Computable Real Analysis
without Set Theory or Turing Machines

Paul Taylor

Department of Computer Science
University of Manchester
UK EPSRC GR/S58522

Canadian Mathematical Society
Calgary, Monday 5 June 2006

www.cs.man.ac.uk/~pt/ASD

http://www.cs.man.ac.uk/~pt/ASD/index.pdf

Topological spaces

A topological space is a set X (of points)
equipped with a set of (“open”) subsets of X
closed under finite intersection and arbitrary union.

Wood and chipboard

A topological space is a set X (of points)
equipped with a set of (“open”) subsets of X
closed under finite intersection and arbitrary union.

Chipboard is a set X of particles of sawdust
equipped with a quantity of glue
that causes the sawdust to form a cuboid.

A natural language for topology

I shall introduce a language for general topology and (in
particular) real analysis that looks like set theory.

As the title says, it’s not set theory.

A natural language for topology
I shall introduce a language for general topology and (in
particular) real analysis that looks like set theory.

As the title says, it’s not set theory.

It looks like set theory because
> there are analogies between sets and spaces

» these analogies can be formulated as universal properties
in category theory

» universal properties can be expressed as introduction and
elimination rules in proof theory.

I will tell this story in Kananaskis on Wednesday.

All functions are continuous and computable

This is not a Theorem (a4 Iz Brouwer) but a design principle.

The language only introduces continuous computable
functions.

All functions are continuous and computable

This is not a Theorem (4 Iz Brouwer) but a design principle.
The language only introduces continuous computable
functions.

In particular, all functions R X R — X are continuous
and correspond to open subspaces.

All functions are continuous and computable

This is not a Theorem (4 Iz Brouwer) but a design principle.
The language only introduces continuous computable
functions.

In particular, all functions R X R — X are continuous
and correspond to open subspaces.

Hencea < b,a > b and a # b are definable,
buta < b,a > b and a = b are not definable.

All functions are continuous and computable

This is not a Theorem (4 Iz Brouwer) but a design principle.

The language only introduces continuous computable
functions.

In particular, all functions R X R — X are continuous
and correspond to open subspaces.

Hencea < b,a > b and a # b are definable,
buta < b,a > b and a = b are not definable.

This is because R is Hausdorff but not discrete.

All functions are continuous and computable

This is not a Theorem (4 Iz Brouwer) but a design principle.

The language only introduces continuous computable
functions.

In particular, all functions R X R — X are continuous
and correspond to open subspaces.

Hencea < b,a > b and a # b are definable,
buta < b,a > b and a = b are not definable.

This is because R is Hausdorff but not discrete.

IN and Q are discrete and Hausdorff.

So we have all six relations for them.

Geometric, not Intuitionistic, logic

A term o : X is called a proposition.
A term ¢ : 2% is called a predicate or open subspace.

Applicatio ¢a denotes membership of an open subspace.

We can form ¢ A ¢ and ¢ V 1).
Also dn: IN. ¢px, dq: Q. ¢px, Ix: R. ¢px and dx: [0, 1]. ¢x.

Geometric, not Intuitionistic, logic

A term o : X is called a proposition.
A term ¢ : X is called a predicate or open subspace.

Applicatio ¢a denotes membership of an open subspace.
We can form ¢ A and ¢ V ¢.

Also dn: IN. ¢x, dg: Q. ¢px, x: R. ¢x and Jx: [0, 1]. ¢px.
But not dx: X. ¢x for arbitrary X — it must be overt.

Geometric, not Intuitionistic, logic

A term o : X is called a proposition.
A term ¢ : X is called a predicate or open subspace.

Applicatio ¢a denotes membership of an open subspace.

We can form ¢ A and ¢ V ¢.
Also dn: IN. ¢x, d7: Q. ¢px, Ix: R. ¢x and Jx: [0, 1]. ¢x.
But not dx: X. ¢x for arbitrary X — it must be overt.

Negation and implication are not allowed.

Because:
» this is the logic of open subspaces;
©

.) is not continuous;

» the function ©® & e on (

» the Halting Problem is not solvable.

Compactness and universal quantification
When K C X is compact (e.g. [0,1] C R), we can form Vx: K. ¢x.
I[x:K+Tepx
' W Te VYx: K ¢px

From the usual “finite open subcover” definition of
compactness,
this captures the notion of cover, K C U.

Compactness and exchanging quantifiers

The quantifier is a (higher-type) function Vg : 2K — X.
Like everything else, it’s Scott continuous.

This captures the infinitary part
of the “finite open subcover” definition.

Compactness and exchanging quantifiers
The quantifier is a (higher-type) function ¥ : £X — X.
Like everything else, it’s Scott continuous.

This captures the infinitary part

of the “finite open subcover” definition.

The useful cases of this in real analysis are

Vx: K36 > 0.9(x,0) < 36> 0.Yx:K.o(x,0)
Vx : K. An.g(x, n) & dnVx:K¢(x,n)

in the case where (61 <d2) A ¢(x,02) = P(x,01)
or (n1>mnm) A ¢lx,n) = ox,n).

Recall that uniform convergence, continuity, etc.
involve commuting quantifiers like this.

Examples: continuity and uniform continuity

Recall that, from local compactness of IR,
¢ox & 0> 0.Vy: [x£06]. Py
Theorem: Every definable function f : R — R is continuous:

e>0 = 35>0.Vy: [x+0]. (|fy—fx|<€)

Proof: Put ¢y ey = (lfy - fx| < e), with parameters x, € : R.

Theorem: Every function f is uniformly continuous
on any compact subspace K C IR:

e>0 = 35>0.Vx: K. Vy: [x £0]. (lfy—fx|<€)

Proof: 36 > 0 and Yx : K commute.

Example: Dini’s theorem

Theorem: Let f, : K — R be an increasing sequence of functions
n:N, x:K rF fux <fpax: R
that converges pointwise to g : K = R, so
€>0,x:KF+r Tedngxr—fix<e.

If K is compact then f,, converges to g uniformly.

Proof: Using the introduction and Scott continuity rules for V,

€e>0+ T & Vx: K dngx—fux<e
© dn.Vx: K gx—fuix<e

Exercise for everyone!

Make a habit of trying to formulate statements in analysis
according to (the restrictions of) the ASD language.

This may be easy — it may not be possible

The exercise of doing so may be 95% of solving your problem!

Constructive intermediate value theorem

Suppose that f : R — R doesn’t hover, i.e.
bd:R+b<d = Ix.(b<x<d) AN (fx#0),

and fO0 <0 < f1. Then fc = 0 for some 0 < c < 1.

Interval trisection: Letay =0, ey = 1,
b, = %(Zun +e,) and d, = %(an + 2e,).
Then f(c,) # 0 for some b, < ¢, < d,, so put

_ Joan, cn iff(cn) >0
Mntls Cnl = o if f(cn) < 0.

Then f(a,) <0 < f(e,) and a, — ¢ < e,.
(This isn’t the ASD proof/algorithm yet!)

Stable zeroes

The interval trisection finds zeroes with this property:

fd fo

Definition: ¢ : R is a stable zero of f if

a,e:RFa<c<e = bd. (@<b<c<d<e)
A (fb<0<fd Vfb>0>fd).

The subspace Z c [0, 1] of all zeroes is compact.
The subspace S C [0, 1] of stable zeroes is overt (as we shall
see...)

Straddling intervals

An open subspace U C IR contains a stable zero c € U N S iff U
also contains a straddling interval,

[b,dlcU with fb<0<fd or fb>0>fd.

[=] From the definitions. [<] The straddling interval
is an intermediate value problem in miniature.

Straddling intervals
An open subspace U C IR contains a stable zero c € U N S iff U
also contains a straddling interval,
[b,dlcU with fb<0<fd or fb>0>fd.
[=] From the definitions. [«<] The straddling interval
is an intermediate value problem in miniature.

Notation: Write ¢ U if U contains a straddling interval.

We write this containment in ASD using the universal
quantifier.

0¢ = Jbd. (Vx: [b,d]. ¢x)
A (fb<0<fd)V(fb>0>fd).

The possibility operator

By hypothesis, ¢(0,1) & T, whilst ¢ 0 & L trivially.
OUigU; & Fi. o U,.
If f : R — Ris an open map, this is easy.

If f : R — R doesn’t hover, it depends on connectedness of IR.

The possibility operator

By hypothesis, ¢(0,1) & T, whilst ¢ 0 & L trivially.

OUig Ui &= 3i. o U,

If f : R — Ris an open map, this is easy.

If f : R — R doesn’t hover, it depends on connectedness of IR.

Definition: A term ¢ : =" with this property

is called an overt subspace of X.

A simpler example: For any pointa : X,

the neighbourhood filter ¢ = na = A¢. ¢a is a possibility
operator.

¢ is a point iff it also preserves T and A.

The Possibility Operator as a Program

Theorem: Let ¢ be an overt subspace of Rwith ¢ T & T.

Then ¢ has an accumulation point ¢ € R,
i.e. one of which every open neighbourhood c € U C R
satisfies ¢ U:

G: IR+ e = 00

Example: In the intermediate value theorem, any such c is a
stable zero.

Proof: Interval trisection.

Corollary: Obtain a Cauchy sequence from a Dedekind cut.

Possibility operators classically
Define ¢ U as U N S # 0, for any subset S C X whatever.
Then ¢ (User uz-) iff 3i. o U,
Conversely, if ¢ has this property, let

S
14

lneX|forallopenUCX, aclU=oU)
X\8 = | Jiuopen|=-oU)

Then W is open and S is closed.
-0 W by preservation of unions.
Hence ¢ U holds iff U ¢ W, i.e. UNS # 0.

If ¢ had been derived from some S’ then S = &/, its closure.

Classically, every (sub)space S is overt.

Necessity operators
Let K C R be any compact subspace.
(For example, all zeroes in a bounded interval.)
U — (K c U) is Scott continuous.

Notation: Write O ¢ for Vx: K. ¢x.

Modal operators, separately

O encodes the compact subspace Z = {x € I | fx = 0} of all zeroes.
¢ encodes the overt subspace S of stable zeroes.

OXistrue and oUAOV = glnV)

¢Qisfalse and OUUV) = oUVOV.

(Z+0) iff O0isfalse
(S#0) iff ¢Ristrue

Modal operators, together
¢ and O for the subspaces S C Z are related in general by:
oUAOV = oUNY)

oU < (UUW =X)
oV = (Ve w)

S is dense in Z iff
ouUuV) = ouvoeV
OV < (Vg W)

In the intermediate value theorem
for functions that don’t hover (e.g. polynomials):

» S = Zin the non-singular case

» S C Zin the singular case (e.g. double zeroes).

Modal laws in ASD notation

Overt subspace Compact subspace
0L & L OT & T

O(PVY) & 0PV oY O AY) © apAOy
oANODP & O(0AD) ovio¢ & Olx.oV ¢x)

Commutative laws:

o(Ax. ¢(Ay. pry)) & o(Ay. o(Ax. Pay))
o(Ax. m(y. ¢xy)) < m(Ay. O(Ax. pxy))

Mixed modal laws for a compact overt subspace.

O¢pVvoy < o@Vvy) and OPpAOY = O(PAY)

Empty/inhabited is decidable

Theorem: Any compact overt subspace (O, ¢) is either empty
(O L) or non-empty (¢ T).
Proof:
0T & L empty oL & T
0T © T inhabited 0oL & 1
OLVOT & complementary OLAOT =
OLVT) 0T © T (mixed) ¢LAL) © oL o L

Empty/inhabited is decidable

Theorem: Any compact overt subspace (O, ¢) is either empty
(O L) or non-empty (¢ T).
Proof:
0T & L empty oL & T
0T © T inhabited 0oL & 1
OLVOT & complementary OLAOT =
OLVT) 0T © T (mixed) ¢LAL) © oL o L

The dichotomy (either O L or ¢ T) means that
the parameter space I is a disjoint union.

So, if it is connected, like IR™,
something must break at singularities.

It is the modal law O(¢p V ¢) = O0¢ V O 9.

Non-empty compact overt subspace of R has a
maximum

Theorem: Any overt compact subspace K C R is
> either empty

» or has a greatest element, maxK € K.

Definition: max K satisfies, for x : R,

(x<maxK) & Gk: K. x<k)
(maxK<x) © (Vk: K. k<x)
k:K + k<maxK

I'k: K+ k<x

I' W maxK <«x

Compact overt subspace of R has a maximum
Proof: Define a Dedekind cut (next slide)

o0d = Jdk: K.d<k and vu = Vk: K. k<u

Hence there is some a : R with
od & (d<a) and vu & (a<u)

Moreover, a € K.

K is also the closed subspace
co-classified by wx = O(Ak. x # k),
so we must show that wa & 1.

wa = OAk.a#k) © DOlAk.a<k) VvV (k<a)
= O(Ak.a<k) v Ok k <a)

= daVuva
& (@<aV@<a) o L.

Compact overt subspace of R defines a Dedekind cut

Overt subspace ¢ Compact subspace O

1,Vv, \}and so Ir commutes with

T, Aand \/!
od = 0(Ak.d <k) Dedekind cut vu = O(Ak. k < u)
(d<e)Aode = lower/upper VEA(t<u) =
(d<e)Ao(Ak.e <k) Ok k <t) A (t<u)
e O(Ak.d<e<k) (Frobenius/0 T)

& Ok k<t<u)
(transitivity) = O(Ak.k<u) = vu
rounded (interpolation)

dd.6d = 3d. 6(Ak.d < k) inhabited

= 0(Mk.d<k) = &d

&= =

Ju.vu = Ju. O(Ak. k < u)

< O(Ak.dd. d < k) (directed joins) & Ok Ju. k <u)
© 0T © T (inhabited) (extrapolation) S o0T e T

The Bishop-style proof

Definition: K is totally bounded if, for each € > 0,
there’s a finite subset S¢ C K such that
Yx: K. dy € Se. |x—y| <e.
Proof: If K is closed and totally bounded,
» either the set S is empty, in which case K is empty too,

> or x, = max Sy-» defines a Cauchy sequence
that converges to max K.

But K is also overt, with ¢ ¢ = Je > 0. dy € S. Py.
Definition: K is located if, for each x € X,

inf{|x — k| | k € K} is defined.

(A different usage of the word “located”.)

closed, totally bounded = compact and overt = located
(in TTE) also r.e. closed

» Total boundedness and locatedness are metrical concepts.
» Compactness and overtness are topological.

The real interval is connected (usual proof)

Any closed subspace of a compact space is compact.
Any open subspace of an overt space is overt.

Any clopen subspace of an overt compact space is overt
compact, so it’s either empty or has a maximum.

Since the clopen subspace is open, its elements are interior,
so the maximum can only be the right endpoint of the interval.
Any clopen subspace has a clopen complement.
» They can’t both be empty, but
> in the interval they can’t both have maxima (the right
endpoint).

Hence one is empty and the other is the whole interval.

Connectedness in modal notation
We have just proved
dPpAY)e L, OpVyYy)e Troopvoy e T

whereo 6 = Vx: [0,1]. Oxand ¢ 6 = dx: [0,1]. Ox.

Using the mixed modal law ¢ p A0 = (P A)
and the Gentzen-style rules

o TrFra=>f oo LEra=f

FoAa = B Fa = BVo

connectedness may be expressed in other ways:

P AY) S L FoO@VyY) = 0evoy
AP AY) S L FO@VEACPAIY S L
0@ v) = 0pVOYPVIPVY)
D@V AOPAGY = APAY)

Weak intermediate value theorems

Letf :[0,1] = R, and use two of these forms of connectedness.

Put ¢x = (0 < fx) and x = (fx < 0).

Use 0(pAY)=L + O VYPIAOGPAOY = L.

O(p A1) & L by disjointness.

Then (f0 <0 <f1) A (Vx: [0,1]. fr£0) & L.

So the closed, compact subspace Z = {x : I | fx = 0} is not empty.

Put ¢x = (e < fx) and Px = (fx < t).

UseO(@VYP)AOPAOY = (P AY).
0O(¢ V 1) by locatedness.

Then (f0 <e<t<fl) = (Hx: [0,1]. e < fx < t).
ore >0 F dx. Vx| <e.
So the open, overt subspace {x | ¢ < fx < t} is inhabited.

Straddling intervals in ASD
Letf : [0,1] — R be a function that doesn’t hover.

Proposition: ¢ preserves joins, ¢(dn. 0,) & dn. ¢ 0,.

Proof: Consider
¢*x = In.Jy. (x <y <u) A(fy 2 0) AVz: [x,y]. Onz.
Then 3x. ¢*x A ¢~ x by connectness.

Lemma: 0 < a < 11is a stable zero of f iff
it is an accumulation point of ¢, i.e. pa = ¢ ¢.
Theorem: ¢ and D obey Op A OGP = (P A Y).

They also obey O(¢p Vi) = O¢pV O
iff f doesn’t touch the axis without crossing it.

When f is a polynomial, this is the non-singular case, where f
has no zeroes of even multiplicity.

Solving equations in ASD

In the non-singular case, all zeroes are stable,
¢ and O define a non-empty overt compact subspace,
which has a maximum.

So the classical textbook proof of IVT,
a= sup{x:[0,1] | fx <0},

is computationally meaningful!

The interval trisection algorithm for ¢ finds some zero,
even in the singular case,
but it behaves non-deterministically and catastrophically.

Parametric solutions
The set of zeroes varies discontinuously at singularities in the
parameters.
For example, the cubic equation may have
> three real stable zeroes (on one stable region),
» one stable zero and an unstable (double) zero,

> just one stable zero (in the other stable region).

The modal operators O and ¢ are
Scott-continuous throughout the parameter space.

The only thing that goes wrong at the singularity
is that one of the mixed modal laws fails.

