
Scott Domains in Abstract Stone Duality

Paul Taylor

August 5, 2003

Abstract
Identifying the need for Scott domains to be overt (open) objects in intuitionistic locale

theory, we re-work Scott’s informations systems construction from first principles, to obtain
a cartesian closed full subcategory in abstract Stone duality. The necessary and sufficient
condition for overtness is that the consistency predicate be decidable. We also construct the
halting set: an open subspace of N that is not closed.

1 Introduction

[[Dana Scott originally constructed topological models of the untyped λ-calculus using continuous
and algebraic lattices [Sco76], in which ⊥ denotes non-terminating computation. Although > can
be understood as an exception indicating observable inconsistency, it was considered undesirable
by those using Scott’s results to give denotational semantics to programming languages. So he in-
troduced (what came to be known as) Scott domains, encoded rather explicitly by information
systems [Sco82]. We shall re-work this construction from first principles.]]

At first sight, a Scott domain [Sco82] is a closed subspace C of an algebraic lattice Y . However,
when X is another domain, we want CX to be a Scott domain too. The crucial point can be
formulated in either the category of topological spaces or locales, cf. [Joh84]: [[Compare Lemma 3.1
and the Main Theorem of [Joh84]; if C is Hausdorff then so is CX .]]

Proposition 1.1 Let X be locally compact. Then the functor (−)X preserves closed inclusions
C @ - Y iff there is a map ∃X that makes the rightmost square a pullback:

C - 1 CX- 1 - 1

Y
?

u

γ - Σ

⊥
?

Y X
?

u...........
γX- ΣX

⊥
?

..................
∃X
- Σ

⊥
?

Equivalently, there is a left adjoint, ∃X a Σ!X .
Proof C is closed iff there is a (unique) map γ making the leftmost square a pullback (we say
that γ co-classifies C). In particular, {⊥} ⊂ Σ is the generic closed subset (of the Sierpiński
space), and we are asking that {⊥} ⊂ ΣX also be closed, which is what the rightmost pullback says.
Using that, we may construct the rectangle as a pullback, and an easy comparison of universal
properties shows that it is the exponential CX . �

Definition 1.2 Locales with this property were called open by André Joyal and Myles Tierney
[JT84, §V 3], but we shall call them overt. One reason for the new word is that we need to define
a Scott domain as a closed subspace of an algebraic lattice that is also an overt space, but not
an open subspace unless C = Y . Another is that overtness is the lattice dual of compactness [C,
§7], and compact spaces have always been distinguished from closed subspaces.

Example 1.3 N is overt because it admits existential quantification. Proposition 4.7 shows that

1

its lift, N⊥, is a closed subspace of its topology, ΣN, co-classified by γ = λφ. ∃yz. φ[y]∧φ[z]∧y 6= z.

N⊥ - 1 (N⊥)N - 1 - 1

ΣN
?

u

γ - Σ

⊥
?

ΣN×N
?

u

γN - ΣN

⊥
? ∃N - Σ

⊥
?

Then (N⊥)N is co-classified by δ = ∃N · γN = λφ. ∃xyz. φ[x, y] ∧ φ[x, z] ∧ y 6= z, which we
recognise as the statement that φ is not a functional relation. �

Remark 1.4 Overtness is not familiar in classical topology, where {⊥} is trivially a Scott-closed
subset of the lattice ΣX of open subsets of X. We shall see in the final section that things are very
different in recursion theory; indeed, recursive enumerability implies overtness (and, I conjecture,
conversely). [[Termination predicate (⊥ is closed).]]

Another role of an overt space I is that I-indexed joins exist in any lattice of open sets and
are preserved by inverse image maps [C, Corollary 8.4]. Once again, this is axiomatic classically
in topology and locale theory, but fails for recursion, where we only want recursive joins.

This is where abstract Stone duality comes in: by defining algebras of open subsets over the
category of spaces itself (instead of over Set), the infinitary structure that is needed is provided
in the background (to the extent that a lot can be done without actually stating it at all [C, D]),
and we are at liberty to decree that selected objects such as N be overt.

Remark 1.5 To do topology, we still need the finitary lattice operations ⊥, >, ∧ and ∨, and state
as an axiom that Σ is an internal distributive lattice. The exponential ΣX must exist for each X,
and provides the topology on X. Also, the Phoa principle,

F : ΣΣ, σ : Σ ` Fσ = F⊥ ∨ σ ∧ F>,

is needed to capture the way in which ⊥,> ∈ Σ classify open and closed subspaces respectively
[C, Section 5].

[[Phoa = Euclid + co-Euclid + monotone. Intrinsic order: write Γ ` a ≤ b : X for Γ, φ : ΣX `
φa ≤ φb : Σ.]]

Remark 1.6 In order to construct these open and closed pre-images (as pullback squares) we
need more types in the category than those generated from 1, Σ and N by Σ(−). Such subspaces
and others (but not all pullbacks) are provided by requiring that the adjunction Σ(−) a Σ(−) be
monadic, and the type system may be extended in a corresponding way by a comprehension-like
calculus [B].

In particular, all objects are to be sober [A], i.e. ηX : X → Σ2X is the equaliser of Σ2ηX and
ηΣ2X . This has the effect that when Γ ` P : ΣΣX is prime, i.e.

Γ, F : Σ3X ` FP = P
(
λx. F(λφ. φx)

)
,

we may introduce a new term Γ ` focusP : X such that Γ, φ : ΣX ` φ(focusP) = Pφ.
[[−−× notation.]]

Remark 1.7 In order to make the new (Eilenberg–Moore) notion of homomorphism agree with
the lattice-theoretic one in topology, we need an infinitary axiom, which is invoked for the first
time in the abstract Stone duality programme in this paper. The axiom has many forms and
many roles, the most famous of which is that it provides fixed points. For us, its main purpose
is to approximate any predicate or open subset φ : ΣN by its finite subsets, with the idea that
meta-observation F : ΣΣN of φ can only test φ at finitely many values:

F : ΣΣN ` F> = ∃`:List(N). F (λn. n ∈ `).

2

We call this the Scott principle. [[Fφ for F>?]]

Remark 1.8 The sobriety assumption is similar to (though in fact stronger than) repleteness
[Hyl91, Tay91]. This provides a unique diagonal mediator in any commutative square in which s
is Σ-epi (i.e. Σs is mono), as the map shown is, assuming the Scott principle.

` - λn. n ∈ `

List(N)
s -- ΣN ψ

X

a(−)

?
- ηX -�....

......
......

......
......

......
..

ΣΣX
?

λφ. ∃`. φ(a`) ∧ ∀n ∈ `. ψ[n]
?

x - λφ. φx

If a(−) is monotone with respect to list inclusion then the square commutes because λφ. φ[a`] =
λφ. ∃`′. φ(a`) ∧ ∀n ∈ `′. n ∈ `. The mediator extends a(−) from lists to all open subsets.

[[Interpretation in LKSp and LKLoc.]]
[[There is a classical model, in which in particular ΣN is interpreted as the PN, ∃ as union

and > and ⊥ as the entire and empty subsets. It follows that the free model has the existence
property:

if the term n : N ` φ[n] : Σ satisfies ` ∃n. φ[n] = > (i.e. this is provable from the axioms)
then there is a numeral (closed term ` a : N) such that ` φ[a] = >. �

]]
[[Justification of the definition of compactness.]]

2 Encoding predicates on N

The greater part of this paper consists of heavy manipulation of (hereditarily) finite sets. For
this, it is much more natural to use lists than be encumbered at every point by an isomorphism
List(N) ∼= N. In fact we shall encode lists as binary trees, as functional programmers have done
since Lisp. Trees provide a versatile data structure, with which we can give more or less explicit
formulae throughout. [[lists versus tokens]]

Definition 2.1 The axioms for T are the same as Peano’s for N, merely replacing the unary
operation-symbol (successor) with a binary one (pairing), together with a corresponding modifi-
cation to the recursion scheme. Thus T is the free algebra with

T ∼= 1 + T× T,

in which the constant is called 0 here (but [] or nil elsewhere) and the binary operation is written
〈−,−〉 : T× T→ T.

Proposition 2.2 T ∼= List(T), in which the list [a, b, c] is encoded as 〈a, 〈b, 〈c, 0〉〉〉. The empty
list is 0, and the value k is prepended (“cons-ed”) to the front of the list ` to form k :: ` ≡ 〈k, `〉.
We use the notation k :: ` when we’re thinking of this as a list, but we use the pair 〈k, `〉 more
frequently, and never actually need the [a, b, c] notation. [[Also, I have a habit of writing φ[a] for
predicates.]] �

Notation 2.3 Lists encode finite sets, over which we may quantify:

(n ∈ 0) ≡ ⊥ (n ∈ k :: `) ≡ (n = k) ∨ (n ∈ `)
∀n ∈ 0. φ[n] ≡ > ∀n ∈ k. φ[n] ≡ φ[k] ∧ ∀n ∈ `. φ[n]
∃n ∈ 0. φ[n] ≡ ⊥ ∃n ∈ k. φ[n] ≡ φ[k] ∨ ∃n ∈ `. φ[n]
∃`′ ⊂ 0. φ[`′] ≡ φ[0] ∃`′ ⊂ k. φ[`′] ≡ ∃`′ ⊂ `. φ[`′] ∨ φ[k :: `′].

Notice that we write ∀n ∈ `. φ[n], and not ∀n:T. n ∈ `⇒ φ[n], since neither ∀T nor ⇒ is defined
on Σ. Also, these formulae are decidable (complemented) if φ is.

3

In particular, we write `′ ⊂ ` for ∀n ∈ `′. n ∈ `, even though this is a preorder: it allows
repetition and re-ordering. Also, it is only consistent with the formulae for ∃`′ ⊂ `. φ[`′] if φ[`′] is
invariant under repetition and re-ordering of the list `′.

Finite sets define predicates: ∅ = λk.⊥, {n} = λk. (k = n), {m,n} = λk. (k = n ∨ k = m),
etc., although we cannot generalise this to {`} as it is ambiguous whether ` means an element or
a list. Nevertheless, we do use the function ` 7→ λn. n ∈ `, which we call s : T→ ΣT.

Finally, N and 2 ≡ {no, yes} are retracts of T by

0 = 0 1 + n = 〈0, n〉 |0| = 0 |k :: `| = 1 + |`|
no = 0 yes = 〈0, 0〉 ‖0‖ = no ‖〈p, q〉‖ = yes

where |`| is the length of the list `.

We begin with the symbolic form of Remark 1.8.

Lemma 2.4 Let Γ, ` : T ` a` : X be monotone in the sense that

Γ, `, `′ : T, φ : ΣX ` φ(a`′) ∧ (`′ ⊂ `) ≤ φ(a`) : Σ.

Then Γ ` P ≡ λφ. ∃`. φ[a`] is prime and Γ `
∨
�` an ≡ focus

(
λφ. ∃`. φ[a`]

)
is the least upper bound.

Proof Put Γ, F : Σ3X ` F ≡ λψ. F
(
λφ. ∃`. φ(a`) ∧ ∀n ∈ `. ψ[n]

)
: ΣΣT . Then

P
(
λx. F(λφ. φx)

)
= ∃`.

(
λx. F(λφ. φx)

)
a` = ∃`. F

(
λφ. φa`

)
.

By monotonicity, this is ∃`. F
(
λφ. ∃`′. φa`′ ∧ ∀n ∈ `′. n ∈ `

)
= ∃`. F (λn. n ∈ `) = F> = FP,

using the Scott principle. In the case of a constant family, b` = b0,
∨
� b` = b0. On the other hand,

if Γ, ` : T ` a` ≤ b` then Γ `
∨
� a` ≤

∨
� b`. So the construction yields the least upper bound. �

Proposition 2.5 All objects have and all maps preserve
∨
�.

Proof Let f : X → Y . Then

f
(∨
� a`
)

= focusY
(
λψ. ψ · f(focusX λφ. ∃`. φa`)

)
= focusY

(
λψ. ∃`. ψ(fa`)

)
=
∨
�
`
fa`.

Alternatively, the result follows from naturality of η in Remark 1.8. �
[[Beware that we mean internal joins!]]

Lemma 2.6 If Γ ` F : ΣΣX preserves ⊥ and ∨ (in the sense that F (φ1 ∨ φ2) = Fφ1 ∨ Fφ2) then
it also preserves ∃.
Proof Let Γ, n : N ` φn : ΣX . Put Γ, ` : ListN ` θ` ≡ ∃n ∈ `. φn : ΣX , so ∃n. φn =

∨
�` θ`. Then

F (∃n. φn) =
∨
�` Fθ` by Proposition 2.5, but Fθ` = ∃n ∈ `. F (φn) since the bounded quantifier

is defined from ⊥ and ∨, which are preserved by F . Finally,
∨
�` ∃n ∈ `. Fφn ≡ ∃n. Fφn. �

[[Directed join of a family qualified by an open subset, used in Remark ??.]]

Now we generalise the Phoa principle (Remark 1.5) from a single value σ to a list, and then
to an open set of values. In this we write φ` = λn. n ∈ ` ∧ φ[n] for any φ : ΣT and ` : T.

Lemma 2.7 F : ΣΣT , φ : ΣT ` Fφ` = ∃`′ ⊂ `. F (λn. n ∈ `) ∧ ∀n ∈ `′. φ[n].
Proof The base case, ` = 0, is easy. In the induction step we prepend an element k to the list `.
By the Phoa principle with respect to σ = φ[k], the left hand side is

Fφk::` = F
(
λn. (n ∈ ` ∨ n = k) ∧ φ[n]

)
= F

(
φ` ∨ (σ ∧ {k})

)
= Fφ` ∨ σ ∧ F (φ` ∨ {k}),

where {k} ≡ (λn. n = k). The right hand side is a disjunction over `′′ ⊂ k :: `. This breaks
into two cases, the first, with k /∈ `′′, being handled by the induction hypothesis. The other is
k ∈ `′′ = k :: `′ with `′ ⊂ `.

RHS = ∃`′ ⊂ `. F (λn. n ∈ `′) ∧ ∀n ∈ `′. φ[n]
∨ ∃`′ ⊂ `. F (λn. n ∈ k :: `′) ∧ ∀n ∈ k. φ[n]

= Fφ` ∨ ∃`′ ⊂ `. F ′(λn. n ∈ `′) ∧ (∀n ∈ `′. φ[n]) ∧ σ
= Fφ` ∨ σ ∧ F ′φ` = Fφ` ∨ σ ∧ F (φ` ∨ {k})

4

using the induction hypothesis for F ′ ≡ λψ. F (λn. ψ[n] ∨ n = k). �

Theorem 2.8 F : ΣΣT , φ : ΣT ` Fφ = ∃`. F (λn. n ∈ `) ∧ ∀n ∈ `. φ[n].
Proof By the Scott principle and the Lemma,

Fφ = ∃`. Fφ` = ∃`. ∃`′ ⊂ `. F (λn. n ∈ `′) ∧ ∀n ∈ `′. φ[n] = ∃`′. F (λn. n ∈ `′) ∧ ∀n ∈ `′. φ[n].
�

Recall from [A, Section 10] that if Γ ` P : Σ2
N preserves >, ∧ and ∃T then it’s prime; this did

not depend on the Scott principle, but the same result at higher types does.

Lemma 2.9 If Γ ` P : Σ3
T preserves >, ∧ and ∃T then it’s prime.

Proof By Phoa, P(λφ. σ) = P(⊥) ∨ σ ∧ P(>) = σ, so

PF = P
(
λφ. ∃`. F (λn. n ∈ `) ∧ ∀n ∈ `. φ[n]

)
Theorem 2.8

= ∃`. P
(
F (λn. n ∈ `) ∧ λφ. ∀n ∈ `. φ[n]

)
P preserves ∃

= ∃`. F (λn. n ∈ `) ∧ ∀n ∈ `. P(λφ. φ[n]) P preserves >,∧
= F

(
λn. P(λφ. φ[n])

)
Theorem 2.8 �

Corollary 2.10 By Lemmas 2.6 and 2.9, in order to show that H : ΣΣT → ΣU is an Eilenberg–
Moore homomorphism, it suffices to verify that it preserves ⊥, >, ∧ and ∨. �

We complete the circle back to the categorical argument in Remark 1.8 by showing that
s : T� ΣT is Σ-epi.

Lemma 2.11 S a Σs with S · Σs = id, where

s : T ∼= List(T)→ ΣT by s : ` 7→ λn. (n ∈ `)

S : ΣT → ΣΣList(T) ∼= ΣΣT by S : φ 7→ λψ. ∃`. [φ(`) ∧ ∀n ∈ `. ψ(n)].
Proof Using Theorem 2.8,

S(ΣsF)ψ = ∃`. ΣsF` ∧ ∀n ∈ `. ψ[n] = ∃`. F (λn. n ∈ `) ∧ ∀n ∈ `. ψ[n] = Fψ.

Σs(Sφ)` = (Sφ)(s`) = ∃`′. φ`′ ∧ ∀n ∈ `′. n ∈ ` = ∃`′ ⊂ `. φ`′ ≥ φ`. �

In the next section we generalise this to embed all types in ΣT, and afterwards to deduce that
all lattice homomorphisms are Eilenberg–Moore homomorphisms.

3 Algebraic lattices

Lemma 3.1 Let C : ΣT → ΣT [[M/C]] and write `
 n for C(λm. m ∈ `)n. Then by Theorem 2.8,

Cφn = ∃`. `
 n ∧ ∀m ∈ `. φ[m]. �

Lemma 3.2
(a) If `′ ⊃ `
 n then `′
 n.
(b) id : ΣT → ΣT corresponds to (`
 n) ≡ (n ∈ `).
(c) id ≤ C : ΣT → ΣT iff ∀`n. n ∈ `⇒ `
 n.
(d) C = C · C : ΣT → ΣT iff

(
∃`′. `′
 n ∧ ∀m ∈ `′. `
 m

)
⇐⇒ `
 n.

Proof In (d), the left hand side is C
(
C(λm. m ∈ `)

)
n. �

Definition 3.3 A binary predicate `, n : T ` (`
 n) : Σ that satisfies (a,c,d) is called a saturated
closure condition. The image X of the associated closure operator C = C · C ≥ id is called

5

the algebraic lattice encoded by
 [[although we don’t have space to justify the name]]. We also
define an “imposed” order on T by

`′ ≤X ` if ∀n ∈ `′. `
 n.

[[Warning about imposed and intrinsic orders.]]

Examples 3.4 The following types are encoded by decidable saturated closure conditions.
(a) 1 is encoded by the relation
 for which `
 n for all n, `, so `′ ≤1 ` always.
(b) Σ by `
 n for all n, ` 6= 0, so `′ ≤Σ ` unless `′ = 0, but only ⊥,> ∈ Σ are represented.
(c) $ (the ascending natural numbers with >) is encoded by `
$ n if ∃m ∈ `. |m| ≤ |n|.
(d) ΣΣT is encoded by L
 N iff ∃U ∈ L. U ⊂ N .
Proof
(a) Cφn = (∃`. ∀m ∈ `. φ[m]) = > [[with ` = 0]].
(b) Cφn = (∃`. ` 6= 0 ∧ ∀m ∈ `. φ[m]) = ∃m. φ[m] [[with ` = [m], i.e. the singleton list, 〈m, 0〉]].
(d) By Lemma 2.11, ΣΣT is the image of the closure operator C = Σs · S,

and C(λm. m ∈ L)N = ∃U ∈ L. ∀u ∈ U. u ∈ N .

Proposition 3.5 Any saturated closure condition
X gives rise to adjunctions

T

sX -- X
�� cX

⊥-
iX

- ΣT

ΣT
SX --
⊥�

ΣsX
�ΣX

�� ΣiX

⊥-
IX

- ΣΣT

in which CX(λm. m ∈ `)n ≡ iX
(
cX(λm. m ∈ `)

)
n ≡ iX(sX`)n ≡ `
X n with sX0 = ⊥X ,

CX = iX · cX , sX = cX · s, SX = ΣiX · S

IX = ΣcX = S · ΣsX and IX · ΣiX = S · ΣiX ·sX

where S ≡ SΣT : φ 7→ λψ. ∃`.
(
φ` ∧ ∀n ∈ `. ψ[n]

)
. Also, sX` ≤ sX`′ in X iff ` ≤X `′.

Proof The closure operator CX is defined from
 by Lemma 3.1; we split this idempotent as
CX = iX · cX with cX a iX via the object X. In the notation of [B], X = {ΣT | ΣCX} and

sX` = cX(s`) = admit
(
CX(s`)

)
= admit(λn. `
 n).

Then cX · iX = idX and id ≤ ΣCX , so, by Lemma 2.11,

SX · ΣsX = ΣiX · S · Σs · ΣcX = ΣiX · ΣcX = idΣX

ΣsX · SX = Σs · ΣcX · ΣiX · S = Σs · ΣCX · S ≥ Σs · S ≥ idΣT

IX · ΣiX = S · Σs · ΣcX · ΣiX = ΣCX ≥ idΣ2T

ΣiX · IX = ΣiX · S · Σs · ΣcX = ΣiX · ΣcX = idΣX .

Finally, sX` ≡ cX(s`) ≤ a : X for any a : X iff s` ≤ iXa : ΣT iff ∀n ∈ `. iXan : Σ. �

Corollary 3.6 L
ΣX N iff ∃U ∈ L. ∀u ∈ U. N
X u, that is, ∃U ∈ L. U ≤X N , and so L′ ≤ΣX L
iff ∀U ′ ∈ L′. ∃U ∈ L. U ≤X U ′. If
X is decidable then so is
ΣX .
Proof This is the closure condition corresponding to the way in which we have just expressed
ΣX as the image of a closure operation on ΣT. Notice the contravariance in the last part, and also
that N and U are treated here as lists, and L as a list of lists. �

6

Proposition 3.7 Any Γ, ` : T ` φ[`] : Σ that sends the “imposed” order ≤X on T to the intrinsic
order on Σ extends uniquely to θ : X → Σ such that θ · sX = φ.

T

sX -- X

Σ

θ

�...
....

....
....

....
..

φ -

Proof Define Γ, x : X ` θx ≡ ∃`. φ[`] ∧ ∀n ∈ `. iXxn, so, by monotonicity,

θ(sX`) = ∃`′. φ[`′] ∧ ∀n ∈ `′. iX(sX`)n = ∃`′. φ[`′] ∧ `′ ≤X ` = φ[`].

In fact this holds for any sober object Y as target in place of Σ, cf. Remark 1.8 and Lemma 2.4.�

Corollary 3.8 [[explain]] ΣCXFφ = ∃L. F (λN. N ∈ L) ∧ ∀N ∈ L. ∃U. φ[U] ∧ U ≤X N , which
“forces φ to be monotone with respect to ≤X”. �

There are other situations in which the exponential transpose, ` 7→ λn. `Rn, of a binary relation
R factorises as i · s via some object X, with S · Σs = idX = Σi · I. Of course, the formulae above
for I and S are only valid when R is a saturated closure condition.

Proposition 3.9 Let R be an open equivalence relation on T. Then
(a) q : T � T/R is its quotient, q being an open surjection, with Q = ∃q a Σq [[conflict in use of

q and Q]];
(b) T/R admits equality, and, if R is decidable, inequality too;
(c) ΣT/R is an algebraic lattice, encoded by the closure condition (`
 n) ≡ ∃m ∈ `. nRm; this is

decidable if R is;
(d) the inclusion i : T/R-- ΣT by x 7→ λn. (qn=Xx) is the unique map for which i(q`) = λn. nR`;
(e) it is Σ-split by I : φ 7→ λψ. ∃n. φ(qn) ∧ ψ[n], but ΣiX a IX only when R is (=T).
[[Use idempotents, then may restrict to canonical values ⊂ T.]]
Proof By the penultimate paragraph of [C, Lemma 10.8], the closure operation is Σq ·Q = Σq ·
∃q = λφ. λx. ∃y. xRy∧φ[y], which yields the stated closure condition when we put φ = λm. m ∈ `.

�

Examples 3.10
(a) N ∼= T/R|·|, where `1R|·|`2 ≡ |`1| = |`2|, i.e. these lists have the same length.
(b) 2 ∼= T/R‖·‖, where R‖·‖ identifies any two pairs, 〈p, q〉 and 〈p′, q′〉, treating them as the value

yes, but distinguishes them from 0 ≡ no.
(c) T× T ∼= T/R× where R× disposes of the constant 0 by identifying it with 〈0, 0〉.
(d) T+ T ∼= 2× T ∼= T/R+, where R+ identifies 0 with 〈0, 0〉, and 〈〈p, q〉, n〉 with 〈〈p′, q′〉, n〉. �

The applications of these examples stretch our list notation. However, whilst any functional
programmer could code up our “filtering” operations on lists quite easily, for the sake of familiarity
we (ab)use set-theoretic notation instead.

Lemma 3.11 If Y is an algebraic lattice then so is Y T, and L
Y T 〈n,m〉 ≡ {v | 〈n, v〉 ∈ L}
Y m,
which is decidable if
Y is.
Proof L
ΣT×T n is n ∈ L ∨

(
n = 〈0, 0〉 ∧ 0 ∈ L

)
∨
(
n = 0 ∧ 〈0, 0〉 ∈ L

)
by Example (c). Thus

L is considered as a list of pairs, but if we find 0 in the list (or as the value of n), we treat it as
〈0, 0〉. Then we obtain CTY = iTY · cTY and
X×Y as the clockwise composite from T to ΣT in the
diagram

T

s -- ΣT
--

⊥� �ΣT×T
cTY --
⊥�
iTY

�Y
T

7

As we intend to evaluate CTY (sL) at 〈n,m〉, we restrict the set sL to those pairs that have n as
their first component, since this is unaffected by CTY . This “filtered list” is defined as

{v | 〈n, v〉 ∈ 0} = 0
{v | 〈n, v〉 ∈ p :: L} = v :: {v | 〈n, v〉 ∈ L} if 〈n, v〉 = p or n = v = p = 0

= {v | 〈n, v〉 ∈ L} otherwise. �

[[In ML: fold append
(
map (fn (u, v)⇒ if u = n then [v] else [])L

)
.]]

Lemma 3.12 If X and Y are algebraic lattices then so is X×Y , and if
X and
Y are decidable
then so is
X×Y .
Proof Example (d) encodes ΣT × ΣT ∼= ΣT + ΣT in a similar way to ΣT×T, using lists whose
elements are either ν0(n) = 〈no, n〉 or ν1(n) = 〈yes, n〉.

T

s -- ΣT
--

⊥� �ΣT × ΣT
cX × cY--
⊥�

iX × iY
�X × Y

Then `
X×Y 〈0, n〉 ≡ `0
X n and `
X×Y 〈〈p, q〉, n〉 ≡ `1
Y n, where `0 = {n | 〈0, n〉 ∈ `}
and `1 = {n | ∃pq. 〈〈p, q〉, n〉 ∈ `} are filtered lists (in the latter, ∃pq involves pattern-matching
and not a search). �

Theorem 3.13
(a) All logical types in the restricted λ-calculus are distributive algebraic lattices that are encoded

by decidable saturated closure conditions.
(b) All types in the monadic λ-calculus are Σ-split subspaces of ΣT (or of ΣN).
Proof Recall that the restricted λ-calculus is generated from 1 and N by products and Σ(−) [A,
Section 2], and that in the monadic λ-calculus we may also form Σ-split subspaces [B]. A logical
type is one of the form ΣX , which is distributive. We have shown in this section that the classes
of algebraic lattices and subspaces of ΣT are closed under these constructions. �

In fact, we have already done enough to show that the full subcategory of algebraic lattices is
cartesian closed, but we shall construct Y X explicitly in Lemma 6.1.

4 Total and partial functions

We shall refer to Σ-split subspaces of ΣT (that is, to all of the objects definable in the monadic
λ-calculus including the Scott principle) as locally compact spaces. This usage will be justified
in future work, but we can now generalise Corollary 2.10 to obtain an analogue of [A, Theorem 5.7]
entirely within Abstract Stone Duality.

Theorem 4.1 Let Y be a locally compact sober space and H : ΣY → ΣX . Then the following
are equivalent:
(a) H = Σf for some unique f : X → Y ;
(b) H preserves ⊥, >, ∧ and ∨ (it is a lattice homomorphism);
(c) it preserves >, ∧ and ∃ (it is a σ-frame homomorphism);
(d) it is an Eilenberg–Moore homomorphism.

Proof Let i : Y- - ΣT with Σ-splitting I : ΣY- - ΣΣT . If H is a lattice homomorphism then
so is H ·Σi : ΣΣT → ΣX , which is therefore an Eilenberg–Moore homomorphism by Corollary 2.10,
i.e. the rectangle commutes.

8

Σ4
N

Σ3i --
�

Σ2I
�Σ3Y

Σ2H - Σ3X

?

Σ2
N

Σ2ηΣN
? Σi - ΣY

ΣηΣY
?

H - ΣX

ΣηΣX
?

ΣN �
i �Y ×

Ĥ
X

Then, since Σ3i is split epi, the right-hand square also commutes, i.e. H is an Eilenberg–Moore
homomorphism too. Then H = Σf since Y is sober [A, Theorem 4.10]. �

Remark 4.2 Here is the symbolic version of the same proof. If Γ ` P : Σ2X is a lattice homomor-
phism (in the sense that P (φ1 ∧ φ2) = Pφ1 ∧ Pφ2 etc.) then so is Γ ` Σ2iP ≡ λF. P

(
λx. F (ix)

)
:

P
(
λx. (F1 ∧ F2)(ix)

)
= P

(
(λx. F1(ix)) ∧ (λx. F2(ix))

)
= P

(
λx. F1(ix)

)
∧ P

(
λx. F2(ix)

)
.

Hence Σ2iP is prime by Lemma 2.9, so P is also prime because

FP = (Σ2IF)(Σ2iP) = (Σ2iP)
(
λψ. (Σ2IF)(λF. Fψ)

)
= P

(
λx. (Σ2IF)(λF. F (ix))

)
= P

(
λx. F(λφ. (Iφ)(ix))

)
= P

(
λx. F(λφ. φx)

)
,

where (Iφ)(ix) = φx is the η-rule saying that Σi · I = id [B, Remark 2.5]. �

This lattice-theoretic characterisation of (the inverse images of) total maps easily extends to
one of partial maps with open support. The construction of the partial map classifier is nevertheless
valid without the characterisation, but the proof is rather more difficult [D].

Lemma 4.3 The topology on an open subspace i : U ⊂ - X classified by φ ∈ ΣX is the slice or
lower set ΣX ↓ φ, the inclusion being ∃i. Also, ∃i a Σi with ∃i · Σi = (−) ∧ φ [C, Section 3]. �

Lemma 4.4 Σ ↓ ΣY ≡ {(σ, ψ) | y : Y ` σ ≤ ψ(y)} is an algebra, which we call ΣY⊥ . The
projections Σ � Σ ↓ ΣY - ΣY are homomorphisms, corresponding to maps that we call
1

⊥- Y⊥ �
i
⊃ Y , where i is an open inclusion with ∃i : φ 7→ (⊥, φ).

Proof Σ ↓ ΣY / Σ× ΣY by (σ, ψ) 7→ (σ, λy. σ ∨ ψy). Then there is a pullback,

Σ× ΣY
Σ! × id- ΣY × ΣY

Σ ↓ ΣY
??

............
a

6

6

- ΣΣ×Y6

6

in which the top and right maps are homomorphisms, so Σ ↓ ΣY is a subalgebra of Σ × ΣY .
The projections are homomorphisms because those from the product are, and the open subspace
Y ⊂ - Y⊥ is classified by (⊥,>). �

Proposition 4.5 Let X and Y be locally compact sober spaces. There are bijective correspon-
dence (up to isomorphism of U) amongst
(a) partial maps X ⇀ Y with open support, i.e. X �

i
⊃ U

f- Y ;
(b) F : ΣY → ΣX preserving ⊥, ∧, ∨ and ∃;
(c) homomorphisms F : Σ ↓ ΣY → ΣX and
(d) f : X → Y⊥.

9

Hence Y⊥ is the partial map classifier: for any partial map f : X ⇀ Y with open support as
in (a), there is a unique total map as in (d) that makes the left hand square a pullback.

U
f - Y ΣU = ΣX ↓ F> �

F ′ �ΣY

X

i

?

∩

............................
f

- Y⊥
?

∩................
ΣX

∃i
?

?

a (−) ∧ F>
66

� F

F

�
Σ ↓ ΣY = ΣY⊥

(⊥, (−))

?

?

a π1

66

Proof [a⇒b] ∃i, being a left adjoint, preserves ∃, and it also preserves ∧ by the Frobenius law
[C, Lemma 3.7], so F = ∃i ·Σf : ΣY → ΣX preserves ⊥, ∧, ∨ and ∃. [b⇒a] Let i : U ⊂ - X be the
open subset classified by F> ∈ ΣX . Then ∃i : ΣX ↓ F>- - ΣX is the inclusion and F = ∃i ·F ′
where F ′ also preserves >, so F ′ = Σf by Theorem 4.1. [b⇒c] Let F : (σ, ψ) 7→ σ ∨ Fψ, which
may be verified to preserve the lattice operations. [c⇒b] F : ψ 7→ F (⊥, ψ) preserves ⊥, ∧, ∨ and
∃. [c⇔d] F = Σf since it is a homomorphism. The square is a pullback because F (⊥,>) = F>
[C, Proposition 3.11(b)]. [[uniqueness?]] �

Lemma 4.6 The inclusion i : Y ⊂ - Y⊥ is split iff Y has a least element. In this case, b a i and
∃i a Σi a Σb.
Proof Any splitting of the homomorphism Σi ≡ π1 : Σ ↓ ΣY � ΣY must be of the form
ψ 7→ (Pψ, ψ). If the splitting is a homomorphism then P is prime, with Pψ = ψp for some
p : 1 → Y . This is the least element since ψp = Pψ ≤ ψy by the defining property of Σ ↓ ΣY .
Conversely, ψ 7→ (ψp, ψ) is a splitting homomorphism (as it preserves the lattice operations), so
it is Σb with b · i = idY , and indeed the adjunctions hold. �

Proposition 4.7 N⊥ → ΣN is the closed subset co-classified by γ : ψ 7→ ∃mn. φ[n]∧φ[m]∧n 6= m.

Proof The dotted map is defined from N⊥ � ⊃ N
{}- ΣN using Proposition 4.5.

N

{} - ΣN ΣN � ΣΣN

N⊥

?

∩

........................- (ΣN)⊥

6

a
?

∩

Σ ↓ ΣN
?

a
6

� Σ ↓ ΣΣN

6

a
?
a
6

As ΣN has a least element, its inclusion into (ΣN)⊥ is split, and we put c : N → ΣN for the
composite, so Σc : F 7→ (F∅, λn. F{n}). Also, define ∀c : ΣN⊥ ≡ Σ ↓ ΣN → ΣΣN by

∀c(σ, φ)ψ = σ ∨
(
∃n. φ[n] ∧ ψ[n]

)
∨
(
∃nm. ψ[n] ∧ ψ[m] ∧ n 6= m

)
.

Then Σc
(
∀c(σ, φ)

)
= (σ, λn. σ ∨ φn) = (σ, φ) since σ ≤ φ[n], and

∀c(ΣcF)ψ = F⊥ ∨
(
∃n. F{n} ∧ ψ[n]

)
∨
(
∃mn. ψ[m] ∧ ψ[n] ∧m 6= n

)
=

(
∃`. F (λn. n ∈ `) ∧ ∀n ∈ `. ψ[n]

)
∨
(
∃mn. ψ[m] ∧ ψ[n] ∧m 6= n

)
= Fψ ∨ γψ

by Theorem 2.8 [[which uses T]], where the cases for lists with two or more distinct elements are
absorbed into the term γψ. �

[[Of course, we also have]]

Proposition 4.8 If Y has ⊥ then every f : Y → Y has a least fixed point.
Proof The fixed point is

∨
�n f

n(⊥) by a familiar argument. Alternatively, the object $ (Ex-
ample 3.4(c)) may be shown to be both the initial algebra and the final coalgebra for the functor
(−)⊥, and then the sequence λn. fn(⊥) arises from the unique (−)⊥-homomorphism $ → Y ,
whose value at > is the fixed point. �

[[Least fixed point in terms of
∨
�n rec(n,⊥, f).]]

10

5 Scott domains

We are now ready to resolve the problem of overt closed subspaces raised in Proposition 1.1 and
so identify a cartesian closed full subcategory of locally compact spaces that includes 2⊥ and N⊥
as objects.

Lemma 5.1 Let Y be an algebraic lattice encoded by
Y , and let C @ - Y be a closed subspace
co-classified by γ : Y → Σ. Then α = γ ·sY : T→ Σ satisfies ` ≤Y `′ ⇒ (α` ≤ α`′) and co-classifies
a closed subspace A of T such that the squares are pullbacks and p : A� C is Σ-split epi.

A
p -- C - 1

T

j

?

u

s -- ΣT
cY --
⊥�
iY

�Y

i

?

u

γ - Σ

⊥

?

α β
6

ΣA
� Σp �

>.............
P
...........-- C

ΣT

Σj

66

a ∀j

?

?

� ΣsY �
>
SY
-- ΣY

Σi

66

a ∀i

?

?

Conversely, if α is monotone with respect to ≤Y then γ = SY (α), and this is a bijective corre-
spondence. We also put β = γ · cY , so γ = β · iY , α = β · s and β = λφ. ∃`. α[`] ∧ ∀n ∈ `. φ[n].

[[Use β in Lemma 6.3. ΣC is an algebraic lattice. Combine with Lemma 5.5.]]
Proof Proposition 3.7 gives the correspondence between α and γ, the adjunction SY a ΣsY that
between β and γ and Lemma 3.1 that between α and β.

The pullbacks are inverse images. Put P = Σi ·SY · ∀j . Then by the Beck–Chevalley equation
[C, Proposition 3.11(b)] and the splittings,

P · Σp = Σi · SY · ∀j · Σp = Σi · SY · ΣsY · ∀i = Σi · ∀i = id,

whilst since i · p = sY · j and SY a ΣsY ,

Σp · P = Σp · Σi · SY · ∀j = Σj · ΣsY · SY · ∀j ≤ Σj · id · ∀j = id. �

Lemma 5.2 The object C is a overt iff the predicate α ∈ ΣT is decidable.
Proof If α is decidable then the closed inclusion j : A → T is also open, so A is overt (as is T
as an axiom) and so is C since p is Σ-epi [C, Section 7]. Explicitly, ∃C = ∃T · ∃j · Σp because we
have three pullback squares as shown:

C ��
p

A ⊂
j - T

1 - 1 - 1 - 1

ΣC

⊥
?
- Σp - ΣA

⊥
?
- ∃j - ΣT

⊥
? ∃T - Σ

⊥
?

Conversely, if C is overt then we may use ∃C to define a map T→ Σ:

T

sX -- X �
i

A C
! -- 1

T

{} -- ΣT
SX --
⊥�

ΣsX
�ΣX

Σi --
⊥�
∀i

�ΣC
∃C --
⊥�
Σ!

�Σ.

11

Then, by the adjunctions, ∃C · Σi · SX · {n} = ⊥ iff {n} ≤ ΣsX · ∀i⊥, which is α[n] since ∀i⊥ = γ
(notice that we use {n} ≡ λm. m = n here and not s` ≡ λm. m ∈ `). Therefore

¬α[n] = ∃C · Σi · SX{n}. �

[[Even though T is a discrete space ({`} ⊂ - T and T ⊂ - T × T are open), we shall see in
the final section that it can have a closed subspace C that’s not open.]]

[[For locales, do we just need ¬α, which exists automatically? Ask Steve Vickers or Peter
Johnstone.]]

Definition 5.3 As α must be decidable, we prefer to use ConX ≡ ¬α to refer positively to the
closed subspace, and say that ` ∈ T is consistent if ConX [`]. We shall also write ConX [`] ⇒ φ
for φ ∨ ¬ConX [`].

An information system (
X ,ConX) consists of a saturated closure condition
X (Section 3)
and a decidable predicate ConX ∈ ΣT such that

ConX [0]
`′ ≤X ` ConX [`]

ConX [`′]

Then
X alone encodes an algebraic lattice X, of which ConX defines a closed subspace X @ - X
as above. This space X is called a Scott domain. The requirement that 0 be consistent excludes
the empty set from being a domain, and ensures that X has ⊥ and so the fixed point property;
Dana Scott achieved the same end by means of a special token ∆X .

[[Dense injectives. Boundedly complete. Fixed point property. Lift of Scott domain.]]

Example 5.4 From Example 1.3, T⊥ is the Scott domain encoded by the information system
(
,Con) in which (`
 n) ≡ (n ∈ `) and Con[`] ≡ ∀n ∈ `. ∀m ∈ `. n = m, so T⊥ = ΣT. We obtain
N⊥ and 2⊥ by restricting Con to the encodings of the numerals and booleans, cf. Examples 3.10.

Lemma 5.5 If X is a Scott domain encoded by (
X ,ConX) then ΣX is an algebraic lattice
encoded by

L
ΣX N if ConX [N]⇒ ∃U ∈ L. U ≤X N.

If
X is decidable then so is
ΣX .

Proof Without ConX this is Corollary 3.6. Let γ co-classify X @
i- X.

T

s -- ΣT
cX --
⊥�
iX

�ΣX
Σi --
⊥�
∀i

�ΣX

ΣX / ΣX is the image of the closure operator ∀i · Σi ≡ (−) ∨ γ, and γ[sX`] = α[`] = ¬ConX [`]. �

Corollary 5.6 In the notation of [B], X = {ΣT | EX}, where, for F : ΣΣT and φ : ΣT,

EXFφ = ∃L. F (λN. N ∈ L) ∧ ∀N ∈ L. ConX [N]⇒ ∃U. φ[U] ∧ U ≤X N. �

Lemma 5.7 If X and Y are Scott domains then so is X × Y . In the notation of Lemma 3.12,
ConX×Y [`] ≡ ConX [`0]∧ConY [`1]. [[Product of closed subspaces; state the formula in the notation
of [B].]] �

6 Function spaces of Scott domains

Before we can construct the function-space of two Scott domains, we need a little more information
about algebraic lattices and closure conditions. In the following, the letters X, U , u and N are
associated with the input and Y , V , v and m with the output.

12

Lemma 6.1 If ΣX and Y are algebraic lattices then so is Y X . If Y is distributive, so is Y X .
Proof CY X is the endo-map of ΣT×T given by the diagram

T

sΣT×T-- ΣT×T
STX --
⊥�

ΣT×sX
�ΣT×X

cXY --
⊥�
iXY

�Y
X

so CY X = ΣT×sX · iXY · cXY · STX = (iY · cY)T ·ΣT×sX · STX = CTY · CTΣX since ΣsX central. Then
by Lemmas 3.1 and 3.11,

L
Y X 〈N,m〉 = CY X (sL)〈N,m〉 = CTY
(
CTΣX (sL)

)
〈N,m〉

= ∃L′. CTY (sL′)〈N,m〉 ∧ ∀〈N ′, v〉 ∈ L′. CTΣX (sL)〈N ′, v〉
= ∃L′. {v | 〈N, v〉 ∈ L′}
Y m ∧ ∀〈N ′, v〉 ∈ L′. {U | 〈U, v〉 ∈ L}
ΣX N ′

= ∃L′′. L′′
Y m ∧ ∀v ∈ L′′. {U | 〈U, v〉 ∈ L}
ΣX N

= CY
(
λv. {U | 〈U, v〉 ∈ L}
ΣX N

)
[m],

in which {v | 〈N, v〉 ∈ L′} and {U | 〈U, v〉 ∈ L} are filtered lists. �

Corollary 6.2 If X is a Scott domain encoded by (
X ,ConX) and Y an algebraic lattice encoded
by
Y then Y X is an algebraic lattice encoded by

L
Y X 〈N,m〉 ≡ CY
(
λv. ConX(N)⇒ ∃U. 〈U, v〉 ∈ L ∧ U ≤X N

)
[m]

≡ ConX [N]⇒ {v | ∃U. 〈U, v〉 ∈ L ∧ U ≤X N}
Y m.

The second form applies when
X is decidable, and then {v | · · ·} is a filtered list. If
Y is also
decidable then so is
Y X . �

Lemma 6.3 If X and C are Scott domains then the exponential CX exists.

D -- CX - 1 - 1

T

?

u

sY X-- Y X
?

u

γX- ΣX

⊥

? ∃X - Σ

⊥

?

Proof We know this from Proposition 1.1. The point is to find a formula for δ = ∃X · γX · sY X .
[[Invert the diagram to make composites clockwise.]]

1 ��
!

T �
i

⊃ U
p -- X

∃X

Σ
?�� ∃T

⊥-
Σ!

- ΣT
� ∃i �

⊥
Σi

-- ΣU
� Σp �

⊥
P
-- ΣX

T

sΣT×T-- ΣT×T

βT

6

� ∃Ti �
⊥

ΣT×i
-- ΣT×U

βU

6

� ΣT×p �
⊥
PT
-- ΣT×X

βX

6

� iXY �
⊥
cXY

-- Y X

γX

�

sY X 6

By Lemma 5.1, β = γ · cY = λφ. ∃`. ¬ConY [`] ∧ ∀n ∈ `. φ[n] : ΣT → Σ since α = ¬ConY . Also,

∃i · Σp · βX · PT · ΣT×i = (∃i · Σi) · βT · (∃i · Σi · P · Σi)T

= λθN. ConX [N] ∧ β
(
λv. CTΣXθ〈N, v〉

)
13

by naturality of β(−) with respect to p and i, and since Σi · ∃i = idΣU and ∃i ·Σi = λN. ConX [N]∧
φ[N]. where i : U ⊂ - T is classified by ConX .

CTΣX (sL)〈N, v〉 = {U | 〈U, v〉 ∈ L}
ΣX N Lemma 3.11
= ConX [N]⇒ ∃U. 〈U, v〉 ∈ L ∧ U ≤X N Lemma 5.5

Hence δ[L] = ∃NV . ConX [N] ∧
(
∀v ∈ V . ∃U. 〈U, v〉 ∈ L ∧ U ≤X N

)
∧ ¬ConY [V]. �

Lemma 6.4 If X and C are Scott domains then so is CX .
Proof It remains to show that δ[L] is decidable, and δ[0] = ⊥. It is in fact not necessary for
X
to be decidable, but we do have to bound the quantifiers ∃NV . Applying the “axiom of choice”
for lists to ∀v.∃U ,

δ[L] ⇐⇒ ∃L′ ⊂ L.
(
∀〈U1, v〉 ∈ L′. ∀〈U2, v〉 ∈ L′. U1 = U2

)
∧ δ[L′],

so without loss of generality the quantifier ∃U is unique, whence it selects every U in the list L′

for some v.
Suppose δ[L′] holds for some particular N and V . I claim that they may as well be UL′ and

VL′ respectively, these being the filtered lists

UL′ ≡
⋃
{U | ∃v. 〈U, v〉 ∈ L′} and VL′ ≡ {v | ∃U. 〈U, v〉 ∈ L′}.

Indeed, V ⊂ VL′ , because of the middle term in δ[L′], and then ¬ConY [VL′] by monotonicity of
ConY . Also, each U in the list satisfies U ≤X N ≡ ∀u ∈ U. N
X u, so UL′ ≤X N too, but
then ConX [UL′] by monotonicity of ConX . The middle term is still satisfied since U ⊂ UL′ , so
U ≤X UL′ ; in fact this term is now redundant, being ∀v ∈ VL′ . ∃U. 〈U, v〉 ∈ L′ ∧ U ≤X UL′ .

Thus, in order to determine δ[L], we need to consider, for each L′ ⊂ L with the uniqueness
condition (of which there is a filtered list),

δ[L′] = ConX [UL′] ∧ ¬ConY [VL′],

which is decidable. In particular, δ[0] = ConX [0] ∧ ¬ConY [0] = ⊥, so ConCX [0] = >. �

Remark 6.5 We may read consistency of a list L of function-tokens,

ConY X [L] ≡ ¬δ[L] ≡ ∀NV . ConX [N] ∧
(
∀v ∈ V . ∃U. 〈U, v〉 ∈ L ∧ U ≤X N

)
⇒ ConY [V]

≡ ∀L′ ⊂ L.
(
∀〈U1, v〉 ∈ L′. ∀〈U2, v〉 ∈ L′. U1 = U2

)
∧ ConX [UL′] ⇒ ConY [VL′]

as follows. For any consistent finite set N of input tokens, the finite set V of output tokens must
be consistent whenever each v ∈ V comes from some function-token 〈U, v〉 ∈ L that matches the
input in the sense that U ≤X N . A list L (or, more generally, an RE set) with this property is
called an approximable mapping from (
X ,ConX) to (
Y ,ConY). �

[[Spell out the correspondence with morphisms. Also, how to obtain the least fixed point.]]

Remark 6.6 In his own construction of the function-space [Sco82, Definition 7.1], Scott chose
for the function-tokens pairs 〈U, V 〉 with ConX [U] and ConY [V], using a consistent finite set V
instead of a single output token v. Then

L
Y X 〈N,M〉 ≡ ∀m ∈M. L
Y X 〈N,m〉 ≡
⋃
{V | ∃U. 〈U, V 〉 ∈ L ∧ U ≤X N} ≥Y M,

in which ConX [N] is redundant. Scott actually wrote out L = [〈u0, v0〉, 〈u1, v1〉, . . . , 〈uk1 , vk−1〉],
with 〈ui, vi〉 for our 〈U, V 〉 and 〈u, v〉 for our 〈N,M〉. He also used ` for both our
 and ≥, so for
our Corollary 6.2 he defined

L
Y X 〈u′, v′〉 ≡
⋃
{vi | u′ `X ui} `Y v′. �

14

[[Scott’s ConY X doesn’t have the uniqueness term, as it can be shown to be redundant. Com-
putational complexity.]]

Theorem 6.7 The full subcategory consisting of Scott domains is cartesian closed, as are the full
subcategories of domains that are distributive, or for which
 is decidable. �

One reason for wading into this morass of symbols was, of course, to show that the simple
categorical idea for CX does indeed yield Scott’s information systems. We may still wonder
whether CX can be shown to be overt by more conceptual methods, or whether the connection
between overtness and recursive enumerability really demands that we find a way of coding the
compact elements of the function space. Indeed, Joyal and Tierney [JT84, §V 3] and Phoa [Pho90,
§6.5], considering locales and the effective topos respectively, also used such an explicit enumeration
to show that the partial-function space (X⊥)N ≡ [N⇀ X] is overt when X is. (Phoa also showed
that NN is not overt.)

7 Untyped lambda-calculus and recursive enumeration

In [Sco76], Dana Scott showed that PN (or, as he called it, Pω) is a model of the untyped λ-
calculus that satisfies the β-rule but not the η-rule. Here we shall show that ΣT, which is our
analogue of PN, is also such a model in the same way.

However, Pω, being the full powerset, is uncountable, and therefore has many elements that
are not the denotations of untyped λ-terms. Our ΣT, on the other hand, is itself defined by means
of a λ-calculus, so there is a function ξ : T� ΣT that is surjective (not merely Σ-epi as s was in
Lemma 2.11). This provides the basis for doing recursion theory in abstract Stone duality, instead
of using partial recursive functions on numbers alone. We shall be content with showing that N
has open subsets that are not closed, even though it is discrete as far as its individual points are
concerned.

From Section 3, ΛΛ is a retract of (indeed, the image of a closure operator on) Λ ≡ ΣT, where

ΛΛ ∼= ΣT×ΣT
- lambda ≡ Σs-

>��

ãpply ≡ ST×ΣT

Λ ≡ ΣT

arise from sT×ΣT : T� T× ΣT.
Any one-variable expression x : Λ ` p(x) : Λ is encoded as an element of Λ by lambda(λx. p(x)),

and its meaning is recovered by the equation

[a/x]∗p(x) = (λx. p(x))a = apply
(
lambda(λx. p(x)), a

)
.

By a well known translation, λ may be eliminated in favour of application, free variables and the
combinators K and S. Recall that the constants of our own λ-calculus are

>,⊥ : Σ ∧,∨ : Σ× Σ→ Σ ∃ : ΣT → Σ

0 : T 〈−,−〉 : T× T→ T rec : ΣT × ΣT×T×ΣT×ΣT × T→ ΣT.

Recursion at other types is provided by [B, Lemma 8.8] since every other object in the category
may be expressed as a subtype of Λ. Moreover, since Λ is injective, all of the morphisms (in
particular these constants) are tracked by endo-maps of this type, and therefore by elements of Λ:

Λ- Λ

X6

6

f - Y6

6

15

We are therefore left with the binary apply operation on Λ and a handful of constants. This is
called an applicative algebra. The expressions in this algebra may be represented as binary
trees, i.e. as elements of T. Confusing the closed term ` φ : ΛT with its syntax, we write ` pφq : T
for the tree representation. It is known as the Turing number of φ [[cite him]].

Lemma 7.1 There is an interpretation function ξ : T → Λ, with the property that for any
closed term ` φ : ΛT,

n : T ` ξ〈pφq, n〉 = φ[n] : Λ.

Moreover, ξ : T→ Λ is universal in the (weak) sense that for any C-map f : T→ Λ there is some
(not unique) tracking function g : T→ T such that f = ξ · g.

T

T

f -

g

.....
.....

.....
.....

.....
.....

..-

Λ

ξ

??

Proof In fact, g : n 7→ 〈pλm. fmq, n〉. Notice that this is primitive recursive, because it merely
“loads the program into the interpreter”: it is ξ that executes the program. �

[[Justify ΣN as the set of recursively enumerable subsets of N: φ ∈ ΣN is encoded by some
program pφq, then φn ≡ ξ〈pφq, n〉 terminates iff n ∈ [[φ]] ⊂ N.]]

Theorem 7.2 There is an open subset U ⊂ T that’s not closed.
Proof Let U be classified by n : T ` ξ〈n, n〉 : Σ, and suppose that ` φ : ΣT satisfies

n : T ` φ[n] = ¬ξ〈n, n〉.

By the Lemma,
n : T ` ξ〈pφq, n〉 = φ[n]

for some Turing number pφq. But, putting n = pφq, we then have the contradiction,

` ξ〈pφq, pφq〉 = φ(pφq) = ¬ξ〈pφq, pφq〉. �

U ⊂ T is known as “the” halting set, although it’s not unique.
[[ξ may be used in place of sΛ to develop the domain theory that we have done. If ξ : T → Λ

a recursive enumeration then it is also a topological enumeration. Let g : T → T be such that
sΛ = g ; ξ, and put Ξ = Σg ; SΛ. Then Σξ ; Ξ = id, but there’s no reason why we should have
id ≤ Ξ ; Σξ.]]

[[The fixed point combinator Y . Read Data Types as Lattices.]]
[[In fact, if we restrict attention to those objects that are algebraic lattices, the objects them-

selves may be encoded as closure operations on Λ, and these also form a domain that is encoded
as a closure operation, which may be regarded as a “type of (names of) types”.]]

References

[Hyl91] Martin Hyland. First steps in synthetic domain theory. In Aurelio Carboni, Maria-Cristina
Pedicchio, and Giuseppe Rosolini, editors, Proceedings of the 1990 Como Category Conference,
volume 1488 of Lecture Notes in Mathematics, pages 131–156. Springer-Verlag, 1991.

[Joh82] Peter Johnstone. Stone Spaces. Number 3 in Cambridge Studies in Advanced Mathematics.
Cambridge University Press, 1982.

[Joh84] Peter Johnstone. Open locales and exponentiation. Contemporary Mathematics, 30:84–116, 1984.

[JT84] André Joyal and Myles Tierney. An Extension of the Galois Theory of Grothendieck, volume 309
of Memoirs. American Mathematical Society, 1984.

16

[Pho90] Wesley Phoa. Domain Theory in Realizability Toposes. PhD thesis, Cambridge, 1990.
http://www.lfcs.informatics.ed.ac.uk/reports/91/ECS-LFCS-91-171.

[Sco76] Dana Scott. Data types as lattices. SIAM Journal on Computing, 5:522–587, 1976.

[Sco82] Dana Scott. Domains for denotational semantics. In M. Nielson and E. M. Schmidt, editors,
Automata, Languages and Programming: Proceedings 1982. Springer-Verlag, Berlin, 1982. Lecture
Notes in Computer Science 140.

[Tay91] Paul Taylor. The fixed point property in synthetic domain theory. In Gilles Kahn, editor, Logic
in Computer Science 6, pages 152–160. IEEE, 1991.

[Tay99] Paul Taylor. Practical Foundations of Mathematics. Number 59 in Cambridge Studies in Advanced
Mathematics. Cambridge University Press, 1999.

[Thi97] Hayo Thielecke. Categorical Structure of Continuation Passing Style. PhD thesis, University of
Edinburgh, 1997. Also available as technical report ECS-LFCS-97-376.

The papers on abstract Stone duality may be obtained from
www.cs.man.ac.uk/∼pt/ASD

[A] Paul Taylor, Sober spaces and continuations. Theory and Applications of Categories, 10(12):248–299,
2002.

[B] Paul Taylor, Subspaces in abstract Stone duality. Theory and Applications of Categories, 10(13):300–
366, 2002.

[C] Paul Taylor, Geometric and higher order logic using abstract Stone duality. Theory and Applications
of Categories, 7(15):284–338, 2000.

[D] Paul Taylor, Non-Artin gluing in recursion theory and lifting in abstract Stone duality. 2000.

[E–] Paul Taylor, Local compactness and the Baire category theorem in abstract Stone duality. Category
Theory and Computer Science, Ottawa, 2002. ENTCS 69.

[E] Paul Taylor, Computably based locally compact spaces. May 2003.

[G] Paul Taylor, An elementary theory of the category of locally compact locales. March 2003.

[[Where does one find the expanded version of [Sco82]?]]

17

http://www.cs.man.ac.uk/~pt/ASD/index.pdf
http://www.cs.man.ac.uk/~pt/ASD/sobsc.pdf
http://www.cs.man.ac.uk/~pt/ASD/subasd.pdf
http://www.cs.man.ac.uk/~pt/ASD/geohol.pdf
http://www.cs.man.ac.uk/~pt/ASD/nonagr.pdf
http://www.cs.man.ac.uk/~pt/ASD/loccbc.pdf
http://www.cs.man.ac.uk/~pt/ASD/comblc.pdf
http://www.cs.man.ac.uk/~pt/ASD/undset.pdf

This appendix is not intended to be included in the conference paper: it is put here for the
interest of the referee for [A]. The journal version will also show how the denotational semantics
of PCF in (our) Scott domains provides two continuation-passing translations.

A Partial, discardable and copyable maps

The lattice-theoretic characterisation of maps between locally compact sober spaces in Theorem 4.1
may be extended from first class maps to other maps of interest in topology and computer science.
In particular, many “ordinary” programs X −−× Y exhibit a trichotomous behaviour:
• they abort with some error message,
• terminate normally with an output value, or
• fail to terminate ever,

but this behaviour is reproducible.

Remark A.1 Programs that may fail to terminate, but whose results are valid and reproducible
if they come, correspond to maps that are well defined on some open subspace i : U ⊂ - X.
Such subspaces are classified by elements of ΣX . The inverse image Σi has a left adjoint, which is
called ∃i since it enjoys the properties of an existential quantifier, including the Frobenius law

∃i(φ ∧ Σiψ) = (∃iφ) ∧ ψ.

Topologically, open subsets of U are already open in X, so we regard ∃i : ΣU- - ΣX as an
inclusion. See [C, Section 3] for open subsets in abstract Stone duality.

Remark A.2 Dually, a program X −−× Y that always terminates, but possibly by aborting its
calling program, is a partial map with closed support i : C @ - X. Its predicate transformer
F : ΣY → ΣX preserves ∧, ∨ and >. [[Explain using force: x 7→ ψ(forceλψ. Fψx) = Fψx.]]

The open subspace U ⊂ - X classified by F⊥ is where abortion occurs — it is open be-
cause this is a computationally observable or affirmative phenomenon. The complementary closed
subspace C is where this doesn’t happen, and instead the program behaves “normally”.

The inverse image map Σc of a closed subspace has a right adjoint, called ∀c because it enjoys
the properties of a universal quantifier, but also the dual Frobenius law

∀c(φ ∨ Σcψ) = (∀cφ) ∨ ψ.

Topologically, an open subset of C is extended to one of X by its union with U , so ∀c : ΣC- - ΣX

is represented as (−) ∨ F⊥. See [C, Corollary 5.6] for closed subspaces in abstract Stone duality.

Remark A.3 When both kinds of undesirable behaviour are possible, F preserves neither⊥ nor>.
Then there is an open subspace (classified by F⊥) on which the program aborts, and a closed one
(co-classified by F>) on which it fails to terminate, behaviour on the remainder being normal.
This is the intersection of an open subspace (termination) with a closed one (non-abortion), and
is called locally closed.

Instead of using a denotational semantics based on lattices, Hayo Thielecke formulated “repro-
ducibility” of programs in terms of the extent to which they respect the extension of the categorical
product from C to HC [Thi97, Definition 4.2.4].

Definition A.4
(a) An HC-map F̂ : X −−× Y is called discardable if it respects the naturality of the terminal (or

product) projection (!), i.e. Σ!Y ; F = Σ!X . Equivalently, H : ΣY → ΣX is a homomorphism
with respect to all constants σ ∈ Σ, i.e.

σ : Σ ` F (λy. σ) = λx. σ.

(b) Similarly, F̂ : X −−× Y is copyable if it respects the naturality of the diagonal (∆). We shall
show that this is equivalent to preserving ∧ and ∨.

18

Thielecke gave examples of programs that are discardable in this sense but nevertheless have
computational effects, specifically by making use of their continuations twice. His intuition is that
a computational object that is both discardable and copyable is effect-free [[and is therefore a
first class value? Josh Berdine is working on linearly used continuations.]]

Examples A.5
(a) ∃̂f is discardable for any open surjection f : X � Y .

(b) ∃̂i is copyable for any open inclusion i : U ⊂ - X.
Proof See [C, Definition 10.4] for open surjections, for which ∃f preserves >, ⊥ and ∨ but not
necessarily ∧.

ΣU-
∃i - ΣX

ΣU×U

Σ∆U

6

- ∃
U
i- ΣU×U-

∃Xi- ΣX×X

Σ∆X

6

We regard Γ ` θ : ΣU×U as θ ∈ ΣX×X with Γ, x, y : X ` θ(x, y) ≤ φ(x) ∧ φ(y). Clockwise,
this is taken to λu. θ(u, u) and then to λx. θ(x, x), whilst the anticlockwise route results in the
same thing. In topological notation, W ⊂ U × U ⊂ X × X is taken clockwise to W ∩ ∆U

∼=
{u | (u, u) ∈W} ⊂ U ⊂ X, which is the same as W ∩∆X . Compare Lemma A.10 below. �

Remark A.6 Similarly, a program that may return its input in some reproducible cases U ⊂ - N,
but otherwise fails to terminate, is like ∃̂i, being copyable but partial with open support. On the
other hand, an oracle for a surjection f : N � N is a non-deterministic program for f−1, being
discardable but not copyable.

In the topological interpretation, discardability and copyability suffice.

Lemma A.7 If F̂ : X −−× Y is a discardable and copyable HC-map then F preserves > and ∧.

ΣY × ΣY
∧- ΣY×Y

Σ∆
- ΣY

ΣX × ΣY

F × id

? ∧- ΣX×Y

FY

?

ΣX × ΣX

id× F

? ∧- ΣX×X

FX

? Σ∆
- ΣX

F

?

Proof The map (∧) : ΣY × ΣY → ΣY×Y is defined by (φ, ψ) 7→ λy1y2. φ(y1) ∧ ψ(y2). As F̂ is
copyable, the rectangle on the right commutes, and as it is discardable, F (λy. σ∧φy) ≤ F (λy. σ) =
λx. σ. Hence

F (λy. σ ∧ φy)x = σ ∧ F (λy. σ ∧ φy)x = σ ∧ F (λy. φy)x

by the Euclidean principle for G : σ 7→ F (λy. σ ∧ φy)x. Hence, putting σ = ψ(y2),

FY (λy1y2. φy1 ∧ ψy2) = λy2. Fφ ∧ ψy2,

so the two squares on the left commute. The whole diagram says that F preserves ∧. �

This adds another condition to Theorem 4.1:

19

Theorem A.8 F̂ : X −−× Y is a discardable and copyable map between locally compact spaces
iff F = Σf for some continuous map f : X → Y .
Proof We have shown that if F̂ is discardable and copyable then F preserves >, ⊥ and ∧. The
argument for ∨ is similar, using the lattice dual of the Euclidean principle [C, Corollary 5.5],

σ ∨G(σ) = σ ∨G(⊥).

Then F = Σf by Theorem 4.1. Conversely, f ≡ Σ̂f is discardable and copyable. �

In order to show that copyability alone is equivalent to preserving the binary connectives, we
have to “repair” the failure of a given map F̂ : X −−× Y to preserve the constants.

Lemma A.9 If Ĝ : X −−× Y is copyable then so are f ; Ĝ : W −−× Y and Ĝ ; h : X −−× Z, where
f : W → X and h : Y → Z.

X
Ĝ

× Y
Ĥ

× Z

X ×X

∆X

? X × Ĝ
× X × Y

Ĝ× Y
× Y × Y

∆Y

?

X × Z

X × Ĥ

× Ĝ× Z
× Y × Z

Y × Ĥ

× Ĥ × Z
× Z × Z

∆Z

?

Proof If G and H are copyable then the two rectangles commute, whilst so does the square if
either G = Σg or H = Σh. �

Lemma A.10 Let X ′ = U \ V ⊂ X be a locally closed subspace and

I = ∀c · ∃i : ΣX
′

= V ↓ ΣX ↓ U- - ΣX .

Then Î : X −−× X ′ is copyable, cf. Lemma A.5 above.
Proof Let W ∈ ΣX

′×X′ , as indicated by the quarter-circle in the Venn diagram [[The pious
reader may wish to reformulate this argument in a purely symbolic way. However, to do so would
say just the same things, but less clearly.]] of subsets of X ×X below. Hence Σ∆X′ (W) is the part
of the diagonal within the quarter-circle, and then I : ΣX

′- - ΣX adds the top right part of the
diagonal, ∆V .

�
�
�
�
�
�
�
� V

X ′
U

6

?

VX ′

U� -

&

On the other hand, consider the effect of

ΣX
′×X′- - ΣX×X

′- - ΣX×X .

This first expands the open subset W ⊂ X ′ × X ′ in the horizontal direction, adding the single
rectangle V ×X ′ on the right. Then it expands vertically, adding the three-part rectangle X × V
at the top.

20

Notice that this treats the components asymmetrically, as we have come to expect from the
product in HC. Indeed there are two more representations of X ′×X ′ as a locally closed subspace
of X ×X:
• considering it as the intersection of U ×U with (X \ V)× (X \ V), the expansion of W would

also add the bottom right square;
• taking it to be the intersection of U ×U with (X×X) \ (V ×V), the expansion would instead

omit the top left square.
Nevertheless, whichever representation of X ′×X ′ we choose, the restriction to the diagonal is the
same, namely Σ∆X′ (W) ∪∆V . �

Theorem A.11 F̂ : X −−× Y is copyable iff F preserves ∧ and ∨.

ΣY
F - ΣX

F⊥ ↓ ΣX ↓ F>

F ′

?

................- ∀c -
>��
Σc

ΣX ↓ F>

∃i

6

6

a Σi

??

Proof Let i : U ⊂ - X be the open subset classified by F> and c : X ′ @ - U the closed
subset co-classified by F⊥. Then let F ′ : ΣY → ΣX

′
such that F = ∃i · ∀c ·F ′, so F ′ = Σc ·Σi ·F .

If F is copyable then so is F ′, by Lemma A.9, as Σc ·Σi is a homomorphism. But F ′ preserves
> and ⊥, so it is also discardable, and therefore F ′ = Σf

′
for some unique f ′ : X ′ → Y by

Theorem A.8. Hence F = ∃i · ∀c · Σf
′

preserves ∧ and ∨ by composition.
Conversely, if F preserves ∧ and ∨ then so does F ′ by composition. But it also preserves > and

⊥, so it is a homomorphism by Theorem 4.1. Then its composite with ∃i · ∀c, which is copyable
by Lemma A.10, is also copyable, by Lemma A.9. �

Corollary A.12 Copyable maps between locally compact spaces compose. �

Example A.13 The subspace 2 ∼= {(>,⊥), (⊥,>)}- i- Σ × Σ is locally closed, and the Σ-
splitting

Σ2 ∼= Σ× Σ-
I- ΣΣ×Σ

defined by the quantifiers in Lemma A.10 is

(a, b) 7→ λcd. (a ∧ c) ∨ (b ∧ d) ∨ (c ∧ d).

The four (definable) points of Σ×Σ are taken by I to the black points in the “copyable” diagram:

•

◦

• •

◦

•

◦

•

• •

◦

•

◦

•

• •

•

◦

•

◦

• •

•

◦

ab ∨ ac ∨ bd ac ∨ bd ac ∨ bd ∨ cd ab ∨ ac ∨ bd ∨ cd[[= (a ∨ d)(b ∨ c)]]
preserves ⊥> ⊥∨ ∧∨ ∧>
discardable angelic copyable demonic

The other diagrams illustrate different splittings, in which Î is discardable or non-deterministic.
(Recall from [A, Introduction] that terms of type Σ are programs that may or may not terminate,
amongst which ∨ and ∧ are defined by waiting for one or both of the pair.) In the “angelic” and
“demonic” splittings, I is respectively left and right adjoint to Σi. �

21

B Interpretation of PCF

Do fixed points and Y here.
Set out the rules of Plotkin’s calculus.
Parallel or
Plotkin’s “Existential quantifier” some : (Num→ Bool)→ Bool

someC =

 yes if ∃n. (Cn = yes)
no if C⊥ = no
⊥ otherwise

Interpretation in ASD by continuation-passing.
Adequacy and definability.

Remark B.1 LetN : Num; C,D : Bool; x, P,Q : U ; M : V ; F : U → V (or F : Num→ Bool
in the last case). Then

[[Num]] = N⊥ @ - ΣN

[[Bool]] = 2⊥ @ - Σ× Σ

[[U → V]] = [[V]][[U]] @ - Y X where X = [[U]], [[V]] = C @ - Y

[[yes]] = admit(>,⊥) : 2⊥
[[no]] = admit(⊥,>)
[[0]] = admit(λn. n = 0) : T⊥
[[succN]] = admit(λn. ∃m. i[[N]]m ∧ n = m+ 1)
[[predN]] = admit(λn. i[[N]](n+ 1))
[[iszN]] = admit(letφ = i[[N]] in 〈φ[0],∃n. φ[n+ 1]〉) : 2⊥
[[if C thenP elseQ]] = admit(let 〈φ, ψ〉 = i[[C]] inφ ∧ i[[P]] ∨ ψ ∧ i[[Q]]) : [[U]]
[[x]] = x

[[λx. M]] = admit(λx. i[[M]]) : [[U → V]]
[[FP]] = admit(i[[F]](i[[P]])) : [[V]]
[[µx. P]] = admit(∃n. rec(n,⊥, λxm. i[[P]])) : [[U]]
[[C por D]] = admit(let (φ, ψ) = i[[C]], (θ, χ) = i[[D]] inφ ∨ θ, ψ ∧ χ)
[[someF]] = admit

(
∃n. let (φ, ψ) = i[[F]]n inφ,

let (φ, ψ) = i[[F]]⊥ inψ
)

Definability of all elements of ΣΣT and hence of all morphisms of C.

Remark B.2 Alternative translation based on

[[Bool]] = 2⊥ @ - Σ2- -
��

Σi
ΣΣ×Σ

2-
i- Σ× Σ

[[Num]] = N⊥ @ - ΣN
- -
��

Σ{}
ΣΣN

N-
{} - ΣN

C @ - ΣY / ΣY
′

CX @- ΣX×Y / ΣX×Y
′

22

Pure PCF is done without disjunction.

[[0]] = admit(λφ. φ[0])
[[yes]] = admit(λφψ. φ)
[[no]] = admit(λφψ. ψ)
[[succN]] = admit(λφ. i[[N]])(λn. rec(n, φ[0], λxm. φ[m])
[[iszN]] = admit(λφψ. i[[N]](λn. rec(n, φ, λxm. ψ)))
[[if C thenP elseQ]] = admit(i[[C]](i[[P]])(i[[Q]]))

Remark B.3 New operational semantics by translation of ASD into PROLOG. Global element of
T in ASD translates into a terminating PROLOG program that returns this value, hence adequacy
of denotational semantics for PCF.

Remark B.4 Abramsky’s lazy λ-calculus.

C The fixed point property

Topologically, N is a discrete space, but we also understand it to carry an “imposed” order relation
in which 0 < 1 < 2 < · · ·. We begin by constructing an object N6for which this is the intrinsic
(Σ-)order. There is another object, called $, in which these finite ascending numerals have a
join, ∞. One way of expressing the fixed point or continuity axiom is to postulate that these two
objects be isomorphic.

Lemma C.1 Let U ⊂ ΣN consist of functions that are ascending, in the sense that n : N ` φ[n] ≤
φ[n + 1] with respect to the semilattice order ≤ on Σ. Then U is well defined as an object of C,
and uniquely carries the structure of an Eilenberg–Moore subalgebra of ΣN, the inclusion being
split by a function.
Proof U / ΣN splits the idempotent φ 7→ φ↑ defined using primitive recursion by

φ↑(0) = φ(0) φ↑(n+ 1) = φ(n+ 1) ∨ φ↑(n).

Then there is a pullback in C,

ΣN-
〈id,Σsucc〉- ΣN × ΣN 2

U6

6

- ΣΣ×N

Σp×N

6

6

Σ

p

?

in which the maps on the top and right are Eilenberg–Moore homomorphisms, whence so is that
on the left. [[U is the inserter of id and Σsucc.]] �

Corollary C.2 The inclusion U- - ΣN is the inverse image of some morphism N � N6in C
that’s Σ-split epi. [[Pick up pts(A,α) in [B, Examples]: this is N6= {ΣΣN | Σ(−)↑}.]] This defines
ascending numerals

n = admit(λφ. φ↑[n]) = admit(λφ. ∃m. m ≤ n ∧ φ[m]). �

Now here is the sense in which N6carries the arithmetic order intrinsically.

Lemma C.3 Every function N → Σ that is monotone in the sense that it takes the arithmetic
order to the logical one extends uniquely to N6→ Σ. [[Formula for lifting: as in Proposition C.6.]]

23

Hence N→ N6is Σ-split epi.

N - N6

Σ

∃!
�...

.....
.....

.....
.....

.....
...

monotone -

Proof Monotone f : Γ × N → Σ∆ correspond to monotone Γ × ∆ → ΣN that factor through

Γ×∆→ U = ΣN6, which correspond to f : Γ× N6→ Σ∆. Γ, ν : N6̀ · · ·. �

Remark C.4 Similarly, the object D / ΣN of descending functions is the topology on a domain
?N of “descending integers”. However, $ ≡ D itself is another domain of ascending integers, this
time with a greatest element:

n = admit(λk. k < n) ∞ = admit(λk.>),

in particular 0 = (λk.⊥).

Lemma C.5 The homomorphism H : ΣD → U corresponding to the lifting N6→ $ of

n 7→ admit(λk. k < n) is F 7→ λn. admit(iF (λk. k < n)).

N - N6

$ = D = Σ?N

∃!
�...

.....
.....

.....
.....

...

monotone -

Fn = HFn.
Moreover,

J : U → ΣD by φ 7→ admit(λν. iφ[0] ∨ ∃n. iφ[n+ 1] ∨ iν[n])

satisfies H · J = idU (so N6→ $ is Σ-split mono) and takes (λk. m ≤ k) to {k | m ≤ k}.
Also, for Γ ` φ : U , we have Jφn = iφ[n] and Jφ∞ = ∃n. iφ[n].

Proof earlier parts?

Jφn = iφ[0] ∨ ∃k. iφ[k + 1] ∧ ink
= iφ[0] ∨ ∃k. iφ[k + 1] ∧ k < n

= iφ[n] φ monotone
Jφ∞ = iφ[0] ∨ ∃k. iφ[k + 1] ∧ i∞k

= iφ[0] ∨ ∃k. iφ[k + 1] ∧ >
= ∃n. iφ[n] = ∃n. J(iφ)n �

Proposition C.6 Suppose that N6∼= $, so that also H · J = idU . Then every (sober) object has
and every morphism preserves joins of N-indexed ascending sequences.
Proof Let Γ, n : N ` xn : X with Γ, n : N, φ : ΣX ` φ[xn] ≤ φ[xn+1]. Then Γ, φ : ΣX `
λn. φ[xn] : U / ΣN and so Γ, φ : ΣX ` J(λn. φ[xn]) : ΣD.

Since H · J = idU ,

λφ. φxn = ηX(xn) = λφ. (λn. φxn)n
= λφ. H(J(λn. φxn))n
= λφ. J(λn. φxn)(λk. k < n)

24

so the upper square commutes:

n - admit(λk. k < n)

Γ× N -- Γ× N6∼= Γ×$ ν

X

x(−)

?
- ηX -�.....

......
......

......
......

......
......

.....

ΣΣX
?

λφ. J(λn. φxn)ν
?

Y

f

?
- ηY - ΣΣY

ΣΣf

?

Now, the assumption J ·H = id says that N→ $ is Σ-epi, so there is a unique diagonal mediator
as shown, which means that

Γ, ν : $ ` focus(λφ. J(λn. φ[xn])ν) : X

is well formed, i.e. that λφ. J(λn. φ[xn])ν is prime [[maybe a direct proof of this?]]. Putting ν =∞,
we may define

Γ `
∨
�

n

xn ≡ focus(λφ. ∃n. φ[xn]) : X.

This construction of
∨
�n xn is monotone: if Γ, n : N ` xn ≤ yn then

∨
� xn ≤

∨
� yn. Also, if yn takes

the same value y0 independently of n then
∨
�n yn = y0. It follows that

∨
�n xn really is the least

upper bound of the sequence (xn).
Now let f : X → Y , so Γ, n : N ` fxn ≤ fxn+1. Then

f(
∨
�

n

xn) = f(focus(λφ. ∃n. φ(xn)))
= focus(Σ2f(λφ. ∃n. φ(xn)))
= focus(λψ. ∃n. ψ(fxn)))

=
∨
�

n

fxn,

which we may alternatively deduce from naturality of the diagram above with respect to f . �

Lemma C.7 Let Γ, n : N ` xn : X be an increasing sequence, i.e.

Γ, n : N, φ : ΣX ` φ[xn] ≤ φ[xn+1] : Σ.

Then Γ ` P ≡ λφ. ∃n. φ[xn] is prime and

Γ `
∨
�

n

xn ≡ focus(λφ. ∃n. φ[xn])

is the least upper bound of the sequence.

Proof Put Γ,F : Σ3X ` F = λψ. F(λφ. ∃n. φ[xn] ∧ ψ[n]) : ΣΣN . Then

P (λx. F(λφ. φ[x])) = ∃m. (λx. F(λφ. φ[x]))xm
= ∃m. F(λφ. φ[xm])
= ∃m. F(λφ. ∃n. φ[xn] ∧ n ≤ m) (xn) increasing
= ∃m. F (λn. n ≤ m)
= F> Scott principle
= F(λφ. ∃n. φ[xn]) = FP

25

In the case of a constant sequence, yn = y0,
∨
� yn = y0. On the other hand, if Γ, n : N ` xn ≤ yn

then Γ `
∨
� xn ≤

∨
� yn. So the construction yields the least upper bound. �

Corollary C.8 If (N6∼= $ and) X has ⊥ then every f : X → X has a least fixed point.
Proof Put xn = fn⊥ = rec(n,⊥, λnx. fx); this is monotone by induction on n, so long as
⊥ ≤ fx. Then

∨
� xn is the least fixed point of f by a familiar argument. �

These results can be presented in terms of algebras and coalgebras for the lift functor, although
the following results will not be used in the rest of the paper. Proposition 4.5 below uses the fixed
point property to show that ΣX⊥ = Σ ↓ ΣX , where X⊥ is the partial map classifier. [D] studies
the lift without using the fixed point property.

Lemma C.9 ΣN is the final coalgebra for Σ× (−) : C → C.
Proof ΣN is the collection of streams of type Σ; its algebra structure adjoins a new value on the
front of the stream, and the coalgebra structure detaches it: φ 7→ (φ[0], λk. φ[k + 1]).

Σ×A
(id, φ)
- Σ× ΣN

A

(h, t)

6

...................
φ
- ΣN

∼=

6

cons

?

Given any other coalgebra as shown, commutativity of the square requires

φ(a) = ha :: φ(ta) = (ha, hta, ht2a, ...) = λn. h(rec(n, a, t)). �

Given a map κ : Σ → A (which, by the Phoa principle, is determined by κ⊥ ≤ κ> ∈ A
[[working in Σ ↓ C?]]),

Σ ↓ A = {(σ, a) | κσ ≤ a},
which is well defined as an object of C because it’s a retract of Σ×A.

Lemma C.10 If A is an algebra then so are Σ ↓ A and A ↓ Σ.
Proof [[Copy from [D].]] �

Indeed it is an algebra if A is, by an argument similar to Lemma C.1.

Lemma C.11 U and D are the final coalgebras in Σ ↓ C for Σ × (−), Σ ↓ (−) and (−) ↓ Σ
respectively.
Proof (h, t) : A→ Σ ↓ A is well defined so long as ∀a. κ(ha) ≤ ta [[then ∀a. ha ≤ hta?]], and the
same formula for φ : A→ U is valid. �

Definition C.12 Focal property, equivalent to being an algebra for the lift monad:

ΣX
��
- - Σ ↓ ΣX .

Also, an algebra for the lift functor consists of b ∈ X, f : X → X such that ∀x. b ≤ fx.

Proof X
⊂ -
��
(b,id)

X⊥ where b ≤ id, which means ∀x. b ≤ x. �

For a pointed object p : 1→ X, ΣX is a coalgebra for Σ× (−).

Proposition C.13 N6is the initial lift algebra.

X⊥ �................ N6⊥

X

(b, f)

?
�.................... N6

?

26

Proof In Lemma C.11, n 7→ fn(b) ∈ X; ascending since ∀x. b ≤ fx. Lifts λn. fnb.
If (h, t) : A→ Σ ↓ A is a homomorphism then so is φ [[why?]] �

Lemma C.14 ΣΣ↓A ∼= ΣA ↓ Σ.
Proof Let κ : Σ→ A be the unique map that preserves⊥ and>. Then Σ ↓ A = {(σ, a) | κσ ≤ a}
and ΣA ↓ Σ = {(φ, τ) | φ ≤ λa. τ}.

Define ΣΣ↓A → ΣA ↓ Σ by ψ 7→ (φ, τ) where φ = λa. ψ(⊥, a) and τ = ψ(>,>).
Conversely, define ΣA ↓ Σ→ ΣΣ↓A by (φ, τ) 7→ ψ where ψ = λ(σ, a). ψ[a] ∨ (σ ∧ τ).
Then

ψ 7→ λ(σ, a). ψ(⊥, a) ∨ σ ∧ ψ(>,>) = ψ

by Phoa. Conversely,
(φ, τ) 7→ (λa. φa ∨ (⊥ ∧ τ), φ> ∨ τ) = (φ, τ)

since φ> ≤ τ . �

Proposition C.15 $ is the final lift coalgebra.
Proof By Lemma C.11, D is the final coalgebra for the functor (−) ↓ Σ (so?N is the initial drop
algebra on C). But by Lemma C.14, ΣD ∼= ΣD↓Σ ∼= Σ ↓ ΣD. [[Formula for corecursion.]] �

Remark C.16 Discuss Crole–Pitts, Scott, Freyd and Plotkin axioms.

Theorem C.17 The following are equivalent:
(a) N6∼= $;
(b) every object has and every map preserves

∨
�;

(c) F : ΣΣT , φ : ΣT ` Fφ = ∃`. Fφ`;
(d) F : ΣΣT , φ : ΣT ` Fφ = ∃`. F (λn. n ∈ `) ∧ ∀n ∈ `. φ[n].
Proof
[a⇒b] Proposition C.6.
[b⇒c] F : ΣX → Σ preserves φ =

∨
�` φ`;

[c⇒d] By the Lemma,

Fφ = ∃`. Fφ` = ∃`. ∃`′ ⊂ `. F (λn. n ∈ `′)∧∀n ∈ `′. φ[n] = ∃`′. F (λn. n ∈ `′)∧∀n ∈ `′. φ[n].

[d⇒a] For F : ΣD / ΣΣT and ν : D / ΣT,

J(HF)ν = F (λk. k < 0) ∨ ∃n. F (λk. k < n+ 1) ∨ ν[n] = Fν

since ν is monotone, where n corresponds to the list ` = [0, 1, . . . , n− 1]. �

D Algebraic types

Lemma C.1 constructed objects N6and $ whose intrinsic order is that of the imposed arithmetical
order on N, although $ has an additional element ∞. Similarly, the elements of T are considered
as lists, and therefore as finite sets, together with an imposed inclusion order, whilst the elements
of ΣT are (infinite but recursively enumerable) sets in which the inclusion order is the intrinsic
one.

Develop more complicated closure conditions, working towards Scott domains.

Remark D.1 This is a closure operation: it closes a collection of lists under sublists (extension?),
permutations and repetitions. This is a unary closure, but there is no right adjoint, as ∀T would

27

be derivable from it.

Definition D.2 An object X is algebraic if there are maps

ΣX X X

ΣT

SX

66

a ΣsX

?

?

T

sX

66

iX

?

?

SX = ΣiX · SΣT and IX = SΣT · ΣsX .

Lemma D.3 ΣT is algebraic.

ΣΣT ΣT ΣT

ΣT

S

66

a Σs

?

?

T

s

66

ΣT

iΣT = id

?

where

s : T ∼= List(T)→ ΣT by sL : ` 7→ λn. (n ∈ `)

S : ΣT → ΣΣList(T) ∼= ΣΣT by S : φ 7→ λψ. ∃`. [φ(`) ∧ ∀n ∈ `. ψ(n)].

Also,
φ : ΣT ` φ ≤ Σs(Sφ) and ` : ListT ` S(λm. m = `)(s`) = >.

So S a Σs, but S doesn’t preserve > or ∧, so s isn’t an open or proper surjection, nor is Ŝ copyable.
Proof

S(ΣsF)ψ = ∃`. ΣsF` ∧ ∀n ∈ `. ψ[n]
= ∃`. F (λn. n ∈ `) ∧ ∀n ∈ `. ψ[n]
= Fψ Theorem 2.8

Cφ` = Σs(Sφ)` = (Sφ)(s`)
= ∃`′. φ`′ ∧ ∀n ∈ `′. n ∈ `
= ∃`′ ⊂ `. φ`′

≥ φ` �

Lemma D.4 If X is algebraic then so is ΣX .
Proof iΣX = ΣsX , whilst sΣX and SΣX are defined by

-- ΣΣX ΣX ��

ΣΣT

ΣΣsX

66

a ΣSX

?

?

ΣT

SX

66

SΣX

ΣT

ST

66

a ΣsT

?

?

T

sT

66

sΣX

28

where sT was given in Corollary D.3. �

Remark D.5 In particular, sΣ = ∃T · sΣT and SΣ = Σ2!T · SΣT , but this might as well be

(σ, σ ∨ τ) ΣΣ Σ

(σ, τ)

6

Σ2

66

a

?

?

2

66

Lemma D.6 The types 1, T and T× T are algebraic.
Proof

s1 =!T S1 = ∃T i1 = >
sT = idT ST = idΣT iT = {}

sT×T : T→ T× T by 0 7→ 〈0, 0〉 and [n,m] 7→ 〈n,m〉.
iT×T : T× T→ ΣT by 〈n,m〉 7→ {[n,m]}.
ST×T : ΣT×T → ΣT by

ST×Tφ〈n,m〉 =
{
φ[0, 0] ∨ φ0 if n = m = 0
φ[n,m] otherwise

Then ST×Tφ ≤ θ ⇐⇒ ∀n,m. φ[n,m] ≤ θ〈n,m〉 & φ0 ≤ θ〈0, 0〉 ⇐⇒ φ ≤ ΣsT×Tθ. �

Lemma D.7
T×T.

(φ, ψ)ΣT × ΣTT+ T ν00 ν0n ν1n

θ ΣT

66

a
?

?

T

66

0

6

[0, n]

6

[[p, q], n]

6

An essentially arbitrary covering of the disjoint union T+ T.

θ0 = φ0
θ[0, n] = φn

θ[[p, q], n] = ψn

φn = θ[0, n] ∨ (n = 0 ∧ θ0)
ψn = ∃pq. θ[[p, q], n]
Cθ0 = θ[0, 0] ∨ θ0
Cθ[0, n] = θ[0, n] ∨ θ0
Cθ[[p, q], n] = ∃p′q′. θ[[p′, q′], n]
`
 0 = [0, 0] ∈ ` ∨ 0 ∈ `
`
 [0, n] = [0, n] ∈ ` ∨ 0 ∈ `
`
 [[p, q], n] = ∃p′q′. [[p′, q′], n] ∈ ` �

Lemma D.8 If X and Y are algebraic then so is X × Y .

29

Proof sX×Y : T→ X × Y and SX×Y : ΣT → ΣX×Y are given by the diagonal composites from
bottom to top right in the diagrams

ΣX×T
SXY --
⊥�

ΣX×sY
�ΣX×Y X × T

X × sY-- X × Y

ΣT×T

STX

66

a ΣsX×T

?

?

STY --
⊥�

ΣT×sY
�ΣT×Y

SYX

66

a ΣsX×Y

?

?

T× T

sX × T
66

T× sY -- T× Y

sX × Y
66

ΣT

ST×T

66

a ΣsT×T

?

?

T

sT×T

66

where the square of left adjoints commutes because that of right adjoints does.
Also, iX×Y = iΣT×ΣT · (iX × iY). �

Proposition D.9 For every object (context or product of types) X that is definable in the
restricted λ-calculus. �

Remark D.10 ` `X n if sX(n :: `) = sX`. iX(sX`) = λ`′. ∀n ∈ `′. ` `X n.
If X is logical then `′ ⊂ `⇒ sX`

′ ≤ sX` (including permutation and repetition).

T

sX -- X

Σ

φ

�...
.....

.....
.....

.....
.....

....

f
-

If ` `X n⇒ f(n :: `) ≤ f` then there is a unique map φ. �

Theorem D.11 The subcategory of locally compact spaces is the minimal model.
Proof Every definable object is a Σ-split subspace of ΣT and there is a diagram

T

s --
× ΣT

� i �
× X

Remark D.12 For any such s, S, S(λm. m = `)(s`) = C(λm. m = `)` ≥ (λm. m = `)` = >.
Construct N6and?N again as examples.

E Lattices

Move to a new paper on powerdomains and relational algebra.

Definition E.1 A σ-semilattice is an object A equipped with a join operator

Γ, n : N ` f [n] : A

Γ `
∨
n

f [n] : A

that agrees with the intrinsic order on A.

30

Lemma E.2 Any semilattice is a σ-semilattice, likewise maps.

Γ× N

Γ× ListN
? g- A -

f

-

B

Γ× ΣN
??

...........
h
-

k

.....
.....

.....
.....

.....
.....-

Σ2A

ηA

?

?

- Σ2B

ηB

?

?

g` =
∨
n∈`

fn

hφ = λψ. ∃`. ψ[
∨
n∈`

fn] ∧ ∀n ∈ `. φ[n]

h(λn. n ∈ `) = λψ. ∃`′. (`′ ⊂ `) ∧ ψ[
∨
n∈`′

fn]

= λψ. ψ[
∨
n∈`

fn]

= ηA[g`]

kφ = focus[λψ. ∃`. ψ[
∨
n∈`

fn] ∧ ∀n ∈ `. φ[n]]∨
f = focus[λψ. ∃`. ψ[

∨
n∈`

fn]]

If Γ ` P : Σ3
T preserves ⊥ and ∨ then it also preserves ∃T. �

Definition E.3 A σ-frame is a σ-semilattice A that is also equipped with > : 1 → A and
∧ : A × A → A. agreeing with the intrinsic order on A and satisfying the frame axioms, in
particular distributivity of ∧ over

∨
.

Lemma E.4 Σ is the initial σ-frame.
Proof Let κ : Σ → A be the unique map that preserves ⊥ and >. Then it preserves ∧ and

∨
too. �

Lemma E.5 ΣΣN is the free σ-frame on N.
Proof Let f : N→ A. For F : ΣΣN , put

pF =
∨

`:ListN

κ[F (λn. n ∈ `)] ∧
∧
n∈`

f [n].

Then

p(ηNm) = p(λφ. φ[m])

=
∨

`:ListN

κ[(λφ. φ[n])(λn. n ∈ `)] ∧
∧
n∈`

f [n]

=
∨

`:ListN

κ[m ∈ `] ∧
∧
n∈`

f [n]

= f [m] putting ` = [m]

p(>) =
∨

`:ListN

κ[(λφ.>)(λn. n ∈ `)] ∧
∧
n∈`

f [n]

31

=
∨

`:ListN

κ[>] ∧
∧
n∈`

f [n]

= > putting ` = ∅
p(F1 ∧ F2) =

∨
`:ListN

κ[(F1 ∧ F2)(λn. n ∈ `)] ∧
∧
n∈`

f [n]

=
∨

`:ListN

κ[F1(λn. n ∈ `)] ∧ κ[F2(λn. n ∈ `)] ∧
∧
n∈`

f [n]

=
∨

`1:ListN

∨
`2:ListN

κ[F1(λn. n ∈ `1)] ∧ κ[F2(λn. n ∈ `2)] ∧
∧
n∈`1

f [n] ∧
∧
n∈`2

f [n]

=
∨

`1:ListN

κ[F1(λn. n ∈ `1)] ∧
∧
n∈`1

f [n]

∧
∨

`2:ListN

κ[F2(λn. n ∈ `2)] ∧
∧
n∈`2

f [n] distributivity

= pF1 ∧ pF2

p(∃k. Fk) =
∨

`:ListN

κ[(∃k. Fk)(λn. n ∈ `)] ∧
∧
n∈`

f [n]

=
∨

`:ListN

∨
k

κ[Fk(λn. n ∈ `)] ∧
∧
n∈`

f [n]

=
∨
k

pFk �

Lemma E.6 Let A be a σ-frame together with s : N→ A, S : ΣN → ΣA such that S ; Σs = idΣN

and S(λn. m = n)(sm) = >. Then A is an Eilenberg–Moore algebra.

Σ2
N

Σ2π -- Σ4
N

Σ4s -- Σ4A

N

ηN

6

6

π - Σ2
N

ΣηΣN

? Σ2s --
-

ΣS
- Σ2A

Σ2α

?

ΣηΣA

?

Σ2p

-

N

ηN

6

6

s -- A

α

?

ηA

6

6
p

-

Proof Let p : Σ2
N→ A be the lifting of s : N→ A to a σ-frame homomorphism. We shall show

that α = ΣS ; p : Σ2A→ A is an Eilenberg–Moore structure map.
The composite s ; ηA ; ΣS ; p takes

m to
∨
`

κ[(λφ. (Sφ)(sm)))(λn. n ∈ `)] ∧
∧
n∈`

s[n]

=
∨
`

κ[S(λn. n ∈ `)(sm)] ∧
∧
n∈`

s[n]

= s[m] ` = [m]

since S(λn. m = n)(sm) = > and S⊥(sm) = ⊥. Hence ηA ; α = ηA ; ΣS ; p = id since s is Σ-epi.
Now

ηN ; Σ2π ; Σ4s ; Σ2α ; α = π ; Σ2s ; α ; ηA ; α
= π ; Σ2s ; α

32

= π ; Σ2s ; ηΣ2α ; ΣηΣA ; α
= ηN ; Σ2π Σ4s ; ΣηΣA ; α

so Σ2π ; Σ4s ; Σ2α ; α = Σ2π Σ4s ; ΣηΣA ; α as these are σ-frame homomorphisms Σ2
N→ A. Then

Σ2α ; α = ΣηΣA ; α since Σ2π ; Σ4s is Σ-epi. �

Corollary E.7 If A is an algebra then its structure is unique. �

Remark E.8 If A is a distributive lattice in the intrinsic order, then A is an algebra. Need
powerdomain ideas to do this.

F Functional relations on N

In this section we shall prove and exploit the fact that the inclusion {} : N- - ΣN is locally
closed. Thus, we may regard φ : ΣN as a copyable program whose “normal” behaviour is to return
then. φ[n], terminating if ∃n. φ[n], but it aborts if

Dψ ≡ ∃mn. φ[n] ∧ φ[m] ∧ n 6= m.

[[Generalise to N/N, overt discrete compact Hausdorff locally compact.]]

Remark F.1 Recall from [D] that c : N⊥ → ΣN is defined by lifting {} : N→ ΣN.

N

{} - ΣN ΣN � ΣΣN

N⊥

?

∩

..............- (ΣN)⊥

6

a
?

∩

Σ ↓ ΣN
?

a

6

� Σ ↓ ΣΣN

6

a
?

a

6

Then Σc : F 7→ (F∅, λn. F{n}).

Proposition F.2 c : N⊥ → ΣN is the closed subset that is classified by D = ⊥.

N⊥ - 1

ΣN

c

?

u

D - Σ

⊥

?

Proof Consider ∀c : ΣN⊥ ≡ Σ ↓ ΣN → ΣΣN defined by

∀c(σ, φ)ψ = σ ∨ (∃n. φn ∧ ψn) ∨ (∃nm. ψn ∧ ψm ∧ n 6= m).

Then

Σc(∀c(σ, φ)) = (σ, λn. σ ∨ φn)
= (σ, φ) σ ≤ φ[n]

∀c(ΣcF)ψ = F⊥ ∨ (∃n. F{n} ∧ ψ[n]) ∨ (∃mn. ψ[m] ∧ ψ[n] ∧m 6= n)
= (∃`. F (λn. n ∈ `) ∧ ∀n ∈ `. ψ[n]) ∨ (∃mn. ψ[m] ∧ ψ[n] ∧m 6= n)
= Fψ ∨Dψ

by Theorem 2.8 [[which uses T]], where the cases for lists with two or more distinct elements are
absorbed into the term Dψ. �

33

Remark F.3

N
⊂

i - N⊥ @
c - ΣN

ΣN
- ∃i-

⊥��
Σi

ΣN⊥
- ∀c-
>��
Σc

ΣΣN

Σ{} a A, where Aφψ = (∃n. φn ∧ ψn) ∨ (∃mn. ψn ∧ ψm ∧ n 6= m).

Remark F.4

(N⊥)N - 1 - 1

ΣN×N
?

u

DN- ΣN

⊥
? ∃ - Σ

⊥

?

where DNφ = λx. ∃yz. φ[y] ∧ φ[z] ∧ y 6= z.

Remark F.5 {} : N→ ΣN is the locally closed subset classified by (D,∃N) = (⊥,>).

N - 1 N
N - 1

N⊥

?

∩

∃ - Σ

>

?
(N⊥)N
?

?

- ΣN

>
?

(−)N preserves pullbacks, i.e. if the pullback exists then it’s the exponential, and vice versa.
The map NN → (N⊥)N is a regular mono, but is not Σ-split.

Remark F.6 Lazy NNO with and without >. N⊥ / lazy N @ - 2N⊥ @ - Σ2×N — by general
recursion.

Also Moggi’s example: one-point compactification N∞ as a non-Σ-split subspace of lazy N.

Theorem F.7 Let X be overt, discrete, Hausdorff and locally compact. Then X ∼= U ⊂ - N.
It’s also compact iff it’s finite.
Proof {} : X- - ΣX is locally closed and X>⊥ / ΣX / ΣN � N. What’s the inverse image of
⊥ ∈ X>⊥ , as a closed subspace of N? {n | 0
X n}, which is both open and closed.

T

q -- T/R-
{} - ΣT/R

- Σq -
>��
∃q

ΣT

ΣT
� Σq �

>
∃q

-- ΣT/R
�� Σ{}

>-
I

- Σ2
T/R
- Σ∃q -

>��
Σ2q

ΣΣT

I a Σ{}, where I : φ 7→ λψ. φ[n] ∧ ψ[n].

34

G For later work

Dual fixed point axiom:

N - ?N - U

X
�...

.....
.....

.....
.....

.....
...

-

Objects that think that N is compact, i.e. admit?N-meets.
All objects as locales or PERs.
Open discrete objects form an arithmetic universe.
Representation theorems: for free model, as PERs; minimal models with all objects open, as

countably based locally compact locales.
One-point compactification of N as open subset of lazy natural numbers, or as patch topology

on N⊥. Moggi’s counterexample; why it is not Σ-split. Cauchy sequence ≈ function from lazy N;
Euclidean topology on Q (∼= R).

Zariski and p-adic topologies on N (Vickers?)
Lift as free “local space”.
Lift as a co-KZ-monad.
Denotational semantics and domain equations.
N-indexed limits of compact Hausdorff spaces and N-indexed colimits of open discrete spaces,

by the limit-colimit coincidence.
Exponentials of the form XY where X is compact Hausdorff and Y is open discrete.
The embedding. Suppose C has stable unions of open subsets, so we may define its open cover

(Grothendieck) topology and the topos E . The Yoneda embedding C → E preserves any limits
which exist, and unions of opens.

Show that the representable Σ is complete in the internal logic of E . Let I be a sheaf (diagram
shape). Calculate the sheaf ΣI . At X it is the set of natural transformations I(−)→ C(−×X,Σ).
Form the join pointwise (using unions of opens in C); show that it’s natural.

Now we have Alg ↪→ Frm(E).
Why does the embedding preserve Σ(−)? It preserves exponentials, so we have to show that

the sheaf ΣA is the Scott topology on A, i.e. it consists of upper sets and all functions are Scott-
continuous. For the first part use the Phoa principle.

Then by following the earlier constructions, the embedding also preserves ⊗ and other things.

Remark G.1 Domain theory agenda (from undated red handwritten notes).
•Various natural numbers objects.
• Fixed point property: Freyd, Plotkin, Scott, ... axioms.
•Topological enumerability.
•Untyped λ-calculus.
•Type of types.
• Solving domain equations.
•Cartesian closed subcategories.
•Powerdomains.
• Interpretation of PCF and while, using the ASD compiler.

Read Abramsky’s Domain Theory in Logical Form.

Remark G.2 Computational interpretation (from undated red handwritten notes).
•Any definable global element of an open discrete space in C translates into a terminating

35

PROLOG program that outputs a number that represents the term.
•Every morphism N→ N⊥ defines a partial recursive function.
•Also PROLOG to ASD.
•Any N→ N in C is primitive recursive, by separation of variables.

Remark G.3 Domain theory using Abstract Stone Duality (from notes in pencil dated 18 June
1999).
1. Domain-theoretic calculations using primitive recursion and openness of N (∃N) but not a

Scott–Freyd axiom. Construct lazy and rising N with and without >, show that these are
initial algebras or final coalgebras. Also N⊥, (2⊥)N, (N⊥)N with general recursion. Isolate the
Scott–Freyd axiom.

2. Gluing to Set to show that the global sections of the free such model are exactly general
recursive functions on N.

3. Gluing (or other inductive argument) to Dcpo (?) to show that the Scott–Freyd axiom is
true in the free model (Rice–Shapiro–Myhill–Shepherdson).

4. Topological enumeration (N→ ΣN Σ-epi) from the Scott–Freyd axiom. All objects in minimal
model have Σ-split monos to ΣN (Scott).

5. Initial algebras and final coalgebras for functors, defined internally using the “universal” object
ΣN. Freyd axiom.

6. Free algebras for finitary generalised algebraic theories using open discrete objects (maybe
don’t need Scott–Freyd).

7. Free internal model inside the free (external) model. Glue the internal and external. Universal
Turing–Kleene machine. Recursive enumeration.

8. Characterise using PERs?
Do 4–6 using synthetic domain theory.

8 PPPPP 7 PPPPP 6

5

2 3 4PPPPP ��
���

1

36

	Introduction
	Encoding predicates on N
	Algebraic lattices
	Total and partial functions
	Scott domains
	Function spaces of Scott domains
	Untyped lambda-calculus and recursive enumeration
	Partial, discardable and copyable maps
	Interpretation of PCF
	The fixed point property
	Algebraic types
	Lattices
	Functional relations on N
	For later work

