” of i : Y ↪→ X). In Lemma 7.9 we
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shall have to expand an ∃x in the definition of $EX ; the second case has two sub-cases, in which
x = iy (so y = fx) and x = jz (so fx is undefined). The following lemmas therefore have three
cases. We write E(n)

X = $nE0 and E(∞)
X = ∃n. $nE0 for the nuclei on ΩX and similarly for Y .

In all three cases, R preserves the empty subset and unions:

Lemma 7.3 R nilX = nil Y , so [L]⊥ ≤ [RL]⊥ and E(0)
X (Θ · R) ≤ (E(0)

Y Θ) · R.

Proof Σf> = ∀i> = > and Σf⊥ = ∃i⊥ = ⊥.
[RL]⊥ = [L](H⊥) ≥ [L]⊥ where H = Σf or ∀i.
E(0)
X (Θ · R)L = Θ(R nil )

)
∧ [L]⊥ ≥ Θ nil ∧ [RL]⊥ = (E(0)

Y Θ)(RL). �

Lemma 7.4 L1, L2 : ΩX ` R(L1 + L2) = RL1 +RL2,
so + on Ω is natural in f : X → Y .

Proof (N1 ∧N2) ·H = N1 ·H ∧N2 ·H and (P1 ∨ P2) ·H = P1 ·H ∨ P2 ·H, where H = Σf , ∀i
or ∃i. �

R either applies the function f to individual elements x, or “filters” the defined values y =
fx = f(iy) from the undefined ones with x = jz.

Lemma 7.5 R{|x|} = {|fx|}, R{|iy|} = {|y|} and R{|jz|} = nil .

Proof We do �, the proof for ♦ being similar.
[{|x|}](Σfψ) = ηx(Σfψ) = (Σfψ)x = ψ(fx) = η(fx)ψ = [{|fx|}]ψ
[{|iy|}](∀iψ) = η(iy)(∀iψ) = (∀iψ)(iy) = ψy = ηyψ = [{|y|}]ψ
[{|jz|}](∀iψ) = η(jz)(∀iψ) = (∀iψ)(jz) = > = [ nil ]ψ. �

Corollary 7.6 Sx(Θ · R) =
(
S(fx)Θ

)
· R, S(iy)(Θ · R) =

(
SyΘ

)
· R and S(jz)(Θ · R) = Θ · R.

Proof Θ · R({|x|}+ L) = Θ(R{|x|}+RL), which is respectively
Θ({|fx|}+RL), Θ({|y|}+RL) and Θ( nil +RL). �

Lemma 7.7 P{x} ≤ (P · Σf ){fx}, P{iy} = (P · ∃i){y} and
P{jz} = (P · ∃j){z}.
Proof {x}x′ = (x = x′) ≤ (fx = fx′) = Σf{fx}x′
and {iy}x′ = (iy = x′) = ∃y′. (y = y′) ∧ (iy′ = x′) = ∃i{y}x′. �

Lemma 7.8 “fL \ fx ⊂ f(L \ x)” in the sense that
(SxN) · Σf ≤ S(fx)(N · Σf ), so R(SxN,P ) ≤ S(fx)

(
R(N,P )

)
,

(S(iy)N) · ∀i = Sy(N · ∀i), so R
(
S(iy)N,P

)
= Sy

(
R(N,P )

)
,

and (S(jz)N) · ∀i = (N · ∀i), so R
(
S(jz)N,P

)
= R(N,P ).

Proof (
(SxN) · Σf

)
ψ = N

(
λx′. x′ = x ∨ ψ(fx′)

)
≤ N

(
λx′. fx′ = fx ∨ ψ(fx′)

)
= N

(
Σf (λy. y = fx ∨ ψy)

)
=

(
S(fx)(N · Σf )

)
ψ(

(S(iy)N) · ∀i
)
ψ = N(λx. x = iy ∨ ∀iψx)

= N
(
λx. ∃y′. x = iy′ ∧ (iy′ = iy ∨ ∀iψ(iy′))

∨ ∃z′. x = jz′ ∧ (jz′ = iy ∨ ∀iψ(jz′))
)

= N
(
λx. ∃y′. x = iy′ ∧ (y′ = y ∨ ∀iψy′)
∨ ∃z′. x = jz′ ∧ (⊥ ∨>)

)
= (N · ∀i)(λy′. y = y′ ∨ ψy′)
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= Sy(N · ∀i)ψ(
(S(jz)N) · ∀i

)
ψ = N(λx. x = jz ∨ ∀iψx)

= N
(
λx. ∃y′. x = iy′ ∧ (iy′ = jz ∨ ∀iψ(iy′))

∨ ∃z′. x = jz′ ∧ (jz′ = jz ∨ ∀iψ(jz′))
)

= N
(
λx. ∃y′. x = iy′ ∧ (⊥ ∨ ψy′)
∨ ∃z′. x = jz′ ∧ (z = z′ ∨ >)

)
= N

(
λx. ∃y′. x = iy′ ∧ ψy′) ∨ ∃z′. x = jz′

)
= (N · ∀i)ψ �

Lemma 7.9 λΦ. EX(Φ · R) ≤ λΦ. (EY Φ) · R ` λΘ. $EX(Θ · R) ≤ λΘ. ($EY Θ) · R.

Proof We expand $EX (Definition 5.2). By Lemma 7.3,

$EX(Θ · R)(N,P ) = E(0)
X (Θ · R)(N,P ) ∨ ∃x. (· · ·)

≤ (E(0)
Y Θ)

(
R(N,P )

)
∨ ∃x. (· · ·),

where the term (· · ·) has three cases:
In the first, for f , use Corollary 7.6 and the premise with Φ ≡ S(fx)Θ:

EX
(
Sx(Θ · R)

)
≤ EX

(
(S(fx)Θ) · R

)
≤
(
EY (S(fx)Θ)

)
· R.

Hence, using Lemmas 7.7 and 7.8, and putting y ≡ fx,

(· · ·) ≡ EX
(
Sx(Θ · R)

)
(SxN,P ) ∧ P{x}

≤
(
EY (S(fx)Θ)

)(
R(SxN,P )

)
∧ (P · Σf ){fx}

≤
(
EY (SyΘ)

)(
Sy(R(N,P ))

)
∧ 〈R(N,P )〉{y}

≤ $EY Θ
(
R(N,P )

)
def $EY

Similarly, EX
(
S(iy)(Θ · R)

)
≤ EX

(
(SyΘ) · R

)
≤
(
EY (SyΘ)

)
· R, so

(· · ·) ≡ EX
(
S(iy)(Θ · R)

)
(S(iy)N,P ) ∧ P{iy}

≤
(
EY (SyΘ)

)(
R(S(iy)N,P )

)
∧ (P · ∃i){y}

≤
(
EY (SyΘ)

)(
Sy(R(N,P ))

)
∧ 〈R(N,P )〉{y}

≤ $EY Θ
(
R(N,P )

)
Finally, EX

(
S(jz)(Θ · R)

)
≤ EX(Θ · R) ≤ (EY Θ) · R ≤ ($EY Θ) · R, so

(· · ·) ≡ EX
(
S(jz)(Θ · R)

)
(S(jz)N,P ) ∧ P{jz}

≤ $EY Θ
(
R(S(jz)N,P )

)
≤ $EY Θ

(
R(N,P )

)
�

Proposition 7.10 If L : KX then RL : KY in all three cases.

Proof By Lemma 7.3, ` λΘ. E(0)
X (Θ · Ωf ) ≤ λΘ. (E(0)

Y Θ) · Ωf , and

n : N, λΦ. E(n)
X (Φ · R) ≤ λΦ. (E(n)

Y Φ) · R

λΘ. E(n+1)
X (Θ · R) ≤ λΘ. (E(n+1)

Y Θ) · R,

by Lemma 7.9. So by equational induction (Axiom 2.6),

n : N ` λΘ. E(n)
X (Θ · Ωf ) ≤ λΘ. (E(n)

Y Θ) · Ωf ,

whence Θ : ΣΣY ` E(∞)
X (Θ · Ωf ) ≤ (E(∞)

Y Θ) · Ωf .
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As Γ ` L : KX = {ΩX | E(∞)
X }, we have Γ, Φ : ΣΩX ` ΦL = E(∞)

X ΦL. Putting Φ = Θ · R,

Θ(RL) = ΦL = (E(∞)
X Φ)L = E(∞)

X (Θ · R)L ≤ (E(∞)
Y Θ)(RL) ≤ Θ(RL),

so these are equal and Γ ` RL : {ΩY | E(∞)
Y } = KY . �

We exploit the first case to define K as a functor.

Theorem 7.11 Let f : X → Y between overt discrete spaces and L : KX.
(a) Then KfL ≡ RL : KY ,
(b) the inclusion K(−)� Ω(−) is natural in f ,
(c) Kf is a homomorphism in the sense that Kf nilX = nil Y and

Kf(x :: L) = fx :: KfL;
(d) K is a covariant functor, i.e. KidX = idKX and K(g · f) = Kg · Kf .
(e) In fact, Kf(L+ L′) = KfL+ KfL′, but we don’t yet know that this is admissible.

Proof [a] Proposition 7.10, [b] Lemma 7.3 and Corollary 7.6, [c] Remark 7.1 and [d] Lemma 10.9.
�

The other two cases almost show that K(Y + Z) ∼= KY × KZ.

Lemma 7.12 If (N,P ) : ΩX , (N1, P1) : ΩY and (N2, P2) : ΩZ are modal then the following are
inverse: (

(N1, P1), (N2, P2)
)

- (N1 · Σi ∧N2 · Σj , P1 · Σi ∨ P2 · Σj)(
(N · ∀i, P · ∃i), (N · ∀j , P · ∃j)

)
� (N,P )

If (N,P ) is admissible then so are (N1, P1) and (N2, P2). Conversely, if (N1, P1) = {|y|} and
(N2, P2) is admissible then so is (N,P ) = iy :: Kj(N2, P2).

Proof The isomorphism uses the equations

∀i · Σi ∧ ∀j · Σj = idΣ2X = ∀i · Σi ∧ ∀j · Σj

Σi · ∀i = idΣY = Σi · ∃i Σj · ∀j = idΣZ = Σj · ∃j
Σi · ∀j = > Σj · ∀i = > Σi · ∃j = ⊥ Σj · ∃i = ⊥

Finally, Ki{|y|}+ KjL = (iy) :: KjL. �

This is enough for us to proceed to the investigation of ListX. With the aid of that, we shall
later be able to prove that + is admissible, making KX a semilattice — indeed, the free one on
X. This will also remove the restriction in the previous result.

We conclude this section by considering a non-complemented inclusion i : U ⊂ X. In this case
we no longer have ∀i, but we can instead apply ∃i to both N and P .

Lemma 7.13 Let i : U ↪→ X be a mono between overt discrete spaces, classified by φ : X → Σ.
Then Ki : KU → KX is a split mono, classified by �φ : KX → Σ.

U - 1 KU - 1

X

i

?

∩

φ - Σ

>

?
KX

Ki

?

∩

�φ - Σ

>

?

Proof Ki is split mono since

(N,P )
Ki- (N · Σi, P · Σi) K∃̂i- (N · Σi · ∃i, P · Σi · ∃i) = (N,P ).
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The square on the right commutes, since

L : KU ` �φ(KiL) = [KiL]φ = [L](Σiφ) = [L]> = >.

If Γ ` L : KX with �φL ≡ [L]φ = > then [L](φ ∧ ψ) = [L]φ ∧ [L]ψ = [L]ψ and 〈L〉ψ =
[L]φ ∧ 〈L〉ψ ≤ 〈L〉(φ ∧ ψ) ≤ 〈L〉(ψ). Hence

Ki(K∃̂iL) = ([L] · ∃i · Σi, 〈L〉 · ∃i · Σi)
=

(
λψ. [L](φ ∧ ψ), λψ. 〈L〉(φ ∧ ψ)

)
= (λψ. [L]ψ, λψ. 〈L〉ψ) = L,

so L belongs to the retract, which is KU . �

Theorem 7.14 K preserves monos and their inverse images.

U - V - 1 KU - KV - 1

X

i

?

∩

f - Y

j

?

∩

φ - Σ

>

?
KX

Ki

?

∩

Kf- KY

Kj

?

∩

�φ - Σ

>

?

Proof Since V and U are classified by φ and φ · f , we have just shown that KV and KU are
classified by �φ and �(φ · f), so we just need to check that

�(φ · f) = λL. [L](φ · f) = λL. ([L] · Σf )φ = �φ · Kf. �

8 Lists, heads and tails

We shall derive the recursive properties of KX from those of ListX. The idea of the representation
is that a list or sequence of length n is a partial function N ⇀ X with support {0, 1, . . . , n− 1},
encoded as a finite set of pairs.

Definition 8.1 ListX ⊂ K(N×X) is the open subspace classified by

λL. [L]
(
λnx. [L](λmy. n 6= m ∨ x = y)

)
∧ [L]

(
λnx. n = 0 ∨ 〈L〉(λmy. n = m+ 1)

)
.

In more suggestive notation (which will be justified in Lemma 9.10) ListX consists of the finite sets
L of pairs such that ∀(n, x), (m, y) ∈ L. n 6= m ∨ x = y and ∀(n, x) ∈ L. n = 0 ∨ ∃(m, y) ∈ L. n =
m + 1. The first condition says that L, considered as a binary relation, is functional, and the
second that this function is defined on an initial segment.

Proposition 8.2 ListX is overt discrete, being an open subspace of an overt discrete space. �

Definition 8.3 For z : X, L : ListX, let (z ::: L) ≡ Ki{|z|}+ KjL and tailL = Kj−1L, where

X-
i = (0, id) - N×X �

j = succ×id �N×X.

Expanding the definitions from the previous section,

[z ::: L]φ ≡ φ(0, z) ∧ [L]
(
λmy. φ(m+ 1, y)

)
〈z ::: L〉φ ≡ φ(0, z) ∨ 〈L〉

(
λmy. φ(m+ 1, y)

)
[tailL]φ ≡ [L]

(
λnx. n = 0 ∨ ∃m. n = m+ 1 ∧ φ(m,x)

)
〈tailL〉φ ≡ 〈L〉

(
λnx. ∃m. n = m+ 1 ∧ φ(m,x)

)
.

Lemma 8.4 nil ∈ ListX, whilst if z : X and L : ListX then (z ::: L) : ListX.
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Proof As [ nil ]φ = >, the two conditions in Definition 8.1 are easily satisfied.
Lemma 7.12 is enough to show that z ::: L is in K(N × X). To show that it is in ListX, we

expand first the outer [z ::: L] and then the inner [z ::: L] or 〈z ::: L〉, using Corollaries 6.3 and 6.6
and some basic arithmetic.

[z ::: L]
(
λnx. [z ::: L](λmy. n 6= m ∨ x = y)

)
= [z ::: L](λmy. 0 6= m ∨ z = y)

∧ [L]
(
λnx. [z ::: L](λmy. n+ 1 6= m ∨ x = y)

)
= (0 6= 0 ∨ z = z) ∧ [L](λmy. 0 6= m+ 1 ∨ z = y)

∧ [L]
(
λnx. n+ 1 6= 0 ∨ x = z)

)
∧ [L]

(
λnx. [L](λmy. n+ 1 6= m+ 1 ∨ x = y)

)
= > ∧> ∧> ∧ [L]

(
λnx. [L](λmy. n+ 1 6= m+ 1 ∨ x = y)

)
= [L]

(
λnx. [L](λmy. n 6= m ∨ x = y)

)
= >

[z ::: L]
(
λnx. n = 0 ∨ 〈z ::: L〉(λmy. n = m+ 1)

)
=

(
0 = 0 ∨ 〈z ::: L〉(λmy. 0 = m+ 1)

)
∧ [L]

(
λnx. n+ 1 = 0 ∨ 〈z ::: L〉(λmy. n+ 1 = m+ 1)

)
= > ∧ [L]

(
λnx.⊥ ∨ n+ 1 = 0 + 1 ∨ 〈L〉(λmy. n+ 1 = m+ 1 + 1)

)
= [L]

(
λnx. n = 0 ∨ 〈L〉(λmy. n = m+ 1)

)
= > �

From this we can show that List is a functor to the category of internal (imposed) monoids.

Theorem 8.5 Let f : X → Y between overt discrete spaces and L : ListX. Then

List(f)(L) ≡ K(N× f)(L) : List(Y ),

List(f) is a homomorphism for nil and :::, i.e.

List(f)( nilX) = nil Y and List(f)(x ::: L) = fx ::: List(f)(L),

and List is a covariant functor, i.e.

List(idX) = idList(X) and List(g · f) = List(g) · List(f).

Functional programmers write mapfL for ListfL.

Proof We have K(N× f)(L) : K(N×Y ) by Proposition 7.11, so we have to show that it satisfies
Definition 8.1, and also show that Listf is a homomorphism for :::.

[K(N× f)(L)]
(
λny. [K(N× f)(L)](λmy′. n 6= m ∨ y = y′)

)
= Σ2(N× f)[L]

(
λny. Σ2(N× f)[L](λmy′. n 6= m ∨ y = y′)

)
7.11

= [L]
(
λnx. [L](λmx′. n 6= m ∨ fx = fx′)

)
Remark 7.1

≥ [L]
(
λnx. [L](λmx′. n 6= m ∨ x = x′)

)
= > (x = x′) ≤ (fx = fx′)

[K(N× f)(L)]
(
λny. n = 0 ∨ 〈K(N× f)(L)〉(λmy′. n = m+ 1)

)
= [L]

(
λnx. n = 0 ∨ 〈L〉(λmx′. n = m+ 1)

)
= > Proposition 7.11

K(N× f)(x ::: L)
= K(N× f)

(
(0, x) :: K(succ×X)L

)
Definition 8.3

= (0, fx) :: K(N× f) · K(succ×X)L Proposition 7.11
= (0, fx) :: K(succ×Y ) · K(N× f)L def (succ×f)
= K(succ×Y )

(
fx ::: K(N× f)L

)
Proposition 7.11

The other parts follow directly from Proposition 7.11. �
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Next we show that every list is either empty or has a unique head and tail.

Lemma 8.6 For L : ListX and n : N,(
∃x. (n+ 1, x) ∈ L

)
≤
(
∃y. (n, y) ∈ L

)
≤
(
∃z. (0, z) ∈ L

)
.

Proof Write αn ≡ 〈L〉(λmx. n = m) ≡
(
∃x. (n, x) ∈ L

)
. The second part of Definition 8.1 for

L : ListX says
[L]
(
λnx. n = 0 ∨ 〈L〉(λmy. n = m+ 1)

)
,

which, together with the hypothesis αn+1 = >, gives(
n+ 1 = 0 ∨ 〈L〉(λmy. n+ 1 = m+ 1)

)
= >,

which is equivalent to αn = >. Hence by Axiom 2.4 we have αn+1 ≤ αn and

L : ListX, n : N, αn ≤ α0 ` αn+1 ≤ α0,

which is the induction step for proving L : ListX, n : N ` αn ≤ α0. �

Lemma 8.7 If L : ListX then L = nil ∨ ∃!z. (0, z) ∈ L.

Proof From Proposition 3.12, either L ∼ nil or ∃nx. (n, x) ∈ L. In the latter case the previous
result applies, giving ∃z. (0, z) ∈ L, which is unique by the first part of Definition 8.1. �

Lemma 8.8 Let L : ListX and x : X. Then tailL : K(N × X), tail (x ::: L) = L, and if
(0, z) ∈ L : ListX then L = z ::: tailL.

Proof These are corollaries of Lemma 7.12.

tail (z ::: L) = Kj−1(Ki{|z|}+ KjL)
= (Kj−1 · Ki){|z|}+ (Kj−1 · KjL) = nil + L

z ::: tailL = Ki{|z|}+ Kj(tailL)
= Ki(Ki−1L) + Kj(Kj−1L) = L {|z|} = Ki−1L �

Lemma 8.9 If L : ListX then tailL : ListX.

Proof

[tailL]
(
λnx. [tailL](λmy. n 6= m ∨ x = y)

)
= [L]

(
λnx. n = 0 ∨

(
∃n′. n = n′ + 1 ∧ [L](λmy. m = 0

∨ ∃m′. m = m′ + 1 ∧ (n′ 6= m′ ∨ x = y))
))

≥ [L]
(
λnx. n = 0 ∨ (n 6= 0 ∧ [L](λmy. n 6= m ∨ x = y))

)
≥ [L]

(
λnx. [L](λmy. n 6= m ∨ x = y)

)
≥ >

[tailL]
(
λnx. n = 0 ∨ 〈tailL〉(λmy. n = m+ 1)

)
= [L]

(
λnx. n = 0 ∨ ∃n′. n = n′ + 1 ∧

(
n′ = 0

∨ 〈L〉(λmy. ∃m′. m = m′ + 1 ∧ n′ = m′ + 1)
))

≥ [L]
(
λnx. n = 0 ∨ n 6= 0 ∧

(
n = 1 ∨ 〈L〉(λmy. n = m+ 1 6= 1)

))
≥ [L]

(
λnx. n = 0 ∨ n 6= 0 ∧ 〈L〉(λmy. n = m+ 1)

)
≥ [L]

(
λnx. 〈L〉(λmy. n = m+ 1)

)
≥ > �

Proposition 8.10 ListX ∼= 1 +X × ListX, cf. Proposition 5.14 for KX. In particular,
(a) L : ListX ` (L =ListX nil ∨ ∃xL′. L =ListX x ::: L′) = >, and
(b) x, y : X, L,L′ : ListX `

(x ::: L =ListX y ::: L′) = (x =X y) ∧ (L =ListX L′). �
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9 Recursion over lists

Lemma 9.1 Define ↓ : N→ List(1) by recursion,

↓ 0 = nil and ↓(n+ 1) = ? ::: (↓n),

where ? : 1, so ↓ is a homomorphism. Then
(
(k, ?) ∈ ↓n

)
= (k < n),

[↓n] = λφ. ∀k < n. φ(k, ?) and 〈↓n〉 = λφ. ∃k < n. φ(k, ?).

Proof The recursive definition says that [↓ 0]φ = > and

[↓(n+ 1)]φ = φ(0, ?) ∧ [↓n]
(
λky. φ(k + 1, y)

)
,

but λφ. ∀k < n. φ(k, ?) satisfies the same equations (Remark 3.2), so they are equal by the universal
property of N. Similarly for 〈↓n〉 with ⊥, ∨ and ∃ in place of >, ∧ and ∀. �

Remark 9.2 This means that

↓ 1 = {|(0, ?)|}, ↓ 2 = {|(0, ?), (1, ?)|}, ↓ 3 = {|(0, ?), (1, ?), (2, ?)|}, . . .

but we shall ignore the ? from now on, and regard List(1) ⊂ K(N).

Lemma 9.3 There is a unique map |−| : List(1)→ N such that

(n < |L|) = (n ∈ L) ≡ 〈L〉(λx. x = n)

and (|L| ≤ n) = (n /∈ L) ≡ [L](λx. x 6= n).

Proof We must define |L| in terms of the presence or absence of numbers in the list, as it would
be begging the question to use recursion on List(1).

The two properties n ∈ L and n /∈ L (as defined by ≡ above) are complementary by the modal
laws, in particular Corollary 6.8.

> = [L](λx. x 6= n ∨ x = n)
≤ [L](λx. x 6= n) ∨ 〈L〉(λx. x = n) ≡ (n /∈ L) ∨ (n ∈ L)

⊥ = 〈L〉(λx. x 6= n ∧ x = n)
≥ [L](λx. x 6= n) ∧ 〈L〉(λx. x = n) ≡ (n /∈ L) ∧ (n ∈ L).

Now φ ≡ λn. (x < n) satisfies the premise of Axiom 1.9, so

> = [L](λx. ∃n. x < n) = ∃n. [L](λx. x < n)
≤ ∃n. [L](λx. x 6= n) = ∃n. n /∈ L.

Hence we may use general recursion or sobriety [A, Lemma 9.11] to define |L| ≡ µn. n /∈ L, which
therefore satisfies (n < |L|) ≤ (n ∈ L) and (|L| ≤ n) ≥ (n /∈ L). These are actually equalities,
as Lemma 8.6 said that

(n+ 1 ∈ L) ≤ (n ∈ L), and so (n /∈ L) ≤ (n+ 1 /∈ L),

and indeed (m ≥ n /∈ L) ≤ (m /∈ L) by induction. �
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Proposition 9.4 |−| and ↓ make List(1) ∼= N.

Proof We show that ↓ and |−| are inverse. Using Lemmas 9.1, 9.3 and 6.2,

〈↓ |L|〉φ = ∃x < |L|. φx = ∃x. x < |L| ∧ φx
= ∃x. 〈L〉(λy. x = y) ∧ φx = 〈L〉φ,

so ↓ |L| = L by Proposition 3.10. On the other hand,

(|↓m| > n) = 〈↓m〉(λx. x = n) = (∃x < m. x = n) = (n < m)

by Lemmas 9.3 and 9.1, so |↓m| = m. �

Corollary 9.5 For any overt discrete object X there is a map |−| : ListX → N such that

|L| = 0 ⇐⇒ L = nil , and |z ::: L| = |L|+ 1.

The number |L| is called the length of the list.

Proof Define |L| ≡ |List(!X)L|, which is the composite of one homomorphism with the inverse
of another. By Lemma 8.7, (L = nil ) is decidable. If L 6= nil then L = x ::: L′ for some x and L′,
so |L| = |L′|+ 1 6= 0. �

Now we can start to define recursion over lists, in a way that will be very familiar to functional
programmers. The first result depends on Proposition 8.10 and establishes existence, and the
second uses Corollary 9.5 and gives uniqueness.

Lemma 9.6 Let A = ΣU for some object U , equipped with an action of X:

Γ ` ζ : A and Γ, x : X, α : A ` σ(x, α) : A.

Then the term Γ ` ε : AListX is a homomorphism in the sense that

ε nil = ζ and ε(x :: L) = σ(x, εL).

iff it satisfies the fixed point equation

ε = λL. (L = nil ∧ ζ) ∨ ∃x:X. ∃L′ :ListX. (L = x ::: L′) ∧ σ(x, εL′).

Proof If ε is a homomorphism then by Proposition 8.10(a),

εL = (L = nil ∧ εL) ∨ ∃xL′. (L = x ::: L′ ∧ εL)
= (L = nil ∧ ζ) ∨ ∃xL′. L = x ::: L′ ∧ σ(x, εL′)

Conversely, if it is a fixed point then by Proposition 8.10(b),

ε nil = ( nil = nil ∧ ζ) ∨ ∃xL′.⊥ ∧ σ(x, εL′) = ζ

ε(y ::: L) = (y ::: L = nil ∧ ζ) ∨ ∃xL′. (y ::: L = x ::: L′) ∧ σ(x, εL′)
= ⊥ ∨ ∃xL′. (x = y) ∧ (L = L′) ∧ σ(x, εL′)
= σ(y, εL). �

The simplicity of the last step is one reason why we have done this part of the argument
for lists: the corresponding argument for finite subsets would be much more difficult. The other
reason is that lists have a well defined length, which is the key to proving uniqueness, and more
generally equational induction for lists.

Proposition 9.7 Let Γ, L : ListX ` αL, βL : A ≡ ΣU . Then, cf. Axiom 2.6,

Γ ` α nil = β nil Γ, L : ListX, x : X, αL = βL ` α(x ::: L) = β(x ::: L)

Γ, L : ListX ` αL = βL

Proof Consider αn ≡ λL. |L| ≤ n ∧ αL and βn ≡ λL. |L| ≤ n ∧ βL, both of type ΣA×ListX .
Then α0 = β0 because (L = nil ) ⇐⇒ (|L| = 0) by Corollary 9.5.
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Suppose that αn = βn. Then if L′ : ListX with |L′| ≤ n, we have αL′ = αnL
′ = βnL

′ = βL′

and so α(x ::: L′) = β(x ::: L′) by hypothesis. Hence, using Proposition 8.10(a) and Corollary 9.5,

αn+1 = λL.
(
L = nil ∨ ∃x. ∃L′. (L = x ::: L′)

)
∧ (|L| ≤ n+ 1) ∧ αL

= λL. (L = nil ∧ α nil )
∨ ∃x. ∃L′. (L = x ::: L′) ∧ (|L′| ≤ n) ∧ α(x ::: L′)

= (the same for β) = βn+1.

Thus αn = βn by equational induction for N (Axiom 2.6), and

αL = (|L| ≤ |L|) ∧ αL = α|L|L = β|L|L = βL. �

Theorem 9.8 ListX is the free (imposed, :::) monoid on X. It also obeys equational induction at
all types.

Proof Let M be any type with an action Γ ` z : M, r : X ×M → M . We have already
shown that some homomorphism ListX →M exists and is unique in the case where M = ΣU , so
we consider A ≡ ΣΣM , ζ = λψ. ψx : A and σ : X ×A→ A by σ(x, F ) = λψ. F

(
λm. (ψ · r)(x,m)

)
.

Then there is a unique map ε : ListX → A such that

ε nil = ζ = λψ. ψz

ε(x ::: L) = σ(x, εL) = λψ. εL
(
λm. (ψ · r)(x,m)

)
.

Now we use Proposition 9.7 to show that εL is prime [A, §4]. Clearly ε nil is prime. Suppose that
εL is prime, so (with F : Σ3M)

λF . F(εL) = λF . εL
(
λm. F(λψ. φm)

)
.

We shall show that ε(x ::: L) is also prime (with respect to G : Σ3M), using

F ≡ λF. G
(
λψ. F (λm. (ψ · r)(x,m))

)
in the primality equation for εL, so

G
(
ε(x ::: L)

)
= G

(
λψ. εL(λm. (ψ · r)(x,m))

)
def ε(x ::: L)

≡ F(εL) def F
= εL

(
λm. F(λψ. ψm)

)
εL prime (hypothesis)

= εL
(
λm. G(λψ. (ψ · r)(x,m))

)
def F

=
(
λψ′. εL(λm. (ψ′ · r)(x,m))

)(
λm′. G(λψ. ψm′)

)
(λβ)−1

= ε(x ::: L)
(
λm′. G(λψ. ψm′)

)
def ε(x ::: L)

Hence εL = λψ. ψ(eL) for some unique map e : ListX → M , which also satisfies e nil = z and
e(x ::: L) = r(x, eL). �

We can now define all sorts of operations on lists in the usual way. We shall need the following
in particular.

Lemma 9.9 n < |L| iff ∃!x:X. (n, x) ∈ L, so we may define L@n by description [A, Section 9].�

Lemma 9.10 [L]φ = ∀n < |L|. φ(n,L@n) and 〈L〉φ = ∃n < |L|. φ(n,L@n).

Proof They satisfy the same recursion equations (cf. Remark 3.2). �

Definition 9.11 We define concatenation (++) on ListX in the usual way by recursion:

nil ++ L2 = L2 and (x ::: L1) ++ L2 = x ::: (L1 ++ L2).
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Beware that ++ on ListX is not the same as + on K(N×X) or ΩN×X .

Proposition 9.12 Using list induction we prove in the usual way that
(a) ++ is associative with unit nil ;
(b) for any f : X → Y , Listf is a homomorphism for nil and ++; and
(c) ListX is the free monoid on X with respect to ++. �

Lemma 9.13 x = L@m for some m iff L = L′++{|x|}++L′′ for some L′, L′′, where L′ = take (L,m)
and L′′ = drop (L,m+ 1) in functional programming notation. �

Lemma 9.14 List preserves equalisers.

Proof Let X-
i- Y

f-

g
- Z be an equaliser of overt discrete spaces. (This exists, given f and

g, because Z is discrete.) We show, using equational list induction on Γ ` L : ListY , that if Γ `
ListfL = ListgL : ListZ then
Γ ` ∃!L′ :ListX. L = ListiL′. For the base case, nil Y = Listi nilX . For the induction step,

fy ::: ListfL ≡ Listf(y ::: L) = Listg(y ::: L) ≡ gy ::: ListgL

iff fy = gy ∧ ListfL = ListgL. Hence if L = ListiL′ (by the induction hypothesis) and y = ix
then y ::: L = Listi(x ::: L′). �

Lemma 9.15 List preserves pullback over 1, i.e.

X + Y - Y List(X × Y ) - Y

-

X
?

- 1
?

ListX
? |−| - N

|−|

?

Proof Define zip : ListX × ListY → List(X × Y ) by

zip (x ::: L1, y ::: L2) = (x, y) ::: zip (L1, L2)
zip (L1, nil ) = nil = zip ( nil , L2).

Now if Γ ` L1 : ListX and Γ ` L2 : ListY make a commutative square, i.e. |L1| = |L2|, then
L1 = Listπ0

(
zip (L1, L2)

)
and L2 = Listπ1

(
zip (L1, L2)

)
, and Γ ` zip (L1, L2) : List(X × Y ) is

the unique thing that does this. �

Theorem 9.16 List preserves all finite connected limits.

Proof They may be obtained from equalisers and pullbacks like this. �

10 The free semilattice

Now that we have the free monoid, and [C, Section 11] showed how to construct (stable effective)
quotients of overt discrete objects by open equivalence relations, the free semilattice exists. We
want to show that this free semilattice is in fact KX. One way to do this would be to follow
the motivation in Section 3, which we have now made legitimate. Instead, we shall identify the
quotient map ListX � KX for the semilattice laws directly.
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Recall from Theorem 7.11 that Kπ1 is a homomorphism in the sense that Kπ1 nil = nil and
Kπ1(x ::: L) = x :: Kπ1L.

Lemma 10.1 Kπ1 is a homomorphism: Kπ1(L1 ++ L2) = Kπ1L1 + Kπ1L2. �

Proposition 10.2 Kπ1 : ListX → KX is an open surjection.

Proof It is an open map since both ListX and KX are overt discrete [C, Lemma 10.2]. For it
to be an open surjection [C, Definition 10.4] we have to show that Θ ≡ ∃Kπ1> = > : ΣKX , where

S : KX ` ΘS ≡ ∃Kπ1>S = ∃L:ListX. (Kπ1L = S).

Since Kπ1 nil = nil , we have Θ nil = >. Then

ΘS ≡ ∃L. (Kπ1L = S)
≤ ∃L. (Kπ1(x ::: L) = x :: S) above
≤ ∃L′. (Kπ1L

′ = x :: S) where L′ = x ::: L
= Θ(x :: S) = SxΘS

so Θ ≤ SxΘ. Hence Θ = λS.> by Corollary 4.12. �

Lemma 10.3 Kπ1 is a natural transformation from List to K.

Proof Both composites in the square are of the form (N,P ) 7→ (N · H,P · H), where H =
Σπ1 · Σf = Σid×f · Σπ1 . �

Notation 10.4 Write L1, L2 : ListX ` L1 ≈ L2 : Σ for the open congruence generated by the
semilattice laws. Explicitly, this is of the form ∃L:List(ListX). (· · ·), where (· · ·) says that the list
L of lists begins L1, ends L2 and its successive members are related by one of the semilattice laws.
Being a congruence also means that if L1 ≈ L2 and L3 ≈ L4 then L1 ++ L3 ≈ L2 ++ L4.

Lemma 10.5 Kπ1 : ListX → KX coequalises these laws, i.e. if L1 ≈ L2 then Kπ1L1 = Kπ1L2.

Proof This is an equational induction over the list L, in which the induction step considers
a single instance of a semilattice law L1 ≈ L2 in which two elements are either interchanged or
coalesced. But Kπ1 is a homomorphism for +, and these laws hold in KX. �

Lemma 10.6 Kπ1L1 ⊂ Kπ1L2 iff (∀n < |L1|. ∃m < |L2|. L1@n = L2@m).

Proof
Kπ1L1 ⊂ Kπ1L2 = [Kπ1L]

(
λx. 〈Kπ1L2〉(λy. x = y)

)
Notation 3.3

= Σ2π1[L]
(
λx. Σ2π1〈L2〉(λy. x = y)

)
Remark 7.1

= [L]
(
λnx. 〈L2〉(λmy. x = y)

)
= (∀n < |L1|. ∃m < |L2|. L1@n = L2@m) L. 9.10 �

Lemma 10.7 If Kπ1L1 ⊂ Kπ1L2 then L1 ++ L2 ≈ L2.

Proof By equational list induction on L1. For the base case, nil ++ L2 = L2. Suppose that
x ∈ Kπ1L. Then x = L@m for some m < |L|, so L = L ++ {|x|} ++ L for some lists L and L by
Lemma 9.13, whence

(x ∈ Kπ1L) ≤
(
{|x|}++ L ≈ L

)
: Σ.

Hence for the induction step,(
Kπ1(x ::: L1) ⊂ Kπ1L2

)
= (x ∈ Kπ1L2) ∧

(
Kπ1L1 ⊂ Kπ1L2

)
≤

(
x ∈ Kπ1(L1 + L2)

)
∧
(
L1 ++ L2 ≈ L2

)
≤

(
x ::: (L1 ++ L2) ≈ (L1 ++ L2)

)
∧
(
L1 ++ L2 ≈ L2

)
≤

(
(x ::: L1) ++ L2 ≈ L2

)
�
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Corollary 10.8 Kπ1L1 = Kπ1L2 iff L1 ≈ L1 ++L2 ≈ L2, and so KX = ListX/≈. This coequaliser
is valid in S as well as in E [C, Lemma 10.8]. �

Lemma 10.9 + : KX × KX → KX is well defined and is preserved by Kf .

ListX × ListX
Kπ1 × Kπ1-- KX × KX - ΩX × ΩX

ListX

++

? Kπ1 - KX
?

.................
- - ΩX

+

?

Proof The rectangle commutes by Lemma 10.1, the top left map is a surjection by Proposi-
tion 10.2 and the bottom right is a Σ-split mono, so there is a unique fill-in. The map f : X → Y
turns the diagram into a commutative cuboid, since K� Ω. Kπ1, + and ++ are natural by Theo-
rem 7.11(b), Lemma 10.3, Lemma 7.4 and Proposition 9.12(b). �

Theorem 10.10 KX is the free semilattice (in the sense of +) on X in S.

ListX
Kπ1-- KX- - Ω

X

{|(0,−)|}

6

- M

δ

?

.................

ε

...............................-

Proof IfM is an (imposed) semilattice then it is in particular a monoid, so by Proposition 9.12(c)
there is a unique homomorphism (for nil , ::: and ++) ε : ListX → M . But as M also obeys the
semilattice laws, ε factors through the coequaliser (Corollary 10.8), giving the required mediator
δ : KX → M . This is a homomorphism (for nil and +) because Kπ1 is, and is surjective.
If δ′ : KX → M is another homomorphism for nil and + then δ′ · Kπ1 : ListX → M is a
homomorphism for nil and ++, so δ′ · Kπ1 = δ · Kπ1, and δ′ = δ because Kπ1 is surjective. �

Proposition 10.11 Let Γ, L : KX ` αL, βL : A ≡ ΣU . Then, cf. Axiom 2.6 and Proposition 9.7,

Γ ` α nil = β nil Γ, L : KX, x : X, αL = βL ` α(x :: L) = β(x :: L)

Γ, L : KX ` αL = βL

Proof Consider ᾱ ≡ α · Kπ1, β̄ ≡ β · Kπ1 : ListX � KX ⇒ A. These satisfy Proposition 9.7, so
ᾱ = β̄, whence α = β since Kπ1 is surjective. �

Corollary 10.12 Any Σ-split subspace U ⊂ KX that contains nil and is closed under :: is
U = KX.

Proof U can be expressed as the equaliser of some α, β : KX ⇒ A
[B, Proposition 4.14]. �

11 Overt compact subspaces

After this lengthy manipulation in the logical calculus of ASD, you may be left wondering what
“admissible” or “modal” terms L : KX ever had to do with “finite subsets” or “compact open
subspaces” of X. In fact, the topological results follow from the modal laws in Definition 3.4, and
it is these that we assume of L : Ω, rather than admissibility (L : KX), which we deduce on the
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basis of Axiom 1.10. In view of the lack of a theory of parametric types for ASD, we first consider
a global (non-parametric) modal element ` L : Ω.

Proposition 11.1 The open subspace i : U ⊂ X classified by π is overt (and discrete), with
existential quantifier ∃U = 〈L〉 · ∃i and modal operator 〈L〉 = ∃U · Σi. This justifies the notation
〈L〉φ ≡ ∃x ∈ L. φx, cf. the last version of Lemma 6.2.

Proof The space X is overt by hypothesis, and U is an open subspace of it classified by π, so
U is itself overt, with ∃U = ∃X · ∃i. What we have to show, therefore, is that

〈L〉 · ∃i = ∃X · ∃i and 〈L〉 · ∃i · Σi = 〈L〉.

As usual, we regard an open predicate θ on the open subspace U ⊂ X (which is classified by π)
as a predicate on X itself, with θ ≤ π. This means that we represent ∃i by id and Σi by π ∧ (−).
Using the last of the eight modal laws, the first equation is then

〈L〉(∃iθ) = 〈L〉θ = ∃x. πx ∧ θx = ∃x. θx = ∃X(∃iθ)

and the second, for φ : ΣX , is 〈L〉(∃i · Σiφ) = 〈L〉(π ∧ φ) = 〈L〉φ. �

Proposition 11.2 The subspace i : U ⊂ X is also compact, with universal quantifier ∀U = [L] · ∃i
and modal operator [L] = ∀U · Σi. This justifies the notation [L]φ ≡ ∀x ∈ L. φx.
Proof We have to show that Σ! a [L] · ∃i and [L] · ∃i · Σi = [L]. Again we represent ∃i by
id and Σi by π ∧ (−). Let σ : Σ and u : U , i.e. u : X with πu = >.

Suppose σ ≤ [L]ψ. Then σ ≤ [L]ψ ∧ πu ≤ ψu by Remark 3.6, so (λu:U. σ) ≤ ψ.
Conversely, suppose λu:U. σ ≤ ψ, so x : X ` σ ∧ πx ≤ ψx. Then

σ = σ ∧ [L]π 7th modal law
≤ [L](λx. σ ∧ πx) Euclid
≤ [L]ψ hypothesis

For the modal operator, with φ : ΣX , [L](∃i · Σiφ) = [L]φ. �

The subspace U need not be Hausdorff, i.e. have decidable equality, as we haven’t assumed
this of X itself.

Proposition 11.3 Conversely, let U ⊂ X be compact open. Then ` (N,P ) : Ω is modal, where
P ≡ ∃U · Σi and N ≡ ∀U · Σi.
Proof As for Proposition 11.10 below without γ. �

Once again we have a result for modal L : Ω when we really want one for admissible L : KX,
but now at last we are able to state, and so invoke, the Scott continuity Axiom 1.10.

Theorem 11.4 ` L : ΩX is admissible iff it is modal, and such terms correspond bijectively to
compact open subspaces U ⊂ X. Moreover, a subspace U ⊂ X is compact open iff it is listable.

Proof Without loss of generality U = X. Applying Axiom 1.10 to F ≡ ∀X , α` = > and φ` = π`,
where X is a compact overt discrete space, we have

` > = ∀X> = ∃`:KX. ∀X(λx. x ∈ `) = ∃`:KX. (∀x:X. x ∈ `).

This means that (∀X ,∃X) ⊂ `, where ` is admissible and (∀X ,∃X) is modal, whilst ` ⊂ (∀X ,∃X)
since (∀X ,∃X) is the greatest modal pair (Proposition 3.8). Hence (∀X ,∃X) ∼ `, which means
that (∀X ,∃X) is admissible (and ∃` above is unique). Notice that the two universal quantifiers in

∃`:KX.
(
∀y ∈ `. ∃u:U. x = iu

)
∧
(
∀u:U. ∃x ∈ `. x = iu

)
: Σ

are legitimate because both U and ` define compact spaces.
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In the last part, ⇐ follows from well known topological results, namely that the image of a
compact overt space is compact overt, and that any overt subspace of a discrete space is open [C].
The more significant ⇒ comes from the fact that ListX � KX. �

Remark 11.5 We have to be careful with the notion of listability: we may legitimately use a
listing to prove results about U only if the statements of those results does not depend on the
choice of listing [8, §6.6].

Definition 11.6 An object X that is listable in the above sense is called Kuratowski finite . If it
is also Hausdorff then there is a listing without repetitions, in which case we say that X is simply
finite . Recall from Propositions 3.8–3.9 that KX has a greatest element iff X is Kuratowski finite,
and is a lattice (in fact a Boolean algebra) iff X is finite.

Encouraged by this success, we use the same Axiom and proof for the

Theorem 11.7 Any Γ ` L : Ω is admissible iff it is modal.

Proof We have a directed union in the sense of Axiom 1.10,

π : ΣX , x : X ` πx = ∃`:KX. (∀y ∈ `. πy) ∧ (x ∈ `).

This is preserved by any Γ ` N : ΣΣX , so

Γ ` > = N(λx. P{x}) 7th modal law
= N

(
∃`. (∀y ∈ `. P{y}) ∧ (λx. x ∈ `)

)
above

= ∃`. (∀y ∈ `. P{y}) ∧N(λx. x ∈ `) Axiom 1.10
= ∃`.

(
` ⊂ (N,P )

)
∧
(
N,P ) ⊂ `)

)
Notation 3.3

= ∃`:KX.
(
` = (N,P )

)
, Corollary 3.11

where ` is unique and admissible, so (N,P ) is itself admissible. �

What are the results for parametric Γ ` L : KX corresponding to the compact open subspace
U ⊂ X above? If we had a theory of parametric types, in place of a single object U , we would have
a display map U −−. Γ [8, Chapter VIII]. The idea that each Uγ is overt compact is expressed by
saying that p : U −−. Γ is an open proper map [C, §7]. Also, where U ⊂ X was an open subspace,
U ⊂ Γ ×X is an open binary relation Γ ↽⇀ X. We call this a Kuratowski-finite subset of X
dependent on Γ.

Proposition 11.8 Let Γ ` (N,P ) : KX. Then there is a diagram as shown, in which the open
subspace i : U ↪→ X × Γ is classified by λxγ. Pγ{x} : ΣX×Γ, the three squares are pullbacks, and
p is an open proper map.

U - (∈) - 1

X × Γ

i

?

∩

- X × KX
?

∩

x, (N ′, P ′) 7→ P ′{x}
- Σ

>

?
p

- Γ

π1

? (N,P )- KX

π1

?
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Proof The composite p = π1 · i is open since X is overt. To show that p is proper, we must
find the right adjoint of Σp and verify the dual Frobenius law [C, Definition 7.3] and Beck–
Chevalley condition. In fact, we shall also give another formula for the left adjoint, and I claim
that E · ∃i = ∃Γ

X · ∃i = ∃p a Σp a A · ∃i.

ΣU
�� Σi

>-
∃i
- ΣX×Γ

A : ψ 7→ λγ. Nγ
(
λx. ψ(x, γ)

)
-

E : ψ 7→ λγ. Pγ
(
λx. ψ(x, γ)

)- ΣΓ

6
Σp

First recall that (∃i · Σiψ)(x, γ) = ψx ∧ (x, γ) ∈ U = ψx ∧ Pγ{x}, and let x : X, γ : Γ, θ : ΣΓ

and ψ : ΣX×Γ.
For the left adjoint we require E · (∃i · Σi) = ∃Γ

X · (∃i · Σi).
For the unit of the right adjoint, idΣΓ ≤ A · (∃i · Σi) · Σπ1 .
For the counit, (∃i · Σi) · (Σπ1 ·A) · (∃i · Σi) ≤ (∃i · Σi).
For the dual Frobenius law, A · ∃i(φ ∨ Σpθ)γ = A(∃iφ)γ ∨ θγ.
Finally, we must show stability under pullback along s : ∆ → Γ. This follows by application

of the same results, but for ∆ ` (s∗N, s∗P ) : KX.

Σs
∗U � ΣU s∗U - U - (∈) - 1

ΣX×∆

∃j
?

?

�Σ
X×s

ΣX×Γ

∃i
?

?

X ×∆

j

?

∩

X × s- X × Γ

i

?

∩

- X × KX
?

∩

- Σ

>

?

Σ∆

A′

?

?

� Σs
ΣΓ

A

?

?

∆

π1

? s - Γ

π1

? (N,P )- KX

π1

?

The Beck–Chevalley condition for the top left square is that for the inverse image of an open
inclusion [C, Proposition 3.11]. In the the bottom left square, where

A′θ ≡ λδ. N(sδ)
(
λx. θ(x, δ)

)
,

the Beck–Chevalley condition is

Σs(Aψ)δ = N(sδ)
(
λx. ψ(x, sδ)

)
= A′(ΣX×sψ)δ. �

Corollary 11.9 In particular, (∈) ↪→ X × KX → KX is open and proper. �

Proposition 11.10 Conversely, let i : U ↪→ X×Γ be open such that p ≡ (π1 · i) : R→ Γ is (open
and) proper. Then Nγφ = ∀p(λu. φ(qu)) and

Pγφ = ∃p(λu. φ(qu)) = ∃x. φx ∧ (x, γ) ∈ U = ∃x. φx ∧ Pγ{x}
are modal (where q ≡ (π0 · i) : R→ X). We recover U from P as Pγ{x} =

(
(x, γ) ∈ U

)
. �

Theorem 11.11 KX classifies Kuratowski finite subsets of X, in the sense that
open proper relations Γ ↽⇀ X as above
==============================

Γ −→ KX
�

Theorem 11.12 KX classifies Kuratowski finite subsets of X.
U - (∈)

Γ

p

?
- KX

?
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Indeed (∈) : X ↽⇀ KX is the generic Kuratowski-finite subset of X (dependent on KX). By this
we mean that any pullback of it as shown is a Kuratowski-finite subset of X dependent on Γ, and
every Kuratowski-finite subset of X dependent on Γ arises uniquely in this way. �
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