
Computable Real Analysis
without Set Theory or Turing Machines

Paul Taylor

Department of Computer Science
University of Manchester

UK EPSRC GR/S58522

Canadian Mathematical Society
Calgary, Monday 5 June 2006

www.cs.man.ac.uk/∼pt/ASD

http://www.cs.man.ac.uk/~pt/ASD/index.pdf

Topological spaces
A topological space is a set X (of points)
equipped with a set of (“open”) subsets of X
closed under finite intersection and arbitrary union.

Chipboard is a set X of particles of sawdust
equipped with a quantity of glue
that causes the sawdust to form a cuboid.

Wood and chipboard
A topological space is a set X (of points)
equipped with a set of (“open”) subsets of X
closed under finite intersection and arbitrary union.

Chipboard is a set X of particles of sawdust
equipped with a quantity of glue
that causes the sawdust to form a cuboid.

A natural language for topology
I shall introduce a language for general topology and (in
particular) real analysis that looks like set theory.
As the title says, it’s not set theory.

It looks like set theory because
I there are analogies between sets and spaces
I these analogies can be formulated as universal properties

in category theory
I universal properties can be expressed as introduction and

elimination rules in proof theory.
I will tell this story in Kananaskis on Wednesday.

A natural language for topology
I shall introduce a language for general topology and (in
particular) real analysis that looks like set theory.
As the title says, it’s not set theory.

It looks like set theory because
I there are analogies between sets and spaces
I these analogies can be formulated as universal properties

in category theory
I universal properties can be expressed as introduction and

elimination rules in proof theory.
I will tell this story in Kananaskis on Wednesday.

All functions are continuous and computable
This is not a Theorem (à la Brouwer) but a design principle.
The language only introduces continuous computable
functions.

In particular, all functions R ×R→ Σ are continuous
and correspond to open subspaces.

Hence a < b, a > b and a , b are definable,
but a ≤ b, a ≥ b and a = b are not definable.

This is because R is Hausdorff but not discrete.

N and Q are discrete and Hausdorff.
So we have all six relations for them.

All functions are continuous and computable
This is not a Theorem (à la Brouwer) but a design principle.
The language only introduces continuous computable
functions.

In particular, all functions R ×R→ Σ are continuous
and correspond to open subspaces.

Hence a < b, a > b and a , b are definable,
but a ≤ b, a ≥ b and a = b are not definable.

This is because R is Hausdorff but not discrete.

N and Q are discrete and Hausdorff.
So we have all six relations for them.

All functions are continuous and computable
This is not a Theorem (à la Brouwer) but a design principle.
The language only introduces continuous computable
functions.

In particular, all functions R ×R→ Σ are continuous
and correspond to open subspaces.

Hence a < b, a > b and a , b are definable,
but a ≤ b, a ≥ b and a = b are not definable.

This is because R is Hausdorff but not discrete.

N and Q are discrete and Hausdorff.
So we have all six relations for them.

All functions are continuous and computable
This is not a Theorem (à la Brouwer) but a design principle.
The language only introduces continuous computable
functions.

In particular, all functions R ×R→ Σ are continuous
and correspond to open subspaces.

Hence a < b, a > b and a , b are definable,
but a ≤ b, a ≥ b and a = b are not definable.

This is because R is Hausdorff but not discrete.

N and Q are discrete and Hausdorff.
So we have all six relations for them.

All functions are continuous and computable
This is not a Theorem (à la Brouwer) but a design principle.
The language only introduces continuous computable
functions.

In particular, all functions R ×R→ Σ are continuous
and correspond to open subspaces.

Hence a < b, a > b and a , b are definable,
but a ≤ b, a ≥ b and a = b are not definable.

This is because R is Hausdorff but not discrete.

N and Q are discrete and Hausdorff.
So we have all six relations for them.

Geometric, not Intuitionistic, logic
A term σ : Σ is called a proposition.
A term φ : ΣX is called a predicate or open subspace.
Applicatio φa denotes membership of an open subspace.

We can form φ ∧ ψ and φ ∨ ψ.
Also ∃n : N. φx, ∃q : Q. φx, ∃x : R. φx and ∃x : [0, 1]. φx.

But not ∃x : X. φx for arbitrary X — it must be overt.

Negation and implication are not allowed.

Because:
I this is the logic of open subspaces;

I the function �� • on
(
�
•

)
is not continuous;

I the Halting Problem is not solvable.

Geometric, not Intuitionistic, logic
A term σ : Σ is called a proposition.
A term φ : ΣX is called a predicate or open subspace.
Applicatio φa denotes membership of an open subspace.

We can form φ ∧ ψ and φ ∨ ψ.
Also ∃n : N. φx, ∃q : Q. φx, ∃x : R. φx and ∃x : [0, 1]. φx.
But not ∃x : X. φx for arbitrary X — it must be overt.

Negation and implication are not allowed.

Because:
I this is the logic of open subspaces;

I the function �� • on
(
�
•

)
is not continuous;

I the Halting Problem is not solvable.

Geometric, not Intuitionistic, logic
A term σ : Σ is called a proposition.
A term φ : ΣX is called a predicate or open subspace.
Applicatio φa denotes membership of an open subspace.

We can form φ ∧ ψ and φ ∨ ψ.
Also ∃n : N. φx, ∃q : Q. φx, ∃x : R. φx and ∃x : [0, 1]. φx.
But not ∃x : X. φx for arbitrary X — it must be overt.

Negation and implication are not allowed.

Because:
I this is the logic of open subspaces;

I the function �� • on
(
�
•

)
is not continuous;

I the Halting Problem is not solvable.

Compactness and universal quantification
When K ⊂ X is compact (e.g. [0, 1] ⊂ R), we can form ∀x : K. φx.

Γ, x : K ` > ⇔ φx
====================
Γ ` > ⇔ ∀x : K. φx

From the usual “finite open subcover” definition of
compactness,
this captures the notion of cover, K ⊂ U.

Compactness and exchanging quantifiers
The quantifier is a (higher-type) function ∀K : ΣK

→ Σ.
Like everything else, it’s Scott continuous.
This captures the infinitary part
of the “finite open subcover” definition.

The useful cases of this in real analysis are

∀x : K.∃δ > 0.φ(x, δ) ⇔ ∃δ > 0.∀x : K.φ(x, δ)
∀x : K.∃n.φ(x,n) ⇔ ∃n.∀x : K.φ(x,n)

in the case where (δ1 < δ2) ∧ φ(x, δ2) ⇒ φ(x, δ1)
or (n1 > n2) ∧ φ(x,n2) ⇒ φ(x,n1).

Recall that uniform convergence, continuity, etc.
involve commuting quantifiers like this.

Compactness and exchanging quantifiers
The quantifier is a (higher-type) function ∀K : ΣK

→ Σ.
Like everything else, it’s Scott continuous.
This captures the infinitary part
of the “finite open subcover” definition.

The useful cases of this in real analysis are

∀x : K.∃δ > 0.φ(x, δ) ⇔ ∃δ > 0.∀x : K.φ(x, δ)
∀x : K.∃n.φ(x,n) ⇔ ∃n.∀x : K.φ(x,n)

in the case where (δ1 < δ2) ∧ φ(x, δ2) ⇒ φ(x, δ1)
or (n1 > n2) ∧ φ(x,n2) ⇒ φ(x,n1).

Recall that uniform convergence, continuity, etc.
involve commuting quantifiers like this.

Examples: continuity and uniform continuity
Recall that, from local compactness of R,

φx ⇔ ∃δ > 0. ∀y : [x ± δ]. φy

Theorem: Every definable function f : R→ R is continuous:

ε > 0 ⇒ ∃δ > 0. ∀y : [x ± δ].
(∣∣∣fy − fx

∣∣∣ < ε)
Proof: Put φx,εy ≡

(∣∣∣fy − fx
∣∣∣ < ε), with parameters x, ε : R.

Theorem: Every function f is uniformly continuous
on any compact subspace K ⊂ R:

ε > 0 ⇒ ∃δ > 0. ∀x : K. ∀y : [x ± δ].
(∣∣∣fy − fx

∣∣∣ < ε)
Proof: ∃δ > 0 and ∀x : K commute.

Example: Dini’s theorem
Theorem: Let fn : K→ R be an increasing sequence of functions

n :N, x : K ` fnx ≤ fn+1x : R

that converges pointwise to g : K→ R, so

ε > 0, x : K ` > ⇔ ∃n. gx − fnx < ε.

If K is compact then fn converges to g uniformly.

Proof: Using the introduction and Scott continuity rules for ∀,

ε > 0 ` > ⇔ ∀x : K. ∃n. gx − fnx < ε
⇔ ∃n. ∀x : K. gx − fnx < ε

Exercise for everyone!
Make a habit of trying to formulate statements in analysis
according to (the restrictions of) the ASD language.

This may be easy — it may not be possible

The exercise of doing so may be 95% of solving your problem!

Constructive intermediate value theorem
Suppose that f : R→ R doesn’t hover, i.e.

b, d : R ` b < d ⇒ ∃x. (b < x < d) ∧ (fx , 0),

and f 0 < 0 < f 1. Then fc = 0 for some 0 < c < 1.

Interval trisection: Let a0 ≡ 0, e0 ≡ 1,

bn ≡
1
3 (2an + en) and dn ≡

1
3 (an + 2en).

Then f (cn) , 0 for some bn < cn < dn, so put

an+1, en+1 ≡

{
an, cn if f (cn) > 0
cn, en if f (cn) < 0.

Then f (an) < 0 < f (en) and an → c← en.
(This isn’t the ASD proof/algorithm yet!)

Stable zeroes
The interval trisection finds zeroes with this property:

fd fb

a b c d e

d e a b c

fb fd

Definition: c : R is a stable zero of f if

a, e : R ` a < c < e ⇒ ∃bd. (a < b < c < d < e)
∧ (fb < 0 < fd ∨ fb > 0 > fd).

The subspace Z ⊂ [0, 1] of all zeroes is compact.
The subspace S ⊂ [0, 1] of stable zeroes is overt (as we shall
see...)

Straddling intervals
An open subspace U ⊂ R contains a stable zero c ∈ U ∩ S iff U
also contains a straddling interval,

[b, d] ⊂ U with fb < 0 < fd or fb > 0 > fd.

[⇒] From the definitions. [⇐] The straddling interval
is an intermediate value problem in miniature.

Notation: Write ♦U if U contains a straddling interval.
We write this containment in ASD using the universal
quantifier.

♦φ ≡ ∃bd. (∀x : [b, d]. φx)
∧ (fb < 0 < fd) ∨ (fb > 0 > fd).

Straddling intervals
An open subspace U ⊂ R contains a stable zero c ∈ U ∩ S iff U
also contains a straddling interval,

[b, d] ⊂ U with fb < 0 < fd or fb > 0 > fd.

[⇒] From the definitions. [⇐] The straddling interval
is an intermediate value problem in miniature.

Notation: Write ♦U if U contains a straddling interval.
We write this containment in ASD using the universal
quantifier.

♦φ ≡ ∃bd. (∀x : [b, d]. φx)
∧ (fb < 0 < fd) ∨ (fb > 0 > fd).

The possibility operator

By hypothesis, ♦(0, 1)⇔ >, whilst ♦ ∅ ⇔ ⊥ trivially.

♦
⋃

i∈I Ui ⇐⇒ ∃i. ♦Ui.

If f : R→ R is an open map, this is easy.

If f : R→ R doesn’t hover, it depends on connectedness of R.

Definition: A term ♦ : ΣΣ
X

with this property
is called an overt subspace of X.

A simpler example: For any point a : X,
the neighbourhood filter ♦ ≡ ηa ≡ λφ. φa is a possibility
operator.

♦ is a point iff it also preserves > and ∧.

The possibility operator

By hypothesis, ♦(0, 1)⇔ >, whilst ♦ ∅ ⇔ ⊥ trivially.

♦
⋃

i∈I Ui ⇐⇒ ∃i. ♦Ui.

If f : R→ R is an open map, this is easy.

If f : R→ R doesn’t hover, it depends on connectedness of R.

Definition: A term ♦ : ΣΣ
X

with this property
is called an overt subspace of X.

A simpler example: For any point a : X,
the neighbourhood filter ♦ ≡ ηa ≡ λφ. φa is a possibility
operator.

♦ is a point iff it also preserves > and ∧.

The Possibility Operator as a Program
Theorem: Let ♦ be an overt subspace of R with ♦> ⇔ >.
Then ♦ has an accumulation point c ∈ R,
i.e. one of which every open neighbourhood c ∈ U ⊂ R
satisfies ♦U:

φ : ΣR ` φc ⇒ ♦φ

Example: In the intermediate value theorem, any such c is a
stable zero.

Proof: Interval trisection.

Corollary: Obtain a Cauchy sequence from a Dedekind cut.

Possibility operators classically
Define ♦U as U ∩ S , ∅, for any subset S ⊂ X whatever.

Then ♦
(⋃

i∈I Ui

)
iff ∃i. ♦Ui.

Conversely, if ♦ has this property, let

S ≡ {a ∈ X | for all open U ⊂ X, a ∈ U⇒ ♦U}

W ≡ X \ S =
⋃
{U open | ¬♦U}

Then W is open and S is closed.
¬♦W by preservation of unions.
Hence ♦U holds iff U 1W, i.e. U ∩ S , ∅.

If ♦ had been derived from some S′ then S = S′, its closure.

Classically, every (sub)space S is overt.

Necessity operators
Let K ⊂ R be any compact subspace.
(For example, all zeroes in a bounded interval.)

U 7→ (K ⊂ U) is Scott continuous.

Notation: Write �φ for ∀x : K. φx.

Modal operators, separately
� encodes the compact subspace Z ≡ {x ∈ I | fx = 0} of all zeroes.
♦ encodes the overt subspace S of stable zeroes.

�X is true and �U ∧ �V ⇒ �(U ∩ V)

♦ ∅ is false and ♦(U ∪ V) ⇒ ♦U ∨ ♦V.

(Z , ∅) iff � ∅ is false

(S , ∅) iff ♦R is true

Modal operators, together
♦ and � for the subspaces S ⊂ Z are related in general by:

�U ∧ ♦V ⇒ ♦(U ∩ V)

�U ⇐⇒ (U ∪W = X)

♦V ⇒ (V 1W)

S is dense in Z iff

�(U ∪ V) ⇒ �U ∨ ♦V

♦V ⇐ (V 1W)

In the intermediate value theorem
for functions that don’t hover (e.g. polynomials):
I S = Z in the non-singular case
I S ⊂ Z in the singular case (e.g. double zeroes).

Modal laws in ASD notation
Overt subspace Compact subspace
♦⊥ ⇔ ⊥ �> ⇔ >

♦(φ ∨ ψ) ⇔ ♦φ ∨ ♦ψ �(φ ∧ ψ) ⇔ �φ ∧ �ψ
σ ∧ ♦φ ⇔ ♦(σ ∧ φ) σ ∨ �φ ⇔ �(λx. σ ∨ φx)

Commutative laws:

♦
(
λx. �(λy. φxy)

)
⇔ �

(
λy. ♦(λx. φxy)

)
�
(
λx. �(λy. φxy)

)
⇔ �

(
λy. �(λx. φxy)

)
Mixed modal laws for a compact overt subspace.

�φ ∨ ♦ψ ⇐ �(φ ∨ ψ) and �φ ∧ ♦ψ ⇒ ♦(φ ∧ ψ)

Empty/inhabited is decidable
Theorem: Any compact overt subspace (�,♦) is either empty
(�⊥) or non-empty (♦>).
Proof:

♦> ⇔ ⊥ empty �⊥ ⇔ >

♦> ⇔ > inhabited �⊥ ⇔ ⊥

�⊥ ∨ ♦> ⇐ complementary �⊥ ∧ ♦> ⇒
�(⊥ ∨ >) ⇔ �> ⇔ > (mixed) ♦(⊥ ∧ ⊥) ⇔ ♦⊥ ⇔ ⊥

The dichotomy (either �⊥ or ♦>) means that
the parameter space Γ is a disjoint union.

So, if it is connected, like Rn,
something must break at singularities.

It is the modal law �(φ ∨ ψ)⇒ �φ ∨ ♦ψ.

Empty/inhabited is decidable
Theorem: Any compact overt subspace (�,♦) is either empty
(�⊥) or non-empty (♦>).
Proof:

♦> ⇔ ⊥ empty �⊥ ⇔ >

♦> ⇔ > inhabited �⊥ ⇔ ⊥

�⊥ ∨ ♦> ⇐ complementary �⊥ ∧ ♦> ⇒
�(⊥ ∨ >) ⇔ �> ⇔ > (mixed) ♦(⊥ ∧ ⊥) ⇔ ♦⊥ ⇔ ⊥

The dichotomy (either �⊥ or ♦>) means that
the parameter space Γ is a disjoint union.

So, if it is connected, like Rn,
something must break at singularities.

It is the modal law �(φ ∨ ψ)⇒ �φ ∨ ♦ψ.

Non-empty compact overt subspace of R has a
maximum

Theorem: Any overt compact subspace K ⊂ R is
I either empty
I or has a greatest element, max K ∈ K.

Definition: max K satisfies, for x : R,

(x < max K) ⇔ (∃k : K. x < k)
(max K < x) ⇔ (∀k : K. k < x)

k : K ` k ≤ max K

Γ, k : K ` k ≤ x

Γ ` max K ≤ x

Compact overt subspace of R has a maximum
Proof: Define a Dedekind cut (next slide)

δd ≡ ∃k : K. d < k and υu ≡ ∀k : K. k < u

Hence there is some a : R with

δd ⇔ (d < a) and υu ⇔ (a < u)

Moreover, a ∈ K.
K is also the closed subspace
co-classified by ωx ≡ �(λk. x , k),
so we must show that ωa⇔ ⊥.

ωa ≡ �(λk. a , k) ⇔ �(λk. a < k) ∨ (k < a)
⇒ ♦(λk. a < k) ∨ �(λk. k < a)
≡ δa ∨ υa
⇔ (a < a) ∨ (a < a) ⇔ ⊥.

Compact overt subspace of R defines a Dedekind cut

Overt subspace ♦ Compact subspace �

⊥, ∨,
∨
� and so ∃R commutes with >, ∧ and

∨
�

δd ≡ ♦(λk. d < k) Dedekind cut υu ≡ �(λk. k < u)

(d < e) ∧ δe ≡ lower/upper υt ∧ (t < u) ≡
(d < e) ∧ ♦(λk. e < k) �(λk. k < t) ∧ (t < u)
⇔ ♦(λk. d < e < k) (Frobenius/�>) ⇔ �(λk. k < t < u)
⇒ ♦(λk. d < k) ≡ δd (transitivity) ⇒ �(λk. k < u) ≡ υu

⇐ rounded (interpolation) ⇐

∃d. δd ≡ ∃d. ♦(λk. d < k) inhabited ∃u. υu ≡ ∃u. �(λk. k < u)
⇔ ♦(λk. ∃d. d < k) (directed joins) ⇔ �(λk. ∃u. k < u)

⇔ ♦> ⇔ > (inhabited) (extrapolation) ⇔ �> ⇔ >

The Bishop-style proof
Definition: K is totally bounded if, for each ε > 0,
there’s a finite subset Sε ⊂ K such that
∀x : K. ∃y ∈ Sε.

∣∣∣x − y
∣∣∣ < ε.

Proof: If K is closed and totally bounded,
I either the set S1 is empty, in which case K is empty too,
I or xn ≡ max S2−n defines a Cauchy sequence

that converges to max K.
But K is also overt, with ♦φ ≡ ∃ε > 0. ∃y ∈ Sε. φy.

Definition: K is located if, for each x ∈ X,
inf {|x − k| | k ∈ K} is defined.
(A different usage of the word “located”.)
closed, totally bounded ⇒ compact and overt ⇒ located
(in TTE) also r.e. closed

I Total boundedness and locatedness are metrical concepts.
I Compactness and overtness are topological.

The real interval is connected (usual proof)
Any closed subspace of a compact space is compact.
Any open subspace of an overt space is overt.

Any clopen subspace of an overt compact space is overt
compact, so it’s either empty or has a maximum.

Since the clopen subspace is open, its elements are interior,
so the maximum can only be the right endpoint of the interval.

Any clopen subspace has a clopen complement.
I They can’t both be empty, but
I in the interval they can’t both have maxima (the right

endpoint).

Hence one is empty and the other is the whole interval.

Connectedness in modal notation
We have just proved

♦(φ ∧ ψ)⇔ ⊥, �(φ ∨ ψ)⇔ > ` �φ ∨ �ψ⇔ >

where �θ ≡ ∀x : [0, 1]. θx and ♦θ ≡ ∃x : [0, 1]. θx.

Using the mixed modal law ♦φ ∧ �ψ ⇒ ♦(φ ∧ ψ)
and the Gentzen-style rules

σ⇔ > ` α ⇒ β
=================
` σ ∧ α ⇒ β

σ⇔ ⊥ ` α ⇒ β
=================
` α ⇒ β ∨ σ

connectedness may be expressed in other ways:

♦(φ ∧ ψ)⇔ ⊥ ` �(φ ∨ ψ) ⇒ �φ ∨ �ψ

♦(φ ∧ ψ)⇔ ⊥ ` �(φ ∨ ψ) ∧ ♦φ ∧ ♦ψ ⇒ ⊥

�(φ ∨ ψ) ⇒ �φ ∨ �ψ ∨ ♦(φ ∨ ψ)
�(φ ∨ ψ) ∧ ♦φ ∧ ♦ψ ⇒ ♦(φ ∧ ψ)

Weak intermediate value theorems
Let f : [0, 1]→ R, and use two of these forms of connectedness.

Put φx ≡ (0 < fx) and ψx ≡ (fx < 0).
Use ♦(φ ∧ ψ) = ⊥ ` �(φ ∨ ψ) ∧ ♦φ ∧ ♦ψ ⇒ ⊥.
♦(φ ∧ ψ) ⇔ ⊥ by disjointness.
Then (f 0 < 0 < f 1) ∧

(
∀x : [0, 1]. fx , 0

)
⇔ ⊥.

So the closed, compact subspace Z ≡ {x : I | fx = 0} is not empty.

Put φx ≡ (e < fx) and ψx ≡ (fx < t).
Use �(φ ∨ ψ) ∧ ♦φ ∧ ♦ψ ⇒ ♦(φ ∧ ψ).
�(φ ∨ ψ) by locatedness.
Then (f 0 < e < t < f 1) ⇒

(
∃x : [0, 1]. e < fx < t

)
.

or ε > 0 ` ∃x.
∣∣∣fx∣∣∣ < ε.

So the open, overt subspace {x | e < fx < t} is inhabited.

Straddling intervals in ASD
Let f : [0, 1]→ R be a function that doesn’t hover.

Proposition: ♦ preserves joins, ♦(∃n. θn) ⇔ ∃n. ♦θn.
Proof: Consider
φ±x ≡ ∃n. ∃y. (x < y < u) ∧ (fy >

< 0) ∧ ∀z : [x, y]. θnz.
Then ∃x. φ+x ∧ φ−x by connectness.

Lemma: 0 < a < 1 is a stable zero of f iff
it is an accumulation point of ♦, i.e. φa ⇒ ♦φ.

Theorem: ♦ and � obey �φ ∧ ♦ψ ⇒ ♦(φ ∧ ψ).

They also obey �(φ ∨ ψ) ⇒ �φ ∨ ♦φ
iff f doesn’t touch the axis without crossing it.

When f is a polynomial, this is the non-singular case, where f
has no zeroes of even multiplicity.

Solving equations in ASD
In the non-singular case, all zeroes are stable,
♦ and � define a non-empty overt compact subspace,
which has a maximum.

So the classical textbook proof of IVT,

a ≡ sup {x : [0, 1] | fx ≤ 0},

is computationally meaningful!

The interval trisection algorithm for ♦ finds some zero,
even in the singular case,
but it behaves non-deterministically and catastrophically.

Parametric solutions
The set of zeroes varies discontinuously at singularities in the
parameters.
For example, the cubic equation may have
I three real stable zeroes (on one stable region),
I one stable zero and an unstable (double) zero,
I just one stable zero (in the other stable region).

The modal operators � and ♦ are
Scott-continuous throughout the parameter space.

The only thing that goes wrong at the singularity
is that one of the mixed modal laws fails.

