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Abstract
Foundations should be designed for the needs of mathematics and not vice versa. We propose

a technique for doing this that exploits the correspondence between category theory and logic

and is potentially applicable to several mathematical disciplines.

This method is applied to devising a new paradigm for general topology, called Abstract

Stone Duality. We express the duality between algebra and geometry as an abstract monadic

adjunction that we turn into a new type theory. To this we add an equation that is satisfied

by the Sierpiński space, which plays a key role as the classifier for both open and closed

subspaces.

In the resulting theory there is a duality between open and closed concepts. This captures

many basic properties of compact and closed subspaces, despite the absence of any explicitly

infinitary axiom. It offers dual results that link general topology to recursion theory.

The extensions and applications of ASD elsewhere that this paper survey include a purely

recursive theory of elementary real analysis in which, unlike in previous approaches, the real

closed interval [0, 1] in ASD is compact.

“In these days the angel of topology and the devil of abstract algebra
fight for the soul of every individual discipline of mathematics.”

(Hermann Weyl.)

“Point-set topology is a disease
from which the human race will soon recover.”

(Henri Poincaré, quoted in Comic Sections by Des MacHale.)

“Logic is the hygiene that the mathematician practises
to keep his ideas healthy and strong.”

(Hermann Weyl, quoted in American Mathematical Monthly,
volume 100, p 93.)

“Mathematics is the queen of the sciences and
number theory is the queen of mathematics.”

(Carl Friedrich Gauss)

“Such is the advantage of a well constructed language
that its simplified notation often becomes the source of profound theories.”

(Pierre-Simon Laplace, quoted in Mathematical Maxims and Minims
by N. Rose, Raleigh Rome Press, 1988.)
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1 Foundations for mathematics

1.1. To mis-quote Gauss and Eric Bell, Logic is the Queen and Servant of Mathematics. Ever
since Logic became a mathematical discipline in the nineteenth century, foundational discussions
(whether using sets, types or categories) have been based on four premises:
(a) logicians know best, and mathematicians should be grateful for what they are given;
(b) in particular, it is up to mathematicians to glue the continuum back together from the dust

that logicians have provided; whilst
(c) they have convinced each other that foundations should permit arbitrary abstraction of math-

ematical processes; and
(d) anyone who tinkers with the foundations risks bringing the whole edifice of science crashing

down.

1.2. The first two of these attitudes flew in the face of the tradition of the preceding two millennia,
in which, for example, Euclid proved lots of rigorous theorems about lines, circles and other figures
as things in themselves. Frege and Hilbert believed the third, and were admonished for it by Russell
and Gödel. We now have a compromise situation in which the admissible forms of abstraction are
in equilibrium with the extent to which the typical mathematician understands them. The result
of this is that we debate the “truth” of the axiom of choice, etc., without any point of reference in
the real world against which to measure it. It is impossible to axiomatise arbitrary abstraction,
and nor is the status quo clearly defined.

There is, however, a natural baseline for foundations, namely computation (also called re-
cursion), because the Church–Turing thesis says that all forms of computability are essentially
equivalent. Mathematics in the time of Gauss and before was computational and, as we shall see,
this also agrees with many of the intuitions of modern general topology. However, we also need to
consider logically stronger systems, in particular in order to study the behaviour of computation
and topology, for example whether a program terminates or an open subset covers a compact one.

1.3. What do we mean by “foundations” in mathematics anyway?
The basics are counting and measurement. Over the millennia, mathematicians have found

clever ways of deriving results about these things by means of inventions whose originally fictitious
nature is still remembered in their names, such as irrational, imaginary and ideal numbers.

For example, the front-line issue in mathematics during the 16th century was how to solve
cubic equations. Scipione del Ferro and Niccolò Tartaglia had already found a method for the
case where there is only one (real) root. Rafaele Bombelli showed how to extend this method to
the case where there are three real roots, but his intermediate calculations involved square roots
of −1, which had not been needed in the original case [FG87, §8.A].

The foundational question here is not so much how to “define”
√
−1 as to show that, if we

introduce it in the middle of a calculation but then eliminate it, we will not obtain a contradiction.
More precisely, whatever we do get by this method could have been found using real numbers alone.
In logical jargon, complex numbers are a conservative extension.

So what is their value? Just try doing Fourier analysis without them, and see what a mess you
get into!

An axiom was originally a statement that is obvious and needs no justification, but the meaning
of this word has changed. It is still a starting point, but one that is carefully chosen to facilitate
the development of a particular body of abstract theory. The purpose of foundations should be
reinterpreted in the same way, on a larger scale.
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1.4. As the quotation from Laplace says, language and notation can be powerful driving forces
behind a mathematical theory, whilst a bad notation (such as using the letters cdilmvx to write
numbers) obstructs even the simplest task. As the subject has got more powerful and sophisticated,
so the design of language and notation has become a professional discipline in itself. This discipline
is, or at least ought to be, called Logic. It has now enjoyed well over a century of mathematical
development and applications.

However, this does not justify the prescriptive role that Logicists and their successors claimed,
because Mathematics has also advanced during the same time. In particular, the conceptual
structure of the subject (such as Emmy Noether’s Modern Algebra) has developed independently
of its alleged foundations in set theory.

The philosophical thesis of this paper is that we can make Logic the servant of (a particular
discipline in) Mathematics. Starting from what we see as the principal theorems of the Mathe-
matics that we want to do, we employ certain theorems that link categorical and symbolic Logic
as tools to create a new language for our chosen Mathematical discipline. The formal method that
we propose is set out in the next two sections.

In motivating this, we shall use the metaphor that a logician is like an engineer or an architect
who has been commissioned to design a new gadget or building for a client, who in turn has
customers. However, we stress that our proposal is not just philosophy, but founded on extensive
technical development in a number of mathematical disciplines.

Being a mathematician, I only discuss this thesis very briefly, leaving philosophers to explore
it more fully. I feel compelled to say some of these things because I have found it impossible to
do a substantial piece of research on the reformulation of general topology within the “orthodox”
framework that my colleagues, referees, conferences, journals, universities and funding agencies
say that I should use.

1.5. The instruments that we shall apply to designing a foundation for (parts of) mathematics
are category theory and modern symbolic logic, i.e. proof theory and type theory. Many excellent
Mathematicians “work in an elementary topos” or “in Martin-Löf type theory”, but if we were to
do this we would once again be bowing to Logicians as our masters. So, in order to employ these
disciplines as servants of mathematics, we make our own selection from the menu of techniques
that they offer.

Category theory grew out of (algebraic) topology and algebraic geometry, without any foun-
dational pretensions in the beginning [ML88, McL90]. It is now used throughout mathematics,
primarily for the notion of universal property or adjunction. Mathematicians in other fields who
have any feel for the unity of the subject express the headline theorems of their speciality in this
form. The categorical approach seems to be very effective in taking decades’ worth of experience in
one discipline, distilling it into adjunctions and a very small number of other abstract but widely
applicable concepts, and transferring it to other subjects. These now include the theoretical parts
of computer science and physics. Universal properties will provide the client’s brief to the architect
of the new foundations.

On the other hand, symbols are the currency of everyday business in mathematics, so they
must be the way in which the new foundations will be used. However, any pre-existing symbolic
language acquiesces to a lot of foundational prejudgements without giving them proper scrutiny.
We aim to replace these assumptions with our own principles. These are, in the first instance,
formulated using category theory, because it is agnostic.

We shall demonstrate the inter-relationship between category theory and symbolic logic in the
next section. It is this that makes them together a powerful method for devising new language
and notation for mathematics.
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1.6. The greater part of this paper is a survey of a research programme (ASD) that applies the
proposed methodology in the case where the client is general topology, and its customers include
geometric topologists, analysts and theoretical computer scientists.

The new theory axiomatises continuity directly, without any recourse to set theory or its
usual alternatives. It begins from ideas concerning the duality of algebra and topology that were
introduced by Marshall Stone (§§4, 5 & 7). These are put in an abstract form (hence the name
ASD) using a monadic adjunction (§6), along with an algebraic equation that characterises the
way in which the Sierpiński space uniquely classifies open subspaces (§8). Surprisingly much of
the basic theory of open, closed, compact and Hausdorff spaces and subspaces can be recovered
in this setting, and the resulting theory is computable, at least in principle.

However, when we try to apply this theory to discrete mathematics and computation, we find
that we need something to play the role of “sets”. For this, we those spaces that come with ∃ and
=, which we call overt discrete (§9). They can be made to behave like traditional set theory if we
add the non-computable hypothesis that all spaces have “underlying sets” (§10).

The infinitary joins in general topology make a surprisingly late explicit appearance, completing
the re-axiomatisation of locally compact spaces (§11) and providing the basis for recursive elemen-
tary real analysis. To go beyond that, however, we need to re-think the underlying categorical
framework (§12), which is work in progress.

The purpose of this paper is to tell the whole story of ASD, from beginning to end, and
it summarises work that would fill a book. This means that it has to take a “broad brush”
approach, and it is not encyclopedic. If you are looking for the details of a particular topic, you
should therefore consult the articles that are cited here.

Since many of the details of the theory are still missing, the time is not ripe to write a
textbook about ASD. A few arguments are given here in full if they are foundationally important
but presented inadequately in the other papers. In particular, we give the whole of the proof that
these methods characterise an elementary topos without mentioning subobjects (§9.3).

1.7. The most important mathematical achievement of the ASD programme so far is an account
of recursive elementary real analysis that includes the Heine–Borel theorem. Recall that this says
that [0, 1] ⊂ R is compact in the sense that every cover by a family of open subspaces contains a
finite sub-family that also covers [I].

This is the practical reason why no computable foundations have previously been developed
that are adequate for mathematics. If we take ordinary set theory and analysis on the one hand,
and computability theory on the other, putting them together in the obvious way, that is, by
defining R as the set of computably representable real numbers, we find that this important result
fails. Roughly speaking, this is because we may list the computable real numbers a0, a1, . . .
according to the codes that represent them, and cover each of them by intervals of length 1

4 ,
1
8 , . . .,

no finite subset of which would suffice. See [BR87, §3.4] for a very clear account of this.
The applications of Abstract Stone Duality to elementary real analysis in [J] also demonstrate

the utility of the new language. That paper provides an entirely different introduction to ASD that
is aimed at a general mathematical audience — it assumes only first year analysis and a facility
with formal systems, completely avoiding the underlying category theory. It is complementary to
the account in this paper, neither of them assuming familiarity with the other.

Although we mention computable foundations, we actually say very little about practical im-
plementation here. This is a very interesting topic in itself, particularly in relation to elementary
analysis, so more will be said about it in future work [Bau08, K].
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2 Category theory and type theory

2.1. Gerhard Gentzen, the father of proof theory, set out the way in which we reason with the
logical connectives (∧, ∨, ⇒) and quantifiers (∀ and ∃) [Gen35].

Consider, for example, how we use and prove implications (X ⇒ Y ). If we know both X and
X ⇒ Y then we also know Y ; this is traditionally called modus ponens. More generally, we may
have proofs 51 and 52 of X and X ⇒ Y respectively, from a set Γ of assumptions. Putting these
together gives a proof of Y , as illustrated on the left:

5
1

Γ ` X

5
2

Γ ` X ⇒ Y
⇒ E

Γ ` Y

5
Γ, X ` Y

⇒ I
Γ ` X ⇒ Y

Conversely, how can we prove the implication X ⇒ Y ? By definition, it is by giving a proof 5
of Y that may assume X, as on the right. We need to maintain a list Γ of such assumptions in
order to keep track of the extra ones that we add and discharge in proofs of implications; Γ is
called the context.

These two patterns are called the elimination and introduction rules for ⇒ (hence the labels
⇒E and⇒I), because of the disappearance or appearance of this symbol in the conclusion. There
are similar rules for the other connectives.

2.2. Under Haskell Curry’s analogy with types [How80, Sel02], their connectives (×, +, →) and
quantifiers (Π and Σ) were later expressed in a similar way. But now, in place of the bald assertion
that X ⇒ Y , we now have a function X → Y that takes values of one type to those of the other.
This function needs a name. Bertrand Russell [RW13, *20] originally called it x̂(φx), but the hat
evolved into a lambda:

Γ ` a : X Γ ` f : X → Y
→ E

Γ ` fa : Y

Γ, x : X ` p : Y
→ I

Γ ` λx. p : X → Y

Since types come with terms, these too need rules for their manipulation. The beta rule arises
from introducing and then eliminating the symbol, and the eta rule from the converse,

Γ ` a : X Γ, x : X ` p : Y
→ β

Γ ` (λx. p)a = [a/x]∗p : Y

Γ ` f : X → Y
→ η

Γ ` f = λx. fx : Y

where [a/x]∗p indicates substitution (§2.7). Now the context Γ must include both assumptions
and typed variables or parameters.

2.3. If we have such a system of rules for the connectives that we use — instead of encoding them
in a much more general and powerful all-encompassing foundational monolith — then we have some
chance of computing in our system. Of course, mathematicians always did that, before logicians
came along: the difference is that the system is now much bigger (§1.4), and so requires a more
formal relationship amongst its parts, and amongst the specialists in very diverse disciplines (§3.6).

In the simply typed λ-calculus, for example, we merely have to keep applying the β-rule, and
then we are guaranteed to get to the normal form ... eventually. In order to prove termination of
this process we use induction on the complexity of the types that are involved. For uniqueness,
we need to know that, whenever we have a choice of redexes (reducible expressions), the two
results can be brought back together by further reductions [CR36]. Both of these results depend
in delicate ways on the formulation of the system.
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Whilst it may be rather näıve to rely on this “guarantee” in practice, we can hand the formal
system over to the experts in manipulating symbols. They do not need to understand their
original meaning, but may use their own experience of similar systems to make the computation
more efficient. Even so, the mathematical axioms and not the operations of a machine determine
the fundamental rules. This has been done very successfully in functional programming, which is
now almost as fast as machine-oriented approaches [Hud89, HHPJW07].

There is, in fact, much profit to be made from collaborating with computational specialists only
via a formal language. They may be able to transform it into something entirely different, that
works qualitatively faster than the methods that the mathematician originally had in mind. One
example of this that is indirectly related to the ideas in this paper (§6.4) is the continuation-passing
method of compiling programs, because of its similarity to the way in which microprocessors handle
sub-routines [App92].

Another arises in the solution of equations involving real numbers. Constructive analysis
discusses interval-halving methods [J, §1], but if we were to compute with them verbatim we
would only get one new bit per iteration, whilst Newton’s algorithm doubles the number of bits
each time. But the verbatim reading is a mis-communication — we only halve the interval for the
purpose of explanation. A practical implementation may choose the division in some better place,
based on other information from the problem. Indeed, this what is done in logic programming
with constraints [Cle87]. Putting the ideas together, we can turn one algorithm into the other
[Bau08, K].

Altogether, we can think mathematically in one way, but obtain computational results in
another.

2.4. Bill Lawvere [Law69] recognised the situation in type theory (§2.2) as a special case of that
studied by categorists. We say that the functors F : S → A and U : A → S between categories A
and S are adjoint (F a U) if there is a bijection (called transposition)

FX −→ A in A
================
X −→ UA in S

that is natural in X and A, which means that it respects pre- and post- composition with mor-
phisms in the two categories. The transposes of the identities on FX and UA are called the unit
and counit of the adjunction, respectively,

ηX : X → U(FX) and εA : F(UA)→ A,

and these satisfy equations known as the triangle laws:

UεA · ηUA = idUA and εFX · FηX = idFX .

The use of the letter η for different things in category theory and type theory is most unfortunate,
but it is a historical accident that is very well established in both subjects.

2.5. For example, the correspondence

Γ, x : X ` p : Y
=====================
Γ ` λx. p : X → Y

or
Γ×X p - Y
=====================
Γ

p̃ - Y X

is bijective on the left by the symbolic rules (§2.2), and on the right as the adjunction (−) ×
X a (−)X . However, purely categorical textbooks cover many pages with diagrams expressing
arguments that could be written much more briefly by adopting the notation λx. p instead of p̃
(cf. §6.1).
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This analogy can be followed systematically through all of the logical connectives:
(a) Where there is a symbolic rule like λ-abstraction that binds variables or changes the context,

it corresponds to the adjoint transposition; case analysis, recursive definitions and pairing are
also examples of transposition.

(b) The “algebraic” operation ev, π0 or π1 that does not change the context is provided by the
co-unit ε of the adjunction in the case of → and ×, but the unit η gives the inclusions ν0 and
ν1 for +.

(c) The triangle laws provide the β- and η-rules.
(d) One of the naturality conditions for the adjunction defines the effect of the construction on

morphisms. The other says that we may substitute within 〈−,−〉 and λ, but in the case of ∨
and ∃, it gives the so-called commuting conversions or continuation rules.

(e) Substitution under ∨ and ∃ must be stated categorically by means of additional conditions
(§2.9).

The reason why some of the connectives (⇒, ∧, →, ×) work one way round and the others (∨,
∃, +) differently is that they are respectively right and left adjoints to something that is simpler.
This is described more fully in [Tay99, §7.2].

2.6. In order to formalise this relationship between adjunctions and systems of introduction,
elimination, β- and η-rules, we need a fluent translation between diagrammatic and symbolic
languages. In fact, we just require a way of turning a type theory that has all of the structural
rules (identity, cut, weakening, contraction and exchange, in proof-theoretic terminology) into
a category with finite products. Then we shall be able to ask when this category obeys other
universal properties, and read off from them the corresponding symbolic rules.

The following method also works for dependent types, i.e. possibly containing parameters, but
we shall avoid them in this paper. There are, conversely, ways of defining a language from a
pre-existing category [Tay99, §7.6], but these are more complicated and will not be needed here.
Systems such as linear logic that do not obey all of the structural rules correspond to different
categorical structures. These might, for example, be tensor products (⊗), which categorists un-
derstood long before they did predicate logic [ML63]. It is therefore often the syntax that requires
the most innovation, for example using Jean-Yves Girard’s proof nets [Gir87].

A type theory L of the kind that we shall consider has recursive rules to define
(a) types (X);
(b) contexts (Γ), which are lists of typed variables (parameters) and equations between terms,

understood as hypotheses;
(c) terms (Γ ` a : X) of each type X, whose free variables belong to the given context Γ; and
(d) equations (Γ ` a = b : X) between these terms.

2.7. We have already used the substitution operation [a/x]∗c, which must be defined carefully
in order to avoid variable capture by λ-abstraction. Another operation (called x̂∗c in [Tay99, §1.1]
but not given a name elsewhere) weakens c by pretending that it involves the actually absent
variable x. These satisfy the extended substitution lemma,

[a/x]∗[b/y]∗c =
[
[a/x]∗b/y

]∗[a/x]∗c [x/y]∗x̂∗[y/x]∗ŷ∗c = c

[a/x]∗x̂∗c = c [a/x]∗ŷ∗c = ŷ∗[a/x]∗c x̂∗ŷ∗c = ŷ∗x̂∗c

where x 6≡ y, x, y /∈ FV(a) and y /∈ FV(b).
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2.8. Like so many other operations in mathematics, substitution is defined by its action on
other objects. So, when we abstract the operation from its action, it has an associative law of
composition, which brings it into the realm of category theory.

The objects of the category are, abstractly, the contexts Γ of the type theory. More concretely,
Γ is represented by the set of terms that are definable using free variables chosen from Γ. The
substitution and weakening operations define morphisms

[a/x]∗c � c x̂∗d � d

Γ
[a/x] - [Γ, x : X]

x̂
. Γ.

It is convenient to draw the arrows in such a way that substitution looks like inverse image, which
is why we write it with a star. We also draw weakening with a special arrowhead and call it a
display map. The five equations of the extended substitution lemma say that certain diagrams
formed from these arrows commute, i.e. segments of paths of arrows that match one pattern may
be replaced by another. For example, the composite of the two arrows above is the identity.

Altogether, we have defined, not the category itself, but an elementary sketch. That is, whilst
we have spelt out all of the objects, we have only given a generating set of arrows. The category
Cn×L itself consists of all paths formed from these arrows, subject to the equations of the given
symbolic theory L and those of the extended substitution lemma. There is a normalisation theorem
that says that any morphism Γ→ ∆ is essentially an assignment to each variable in ∆ of a term
of the same type, but formed using variables from the context Γ. In keeping with the traditional
names of categories (“of objects X and morphisms Y”), I therefore called this the category of
contexts and substitutions. The details of this construction are given in [Tay99]: see §4.3 for the
simply typed case and Chapter VIII for its generalisation to dependent types.

The category Cn×L has the universal property that interpretations of the theory L in another
category T correspond bijectively (up to unique isomorphism) to functors Cn×L → T that preserve
the relevant structure. This means that it is the classifying category for models of this structure.

Type theories are presented in a recursive fashion, whilst categories have an associative law of
composition, but anyone who has ever written any functional programs knows that associativity
and recursive definitions do not readily mix. Andrew Pitts defined the classifying category in this
way in [Pit00, §6]; it was the complexity of this approach that led me to the construction via a
sketch. It demarcates the things that are naturally described in a recursive and symbolic way
from those that are best done associatively and diagrammatically.

2.9. Many of the comparisons and contrasts between diagrammatic and symbolic presentations
are illustrated by Lawvere’s notion of hyperdoctrine [Law69]. This represents the quantifiers Π
and Σ as the right and left adjoints (cf. §2.5) to the substitution functors f∗ : A[Y ] → A[X]
that are defined by a map f : X → Y . However, induced and restricted modules along a ring
homomorphism also provide adjunctions like these. The difference is that, in symbolic logic,
we may substitute for parameters within the scope of the quantifiers. This is not part of the
correspondence in §2.5, so category theory must express it by another axiom, known as the Beck–
Chevalley condition, which does not hold for general ring homomorphisms. Another property that
is peculiar to the existential quantifier is the equation σ ∧ ∃x. φx ⇔ ∃x. σ ∧ φx, which Lawvere
called the Frobenius law.

So category theory is
(a) agnostic in treating both modules and quantifiers in a general way;
(b) more precise in identifying the substitution operations in the former that go unremarked in

symbolic logic; and
(c) more efficient than giving pages of proof rules like those in §§2.1f for specifying which struc-

tures we want to include in our system.
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On the other hand, it is
(d) clumsy and very difficult for the student to learn if we are actually just interested using in the

quantifiers to express other mathematics.

2.10. In requiring this structure for all maps f : X → Y , hyperdoctrines have a hidden bias
towards set theory. In order to apply Lawvere’s ideas to topology or domain theory (for example,
to model second-order quantification over type variables), we must restrict the subclass of maps
that admit quantification. It is, in fact, more accurate to say that quantification is adjoint to
weakening [Tay99, Ch. IX].

Set theory will be important in this paper, not as a competing logical theory, but as an analogous
mathematical one, providing another example of Stone duality (§4.5). We aim to study topology,
which is about continuous things, so by “set theory” we shall mean any treatment of discrete
objects, which may be in an elementary topos, using type theory or in some axiomatisation of the
∈-relation.

The key difference that will emerge is that in the logic of discrete things we may use quantifiers
ranging over any object, whilst in topology only some spaces may play this role. An object X
that may serve as the range of a universal quantifier is called compact. More generally, a map that
admits parametric universal quantification à la Lawvere is called proper, and we think of the map
as a continuous family of compact spaces. Similarly, a map with existential quantification is open,
but we need to introduce a new word, overt, for the corresponding objects.

2.11. Nevertheless, Lawvere’s insight is the key to our method, when we turn it around. Having
seen many systems of rules and adjunctions for different logical connectives, we may recognise the
general pattern and apply it to mathematics.

Many theorems in mathematics (our client’s brief) may be formaluted as adjunctions, to which
we apply Lawvere’s correspondence in reverse: we invent new symbols whose introduction, elimi-
nation, abstraction, beta and eta rules exactly capture the adjunctions. We shall do this in §6.3
for sobriety, in §§6.6f for Σ-split subspaces, in §9.11 for definition by description, in §10.6 for
underlying sets, in §11.11 for Dedekind completeness and in §12.3 for more general subspaces.

2.12. The new symbols are not meant to be merely abbreviations for common lemmas about the
old structure, but to stand on their own feet as principles of reasoning in the new one. As with
complex numbers (§1.3), we want to be able to compute with them without worrying about what
they mean (§2.3). This means that we need to ensure that they are accompanied by a complete
set of rules of inference.

One good indicator of sufficiency is being able to prove a normalisation theorem. Typically,
this says that say that any term that makes arbitrary use of the introduction and elimination rules
is provably equivalent to one that uses
(a) the new elimination rule only for free variables of the new type; and
(b) the new introduction rule only on the outside of the term.
The equivalence between the categorical and symbolic constructions is deduced from theorems of
this kind.

3 Method and critique

We argued in §1.5 that category theory is adept at capturing the important ideas in a mathematical
discipline in the form of universal properties, whilst axioms may be expressed in symbolic logic as
systems of introduction and elimination rules. Then in §2 we demonstrated the formal connection
between these.
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3.1. On this basis, we therefore propose a methodology for devising a new foundational system
for a mathematical discipline. This is summed up by the diagram

theorems in the old system .................... theorems in the new system

universal properties
?

- introduction/elimination rules

6

computation.
?

In this, the task of the journeyman mathematician, i.e. the deduction of theorems from axioms,
is to fill in the upward arrow on the right. Hopefully, this will make the rectangle “commute” in
the sense that we recover the old theorems from the new axioms.

However, this job only makes sense in a professional framework in which the axioms have been
chosen to capture the intuitions and applications of the discipline. This choice is represented by
the downward arrow on the left.

The constructions that we sketched in §§2.8f provide the horizontal arrow in the middle, whilst
the computational interpretation (bottom right) depends on the details of the resulting calculus
(§2.3).

We shall show how this programme works for the example of general topology in the remaining
sections of this paper , with some hints about how to apply the ideas to other subjects.

3.2. The first arrow in some sense derives the axioms from the theorems.
Euclid and Bourbaki gave us a style of presenting mathematics that begins from axioms which

(so far as the text is concerned) come out of the blue, and deduces theorems from them as if the
results were obvious and inevitable. Abel described Gauss as “like a fox, who effaces his tracks in
the sand with his tail”. As a result, lesser mathematics think that it is enough to state a bunch
of axioms in order to justify the relevance of their results, whilst students learn nothing about the
ways in which their masters discovered their theorems.

In following our methodology, we cannot “write down all the axioms first”, because finding the
right axioms is the objective of the investigation. Being able to deduce the old theorems from the
new axioms is an experimental test of the axioms that we propose. So before we have discovered
the final version of the axiom system, we need to conduct preliminary experiments in ad hoc
frameworks (cf. §5).

Along the way, like any engineer, we shall assemble several prototypes. Of course this happens
all the time in mathematics too [Lak63] — it is just the textbooks that falsify history by saying
otherwise. At the end of the day, we want to state our chosen axioms and deduce the important
theorems from them. But that will indeed be the end of the process, which will then no longer be
an active piece of foundational research.

For a modern study of a wide range of techniques for discovering the principles of mathematical
disciplines, see [Cor03].

3.3. Counterexamples, of course, play an major part in the empirical development of mathe-
matics. Unfortunately, they are sometimes given such a degree of prominence that they can stifle
subsequent progress.

Typically, the argument behind a counterexample may prove

D, E, F ` ¬G,

entirely rigorously. Then we are expected to agree that,

therefore, E is false.

10



Why? D, F and G had exactly the same status in the proof, so why pick on E? This is an
argument by authority, not a valid piece of mathematics: the author has simply used sleight-of-
hand to make us accept his prejudices. These become embedded in the literature, and treated as
theorems, on which whole theories are built. Having forgotten that the counterexample depended
on cultural assumptions, people then resist the introduction of a new paradigm.

This abuse of counterexamples is very common, but surely the one that has caused the greatest
intellectual paralysis is Cantor’s, that no set is in bijection with its powerset. On this he built
his theory of cardinality, which is far too coarse to be of any use in mainstream mathematics.
It nevertheless says that a set X can only satisfy X ∼= XX in the trivial cases X ≡ ∅ or 1.
Apparently, the untyped λ-calculus is therefore inconsistent. Dana Scott eventually saw through
this, and constructed topological lattices with this property [Sco93]. As these can be embedded
in presheaf toposes, we see that Cantor’s supposedly fundamental theorem of set theory actually
relies on excluded middle.

The message that we ought to take from a counterexample is no more than that you can’t do
it like that. Maybe someone someday will think of a different way. They will identify underlying
assumptions A, B and C that had previously been overlooked, and achieve all of D, E, F and G
on some other basis, using A′, B′ and C ′ instead.

In particular, just as in the use of formal methods for security (putting a strong lock on a weak
door), it is the very rigour of a fragment of argument that is most misleading about the bigger
picture. In our architectural metaphor, counterexamples are reasons for choosing one general
scheme over another, whilst theorems hold the building up once we have chosen which plan to
build. A tower block may later turn out to be a mistake for sociological reasons that have nothing
to do with how accurately its plans were drawn.

It would, perhaps, be useful to make a clear distinction between the main track of a theory
(from axioms to theorems) and its peri-theory. This is the discussion around the theory, consisting
of the important examples, prototypes and counterexamples that led us to the choice of statements
of the axioms and theorems. Other examples of peritheory are converses that lead back from the
main theorem to (the necessity of) the chosen axioms, and more generally the lists of equivalent
alternative formulations of the axioms that some textbooks like to give.

3.4. Unfortunately, it is not as straightforward as we have suggested to work from a client’s brief:
this cannot be taken literally, and has to be negotiated.

If the client is allowed to dictate what is fundamental, the new foundations will be no more
flexible than the old ones. It takes an outsider’s perspective to distinguish the key elements of
an enterprise from the accumulation of detail. The first arrow does not therefore just copy the
theorems and chapter headings of the old theory.

In approaching a mathematical discipline, category theory often focuses on ideas that its
specialists previously regarded as trivial. For example, the subobject classifier and Sierpiński
space (§7) are merely two-element sets in classical set theory and topology. Also, mathematicians
have acknowledged that the theorems that create important structures are adjoints — but an
adjunction is a two-sided relationship, in which the other partner typically does something that
appears to be mere bureaucracy, namely to “forget” the same structure.

3.5. Another issue on which the clients’ preconceptions need to be challenged is the identification
of their most valuable products. It is up to their customers to do this. For example, set theorists
put much of their effort into considering infinite cardinals, but the demand from the market is for
more mundane things, such as quotients of equivalence relations, which are axiomatised explicitly
in categorical logic(§9.1(e)).

On the other hand, maybe led by an over-emphasised counterexample, specialists sometimes
develop variant forms of a subject that omit properties which the customers may regard as essen-
tial. One case of this is compactness of the interval [0, 1] ⊂ R (§1.7), which is absent from Bishop’s
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theory [BB85].

3.6. Negotiation of this kind is how we answer the final objection to changing foundations,
namely that the prevailing set-up is crucial for the whole of science (§1.1(d)).

Science and mathematics are systems whose component disciplines interact across an interface.
The higher-level components depend only weakly on the details of those below, but do have
requirements for certain features. This is a commonplace in modern technology. It is also well
known in the wider picture of science: whilst chemistry depends on physics, it only uses four
sub-atomic particles, organic chemistry for the most part only four elements, and genetics only
four bases and twenty amino acids. Physics very probably relies on compactness of the interval,
but I would be very sceptical if you told me that some property of black holes depends on excluded
middle. Have you actually developed the analogous constructive theory, and found observational
evidence to distinguish it from the classical one? This is, after all, what the experimental method
says that you should do. Gauss tested Euclid’s parallel postulate by surveying; two centuries later,
such tests have been made astronomically, and the outcome was to overturn the once orthodox
theory of geometry.

3.7. When we replace a component of a system, it needs to be backwards-compatible in its
function, not necessarily its implementation or extent. After all, an architect who has been com-
missioned to replace a building will only do so with an exact copy if it is to be a museum.

In the case of general topology, the methods of construction in this paper are such that the
new building must either be smaller than the old one (consisting of just locally compact spaces)
or substantially bigger. This is entirely consistent with the historical development of the subject,
which grew from figures embedded in Euclidean 3-dimensional space, to Rn, to projective and
non-Euclidean geometry, to manifolds, to spaces of functions in analysis, and to domains for
denotational semantics of programming languages. The intuition of continuity has been captured
in numerous quite different ways, using metrics, uniformity and converge of sequences as well as
systems of points and open neighbourhoods. Each axiomatisation leads to a different totality of
domains of continuity.

For comparison, there can be little doubt that groups and fields have the right axioms for the
intuitions that they seek to capture. This is indicated by the fact that we use the axioms directly
for computation. Algebra textbooks are also able to classify finite fields, and they make a serious
attack on the similar (albeit intractible) problem for groups.

The situation in general topology is much less clear. It is rather like a medieval “world” chart
that more or less accurately depicts the Mediterranean, but has mythological creatures around
the outside. The various approaches to continuity accurately capture real manifolds, just as the
old cartographers recorded their own familiar territory, but we cannot be confident in using the
outer parts of the chart.

The error in both cases is the co-ordinate system. Its assumptions provide reasonable approx-
imations locally, but by their nature entail certain boundaries to the global system. Flat charts
are useful, but Eratosthenes had known in ancient times, not only that the Earth is spherical
(from lunar eclipses), but even how big it is. Similarly, it has been known since the 1960s that
points and open sets are the wrong co-ordinate system for topology. Sheaves in algebraic geometry
were based on open sets and not points, whilst algebraic topologists sought more “convenient”
categories [Bro64, Ste67], i.e. those that admit general spaces of functions. However, it is by no
means clear what topologies these function-spaces should carry, especially if we want to invesigate
the properties of NNN

and RRR
(cf. §12.10).

There is, therefore, nothing special about the boundaries of the category of objects that are
called “topological spaces” in the textbooks. These books treat non-Hausdorff spaces with derision,
and make little attempt to explore the full extent of even the world that is measured out by their
own co-ordinate system. This was only begun when the analogy with the ∃∧-fragment of logic
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was recognised. We therefore undefine the terms “space” and “topological space”, leaving them
open to new definitions. The textbook spaces will be re-branded as Bourbaki spaces [Bou66] to
strip them of their authority.

3.8. Even when we have found the right co-ordinate system, it may not be appropriate to describe
it in the same way for both the foundations and the applications. Any engineer knows that the
user manual for a gadget should not be written in the same way as its technical specification. So
this paper discusses the foundations of ASD, whilst [I, J] provide separate introductions that are
suitable for its applications to elementary real analysis.

One reason for this is that the technical ideas may later be redeployed to make something else
with an entirely different use. In our case, we shall find that there is a new underlying abstract
structure that has other applications besides topology, and deserves to be studied in its own right
(cf. §§6,12). It includes certain definitions that, in the presence of the specifically topological
structure, have different characterisations (cf. §7.7). This is in line with the usual experience of
applying category theory to mathematical disciplines, namely that ideas with various different
traditional formulations turn out to be examples of a common abstract idea.

Secondly, the demands from users are often the driving forces behind advances in technology.
However, as we have seen for computing hardware and software, the biggest improvements do
not result from adding bells and whistles, but by re-thinking and strengthening the fundamental
principles. In ASD, the principal challenge for the future is how to extend the boundaries beyond
local compactness, in such a way that Banach spaces are given “the right” topology, whatever
that means. In order to do this, it is the initial formulation of the underlying abstract structure
in §6, rather than its adaptation to topology, that needs to be replaced.

3.9. Finally, there is an issue for which architecture is entirely the wrong metaphor, and Colum-
bus’ departure from the Mediterranean is much more appropriate. Los Reyes Catolicos certainly
did not promote free intellectual exploration in their domestic and colonial policy, but they did at
least fund a “blue sea” project.

Nowadays, one is asked to give advance notice of all of the theorems that one intends to prove.
Such planning may be possible when building a house, but it can be done if and only if there are
no original ideas. A mathematician with a plan for a theorem wants to carry it out straight away,
and the only pieces of equipment that are needed are a clear head and a clear blackboard. We
don’t put our lives at stake as Columbus did when we embark on scientific experiments or try to
prove mathematical theorems, but if there is no intellectual risk of failure in a proposed piece of
research, then it is redundant, and probably not worthy of funding.

We like to think that the finished product of mathematics is the most precise of any branch
of science or engineering. The corollary of this is that the vision of a mathematical project in
advance of its detailed plan is necessarily much more vague than in any other discipline.

And things may not go according to plan even if we do succeed, because there may be a new
continent to discover. For a powerful account that has a far wider relevance than to physics, see
Part IV of [Smo06], which demonstrates a familiarity with the real experience of those who do
revolutionary science that is absent from [Kuh62].

4 Stone duality

Now we begin to describe the ideas from traditional general topology that we shall take as the
“client’s brief” for our new theory of that subject. We sketch the execution of this programme
in the remainder of this paper. These ideas are presented in the form of universal properties,
providing the leftmost arrow of the diagram in §3.1. Following the horizontal arrow, we shall then
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develop a corresponding syntax. As far as possible, we do this in a general way that might be
adapted to other subjects.

4.1. The principal mathematical insight that we shall employ is the duality between algebra and
geometry.

Figures like circles and parabolae are defined by polynomials such as x2 +y2−a2 and x2−2by,
and superposition of the figures corresponds to multiplication of their polynomials. Like natural
numbers, polynomials over an algebraically closed field may be expressed uniquely as products of
irreducible or prime factors, which therefore capture the irreducible geometrical figures in a purely
algebraic way.

By no means all commutative rings admit unique factorisation into primes, for example 3 · 2 =
6 = (1 +

√
−5) · (1 −

√
−5) in Z[

√
−5]. However, Ernst Kummer recovered the situation by

introducing ideal numbers, defined as certain subsets of the ring. The notions of ideal and prime
may be transferred from rings to lattices by following the analogy between their operations.

The systematic study of these ideas was undertaken by Marshall Stone [Sto37, Sto38]. Since
geometry and algebra each have their own natural generalities, they need not coincide exactly: it
may be necessary to make extensions, restrictions or other adjustments on both sides to achieve
agreement.

4.2. Putting Stone’s programme in categorical language, let A be some category of “algebras”
and S one of “spaces”, the exact nature of which we leave open. Then by a Stone duality we mean
an adjunction

Aop

P -
⊥�
T

S,

in which TX is the algebra (maybe of open subspaces) associated with a space X, and PA is the
space of primes of an algebra A.

Because of the contravariance, the unit and counit of the adjunction (§2.4) go in the same
direction in the categories S and A,

ηX : X → P (TX) and ιA : A→ T (PA).

These say how each point defines a prime, and how the algebra is represented by its space of
primes.

We call X a sober space if ηX is an isomorphism, i.e. every prime corresponds to a unique point,
so a sober space is one that has exactly the points that are required by algebra. Similarly, A is a
spatial algebra if it has enough primes to provide a faithful representation, making ιA invertible.
The situation is a Stone equivalence if all spaces are sober and all algebras spatial, in which case
the functors P and T are equivalences.

4.3. Stone dualities often arise from a schizophrenic object Σ, i.e. one that in some sense belongs
to both categories, where

TX ≡ S(X,Σ) and PA ≡ A(X,Σ).

The abstract description of Stone duality that we have given comes, essentially, from the book
[Joh82], which also provides an excellent and wide-ranging survey of concrete examples. In those
that directly interest us, Σ is at least a distributive lattice, whose elements we sometimes regard
as “truth values” (§7).

If you would like to apply the methods of this paper in another discipline, you will of course
want to see what it can do for topology. However, on your second reading you should stop here.
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You need to identify the object Σ in your subject. It is likely to be the most important algebraic
or geometrical structure, albeit one that the undiscerning may dismiss as trivial (§3.4).

Do not be misled by our discussion of subobject classifiers in §7, or by the fact that all but
two of the examples in [Joh82, §VI 4] are based on a two-element set — the other two use the
line R and the circle R/Z. The natural numbers N, integers Z, complex numbers C and the closed
interval [0, 1] ⊂ R play this key role in other mathematical settings.

The most important property of Σ that you should check is that all of the other desirable
objects are sober with respect to it; this fact may already be a headline theorem in your subject.
Then, ignoring the rest of §7, it could be worth looking for an algebraic property like that in §7.7;
unlike sobriety, this may not have been recognised before.

4.4. The textbook definition of topological spaces gives rise to a Stone duality

A ≡ Frm ≡ Locop Aop

P -
⊥�
T

S S ≡ BbkSp

in which BbkSp is the category of Bourbaki spaces (what the textbooks call topological spaces,
cf. §3.7) and continuous functions between them in the traditional sense.

The algebra TX associated with a Bourbaki space is simply its lattice of open subspaces.
Discarding the points, what kind of algebra is it? It has finite meets and arbitrary joins, where
binary meets distribute over arbitrary joins. A frame is exactly an algebra for these operations,
and Frm is the category of frames and homomorphisms.

The functor Frm→ Set that forgets this algebraic structure has a left adjoint, which provides
the free frame FN on a set N . The elements of the free frame may be characterised in two ways,
either as upper families U of finite subsets of N , i.e. if T ⊃ S ∈ U then T ∈ U too [Joh82, II 1.2],
or as Scott open families of arbitrary subsets of N .

How do we recover the points or primes of a frame A? They are continuous maps 1 → PA,
which correspond under the adjunction to frame homomorphisms A → T1. Since T1 ∼= P(1),
these are subsets F ⊂ A whose membership predicate is a frame homomorphism, so > ∈ F ; if
α, β ∈ F then α ∧ β ∈ F ; and if

∨
αi ∈ F then αi ∈ F for some i.

4.5. In our investigation of topology, we shall often find it helpful to consider the analogy with
discrete objects (“sets” in the sense of §2.10). Classically, there is a Stone equivalence CABAop '
Set, where CABA is the category of complete atomic Boolean algebras and homomorphisms for∨

and
∧

, for which TX is the powerset of the set X and PA is the set of atoms (minimal non-⊥
elements) of A. This equivalence was proved by Adolf Lindenbaum and Alfred Tarski [Tar35].

4.6. We want to design a new building to replace the old one functionally and not extensionally
(§3.7), so it is really the underlying intuition of Stone duality that we shall use. The concrete
examples can be a little distracting, especially with regard to the notion of sobriety. We defined
this above in a way that depends on the choice of adjunction, and so may vary from one application
to another.

Classically, X is a sober space with respect to the concrete Stone duality between frames and
Bourbaki spaces (§4.4) iff every irreducible closed subspace is the closure of a unique point. In
particular, every Hausdorff space is sober in this sense [Joh82, II 1.6]. On the other hand, we shall
see that the Hausdorff spaces N and R are sober with respect to our abstract Stone duality iff they
admit definition by description (§9.11) and by Dedekind cuts (§11.11) respectively.

There is no theorem to say that the old and new definitions of sobriety are coextensive, simply
because there is no common generality of which these are species. There is nothing to be gained
by trying to find such a generality, as it would be artificial.
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4.7. One way to achieve Stone equivalence is just to replace S by Aop. In the cases where
algebras are frames or commutative rings, the new “algebraic” spaces are called locales or affine
varieties, respectively. A continuous function f between the locales that correspond to frames A
and B is simply a frame homomorphism B → A in the opposite direction. However, since any
frame homomorphism preserves (finite meets and) all joins, it has a right adjoint, and these are
written f∗ a f∗.

Stone duality is now vacuous as an extensional theorem, instead serving as a vehicle for the
intuitions of general topology and algebraic geometry, which may be used to reconstruct these
disciplines in a new, algebraic, form [Joh82, Har77].

Locale theory removes many of the evils of point-set topology. For example, it is largely free of
the axiom of choice, without which it is next to impossible to do anything with Bourbaki spaces.
In particular, Peter Johnstone proved Tychonov’s theorem (that a product of compact spaces is
compact) without it [Joh82, Thm. III 1.7]. Also, the closed interval [0, 1] is Dedekind complete
and compact (§1.7) in the localic reals over any elementary topos, whereas if we interpret the
point-based definitions in the internal language of a sheaf topos, the object of Cauchy reals is
typically smaller than the Dedekind one, and the Heine–Borel theorem fails [FH79].

4.8. Whilst locale theory makes significant advances over traditional topology it still relies on
the old foundations of the category of sets, as of course do the other concrete examples in this
section. But our goal is to build new foundations for topology.

Nevertheless, locales provide a useful test-bed for many of the ideas that we shall consider.
We shall in particular need to know about sublocales i : S � X, by which we mean coequalisers
of frames. These have i∗ · i∗ = id, and are therefore captured by the other composite, j ≡ i∗ · i∗,
which satisfies id 6 j = j · j and preserves ∧, but usually not any kind of joins. An endofunction
j of a frame with these properties is called a nucleus, and always arises from a sublocale in this
way [Joh82, II 2.2]. In particular, an element a ∈ A of a frame gives rise to the nuclei a ⇒ (−)
and a ∨ (−), which encode the corresponding open and closed sublocales, respectively. We shall
encounter localic nuclei in §§5.10, 6.6 and 7.5.

5 Always topologize

5.1. We do not require underlying sets for the category S, because the new notion of “space” is
intended to be an unknown. However, algebras need carriers. The fundamental idea of Abstract
Stone Duality is to use the (as yet, unknown) spaces as carriers for the algebras. In particular, in
topology, we regard the lattice of open subspaces of a space as another space, following another
methodological principle due to Marshall Stone: “always topologize” [Sto38].

For Stone equivalence, A ' Sop. So we are saying that we want Sop to be a category of
algebras over S. For this, we need a way of formulating (potentially infinitary) algebraic theories
that works over an arbitrary category S, and not just over the category of sets. Such an account
is provided by the categorical notion of monad [Lin69].

In §6 we shall give some of the formal definitions for monads, as adapted to ASD, and the full
treatment is of course given in the papers cited. However, our purpose here is to tell the story
behind these ideas.
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5.2. Recall that concrete Stone dualities often arise from a “schizophrenic” object Σ, for which
TX ≡ S(X,Σ), whilst, by the new hypothesis, TX is also to be an object of S. So it is natural
to ask that S have all exponentials of the form ΣX , by which we mean that S-maps Γ×X → Σ
are to be in natural bijection with those Γ→ ΣX (§2.5). A pre-requisite for this definition is that
S have finite products, 1 and ×. Note that we are asking just for powers of Σ (and, consequently,
of its powers too), but not of general objects. In other words, at least at this stage, we are not
saying that the category should be cartesian closed (but see §12.9).

Nevertheless, any object Σ that has powers gives rise to an adjunction

Sop

S

Σ(−)
6
a Σ(−)

?

which we write vertically in order to avoid confusing it with the one in §4.2 for Stone duality. This
adjunction induces a monad on S, so let A be its category of Eilenberg–Moore algebras, for which
the standard theory gives a comparison functor Sop → A [EM65] [Tay99, 7.5.3(c)]. Formulating
abstract Stone duality as an axiom on S, we ask that this be an equivalence.

As we want to develop a formalism inspired by the λ- and predicate calculi (§2), and to
get away from that of set theory, we shall use Greek letters (φ, ψ, θ) for terms of type ΣX ,
which will represent open subspaces. Then, instead of writing x ∈ U for membership, we use λ-
application, φx. (We shall re-employ the set-theoretic notation for more general kinds of subspaces
than open ones in §§6.7 & 12.8.)

5.3. Before making things any more abstract, let’s link this idea back to the concrete case of
set theory instead of topology (cf. §2.10). The Lindenbaum–Tarski theorem (§4.5) is strictly
classical, but Robert Paré proved a categorical version of it that is valid any elementary topos S,
i.e. (essentially) in any model of intuitionistic Zermelo set theory. The powerset P(X) is given by
the exponential ΩX , where Ω is the lattice of truth values, which we shall discuss further in §7.
Paré showed that the contravariant functor Ω(−) is monadic in the above sense [Par74].

We find limits of algebras by computing them for their carriers and lifting the algebraic struc-
ture; in categorical jargon, the functor U : A → S creates limits. Since A ' Sop, this derives
colimits in S from its limits. Paré’s theorem therefore simplified the definition of an elementary
topos, which then only needed to assert the existence of limits and not colimits.

5.4. This result was also the original inspiration for ASD, in 1993, although the results that we
discuss in the rest of this section were discovered later.

How could we set up the monadic situation in topology, within the category of Bourbaki spaces?
Ralph Fox’s original investigations [Fox45] showed that the function-space Y X only behaves rea-
sonably well when X is locally compact. The meaning of “reasonably well” crystalised into the
notion of a cartesian closed category that emerged in the 1960s and was shown to be equivalent to
the λ-calculus (§§2.2 & 2.5). Meanwhile, it was becoming clear that, for a compact subspace, the
filter of open neighbourhoods (§5.7) plays a more important role than the set of points [Wil70].

Then Dana Scott saw that the crucial case is the function-space ΣX , where Σ is the Sierpiński
space (§7). ΣX is the lattice of open subsets of X, but it obeys the universal property in §2.5 iff X
is locally compact and ΣX has the non-Hausdorff topology that now bears Scott’s name [Sco72].
The study of continuous lattices [GHK+80] and domain theory grew out of this. For a historical
study of function spaces in topology, see [Isb86].

The category of locally compact spaces has products and an object Σ that has powers ΣX ,
as we require. Whilst general functions-spaces Y X exist as Bourbaki spaces when X is locally
compact, the result need no longer be locally compact, so we do not have a cartesian closed
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category. In particular, NN, known as Baire space, is not locally compact, essentially because its
open subspaces are rather large, whilst its compact ones are rather small.

Nevertheless, cutting down to sober spaces, we have a model of the monadic situation above,
as we show in §§5.8ff.

5.5. Category theory is a very potent drug, which should only be prescribed in small quantities. A
theorem of Jon Beck [Tay99, §7.5] (he never published it himself) characterises when an adjunction
F a U is monadic in terms of two properties of the right adjoint U : A → S:

First, U must reflect invertibility : for f : A→ B in A, if Uf has an inverse in S then f already
had one in A. We shall see in §6.2 that this is equivalent to our abstract definition of sobriety.

Second, U must create U-split coequalisers (cf. §5.3). New students balk at this clause, but it
is the active ingredient in this dose of category theory. We need to explain Σ-split equalisers, as
the coequalisers become under the contravariance. These are subspaces i : S ⊂ X that have the
subspace topology, i.e. any open subspace of S is the restriction of one of X, but in a canonical
way. That is, there is a map I : ΣS → ΣX for which I · Σi = idΣS .

Beck’s theorem says that, given an idempotent E on ΣX that ought to define a Σ-split subspace
of X, then it does, i.e. there are i and I for which E = I ·Σi. We shall give the formal definitions
in §6.5.

5.6. The simplest (and first, [C]) examples of Σ-split subspaces are open and closed ones.
An open subsubspace V ⊂ U ⊂ X of an open subspace is already an open subspace of X.

Conversely, the inverse image of W ⊂ X in U ⊂ X is the intersection, U ∩W . Then the operation
U ∩ (−) provides Σi : ΣX → ΣU for the inclusion i : U ⊂ X, and its splitting I : ΣU → ΣX is the
inclusion (V ⊂ U) 7→ (V ⊂ X). The composite E ≡ I · Σi is the idempotent U ∩ (−) on ΣX . In
the ASD notation, U and V are represented by their classifiers θ and φ, and then E is λφ. φ ∧ θ.

In the case of closed subspaces, any open subsubspace V ⊂ C ⊂ X is also the intersection with
C of some open subspace of X. But in this case the most convenient choice of representative is
the maximal one, V ∪ U , where U is the open complement of C. This provides I, whilst Σi is
represented by U ∪ (−). Now E ≡ I · Σi is U ∪ (−) or λφ. φ ∨ θ on ΣX .

5.7. Before giving further examples of Σ-split subspaces, we need to say something about com-
pact ones. Recall that a subspace K ⊂ X of a Bourbaki space is compact if, whenever K ⊂

⋃
i Ui

for some family of open subspaces, this already holds for some finite subfamily. This says exactly
that the predicate K ⊂ U is Scott continuous as U ranges over open subspaces of X. The result
lies in the object of truth values, considered as a topological space, so the predicate is a continuous
function A : ΣX → Σ.

The operator A obeys the Gentzen-style rule (cf. §2.1) for universal quantification of any
predicate φ over K, so long as φ denotes an open subspace:

Γ, x : X, x ∈ K ` φx⇔ >
======================

Γ ` Aφ⇔ >

In particular, if K = X then A is the universal quantifier U, whilst if it is a subspace we sometimes
write A as a modal operator �, which we read as “must” or “necessarily”. We explain in §12 why
we use a symbol U instead of ∀.
5.8. The definitions of local compactness for Bourbaki spaces and locales naturally express the
object in question as a Σ-split subspace of ΣN , where N is any set, which we may think of as N or
a cardinal. Then ΣN is the powerset of N , or the topology on N considered as a discrete space,
where ΣN is itself equipped with the Scott topology.

According to the definition for not necessarily Hausdorff spaces in [HM81], if a point lies in
an open subspace (x ∈ U) then there is a compact subspace K and an open one V such that
x ∈ V ⊂ K ⊂ U . Moreover, there is a family of such pairs (V,K), indexed by a set N .
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Now let An : ΣX → Σ or An : ΣΣX

be the Scott-continuous operator corresponding to the
subspace Kn. Meanwhile, the open subspaces U and V n are represented in our notation by
φ, βn : ΣX . (We use super- and subscripts to indicate whether these subspaces or terms increase
or decrease as the index n : N increases.)

Hence local compactness says that

U =
⋃
{V n | Kn ⊂ U} or φ = ∃n. βn ∧Anφ,

which we call the basis decomposition. Then the maps i : X → ΣN and I : ΣX → ΣΣN

, defined by

ix ≡ λn. βnx and Iφ ≡ λξ. ∃n. ξn ∧Anφ,

satisfy Σi · I = idΣX .

5.9. A locally compact locale is one whose corresponding frame is a continuous lattice [Joh82,
§VII 4]. This relativises the notion of compactness to a Scott-continuous relation β � (−) (called
way below) on open subsets, and then requires that

φ =
∨
� {βn | βn � φ}, or φ = ∃n. βn ∧Anφ, where Anφ ≡ (βn � φ),

which is another basis decomposition, giving i and I as before.
These two definitions are actually different, in that

(a) An> = > and An(φ ∧ ψ) = Anφ ∧Anψ in the case of Bourbaki spaces, whilst
(b) the indices n ∈ N form a lattice in the localic situation.
However, a space only carries a basis with both properties if it is itself compact and the intersection
of any two compact subspaces is again compact; it is then called stably locally compact. See
[G, JKM01] for the details of this approach to local compactness.

5.10. We have shown that every locally compact Bourbaki space or locale is a Σ-split subspace
of ΣN . So if we can prove that all such subspaces are locally compact locales then we have a model
of the monadic situation. Locally compact locales and sober locally compact Bourbaki spaces are
equivalent, assuming the axiom of choice.

Recall from §4.4 that the Scott topology on ΣN is the free frame FN on the set N . For a
Σ-split subspace X ⊂ ΣN , the topology L on X is a retract of FN , where H : FN � L and
I : L� FN are Scott-continuous and satisfy H · I = id. Hence L is a continuous lattice [Joh82,
VII 2.3].

The maps I and H need not be adjoint, but since H is a frame homomorphism, it has a right
adjoint R that is monotone but not necessarily Scott continuous. Then id 6 j ≡ R · H = j · j
preserves meets, making it a nucleus (§4.8), and H ≡ i∗ and R ≡ i∗, where i : X ⊂ ΣN is the
sublocale defined by j.

5.11. Although we have now related Beck’s theorem in category theory to ideas of general
topology, these are still rather abstract. We need a more compelling example from the applications
of topology to demonstrate that Σ-split subspaces are important to the customers of this subject
(cf. §3.5). Recall from §§1.7 and 4.7 that the classical Heine–Borel theorem fails in Russian
Recursive Analysis but holds in locale theory.

Now, it is possible to construct a “space of Dedekind cuts” in any category that has N, powers
of Σ, equalisers and some other properties. However, the “closed interval” [0, 1] within this space
need not be compact. The category of dcpos and Scott-continuous functions has the relevant
structure, but the order on a dcpo determines its topology, and the “real line” is (uncountable
but) discrete in both senses, so its only compact subspaces are finite sets.
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5.12. Beck’s theorem comes to the rescue.
The classical Heine–Borel theorem provides a Scott-continuous Σ-splitting I for the equaliser

i : R� ΣQ × ΣQ, where ix ≡ (λd. d < x, λu. x < u). In traditional notation, the map I is given
by

(V ⊂ R) open 7→ {(D,U) | ∃d ∈ D. ∃u ∈ U. (d < u) ∧ [d, u] ⊂ V },

or φ : ΣR 7→ λδυ. ∃du. δd ∧ υu ∧ (d < u) ∧ Ux:[d, u]. φx

in the ASD λ-calculus.
The idempotent I · Σi can be shown to be equal to an expression that involves the rationals

alone, so we have an example of the hypothesis of Beck’s theorem, and hence an object R of
ASD. In R, the interval [0, 1] is compact, and indeed this object satisfies all of the properties that
one could reasonably require of a computable real number object [I]. Looking more closely at its
topology, ΣR, we find, as in the classical situation, that any open subspace is a countable disjoint
union of open intervals, although the words “countable” and “interval” require some constructive
qualification [J].

We now have enough experimental evidence to start writing down some axioms (§3.2), at least
for locally compact spaces.

6 The monadic framework

In the previous section we described a number of properties in topology that are related to the
monadic adjunction Σ(−) a Σ(−). We also showed that this is satisfied when Σ is the Sierpiński
space in the category of locally compact spaces, or the subobject classifier in any topos, and in
these cases ΣX is the topology or powerset of X. In this section we describe the purely categorical
structure that we abtract from this situation. Then we shall show how it can can be formulated
as a new symbolic language. See [A, B] for the details in ASD.

6.1. The category S must have
(a) finite products, 1 and ×;
(b) an object Σ with a map ? : 1→ Σ (? is only used in §6.10); and
(c) powers ΣX for all X ∈ obS; then
(d) the adjunction Σ(−) a Σ(−) must be monadic.

In investigating this structure, we shall need to apply the (contravariant) functor Σ(−) repeat-
edly, giving some unwieldy towers of exponentials. For this reason, we often write

Σ2X ≡ ΣΣX

Σ3X ≡ ΣΣΣX

Σ4X ≡ ΣΣΣΣX

. . .

The unit of the adjunction, ηX : X → Σ2X, is the transpose of the co-unit, εX ≡ evX : ΣX×X →
Σ, which is in turn the other transpose of id : ΣX → ΣX . Then η is part of the structure of the
monad, for which Σ2X is the free algebra on an object X, with structure map µX ≡ ΣηX , where
µ is called the multiplication.

The corresponding symbolic language is the familiar one with pairing and λ-abstraction, except
that the exponential type SX and corresponding λ-terms λx. s may only be formed in the case
where S, the type of the body s, is a power of Σ. Then

ηXx ≡ λφ. φx and µXF ≡ λx. F(λφ. φx)

define the monad. Contexts (§2.6) in the first version of this language just consist of typed
variables, but we shall need to add equational hypotheses in §§8.5 & 9.10.
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6.2. The first clause of Beck’s theorem (§5.5(a)) says that if Σf : ΣY → ΣX is invertible then so
is f : X → Y itself. This is equivalent to requiring, for every object X, that ηX be the equaliser
of the parallel pair in the diagram,

X
ηX - Σ2X

Σ2ηX -

ηΣ2X

- Σ4X

Γ

focusP
6
.............

P

-

In other words, if P also has equal composites then there is a unique map that makes the triangle
commute.

P has equal composites iff its transpose, P̃ : ΣX → ΣΓ, is a homomorphism of Eilenberg–Moore
algebras for the monad. Sobriety then says that P̃ = ΣfocusP [A, §4].

6.3. According to the technique of §2.8, a morphism P : Γ → Σ2X is the same thing as a term
Γ ` P : Σ2X. This has equal composites with the parallel pair above iff

Γ, F : Σ3X ` FP = P
(
λx. F(λφ. φx)

)
: Σ.

We call P prime if this holds, extending the usage of this word beyond that in §4.1.
Here we have our first example of the difference between the definitions that we give for the

foundations and the applications (§3.8): when we add the other topological structure to the theory,
primality can be characterised more simply by saying that P preserves >, ⊥, ∧ and ∨ (§11.6).

The object X is sober iff every prime P has a unique fill-in

Γ ` focusP : X such that Γ, φ : ΣX ` φ(focusP ) = Pφ : Σ.

Following §2.11, we turn this universal property into a new system of symbolic rules. Indeed, we
have just given the introduction and β-rules for focus [A, §8].

The operation in the elimination rule takes a : X to λφ. φa : Σ2X. This is prime: categorically,
ηX has equal composites with the parallel pair, by naturality of η(−) with respect to ηX , but one
could also check this by a λ-calculation. Finally, the η-rule is focus(λφ. φa) = a : X.

The normalisation theorem (cf. §2.12) says that focus may be eliminated from any term φ :
ΣX , whilst any term of ground type is provably equivalent to focusP , where P does not itself
involve focus.

The symbolic calculus extended with focus corresponds (via §2.8 again) to a certain category.
By the normalisation theorem, this has the same objects (contexts) as the original one, but its
morphisms Γ → ∆ are in bijection with the Eilenberg–Moore homomorphisms Σ∆ → ΣΓ [A,
§§6-7].

6.4. It is pertinent to ask of this β-rule how much of the expression surrounding focusP is to be
taken as φ, and moved inside Pφ. That is, for any F : ΣΣ, does

F
(
φ(focusP )

)
become F (Pφ) or P

(
λx. F (φx)

)
?

So long as P is prime, this doesn’t matter, because the two results are equal (consider F ≡
λQ. F (Qφ) in the definition of primality).

Hayo Thielecke [Thi97] considered an operation called force with the same β-rule, but without
the primality side condition. Now it does matter where we draw the boundary of the super-term φ:
the computational effect is to pass φ as an argument to P , and then jump to the continuation F
when (if) P returns. In order to study computational effects in general, Thielecke developed
categorical machinery that is very similar to our account of abstract sobriety, but independently.
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6.5. The second clause of Beck’s characterisation (§5.5) brings in all algebras that are definable
à la Eilenberg–Moore. It says that certain equalisers exist, and are taken by Σ(−) to coequalisers
[B, §§2–4].

Our approach to this is to spell out what was meant in §5.5 by “data on Y that ought to define
a Σ-split subspace”. For this, it is enough to consider equalisers of the form

X-.......................................
i

- Y
- ηY -

Ẽ
- Σ2Y (a)

that become split by ηΣY when we apply Σ(−). This meas that, in the diagram

ΣX
�� Σi

-..................
I
.................- ΣY

�� ΣηY

-..............ηΣY ...........-
�

ΣẼ

Σ3Y, (b)

the equation ΣẼ · ηΣY · ΣẼ = ΣẼ · ηΣY · ΣηY holds. Besides asking for the equaliser i : X � Y
in (a), we further require that the solid lines in diagram (b) form a coequaliser. For this we simply
need a map I such that

I · Σi = E ≡ ΣẼ · ηΣY .

Whilst these conditions may look very strange, they are actually adapted from the definition of
an Eilenberg–Moore algebra (A,α): with Y ≡ ΣA, Ẽ ≡ Σα and I ≡ ηA, they yield PA ≡ X.
Conversely, one can show that the category of algebras admits coequalisers of this form. However,
the category of spaces that we have axiomatised here need not have all equalisers, for example
LKLoc does not.

6.6. Writing the equation for Ẽ in the λ-calculus (§2.8), we call E : ΣY → ΣY a nucleus if

F : Σ3Y, y : Y ` E
(
λy′. F(λψ. Eψy′)

)
y = E

(
λy′. F(λψ. ψy′)

)
y,

observing the extra E on the left hand side. Since we don’t want to deal with dependent types,
we do not allow E to have parameters.

We have appropriated this name from locale theory (§4.8), since both kinds of nucleus are used
to define subspaces. The definitions are not the same, but the use of different letters (E and j)
should avoid ambiguity. Like primes (§6.3), nuclei in ASD have another characterisation in the
presence of the full topological structure (§11.6), namely

E(φ ∧ ψ) = E(Eφ ∧ Eψ) and E(φ ∨ ψ) = E(Eφ ∨ Eψ).

In this setting, ASD nuclei are Scott continuous, whilst those in locale theory need only be mono-
tone; on the other hand, localic nuclei satisfy id 6 j, which is not required in ASD. Beware in
particular that the ASD nucleus for an open subspace is given by Eφ ≡ (θ ∧ φ) (cf. §5.6), whilst
the localic one is jφ ≡ (θ ⇒ φ) (§4.8). Nevertheless, there are some important examples that
satisfy all of the conditions of both definitions [I, §8] [L].
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6.7. The symbolic calculus (§2.11) that corresponds to Beck’s theorem has to define both the
equaliser of the main types and also the coequaliser of their topologies. It does this using two sets
of rules [B, §8].

A term Γ ` a : Y has equal composites with the parallel pair in §6.5(a) iff

Γ, ψ : ΣY ` ψa = Eψa : Σ,

and then we say that it is admissible. The introduction rule for the equaliser, i.e. its universal
property, then allows us to form

Γ ` admit a : {Y | E},

whilst the inclusion i is the elimination rule. The β- and η-rules are

Γ ` i(admit a) = a : Y and x : {Y | E} ` admit(ix) = x : {Y | E}.

We also have to ensure that the second diagram (§6.5(b)) is a coequaliser, using another set of
rules. We get the introduction rule for free, as the map Σi : ΣY → Σ{Y |E}. The elimination rule
says that Σi is split by another map I, so I · Σi = E and Σi · I = id{Y |E}. These equations are
the β- and η-rules

y : Y, ψ : ΣY ` I
(
λx. ψ(ix)

)
y = Eψy

and x : {Y | E}, φ : Σ{Y |E} ` Iφ(ix) = φx.

The normalisation theorem for this calculus (cf. §2.12) says that every type can be embedded as a
subspace of a type formed without comprehension, and terms also normalise in a simple way. This
makes the corresponding category equivalent to the opposite of the Eilenberg–Moore category [B,
§§9–10].

6.8. Any map f : X → Y that is Σ-split, i.e. with F : ΣX → ΣY such that F · Σf = idΣX or
Fφ(fx) = φx, agrees up to isomorphism with the subspace {Y | E} with E ≡ Σf ·F . In particular,
f is regular mono. The isomorphism is

x : X ` x′ ≡ admit(fx) : {Y | E}
x′ : {Y | E} ` x ≡ focusX

(
λφ:ΣX . Fφ(ix′)

)
: X.

To show that these maps are mutually inverse, you need the rules above, together with

i(focusX P ) = focusY (Σ2iP ),

first proving that if P is prime then so is Σ2fP . This uses sobriety of X and Y .

6.9. Notice that the Σ{}β-rule is the only one that introduces E into terms. This is something
that we want to avoid if at all possible, because the expressions for nuclei are usually very com-
plicated. When E does find its way into a program, it will give rise to a substantial computation.

Actually, this is what we expect from practical considerations. Consider, for example, the
nucleus that defines R in ASD (§5.12). The universal quantifier that says that the interval is
compact is given by

Ux:[0, 1]. φx ≡ Iφ(λd. d < 0, λu. u > 0),

which applies the extension Iφ of φ to the pseudo-Dedekind cut that represents the interval. This
can be computed by dividing the interval up into sufficiently small parts, on each of which the
predicate φ must be satisfied in the fashion of Ramon Moore’s interval analysis [Moo66], i.e. by
evaluating the arithmetical operations on the (endpoints of) the subinterval, instead of using single
real values [Bau08, I, K].
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6.10. How common is the monadic situation? We may obtain it from any category S0 with an
object Σ0 that has powers ΣX0 . Let A be the Eilenberg–Moore category for the monad on S0; then
S ≡ Aop has the monadic property. The proof of this is very easy — apart from the most basic
requirement, namely that S have products (coproducts of algebras) [B, §7].

Can other categorical structure be defined in S, before we add specifically topological features?
We have already remarked in §5.3 that colimits come for free, as long as we have the corresponding
limits, so S has coproducts and Σ-split coequalisers. In fact, the coproducts are stable and disjoint,
i.e. the category S is extensive (cf. §9.1). Note that 0� 1 is Σ-split iff Σ has a point (§6.1(b)).
Whilst extensivity is a purely categorical statement, its proof relies heavily on the new λ-calculus
[B, §11].

6.11. Thielecke argues [Thi97] that Σ (the “answer type” R, in his notation) needs no extra
structure. It may perhaps be seen as a free type variable, or one that is quantified at the outermost
level. I once said to him that his work must therefore be either very superficial or very deep. The
fact that one can develop quite a lot of theory from just this monadic adjunction Sop � S, or
from pure equideductive logic (cf. §12.5), without any other hypothesis on Σ, leads me to believe
more and more in the second possibility.

This structure will provide the skeleton on which the more obviously topological structure is
the flesh. Dressed in a different way, I also believe that it could be applicable to game semantics
of sequential computation, algebraic geometry, differential geometry and quantum logic.

6.12. Our use in §6.7 of the traditional notation {Y | E} for subset formation advertises more
than it can deliver on the basis of the monadic hypothesis alone.

Although the symbolic formulation is a little easier to handle than the categorical one, it has
to be said that devising nuclei in ASD requires a lot of inspired guesswork. The problem of finding
splittings is actually not a new one: it is a feature of Jon Beck’s theory of monads that was
inherited from his inspiration in homological algebra, where we cannot in general split short exact
sequences. This in turn came from the (mathematically interesting) fact that there are non-split
extensions of Abelian groups, starting with the cyclic group of order 4.

Like the category of locally compact spaces, S need not be cartesian closed. However, when
we develop induction and recursion in §9, we find that the lack of general equalisers is the real
handicap to developing the theory. The conjectural extension that we begin to investigate in §12
would provide a much more expressive language in the notation {y : Y | · · ·}, without the need for
splittings. It would also provide general equalisers and function spaces.

7 The Sierpiński space

In order to put some topological flesh on this categorical skeleton, we need some more specific
ideas about the object Σ. Beware that, in other subjects, Σ need not be a two-element set or a
subobject classifier (cf. §4.3).

7.1. We have already made use of the analogy between topology and set theory, in the form of the
Lindenbaum–Tarski–Paré theorem in §§4.5 & 5.3, as part of the motivation of the monadic property
as an abstract formulation of Stone duality. Similarly, we begin by looking at the subobject
classifier (lattice of truth-values) Ω in a topos, in order to identify the relevant properties of its
analogue in topology. Its defining property is that any subobject U ↪→ X is the inverse image of
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> : 1 ↪→ Ω along some unique map θ : X → Ω. That is, there is a pullback

U - 1

X
?

∩

θ - Ω

>
?

The map θ is called the classifier, and it is crucial that isomorphic subspaces correspond to equal
classifiers.

7.2. Relying on this, if we can show that two constructions yield equivalent subobjects then the
corresponding classifying maps are equal. Stripping out all extensional ideas, this means that we
regard two propositions φ and θ as equal if they are inter-provable. Any proof is as good as any
other, in contrast to the view of many type theorists, who regard different proofs of the same
proposition as terms of an analogous type (cf. §2.2).

Although individual propositions are not regarded as types in topos theory, Ω is the type of
all propositions. Treating it as an object like any other means that we are doing higher order
logic. There are some strange consequences of the translation of inter-provability into equality,
since functions of a logical argument must respect equality.

In particular, to assert any ω (where ω ∈ Ω) is the same as to say that ω is equal to >, from
which it follows that Fω = F> for any function F : Ω → Ω. Now, this equality means that
Fω ⇒ F> and Fω ⇐ F>, still under the hypothesis ω. But ω may be eliminated using Gentzen’s
introduction rule for ⇒ (cf. §2.1), in the form

Γ, ω ` α ⇒ β
==============
Γ ` ω ∧ α ⇒ β,

giving ω ∧ Fω ⇒ F> and Fω ⇐ ω ∧ F>. Hence we deduce the Euclidean principle,

for any F : Ω→ Ω and ω : Ω, ω ∧ Fω ⇐⇒ ω ∧ F>.

We shall see that this is more than just a curiosity of higher order logic.

7.3. In a topos, Ω classifies arbitrary subobjects, but Giuseppe Rosolini refined the definition to
handle restricted classes of monos in other kinds of categories, such as open subspaces in topology
and recursively enumerable ones in the theory of computability. The class of monos, which he
called a dominion, must include all isomorphisms and be closed under composition and under
pullback along arbitrary maps. Then a dominance > : 1 → Σ has the same definition as Ω, but
restricted to the given class of monos [Ros86]. The Euclidean principle holds for any dominance
Σ of which all powers ΣX exist, not just for Ω in a topos, as is shown diagrammatically in [C].
We shall prove the converse in §8.4 and recover the topos situation in §9.3.

7.4. Now consider the Sierpiński space in classical topology. This has two points, > and ⊥, of
which the former is open and the latter closed, like this:

> :
⊥ :

(
�
•
)
.

According to our stated methodology, we employ this space because of its universal property. This
says that there is a three-way bijective correspondence amongst
(a) open subspaces U ⊂ X,
(b) continuous maps θ : X → Σ and
(c) closed subspaces C ⊂ X,
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where we shall say that θ classifies U ≡ θ−1(>) and co-classifies C ≡ θ−1(⊥). Diagrammatically,
these inverse images are given by the two pullbacks

U ⊂ - X � A C

1
? > - Σ

θ

?
� ⊥

1
?

Either of the subobjects U or C determines θ (and so the other subobject) uniquely, so open
inclusions form a dominion for which > : 1 → Σ is a dominance, whilst closed inclusions form
another dominion for which ⊥ : 1→ Σ is a dominance.

7.5. It is very difficult to assess the significance of a classical statement about the two-element
set (cf. §3.4), so once again we turn to locale theory for a constructive view. An “open subspace”
of a locale is an element of the corresponding frame, a : 1 → A, and such elements correspond
bijectively to frame homomorphisms F1 → A. As our candidate for the Sierpiński locale, we
therefore have the free frame F1 on one generator [JT84, §IV 3]; by §4.4, this is the lattice of
Scott-open subsets of P(1) ∼= Ω.

Recall from §4.8 that the open and closed sublocales of X named by a ∈ A are given by the
nuclei a ⇒ (−) and a ∨ (−) respectively. If b ∈ A gives rise to an isomorphic sublocale of either
kind then the corresponding nuclei are equal as endofunctions, but by applying them both to ⊥,
a and b, we find that a = b. So the Sierpiński locale enjoys the same universal property as its
classical analogue.

7.6. Hence, in the category of locally compact locales, the Sierpiński locale is a dominance in
two ways. It therefore satisfies both the Euclidean principle and its lattice dual.

Besides this, all endofunctions of Σ preserve its order. Putting all three of these properties
together, we deduce that

Fσ ⇐⇒ F⊥ ∨ σ ∧ F>

for any F : ΣΣ and σ : Σ. This equation is called the Phoa principle, and had already been
observed in computability theory. Indeed, Martin Hyland, who named this principle after his
student Wesley Phoa (pronounced “Pwah”), emphasised that Σ should classify both RE and
co-RE subsets [Hyl91].

7.7. Once again, it is difficult to see the real meaning of such simple formulae as the Euclidean
and Phoa principles. The latter says say that any function F : Σ→ Σ is defined by a polynomial
in one variable and the algebraic operations, >, ⊥, ∧ and ∨. This means that ΣΣ (the topology
on the Sierpiński space) is the free algebra F1 on one generator, as we found in locale theory. It
suggests a generalisation to algebraic or differential geometry, that any endomorphism F : R→ R
of the base ring considered as a space in the new category, is defined by a polynomial in one
variable [Koc05, I 12.3].

Another way of viewing this principle may be that it is what is required to make the monad
for the “symbolic” algebraic structure (such as >, ⊥, ∧, ∨) agree with that of the λ-calculus
(Σ(−) a Σ(−)).

It was in order to provoke investigation of this analogy that I gave the name Euclidean principle
to the earlier equation, since it resembles one step of the Euclidean algorithm for highest common
factors. If this really is one case of a general phenomenon, polynomials are the fundamental things,
whilst subobjects are a manifestation of them that is peculiar to set theory and topology.
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7.8. In the next section we shall add the Phoa principle to the monadic calculus from §6, and
prove some results from it that look a lot like the familiar properties of open, closed and compact
subspaces. Of course, this indicates that the intuitions that we have considered so far are sound
and substantial.

What’s surprising is how much can be done in the absence of an axiom that actually states
Scott continuity (§11). One might expect this to be essential for topology, especially considering
its fundamental role in the applications in computer science since Scott’s original work in the
1970s.

Even though the theory at this second stage is manifestly incomplete, it is worthy of study as
it stands, because it is still fully lattice dual. We can rewrite any theorem by interchanging (all
of) the following symbols or concepts with their partners, and obtain another valid theorem:

6 ⇒ > ∧ ∃ = open discrete ? open
> ⇐ ⊥ ∨ U 6= closed Hausdorff compact proper

In particular, in §8.5 we shall have a proof rule that looks like Gentzen’s for classical ¬, alongside
the one in §§2.1 & 7.2 for ⇒. The “classical” rule is valid constructively (in particular, in intu-
itionistic locale theory, §7.5) because it says the same thing for inclusions of closed subspaces that
the “intuitionistic” rule says about open ones. Open and closed subspaces are related via their
common classifiers (§7.4), and not by set-theoretic complementation. Statements in ASD are
therefore free of the double negations that plague mathematics based on intuitionistic set theory,
whether that be categorical or type-theoretic.

7.9. Symmetries like this in a theory are powerful because they are predictive. (Consider
Mendeleev’s periodic table, or Dirac’s relativistic quantum mechanics.) When we pair up con-
cepts with their duals, we often find that some things were missing. (New elements or particles,
such as the positron.)

What is the counterpart of compactness in the table above? Since the symbolic form of
one topological concept is the universal quantifier (§5.7), the missing idea must be given by the
existential quantifier.

Turning to locale theory for more inspiration, a compact locale is one whose terminal projection
K → 1 is proper, so we are looking for those for which this map is open, and indeed they were
studied in [JT84, Joh84] and called open locales. Bourbaki spaces throw no light on this property,
because they all have it. Casting our philosophical net a little wider, however, we find analogous
ideas in computability theory (recursive enumerability) and constructive analysis (locatedness
[Spi07]). The common theme seems to be an explicit presentation of something.

However, when we look at subspaces that are “open” in this sense, it turns out that they are
often (but by no means always) closed subspaces, so we need another word for the idea. In English,
the word overt means “open” in its sense of being explicit, so it captures these ideas very well,
although it is a little difficult to find appropriate translations into other languages.

Bourbaki spaces and locales treat infinitary unions and finitary intersections asymmetrically.
This is explained in ASD by saying that we may form joins indexed by overt objects and meets
by compact ones.

8 Topology using the Phoa principle

In this section we add the lattice structure on Σ and either the Euclidean or the Phoa principle
to the monadic framework that we introduced in §6. The latter plays (part of) the role of the
set theory that we take granted when we study other subjects such as group theory, but which
we have eschewed for computable topology. So the theory will start to look a little more like an
“orthodox” development of theorems from axioms (§3.2).
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See [C, D] for the details of the results in this section, but, despite the lettering, they were
written before the monadic λ-calculus of §6 was devised, and expressed in a less clear categorical
language. Since the empirical arguments were also not as well developed there as they are were
in the previous section, we shall give some of the basic results here in detail. On the other hand,
[I, J] give better treatments of some topics that are closer to the applications, especially the theory
of compact subspaces.

8.1. In addition to the axioms in §6.1, we now require the type Σ to have
(a) operations >,⊥ : 1⇒ Σ (in place of ?, §6.1(b)) and ∧,∨ : Σ× Σ⇒ Σ that satisfy
(b) the equations for a distributive lattice; and
(c) the Euclidean principle σ ∧ Fσ ⇔ σ ∧ F> if we want to consider set theory; or
(d) the Phoa principle Fσ ⇔ F⊥ ∨ σ ∧ F> for general topology;
where σ : Σ and F : ΣΣ.

8.2. The lattice structure defines an order relation on Σ and its powers ΣX . Following logical
custom, we have already started to write ⇒ and ⇔ for the order and equality on Σ. We retain 6
and = for these relations on its powers (the symbols ⊂ and ⊆ are inappropriate, for many reasons),
but application to an argument changes them into ⇒ and ⇔, so if φ 6 ψ then φa⇒ φa, whilst if
φ = ψ then φa⇔ φa.

In the topological case (d), all S-morphisms ΣY → ΣX preserve 6, so S is an ordered category,
which is a special case of a 2-category. In particular, we may talk about adjoint maps ΣY � ΣX

with respect to this order: L a R means that id 6 R · L and L · R 6 id. This is also possible in
the set-theoretic case (c), so long as we’re careful, as logical negation (¬) reverses the order.

We may extend 6 to an order on any object X, where

x vX y means (λφ. φx) 6 (λφ. φy).

By sobriety (§6.3) and monotonicity, v is antisymmetric and (when X ≡ ΣY ) agrees with 6.
Wesley Phoa introduced his principle [Pho90] to make this order equivalent to the existence of a
link map ` : Σ → X with `⊥ = x and `> = y, which he used to construct limits of the objects
that he was considering.

8.3. The Euclidean principle is a purely algebraic property, at least if you are willing to regard
λ-calculus as algebra. However, in the context of the monadic framework, it automatically yields
the higher order structure of a dominance (§7.3), classifying certain subobjects. We shall build up
to a characterisation of elementary toposes in §9.3.

First we have to show that the pullback in §7.1 exists. It is equivalent to the equaliser

U ⊂
i - X

x 7→ λφ. φx -

x 7→ λφ. θx ∧ φx
- ΣΣX

that is an example of the one in §6.5, with E ≡ λφ. θ ∧ φ. Notice that this is the same formula
that we saw in §5.6 when we showed that open subspaces are Σ-split.

The question is therefore whether E is a nucleus; expanding the λ-calculus definition in §6.7,
we require that

F(λψ. ψy ∧ θy) ∧ θy ⇐⇒ F(λψ. ψy) ∧ θy.

This follows from the Euclidean principle, putting σ ≡ θy and F ≡ λτ. F(λψ. ψy∧ τ). Conversely,
considering Y ≡ 1, θ ≡ λy. σ and F ≡ λG. F (G>), it is also necessary.

Hence the Euclidean principle is exactly what we need to satisfy the abstract definition of
nucleus. On the other hand, E satisfies the more user-friendly lattice-theoretic characterisation of

28



nuclei that we also mentioned in §6.7, just using the distributive law. Of course, that is because
the proof of this characterisation makes use of the Phoa principle (§11.6).

By a similar argument, λφ. φ ∨ θ is a nucleus (for the closed subspace coclassified by θ) iff
Σ satisfies the dual Euclidean principle.

8.4. We may therefore use the monadic framework in §6 to define the pullbacks in §7.1 and §7.4.
Then, bearing in mind that we shall have to verify the stronger meanings that these words have
outside this paragraph, we call an inclusion i : U ↪→ X open if it (is isomorphic to one that) is the
pullback of > : 1 → Σ along from some (not â priori unique) θ : X → Σ, which classifies U . In
particular, θ ≡ > classifies id : X ↪→ X.

In order to prove that open inclusions form a dominion with dominance Σ in the sense of
Rosolini (§7.3), we also need to show that the composite of two open inclusions is open. For this,
we use the Σ-splitting I that is provided by the monadic framework.

Suppose that V
j
↪→ U

i
↪→ X are classified by φ : ΣU and θ : ΣX respectively. Since I splits Σi,

we have φu⇔ Σi(Iφ)u⇔ (Iφ)(iu), so the bottom right square commutes.

V - 1

1 � U

j

?

∩

φ - Σ

>
?

Σ

>
?
� θ

X

i

?

∩

Iφ - Σ

id

?

We claim that the rectangle on the right is a pullback, i.e. Iφ classifies V ⊂ X. First, note that
Iφ = (I ·Σi · I)φ = E(Iφ) = θ∧ Iφ 6 θ. If x : Γ→ X and Γ→ 1 make a commuting quadrilateral
then > ⇔ Iφx ⇒ θx. So x = iu since θ classifies U , and φu ⇔ (Iφ)(iu) ⇔ Iφx ⇔ >, so u = jv
since φ classifies V . Hence x = (i · j)v, and v is unique since i · j is mono.

If ψ 6 θ then ψ = ψ ∧ θ = Eψ = Iφ where φ ≡ Σiψ. So the open inclusion W ↪→ X classified
by ψ factors through U ↪→ X classified by θ iff ψ 6 θ iff ψ = Iφ for some φ : ΣU , and then φ
classifies W ↪→ U . Hence U ∼= W iff θ = ψ, so classifiers are unique.

We are justified in calling i an “open” inclusion because I a Σi in the sense of §8.2, and the
Frobenius and Beck–Chevalley laws (§2.9) hold [C, Prop. 3.11]. If we want to use this result in
the study of set theory (§8.1(c)) then we must be careful not to assume that I preserves 6, but
the same result also proves this. We write ∃i for I, for reasons that we explain in §8.7.

By reversing the order 6 throughout this argument and assuming the dual Euclidean principle,
⊥ : 1→ Σ is also a dominance. We call the inclusions that are expressible as pullbacks of ⊥ along
θ : 1→ Σ closed, say that θ co-classifies them and write Ui for I. Beware, however, that if θ 6 φ
classify C and D respectively then D ⊂ C.
§8.10(g) gives an important converse result.

8.5. In practice, it is often easier to reason with the Gentzen-style rules

Γ, σ ⇔ > ` α ⇒ β
=================

Γ ` σ ∧ α ⇒ β

Γ, σ ⇔ ⊥ ` α ⇒ β
=================

Γ ` α ⇒ β ∨ σ

that are equivalent to the Euclidean principle and its dual, cf. §§2.1, 7.2 & 7.8.
To do this, we first have to modify the definition of contexts in §6.1, which now consist of both

typed variables and equational hypotheses of the forms σ ⇔ > and σ ⇔ ⊥ for σ : Σ. We proved
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the Euclidean principle from the Gentzen rule on the left using such contexts in §7.2, and the dual
is similar.

This modification is syntactic sugar. A context consisting of several variables and hypotheses
of both kinds may be interpreted as a locally closed subspace (i.e. the intersection of a closed
subspace with an open one) of the product of the types of the variables.

Using the Euclidean principle, the open subspace classified by σ is Σ-split with nucleus E ≡
λφ. σ ∧ φ. So the inequality α ⇒ β between subsubspaces is defined as α ∧ σ ⇒ β ∧ σ in the
ambient space, which is what the Gentzen rule says.

These rules do not force F : ΣΣ to preserve the order — this has to be stated separately.
Beware that we use this property so often in topology that we usually take it as read.

8.6. Now we can ask when particular subspaces are open or closed, starting with the diagonal
X ⊂ X ×X. It is natural to call X
(a) discrete if the diagonal is open, its classifier being called equality, =X ; and
(b) Hausdorff if the diagonal is closed, its co-classifier being called inequality or apartness, 6=X

or #X .
For example, we expect N and Q to have both properties (§9.5), and R to be Hausdorff but not
discrete (§11.10). This is in line with the computational fact that we may decide equality of
integers or rationals, but only detect when real numbers are different.

Beware that, whilst points and the diagonal are open in a discrete space, arbitrary subspaces
need not be. This is because the computable topology on the discrete space N consists of the
recursively enumerable subsets, not all of them. Also, our definition of Hausdorffness is slightly
different from that in locale theory [Sim78] [Joh82, §III 1.3].

Classically, any discrete space is Hausdorff, but the proof employs a union that is illegitimate
for us, and any free algebra with insoluble word problem provides a counterexample. Terms are
equal iff they are provably so from the equations, so we observe equality by enumerating proofs,
but none need be forthcoming. In particular, combinatory algebra (with a non-associative binary
operation and constants k and s such that (kx)y = x and ((sx)y)z = (xz)(yz)) encodes the
untyped λ-calculus, and therefore arbitrary computation, so equality is undecidable.

We use a subscript or brackets, n =X m or (n = m), to indicate the term of type Σ that this
definition provides in a discrete space, with computable equality. This convention avoids ambiguity
of notation with the underlying term calculus, in which any two terms of the same type may be
provably equal or not.

The proof rules that relate these two notions of (in)equality are

Γ ` n = m : X
=================
Γ ` (n =X m) ⇔ >

Γ ` h = k : X
=================
Γ ` (h 6=X k) ⇔ ⊥

The rule for a Hausdorff space is not doubly negated: this is simply the way in which we express
membership of a closed subspace, whilst 6= is the natural name for its co-classifier.

From the Gentzen rules in §8.5, we obtain respectively

φx ∧ (x =X y) ⇒ φy and φx ∨ (x 6=X y) ⇐ φy.

The usual properties of equality (reflexivity, symmetry, transitivity and substitution) follow from
the first of these, whilst the dual argument gives the analogous properties of inequality. See [J,
§§4–5] for more detail in the setting of applications.
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8.7. Turning to compactness, recall from §5.7 that it can be expressed using an operator
A : ΣΣX

. This is Scott continuous in the model (locally compact Bourbaki spaces), but is simply
a term or morphism in the axiomatisation.

It is enough to define a compact object K as one for which the map Σ → ΣK by σ 7→ λk. σ
has a right adjoint, UK , in the sense of §8.2. The two directions of the adjoint correspondence
are exactly the introduction and elimination rules of the symbolic formulation, in which it’s more
convenient to write Uk :K. φk than UK(λk :K. φk).

However, in topology, we also have the dual Frobenius law (cf. §2.9),

Uk. (σ ∨ φk) ⇐⇒ σ ∨ Uk. φk,

for free, from the Phoa (or dual Euclidean) principle (§8.1(d)), with F ≡ λτ. Uk. τ ∨φk. This does
not hold in intuitionistic set theory, but it was identified in intuitionistic locale theory by Japie
Vermeulen [Ver94].

The first of the familiar properties of compact spaces is that any closed subspace i : C ⊂ K
is also compact. Its quantifier is given by UC ≡ UK · Ui, where Ui is the Σ-splitting of i in §§5.6
& 8.4 [C, Prop. 8.3].

Products and coproducts of compact spaces are again compact, as are equalisers and pullbacks
targeted at Hausdorff spaces [C, §§8–9].

The Beck–Chevalley condition (§2.9) also comes for free, as substitution under λ [C, Prop. 8.2].
Its lattice-theoretic interpretation is that any topology ΣX admits K-indexed meets, and not just
finite ones (§7.9).

8.8. When we try to apply these ideas to compact subspaces, we find that the monadic framework
in §6 does not provide a sufficiently general theory (so it doesn’t extend to proper maps either).
This is related to the fact that, in the leading model (§5.4), a compact subspace of a non-Hausdorff
locally compact Bourbaki space need not itself be be locally compact. This is discussed in [G, §5],
which is based on [HM81].

The clearest treatment for ASD is that in [J, §8], which exploits the fact that the main object
of study in that paper is a Hausdorff space (R), by restricting attention to subspaces that are
both closed and compact. Since a Hausdorff space H has 6=, we expect the operator A : ΣΣH

to
represent (as a compact space) the closed subspace that is co-classified by

θ ≡ λx. A(λy. x 6= y) if
φ ∨ θ = >
=========
Aφ ⇔ >

for any φ : ΣH .

If H is also compact, we obtain conversely

Aφ ⇐⇒ Ux:H. ωx ∨ φx.

Hence closed and compact subspaces coincide in a compact Hausdorff space, because there

φx ⇐⇒ Uy :H. (x 6= y) ∨ φy,

which is obtained from the formula in §8.6. Notice that A, like θ (§8.4), decreases in the order
(§8.2) as the compact or closed subspaces get bigger.
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8.9. To make sense of this equivalence between closed and compact subspaces, however, we need
some way of saying that K is “the same subspace” as C. We do this by defining

a ∈ C as θa⇔ ⊥ and a ∈ K as A 6 λφ. φa

for any term a : X, possibly including parameters.
The definition of a ∈ K is motivated by the idea in [Wil70, HM81] that a compact subspace is

the intersection of its open neighbourhoods. In a non-Hausdorff space, however, this intersection
may be larger than the original compact subspace, and is called its saturation. Nevertheless, C
and K do have the same “elements” according to the definitions that we have just given. The
account in [J, §8] also treats direct images and compact open subspaces.

8.10. Because of the lattice duality of the axioms that we have introduced so far (§§7.8f), there
is a dual notion to compactness. We call it overtness, and it is related to the existential quantifier.

By the same arguments as for compact Hausdorff spaces [C, §§6–9],
(a) 0 and 1 are overt, as are X × Y and X + Y if X and Y are;
(b) any open subspace of an overt space is again overt;
(c) any equaliser or pullback of overt spaces targeted at a discrete space is overt;
(d) any overt subspace of a discrete space is an open subspace;
(e) any direct image of an overt space is overt;
(f) any map from an overt object to a discrete one is an open map; and
(g) any mono f : X � Y from an overt object to a discrete one is an open inclusion, classified by

θ ≡ λy. ∃x. (fx =Y y).
See [C, §§8 & 10] for the proofs, which were inspired by similar results in [JT84]. We spell out the
last part, as it will be important later. Define

F : ΣX → ΣY by Fφ ≡ λy :Y . ∃x:X. φx ∧ (fx =Y y).

Then
Fφ(fx) ⇐⇒ ∃x′ :X. φx′ ∧ (fx′ =Y fx) ⇐⇒ ∃x′ :X. φx′ ∧ (x′ =X x) ⇐⇒ φx

by §8.6. Hence f : X � Y is Σ-split, and X ∼= {Y | E} by §6.8, where E ≡ Σf ·F . Expanding E,
we find that X ⊂ Y is the open subspace classified by θ (§8.3).

8.11. We have made a lot of use of the analogy between (Stone duality for) set theory and
topology. This is no longer applicable in the case of partial maps, where the Phoa principle makes
the topological account much simpler than the set-theoretic one [D].

In Rosolini’s theory of dominions and dominances (§7.3), a partial map (i, f) : X ⇀ Y consists
of an “open mono” i : U ↪→ X and an (ordinary or “total”) map f : U → Y .

U
f - Y

X

i

?

∩

..................- Y⊥
?

∩

Then Y ↪→ Y⊥ is a partial map classifier or lift if, for every partial map X ⇀ Y , there is a
unique total map X → Y⊥ that makes the square a pullback. In particular, 0⊥ = 1, 1⊥ = Σ and
Σ⊥ = ΣΣ, but this coincidence ends there.

Classically, as the notation suggests, Y⊥ is obtained by adding a single point ⊥ to Y , to serve as
the “undefined” value of fx for x /∈ U . In topology, when U ⊂ X is Scott open, and in particular
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upper, ⊥ must lie below Y in the order. In intuitionistic set theory, on the other hand, we need
higher order logic to define Y⊥ ⊂ P(Y ) as “the set of subsets with at most one element”.

Using the monadic framework and the Phoa principle, we obtain Y⊥ in a much simpler way
via its topology. This forms a comma square,

ΣY⊥ - Σ

ΣY
?

id - ΣY ,
?↗

which is defined like a pullback except that the order 6 replaces equality in the bottom right. So

ΣY⊥ ≡ {(ψ : ΣY , σ : Σ) | σ ⇒ ψy}

in set-theoretic notation. Since this is a retract of ΣY × Σ, we may also construct the comma
square in this way in ASD.

We also need to define the Eilenberg–Moore algebra structure on ΣY⊥ and prove the universal
property of Y⊥. The latter involves maps X → Y⊥, which are homomorphisms out of ΣY⊥ , whereas
the definition of a comma square uses incoming maps. It’s not difficult to prove the result using
Scott continuity, but without this it’s rather delicate. The key idea is the isomorphism

{(β, δ) | α ∧ β 6 δ 6 α}
β ∨ δ ≡ γ-
∼=�

δ ≡ α ∧ γ
{(β, γ) | β 6 γ 6 α ∨ β}

that follows from distributivity, but is actually a weaker property called modularity that holds in
many lattices of subalgebras, such as those of groups and vector spaces.

8.12. This comma square construction is a special case of Artin gluing, which recovers the
topology of a space from those of an open subspace and its closed complement, together with a
map that encodes the way in which these fit together [AGV64, Exp. IV §9.5].

However, the general version of Michael Artin’s construction does not work in ASD, because
it is computable topology and so inherits some of the strange behaviour of computability theory.
In particular, the open (RE) subspace of N consisting of codes of terminating programs does not
glue to its closed (co-RE) complement in anything like the Artin fashion [D, §4].

The special case of the lift is also known is topology as the scone (Sierpiński cone) and in
topos theory as gluing or the Freyd cover. See [Tay99, §§7.7 & 9.4] for further mathematical and
historical discussion.

9 Discrete mathematics

Although we began by rejecting set theory as foundations, we still need some account of “sets”
as discrete spaces for combinatorial purposes, especially in algebraic topology, and to study com-
putation itself. Even within general topology, sets of some kind are needed to index the families
of open and compact subspaces in a locally compact space (§§5.8ff), where the discrete name is
needed because the terms that encode the subspaces in the pair vary in opposite directions (§§8.4
& 8.8) with respect to the intrinsic order (§8.2) [G].

We do not expect our “computable set theory” to be anywhere near as powerful as the tra-
ditional one (cf. §10), but category theory provides suitable weaker alternatives. However, our
monadic framework will need to be modified in order to reason by induction.
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Since the importance of the results about ASD that we describe in this section only emerged
gradually and piecemeal, they come from throughout its development. On a larger scale, this is
of course also true of the history of symbolic and categorical logic.

9.1. Let’s look first at the properties that a category of “discrete” spaces might have in a com-
putable theory. A pretopos is a category E that has
(a) finite products (1 and ×);
(b) equalisers and pullbacks;
(c) an initial object 0 that is strict, i.e. any N → 0 is an isomorphism;
(d) finite coproducts (+) that are disjoint, and stable under pullback;
(e) quotients of equivalence relations that are stable under pullback, and effective in the sense

that the kernel of the quotient is the given equivalence relation.
Finite limits and stable effective quotients of equivalence relations were studied in category

theory long before it considered logic, because categories of finitary algebras inherit them from
sets [BGvO71]. As the name suggests, pretoposes capture (the finitary) part of the notion of
(Grothendieck) topos, in a characterisation due to Jean Giraud. [Gir72]. This included stable
disjoint coproducts, but they were later reformulated in a new way called extensivity [Coc93,
CLW93]. This is very useful, because it is often technically easier to check that it holds in many
categories of “spaces”, understood in the very general sense of §4.2. Several textbooks include
accounts of pretoposes, including [Tay99, Ch. V].

9.2. The sense in which we use the word “discrete” in ASD, namely having equality (§8.6), is
too weak for this purpose. We shall take overt discrete objects as our “sets” i.e. those that also
have ∃ (§8.10), and we adopt the convention of using N and M for these objects, since they have
the topological properties of N.

We know from §8.10 that finite limits and coproducts of overt discrete objects are again overt
discrete. But they also admit stable effective quotients of open equivalence relations [C, §10]. To
prove this, we have to construct the topology of the quotient, ΣN/R, as a Σ-split subspace of ΣN .
Then N/R itself is a Σ-split subspace of Σ2N , given by the nucleus λFF . F

(
λx. F(λφ. ∃y. R(x, y)∧

φy)
)

[B, Ex. 11.13].
Overt discrete spaces therefore form a pretopos, as do compact Hausdorff spaces, since we still

have lattice duality. It was because of this remarkable result that I decided in 1997 to devote my
entire research effort to ASD.

9.3. In the extreme case, every object of the category S is overt discrete. This brings us back to
the Lindenbaum–Tarski–Paré theorem (§§4.5 & 5.3), as we now have enough structure to complete
the characterisation of set theory (§2.10). Any category S is an elementary topos iff it satisfies
(a) the axioms for the monadic framework in §6.1;
(b) the Euclidean principle §8.1(c); and
(c) every object is overt and discrete.
Since every map goes from an overt object to a discrete one, every mono is an open inclu-
sion (§8.10(g)), i.e. classified by an element of Σ. Also, discreteness of Σ makes it into a Heyting
algebra, where σ ⇒ τ is σ =Ω (σ ∧ τ) [C, §11].

This does not, however, describe the computational situation, in which there can be no oper-
ation like ¬, ⇒ or =Σ, because it would solve the halting problem [Tur35]. For the same reason,
the subspace of N consisting of codes for non-terminating programs is not overt.

34



9.4. The main concerns in the foundations of discrete mathematics are of course the natural
numbers, induction and recursion. The numerals themselves emerge from the introduction rules:
zero and the successor operation. The elimination rule,

Γ ` z : X Γ, n : N, x : X ` s(n, x) : X

Γ, n : N ` rec(n, z, s) : X

for which the η-rule is rec(n, 0,+1) = n and the β-rules are

rec(0, z, s) = z and rec(n+ 1, z, s) = s
(
n, rec(n, z, s)

)
,

defines primitive recursion at type X. We sometimes specify the type when it is necessary to
restrict its generality, because some logical investigations become too difficult for arbitrary types.
In symbolic logic, the defining expressions z and s are naturally understood to allow parameters,
which it is the role of the context Γ to manage (§2.2).

Bill Lawvere captured these ideas categorically by observing that (N, 0,+1) is the free algebra
for the endofunctor 1+(−); then the universal property compares it with another algebra (X, z, s).
However, as with ∨ and ∃ (§2.5(e)), this does not make allowance for parameters. One way to
handle them is by using recursion at type XΓ, if we are working in a cartesian closed category,
but our category S does not have general exponentials like this, so we shall keep the explicit
parameters.

9.5. Many familiar things can be defined by recursion on N, not least its arithmetic, but we
just note those that we shall need later in this paper. In particular, we may define a map cmp :
N× N→ N using the equations

cmp (0, 0) = 1 cmp (n+ 1, 0) = 2
cmp (0,m+ 1) = 0 cmp (n+ 1,m+ 1) = cmp (n,m),

whilst φ(0) = ⊥ and φ(n + 1) = > give one φ : N → Σ. From these we derive the six relations
=, 6=, <, >, ≤ and ≥ and their usual properties as terms of type Σ on N, which is therefore both
discrete and Hausdorff.

Notice that we distinguish the symbol ≤ for the arithmetical order from the logical order 6
that is defined on ΣX (§8.2). Then ≤ is imposed structure, because functions N→ N do not have
to preserve it, whereas ⇒, 6 and v are intrinsic, in that every morphism necessarily preserves
them.

Hence, for each numeral n, the object n ≡ {m : N | m < n} may be defined as a subspace of N
that is both open and closed. It is also both overt and compact, with quantifiers that are definable
from ∨ and ∧ by primitive recursion.

9.6. There are tricks for encoding pairs and lists as integers, but they are computationally
expensive, whilst logic and functional programmers have long known a better way of doing things.
A simple modification of the definition of N yields a very useful and general data structure, T, of
binary trees. Instead of the unary successor operation for N, T has pairing, which is written [ a b ],
whilst the projections are called car and cdr in memory of some ancient hardware [McC78]. This
is also of theoretical utility, because List(T) ∼= T, where

[a, b, c, . . . , z] ≡ [ a [ b [ c [ . . . [ z 0 ] . . . ] ] ] ].
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9.7. Combining N or T with the structure of a pretopos gives a very expressive setting, in which
we may do anything we like of a combinatorial nature, i.e. definable using explicit enumerations.

In particular, the quotient of a finite object n by an equivalence relation is finitely generated
but not necessarily finitely enumerated, i.e. it can be listed, but possibly with repetitions [Tay99,
§6.5]. This weaker notion of finiteness is due to Kazimierz Kuratowski [Kur20]. It is more relevant
to logic, because we may regard the free semilattice on a set as its collection of Kuratowski -finite
subsets [Mik76, Appx 2], so we write K(N) for what is elsewhere called the finite powerset.

These are the properties that are taught to first year mathematics and computer science un-
dergraduates as näıve set theory or discrete mathematics.

In category theory, an arithmetic universe is a pretopos in which any object N generates a free
monoid List(N), from which we may derive K(N) and other free algebras. This notion was intro-
duced by André Joyal in 1973, as a way of formulating Gödel’s incompleteness theorem [Göd31] in
a categorical way, but unfortunately he has never published his results. Maria-Emilia Maietti has
given a symbolic calculus for arithmetic universes in the style of Martin-Löf [Mai03, Mai05]. One
symptom of the paucity of literature on this important topic is that some disagreement remains
about the precise details of the definition, in contrast to the more rigorous attention that was
given to elementary toposes (§§3.2,5.3).

9.8. It is all very well constructing terms by recursion, but we also want to prove properties
of them by induction. Since recursion may be used within terms, and not just on the outside,
induction does not follow directly from the rules above, and is treated separately in symbolic logic:

Γ ` f0 = g0 : X Γ, n : N, fn = gn : X ` f(n+ 1) = g(n+ 1) : X

Γ, n : N ` fn = gn : X

Notice that, in order to prove some equation fn = gn : X by induction, we need to be able to
state it as an induction hypothesis [E, §2].

Categorically, induction can be treated as a special case of recursion, but only when we have
the additional structure of the equaliser type:

Γ× N ..................- {Γ, n : N | fn = gn : X}- - Γ× N
f -

g
- X

As is common with universal properties, we use them twice: once to obtain the dotted map, and
again to say that the composite Γ×N→ Γ×N has to be the identity, which we obtain symbolically
from the η-rule. It follows that the inclusion into Γ× N is the whole thing.

9.9. Notice that these equalisers or equational hypotheses have arisen for logical reasons, so I
believe that we probably ought to understand them proof-theoretically (§12). For the time being,
however, we may give them a meaning amongst either Bourbaki spaces or locales, in either of
which we have
(a) the whole category, L, which has all equalisers, but not ΣΓ for all Γ ∈ L (§5.4), and
(b) the full subcategory S of locally compact objects, which has ΣX for all X ∈ S, but not all

equalisers.

36



9.10. The abstract theory needs to reproduce this situation. Plainly N should be a “set” in the
sense of §9.2, so we must also say that it admits existential quantification. Besides the axioms in
§§6.1 & 8.1, we therefore require
(a) another category L that has all finite limits, in which
(b) S ⊂ L is a full subcategory,
(c) the universal properties of 1, × and Σ(−) hold in S for test objects Γ ∈ L,
(d) there is a natural numbers object N ∈ S ⊂ L that has
(e) existential quantification, ∃N : ΣN → Σ, so it is overt (§8.10), and
(f) primitive recursion at all objects of L, with parameters from L too.

In the symbolic language, we distinguish between types (corresponding to objects X ∈ S) and
contexts (Γ ∈ L). Any type X has a topology ΣX , whilst a context Γ may include equational
hypotheses, so this extension subsumes the one that we made in §8.4.

The existential quantifier ∃N breaks the open–closed duality in topology, since we do not equip
N with a universal quantifier too. Topologically, this is because N is not compact [C, 7.11],
whilst computationally it is not possible to observe an infinite conjunction in the way that it is a
disjunction.

9.11. Whilst N exposes one flaw in the monadic framework, in another way it shows its conceptual
strength. We call a predicate Γ ` φ : ΣN a description if it ought to be “uniquely satisfied” in the
sense that

Γ ` > ⇔ ∃n. φn and Γ, n,m : N ` φn ∧ φm ⇒ n = m : N.

From sobriety of N (§6.3) we deduce that φ actually has a witness (definition by description),
namely

the n. φn ≡ focusN(λψ. ∃m. φm ∧ ψm).

It is easy to show that P ≡ λψ. ∃m. φm ∧ ψm satisfies the lattice-theoretic characterisation of
primality, but use of that depends on Scott continuity (§11.6). Deducing the λ-calculus definition
from primitive recursion is a little trickier [A, Prop. 10.8].

Conversely, any prime P : Σ2N gives a description (easily [A, Prop. 10.4]) by

φn ≡ P (λm. m = n).

The defining conditions for a description and its operator, “the”, provide the introduction rule for
another symbolic calculus. The elimination rule says that

ψ(the n. φn) ⇐⇒ ∃n. φn ∧ ψn,

the β-rules justify the name “the n. φn”,

> ⇔ φ(the n. φn) and φm ⇒ m =N the n. φn,

and the η-rule says that, for any n : N, the predicate φm ≡ (n =N m) is a description, with
n = the m. φm. Like focus, the description operator can be eliminated everywhere except on the
outside of the term.

A description with parameters are is called a functional relation, and the corresponding function
assigns witnesses for each value of the parameters.

Definition by description is easy to overlook as a principle of reasoning in mathematics. It was
first formulated correctly by Giuseppe Peano [Pea97, §22], including the elimination theorem and
the need to prove the properties of φ before introducing the n. φn. Numerous other accounts,
most notably [RW13, *14], have failed to do this. It is nevertheless much more familiar than
the abstract notion of sobriety in the monadic framework, so we have another example in which
different axioms are appropriate in accounts of foundations and applications (cf. §3.8).
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9.12. The notion of general recursion weakens that of definition by description into a form that
is more akin to computation. It involves a search or minimalisation operator µ such that, for any
partial map f : N ⇀ 2,

µ(f) = n iff f(n) = 1 but ∀m < n. f(m) = 0.

If f is total and ∃n. (fn = 1) then φ ≡ λn. (fn = 1) ∧ Um < n. (fm = 0) is a description, for
which µ(f) = the n. φn. However, we can use Rosolini’s treatment of partial functions (cf. §7.3),
together with the construction of N⊥ in §8.11, to define µ(f) for all f : N ⇀ 2.

First we need the fact that 2⊥ is given by the closed subspace of Σ×Σ co-classified by λστ. σ∧τ ,
and (2⊥)N by that of ΣN × ΣN co-classified by λφψ. ∃n. φn ∧ ψn.

The predicate θn ≡ φ(n)∧Um < n. ψm satisfies the uniqueness requirement for a description,
when we restrict (φ, ψ) to the closed subspace (2⊥)N ⊂ ΣN × ΣN. Then, on the open subspace
P ⊂ (2⊥)N classified by ∃n. θn, i.e. the uniqueness condition, θ is a description, so defines a total
map P → N and a partial one (2⊥)N ⇀ N. The corresponding total map µ : (2⊥)N → N⊥ is the
required minimalisation operator.

9.13. Given that the entire discipline of denotational semantics of programming languages is
based on Scott continuity, it may come as a surprise that we can interpret general recursion
without using it. This is because the (old-fashioned) search operator µ is only suitable for direct
coding using base types such as N or T.

For terms and parameters of these types, Scott continuity is a theorem, essentially the one of
Henry Rice and Norman Shapiro [Ric56]. For any class U of programs that is recursive enumerable
using tests on their coding and pointwise values, a partial function is representable by a member
of U iff it contains some function with finite support that is also representable.

Looking at this type-theoretically, Scott continuity is provable for any expression with no free
variables of type higher than ΣN. This is valid in practice for computation, because a program
cannot proceed if there are any free variables (i.e. undefined values or sub-routines) at all. On the
other hand, we use Scott continuity in the theory, not just to allow free variables, but because of the
powerful conceptual analogy with general topology. ASD tightens this analogy by reformulating
topology to fit Scott’s theory of computation exactly.

We began this section by saying that overt discrete objects play the role of sets, but we have
actually only used subquotients of N. We need a further assumption in order to be able to work
with abstract overt discrete spaces, i.e. general types for which ∃ and = can be defined. Assuming
Scott continuity, all overt discrete objects are subquotients of N, and form an arithmetic universe
(§11.7).

10 Underlying sets

Since the work [H] on which this section is based was stalled, I need to look at it again to check
certain assertions below.

In this section we consider an additional axiom that has the effect of turning the full subcategory
of overt discrete spaces from a pretopos into an elementary topos. This allows us to compare ASD
more closely with the textbook theories of topology that are based on set theory or toposes.

Since the new structure is not computable, it is a diversion from our main goal of formulating
computable topology — I believe that the important features of general topology only depend on
computable foundations. Nevertheless, it is methodologically important, because it shows which
features of traditional topology we must sacrifice in the computable account.

The details behind this section may be found in [H]. It offers one way in which the ideas of
ASD might be extended beyond locally compact spaces, but there are currently no models apart
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from LKLoc with which to compare them. Nor is is clear whether this extension is compatible
with the one that we discuss in §12.

10.1. Recall that the category BbkSp of Bourbaki spaces is related to the category of sets by
the adjunctions in the diagram on the left, in which the downward functor yields the underlying
set of points of a space and its adjoints equip any set with its finest and coarsest topologies.

BbkSp Loc ≡ Frmop

Set

discrete

6

6
a
?

a indiscriminate

6

6

Set

powerset

6

6
a primes
?

Considered as a frame, the powerset of a set provides its discrete topology, and therefore the
left adjoint in the second diagram. Notwithstanding the fact that locales need not have enough
primes (§4.2) or points [Joh82, §II 1.3] to make the functor faithful, the set of them gives the right
adjoint. However, there is no such thing as the “indiscriminate” topology in locale theory, since
by definition any locale has exactly the points that are determined by its open sets.

Topological spaces are axiomatised intrinsically in ASD, but could they possibly have “under-
lying sets” in a sense like this? As we explained in the previous section, overt discrete spaces play
the role of sets, so the inclusion ∆ : E ⊂ S of this full subcategory corresponds to the “discrete
topology” functor above.

S

E

∆

6

6

a U

?

In this section, therefore, we assume that this inclusion has a right adjoint U, called the underlying
set functor. Since the objects of ASD, like locales, are all sober, there is no indiscriminate topology.

Recall our convention that N and M denote overt discrete objects.

10.2. What is the underlying set of the Sierpinski space Σ or of the topology ΣN? As we might
expect from §§7.5 & 5.4, they are respectively the subobject classifier Ω and powerset ΩN of N
in E . In particular, E is a topos.

The subcategory E ⊂ S is closed under finite limits, including 1, products, equalisers, pullbacks
and monos. Also, any mono in E , being a map from an overt object to a discrete one, is an open
inclusion (§8.10(g)). Hence any binary relation from N to M in E , i.e. a mono i : R ↪→ N ×M ,
is classified by φ : N ×M → Σ in S, as in the diagram on the left.

R - (∈Σ
M ) - 1

R - 1

(∈Ω
M ) -

--

1 ===
===

=

N ×M

i

?

∩

- M × ΣM
?

- Σ

>

?

N ×M

i

?

∩

φ - Σ

>

?

M × UΣM
?

-

--

UΣ
? εΣ

-

This square factorises into the two pullback squares at the back of the diagram on the right; in
particular, φ = ev · φ̃, where φ̃ : N → ΣM is the transpose of φ. As the functor U preserves
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pullbacks, it takes the squares at the back of the diagram to those on the left and front (from R
to UΣ). Hence

(∈Ω
M ) ≡ U(∈Σ

M ) ↪→M × UΣM

is the generic binary relation on M , as required to make E a topos.
The object U(ΣM ) has the universal property of the exponential ΩM within E , i.e. when we

test it with maps N → U(ΣM ) from overt discrete objects. However, this does not extend to
general test objects in S, and for this reason we prefer to write ΩM ≡ U(ΣM ) instead of ΩM .

10.3. For reasons that we shall explain in §10.8, we say that an object X ∈ S has
(a) enough points if there is some epi N � X, in which case N ≡ UX has this property; and
(b) enough opens if there is some equaliser X � ΣN ⇒ ΣM , in which case we may choose

N ≡ U(ΣX) and M ≡ U(Σ3X), cf. §6.2.
The converse to the result of the previous paragraph is that, if E is a topos then there is a

partial right adjoint U that is defined on those objects that have enough opens.

10.4. We want to compare ASD with other theories of topology. The latter, i.e. the categories of
frames, locales, locally compact locales and so on, can be constructed over any topos, such as E , in
essentially the same way as they are defined over sets. We can even pretend that our E is Set, so
long as we understand “set theory” to mean the structure of an elementary topos. Our category
S can also be treated in this way, because it is E-enriched, i.e. its “homs” S(X,Y ) can be given
the structure of objects of E .

The difference between ASD and the other theories is that
(a) the axiomatisation of the category S in ASD captures topological structure that is intrinsic

to the category; whereas
(b) the structure in the other theories is imposed on (objects of) E .
For example, 6 (§8.2) is intrinsic to ΣX , but the arithmetical order ≤ is imposed on N (§9.5).
Notwithstanding its universal property, the structure on the object Ω, including ¬ and ⇒, is
imposed in this sense (§10.7).

The objective is to show that the whole of our category S is equivalent to some category that
is (re)constructed from objects of the subcategory E .

10.5. We may compare S with categories such as Loc that are defined over E . Consider the ad-
junctions amongst Sop, S and E that are given by the monadic framework (§6) and the underlying
set hypothesis (§10.1), as shown on the left:

- Sop A

S

Σ(−)

6

a Σ(−)

?
Σ

E

∆
6

a U

?
�

Ω

E

6

a

?

It is convenient to write Σ a Ω for the composite functors. These induce a monad on E , so let A
be its category of Eilenberg–Moore algebras, and there is a comparison functor Sop → A.

Even though Sop � S was assumed to be monadic, the composite need not be, i.e. the functor
Sop → A need not be an equivalence. It is, however, full and faithful in the case where every
object of S is definable in the monadic framework. This happens, for example, when S is the
category of locally compact locales (§5.10).
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In general, this functor need only identify a full subcategory of S with one of Aop. The former
consists of the spaces that have enough opens (§10.3), but further hypotheses are needed to fix
the latter. In particular, we need Scott continuity to say that the monad on the topos E agrees
with the one for Frm (§§4.4 & 11.8).

10.6. The symbolic formulation of the underlying set functor is one of the clearest examples of
translating an adjunction into a system of type-theoretic rules (§2.11). For any type X ∈ S, we
have
(a) another type, the underlying set, UX;
(b) as this is overt, an existential quantifier, (∃UX) : ΣUX → Σ;
(c) as it is discrete, an equality, (=UX) : UX × UX → Σ;
(d) for any overt discrete context Γ ∈ obE , a transposition (U-introduction)

Γ ` a : X

Γ ` τ . a : UX

where the τ is accompanied by a dot because, like λ-abstraction, it is not an algebraic symbol
but an operation on terms-in-context (whilst τ doesn’t change the context Γ, it does depend
on its belonging to E);

(e) the counit (U-elimination), which is a function-symbol x : UX ` εx : X;
(f) satisfying the β- and η-rules

Γ ` ε(τ . a) = a : X and x : UX ` x = (τ . εx) : UX.

In short, τ . may be applied to any term so long as all of its free variables are of overt discrete
type. In other words, it allows variation over a “combinatorial” structure but not a “geometrical”
one.

10.7. The overt discrete object Ω carries imposed operations (f, g, ≤) that make it a distributive
lattice. These are just the U-images of the homologous intrinsic operations (∧, ∨, ⇒) on Σ, which
remain nullary and binary on Ω because U (being a right adjoint) preserves products. In particular,
(≤) : Ω× Ω→ Σ, cf. equality for discrete spaces in §§8.6 & 9.3.

But unlike Σ, Ω also has the imposed structure of a complete Heyting algebra, as does the set
(E-object) ΩX ≡ U(ΣX) of opens of any space X, where (⇒) : ΩX × ΩX → ΩX is defined by

(φ⇒ ψ) ≡ τ . λx:X. ∃θ :UΣX . εθx ∧ (φf θ ≤ ψ)

and
∨

: ΣΩX → ΣX by
∨
F ≡ λx:X. ∃θ :UΣX . Fθ ∧ (εθ)x.

Moreover, for any map f : X → Y in S, we have f∗ a f∗ with respect to the imposed order
inherited from Ω, where

f∗ψ ≡ Ωf ≡ τ . λx:X. (εψ)(fx)

and f∗φ ≡ τ . λy :Y . ∃θ :UΣY . (εθ)y ∧ (f∗θ ≤ φ).

10.8. Using this notation, we can ask whether the intrinsically continuous functions in the cat-
egory S that we have axiomatised directly agree with the imposed structure of the categories of
locales and Bourbaki spaces over the topos E . If we are given an S-morphism g : X → Y , the
maps f ≡ Ug and H ≡ g∗ make the two squares commute:

UX
f - UY ΩUX �

f∗
ΩUY

X

εX

? g - Y

εY

?
ΩX

ε∗X

6

� H
ΩY

ε∗Y

6
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Conversely, if X has enough points (εX : UX → X is epi, §10.3) then ε∗X : ΩX � ΩUX is split
mono, so ΩX is a sublattice of the powerset of the underlying set of X, as in a Bourbaki space.

Then we may say that a function f between the underlying sets is continuous in the imposed
(Bourbaki) sense if there is a map H that makes the square on the right commute. If X has
enough points and Y has enough opens (§10.3) then f and H arise from some unique S-map g.

Once again, we have a lot of structure that looks like topology, even though we have said
nothing to ensure that the category A of “algebras” in §10.5 is actually that of frames over E .
The relevant condition is one of the formulations of Scott continuity that we consider in the next
section (§11.8). The result is that the full subcategory of spaces with enough points and enough
opens is equivalent to the category of sober Bourbaki spaces over E , and the whole category of
Bourbaki spaces is equivalent to a full subcategory of the comma category E ↓ S.

We shall not assume the underlying set axiom in the remainder of this paper.

11 Scott continuity

Although it is remarkable how much the theory already looks like traditional general topology
without invoking it, we come to the point where we actually have to say that all functions are
Scott continuous as an axiom.

Since this axiom completes the theory of locally compact spaces, we are moving into the
territory of a user-oriented account (cf. §3.8), but certain foundational issues remain. One of these
is the question of which statement of the Scott continuity axiom we should adopt, since there are
several candidates that arise from some of the applications of this idea.

11.1. Denotational semantics generalises the notion of recursion from minimalisation (µ, §9.12)
to fixed points of operators of higher types. Applying the operator F repeatedly to ⊥ gives an
increasing sequence φn ≡ Fn⊥. Then F fixes the join of such a sequence if we assume the rule

Γ, n : N ` φn : ΣU Γ, n : N ` φn 6 φ(n+ 1) : ΣU Γ, ψ : ΣU ` Fψ : ΣV

Γ ` F (∃n. φn) = ∃n. F (φn) : ΣV

In this case, every space has and every map preserves joins of definable ascending chains with
respect to the v order (§8.2). Also, on any object that has ⊥, every endomorphism has a least
fixed point [Tay91].

11.2. Turning to real analysis, a common use of the Heine–Borel theorem (§1.7) is to derive a
uniform value that is valid throughout a compact space K from local values at each point. For
example, b : R is an upper bound on a function f : K → R at x if θ(x, b) ≡ (fx < b)⇔ >. Then
θ is monotone in the sense of taking the imposed arithmetical order ≤ on R to the intrinsic one
⇒ on Σ:

. . . , b ≤ b′ ` θ(x, b) =⇒ θ(x, b′).

The δ > 0 that is used in the ε–δ definitions of continuity, differentiability, etc., is similar, but the
defining property reverses the arithmetical order:

. . . , 0 < δ ≤ δ′ ` θ(x, δ) ⇐= θ(x, δ′).

In either case, by compactness, the quantifier UK satisfies

Uk. ∃b. θ(k, b) =⇒ ∃b. Uk. θ(k, b).

In [J, §§9–10] this is used to prove that any expression Γ, x : R ` a : R is continuous in the
ε–δ-sense, and uniformly so on any compact domain.
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This principle, in which the second argument of θ ranges over R, is equivalent to its analogue
with Q instead. The latter is preferable foundationally (cf. §3.8), as we would like to work with
overt discrete spaces (§9).

11.3. The indexing objects N and Q in these two properties have max operations, whilst we may
form binary unions of finite open subcovers, so the common pattern is a directed join. In practice,
we have a set (overt discrete space) N of indices, equipped with an imposed semilattice operation
(+). Then we select an open subsemilattice of N classified by α : ΣN . As in §5.8, we use sub- and
super-scripts to indicate co- and contra-variance with respect to this imposed order on N . Then
a directed join, written ∨

�

{n:N |αn}

φn ≡ ∃n:N. αn ∧ φn,

involves a pair of families (αn, φn) such that

> ⇔ ∃n. αn, αn ∧ αm ⇔ αn+m and φn ∨ φm 6 φn+m.

Then we say that F preserves this join if F (∃n. αn ∧ φn) = ∃n. αn ∧ Fφn.
To do this, + does not actually need to satisfy the equations for a semilattice, so the leading

examples of (N,+) are (N,max), (Q,max), (Q,min), (K(M),∪) and (List(M),+) for any overt
discrete M .

11.4. In the first instance we shall be content with N ≡ N, although it is equivalent but more
useful to take N ≡ T instead, since List(T) ∼= T (§9.6). For either of these Ns, we assert the Scott
continuity axiom in the form

F : ΣΣN

, φ : ΣN ` Fφ ⇐⇒ ∃`:ListN. F (λn. n ∈ `) ∧ Un ∈ `. φn.

Consider in particular φ ≡ λx. σ and F ≡ λψ. G(ψ0), for any given σ : Σ and G : ΣΣ. Since
it’s decidable whether a list is empty or inhabited, ∃` reduces to the disjunction of these two cases,
so

Gσ ≡ Fφ ⇐⇒ G⊥ ∨ σ ∧G>.

Hence the Phoa principle follows from that of Scott.

11.5. The Scott axiom for N says that ΣN has a basis as a locally compact space, in the sense
of §§5.8f, with

β` ≡ λn. n ∈ ` and A` ≡ λφ. Un ∈ `. φn.

This corresponds to the classical description of the Scott topology on P(N), whose open sets are
U ≡ {U ⊂ N | ` ⊂ U} for all finite ` ⊂ N.

Another way of putting this is that ΣΣN

is a retract of ΣN , and it is not difficult to extend
this to all objects that are definable using × and Σ(−). Hence any object that is definable in the
monadic framework (§6) is a Σ-split subspace of ΣN [G, §8].

[G] goes on to show how any computably based locally compact Bourbaki space or locale X
may be “imported” into ASD. That is, suppose that X has a basis (Kn, V n) indexed by N , such
that the relation (n ≺≺ m) ≡ (Kn ⊂ V m) is recursively enumerable. Then this relation is a term
n,m : N ` (n ≺≺ m) : Σ satisfying certain properties [G, §11], from which we may define a nucleus
on ΣN [G, §14], and so a type whose interpretation is X [G, §17].
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11.6. It is in this representation that we can show that the λ-calculus definitions of primes and
nuclei (§§6.3 & 6.6) are equivalent to more familiar lattice-theoretic ones [G, §10].

We can also characterise certain classes of definable objects [G, §9]:
(a) any overt discrete space is the subquotient of N by some open partial equivalence relation;
(b) any compact overt discrete space is Kuratowski-finite (§9.7); and
(c) any compact Hausdorff overt discrete space is finite, i.e. of the form {m | m < n}.

From (a) we may derive definition by description (§9.11), the free monoid (List(N), §9.7) and
the Scott principle (§11.4) for all overt discrete N .

Beware, however, that all of these results apply just to objects that are definable in the monadic
framework as we gave it in §6. They will need to be proved again, or may cease to be valid, in a
more general setting (§12).

11.7. Even without assuming that N is definable, we may use the intuitions gained from these
results to construct List(N) for any overt discrete N . The key idea is to encode any Kuratowski-
finite ` ⊂ N by the pair of modal operators (§8.8) that say that ` is overt and compact. Then
List(N) is a Σ-split subspace of ΣΣN×ΣΣN

. It is obtained using a nucleus that is itself defined as
a fixed point, using the basic Scott continuity axiom (§11.1) and a tour de force of techniques in
ASD and domain theory [E].

We deduce that the overt discrete objects form an arithmetic universe (§9.7).

11.8. The general Scott continuity axiom in §11.4 is only meaningful for general overt discrete N
that have List(N) or K(N). But we may obtain the latter from either
(a) the underlying set axiom (§10), in which case P(N) ≡ ΩN exists, and K(N) ⊂ ΩN is the

semilattice generated by N [Mik76, Appx 2]; or
(b) fixed points defined by joins of chains (§11.1).

Armed with these, we are in a position to assert the Scott continuity axiom (§11.4) for general
overt discrete N .

In the setting of classical topology, the weaker axiom would only provide countable unions of
open sets, whereas arbitrary cardinalities are required for the usual theory.

Similarly, in the context of our underlying set axiom, Scott continuity for general general overt
discrete objects is exactly what is required to make the monad in §10.5 agree with the one that
defines the category of frames over E (§4.4). The full subcategory of spaces with enough points
and enough opens then agrees with the category of sober Bourbaki spaces over E .

11.9. Turning to the applications of general topology in elementary real analysis, this axiomatic
setting (in fact, with just §11.1) is enough to construct the Dedekind reals using the nucleus that
we mentioned in §5.12 [I].

We may use this as an experimental test of the prototype axioms (cf. §3.2). The claim is that
ASD is a theory of computable topology, and in particular that its terms x : R ` a : R exactly
capture the computably continuous functions f : R→ R. We already know that the interpretation
of such a term in the model using locally compact locales (§5.10) is continuous, whilst [K] gives
some ideas of how to compute with our calculus.

So, is every classically continuous function f : R → R that can be computed by a program
representable in ASD? First we need to agree on some notion of computability, but whatever yours
is, I would hope that it could be adapted to provide a program π(q, e, t) that takes three rational
arguments and terminates iff e < f(q) < t. Using the denotational semantics of your programming
language, interpreted in the domain theory of ASD, π is a term of type ΣQ3

. From this we may
derive a morphism g : R→ R in ASD whose classical interpretation is the given function f .
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11.10. In foundational studies it has been long been customary to regard R as something con-
structed from N (cf. §1.1(b)), and indeed that is what we too have done [I]. However, the im-
portance of R throughout mathematics and science surely justifies introducing it as a base type,
especially if we can formulate convincing axioms for it.

For these, we propose that
(a) it is an overt space, with ∃R (§8.10);
(b) it is Hausdorff, with an inequality or apartness relation, 6= (§8.6);
(c) the closed interval [0, 1] is compact (§§1.7, 5.7, 5.12, 8.7, 11.2);
(d) R has a total order < with (x 6= y)⇔ (x < y) ∨ (y < x);
(e) it is Dedekind complete, in a sense in which the two halves of a cut are open;
(f) it is a field, where x−1 is defined iff x 6= 0;
(g) and Archimedean, i.e., for x, y : R,

y > 0 ⇒ ∃n:Z. y(n− 1) < x < y(n+ 1).

11.11. Dedekind completeness plays the same role for R that definition by description (§9.11)
does for N, namely to recover numbers from the computation that we do in the arena of logic.
Cuts and primes are inter-definable by

(δ, υ) ≡
(
λd. P (λx. d < x), λu. P (λx. x < u)

)
and P ≡ λφ. ∃d < u. δd ∧ υu ∧ Ux:[d, u]. φx,

showing that Dedekind completeness cannot really be separated from the Heine–Borel theorem [I,
§14].

Once again, there is a system of logical rules, in which the definition of a Dedekind cut is the
premise of the introduction rule for cut(δ, υ), and the elimination rule represents any a : R by the
cut

δ ≡ λd. d < a υ ≡ λu. a < u.

Like focus and descriptions, Dedekind cut operations may be eliminated everywhere except on
the outside of a term. Any cut sub-term has a smallest enclosing sub-term [cut /x]∗σ of type Σ
(typically <, 6= or >), and then

[cut(δ, υ)/x]∗σ ⇐⇒ (λx. σ) cut(δ, υ) ⇐⇒ ∃d < u:Q. δd ∧ υu ∧ Ux:[d, u]. σ.

11.12. The applications of this construction to elementary real analysis are begun in [J]. The
principal objective of this paper is to solve equations defined by continuous functions f : R→ R,
which makes novel use of overt subspaces. By way of an experimental test of our axioms for R
(cf. §3.2), it also proves the traditional characterisation of open subspaces of R as countable unions
of disjoint open intervals, although the words “countable” and “interval” need some qualification.
This result fails in real analysis without the Heine–Borel theorem, in particular in Bishop’s theory
[BB85].

From here there should be no difficulty in developing a theory of differential and integral
calculus on Rn. However, since the version of ASD that we have developed so far only gives an
account of locally compact spaces, we cannot study Banach spaces and functional analysis until
we have a much more general framework than the one in §6.
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12 Beyond local compactness

This section requires more work, and in particular §§12.10ff should be replaced by a less technical
conclusion that describes my current plans.

As we said in §3.7, any generalisation of ASD must go way beyond the category of Bourbaki
spaces. This section describes some investigations I am conducting while I write this story, so it
therefore involves empirical tests, and carries significant risk of failure (§3.9). Indeed, this is just
what has happened to several previous attempts to find models.

12.1. Curiously, one way of extending the traditional categories to have all exponentials is to
add new colimits, specifically quotients of equivalence relations. The new objects, as proposed
by Dana Scott, are called equilogical spaces [BBS04]. Giuseppe Rosolini put them in a sheaf-like
categorical framework [Ros00] that also includes Martin Hyland’s earlier filter spaces [Hyl79], and
there also a cartesian closed extension for locales [Hec06]. Countably based equilogical spaces form
a full subcategory of Bourbaki spaces [MS03].

The equivalence relations in these constructions are not obliged to respect the topological
structure in any way. For example, the four-point object that identifies ⊥ of one copy of the
Sierpiński space with > of another has four open subspaces, but also a discrete two-element
subspace, one of whose open subsubspaces cannot be extended to the whole space. Such objects
owe more to set theory than to topology, but we can modify Scott’s construction to eliminate
them.

12.2. When we considered recursion in §9.8, the main defect that we found in the monadic
framework of §6 was not the lack of function spaces, but that of general equalisers. This was also
the main problem in defining the compact subspace K ⊂ X that corresponds to a modal operator
A : Σ2X (§8.9): we should have K ≡ {x : X | A 6 λφ. φx}, which is the equaliser of λφ. Aφ and
λφ. Aφ ∧ φx.

We adopted an ad hoc solution to this in §9.10, adding a second category L that has equalisers
but not all powers of Σ. It does have some additional function-types, in particular NN and RR,
but not NNN

or RRR
.

Plainly the natural step is to ask for both equalisers and powers of Σ. This simple hypothesis
already leads to some interesting observations: a complicated subtype such as

{x : X | fx = gx : Σ{y:Y |py=qy:ΣZ}}

invites re-writing as {x : X | ∀y :Y . (∀z :Z. pyz = qyz) =. (fxy = gxy)}. Here ∀ is a new kind of
universal quantifier that, at first, we keep separate from U for compactness (cf. §12.6). Also, whilst
we have taken U to bind more tightly than ⇒, the scope of ∀ includes =. but is terminated by `.

12.3. Let’s put this a bit more precisely. As in §6, the lattice structure of the object Σ is not used
in the fundamental construction, so it could perhaps be replaced by a different kind of algebra.

Consider any equaliser i : E � X ⇒ ΣY in a category S with all finite limits and powers of
an object Σ. Then, for any a : Γ→ X such that the composites Γ× Y → X × Y ⇒ Σ are equal,
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there is a unique b : Γ→ E such that a = i · b.
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This property, which is called a partial product, is of interest because it can be stated entirely
within any full subcategory L ⊂ S that is closed under products and regular monos, by which we
mean equalisers targeted at objects of S that need not belong to L.

Following our method (§2.11), we can rewrite this categorical idea syntactically,

x : X, y : Y, p(y) ` αxy = βxy
============================
x : X ` ∀y :Y . p(y) =. αxy = βxy

where p denotes a regular mono into Y . This generalises the diagram to allow the Y there to be the
result of a similar construction, and justifies the informal usage above. By a small modification to
the diagram, it is easy to show that we may substitute for the free variable x under this quantifier,
cf. §2.9.

Since taking the product of the targets of the equalisers provides the intersection of two regular
monos, the logic also has conjunction, for which we write &. Then we have

∀y. p(y) =. (∀z. q(z) =. αxyz = βxyz) a` ∀yz. p(y) & q(z) =. αxyz = βxyz,

which also gives a meaning to ∀y. p(y) =. r(x, y), so long as r(x, y) is formed using ∀=., &, > and
equations.

12.4. Notice that, whilst it may range over any type,
∀ must bind all of the variables that occur on the left hand side of =.,

because we have not allowed the target ΣY to be a dependent product.
One reason for avoiding dependent products is of course that they make things much more

complicated, both categorically and syntactically. This restriction may therefore be loosened if we
can construct examples of such products, or show that they are consistent. A situation in which
we might reasonably expect to do that is indexing over N, or more generally over any space that
is either discrete or Hausdorff.

If you come from a type-theoretic background, you may be tempted to think, “this guy’s just
a categorist, we don’t have any problem with dependent types”, but I would point out that I have
written a PhD thesis and a book on this topic [Tay86, Tay99], mentioned in §2.6. If you insert
parameters into formulae without considering what they mean topologically, you are just being
another logician who dictates foundations to mathematicians (§1.1).

We cannot have dependent products in their full generality if we want to do topology rather
than set theory (cf. §2.9). A category with unrestricted dependent products is called locally
cartesian closed ; since the exponentials are right adjoint to pullback, the latter preserves arbitrary
colimits, in particular epis.
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For example, we write $ for the ascending natural number domain, in which the topological
order agrees with the arithmetical one, and Scott continuity creates a top element, so 0 6 1 6
· · · 6∞, as illustrated on the left:

∞...•
•
•
•

1
∞ - $

0

6

- N

6

Then N → $ is epi (in fact Σ$ � ΣN is split mono), but not surjective, since ∞ has no inverse
image, i.e. its pullback is the initial object.

Therefore, a category of “sober” spaces and Scott-continuous functions cannot be locally carte-
sian closed.

12.5. The new fragment with ∀=., > and & is called equideductive logic. Although it is rather
feeble, it is interesting for a number of reasons. Besides being a pun on Scott’s word, the name is
justified because this is how we reason with proofs of equations in algebra.

Each judgement x : X, y : Y, . . . , a = b, c = d, . . . ` e = f

becomes ∀x : X.∀y : Y. . . . a = b & c = d & · · · ==. e = f.

Here, all of the variables are bound by ∀, but it’s natural to relax this, using free variables of
the new calculus in place of terms on the right of ` that were previously metavariables in proof
rules. The rule for ∀=. does, however, oblige us to bind all variables that occur in the equational
hypotheses a = b, etc., but this seems to be natural. The horizontal line of a proof rule becomes
another =., and the metavariables of the rule are bound by its ∀.

The bonus is that equideductive logic allows us to nest =. arbitrarily deeply. We may write
induction as

∀n. p(0) &
(
∀m. p(m) =. p(m+ 1)

)
==. p(n),

in which p(n) ≡ ∀x:X. · · · is the property to be proved. Note that, because of the variable binding
rule, the variable n can only occur in the equation at the right-hand end of p(n). (Recall from
§12.3 how implications between predicates are reduced to a form with an equation on the right.)

If it is possible to relax this rule, allowing m on the left of the innermost =. below, we may
express course-of-values induction or well-foundedness of < as

∀n.
(
∀m. (∀k. k < m =. p(k)) =. p(m)

)
==. p(n).

Equideductive logic may be interpreted in the category of (sober) Bourbaki spaces, in the ob-
vious way, namely by quantification over sets of points. However, having identified it categorically
as a partial product, we may look for other semantic interpretations. These might include the
category of locales or formal topology, but this is not clear.

In any model such as these, there are accidental containments between regular monos, repre-
sented syntactically by judgements p(x) ` q(x) that need not follow from the axioms. In what
follows, we shall understand the calculus in a purely syntactic way, without allowing particular
concrete interpretations to impose accidental judgements over which we have no control. After
that, we can add new axioms according to our own purposes (§12.11).

48



12.6. Combined with the lattice structure on the Sierpiński space, equideductive logic is also just
what we need to form open, closed, compact and overt subspaces in ASD. Some of the following
examples were first observed by Matija Pretnar.

As in §8.2, we use ⇒, 6 and v for the order relation that arises from the lattice structure
on Σ. The Gentzen rules (§8.5) relate these orders to the new implication. Starting from these
rules in the form

x : X, αx = > ` βx = >
====================

x : X ` αx ⇒ βx
and

x : X, βx = ⊥ ` αx = ⊥
====================

x : X ` αx ⇒ βx

the translation above yields

(∀x.αx = > =. βx = >) /==. (∀x.αx⇒ βx) /==. (∀x.βx = ⊥ =. αx = ⊥).

Also recall that, via λ-abstraction, the bottom line of the rules is the the definition of α 6 β.
This means that we may interpret any term α : ΣX as an equideductive predicate ∀x.αx = >,

the corresponding regular mono being an open inclusion (cf. §7.2). Then the lattice order relations
⇒, 6 and v are special cases of =.. Similarly, the rules for ∧ and ∨ say that ∧ is a special case
of &:

α = > & β = > /==. α ∧ β = > and α = ⊥ & β = ⊥ /==. α ∨ β = ⊥.

Recall that =N in a discrete space N (§8.6) was also a special case of general equality of terms,

n = m /==. (n =N m) = >, whilst h = k /==. (h 6=H k) = ⊥

in a Hausdorff space H. The quantifier U in a compact space is related in a similar way to our
more general quantifier ∀, cf. §5.7:

(∀x. φx = >) /==. (Ux. φx) = >, whilst (∀x. φx = ⊥) /==. (∃x. φx) = ⊥

in an overt space.

12.7. We can therefore just use the traditional symbols =, ∧, ⇒ and ∀, without the variants
=N , &, =. and U, but they generate two different logics:
(a) The inner one provides the terms of type Σ, which are observable properties or open subspaces;

computably continuous functions are derived from these.
(b) The outer one is the logic of provable properties and general subspaces.

We may form =, 6=, ∀ or ∃ within the inner calculus so long as the relevant space is discrete,
Hausdorff, compact or overt, as before. The other cases, including⇒, take us to the outer calculus.

By an idea that has seen many uses in logic, the formulae

(pg q)(a) ≡ ∀στ :Σ. (∀a′. p(a′) =. σ = τ) & (∀a′′. q(a′′) =. σ = τ) =. σ = τ

and (∃x. p)(a) ≡ ∀στ. (∀a′x. p(x, a′) =. σ = τ) =. σ = τ

extend ∨ and ∃ from terms of type Σ to general predicates. However, they only obey the distribu-
tive and Frobenius laws

(pg q)(~a) & r(~b) a` ((p&r)g (q&r))(~a,~b) and (ΞIx. p)(~a) & r(~b) a` (ΞIx. p&r)(~a,~b)

when the variables ~a and ~b are disjoint. Also, unlike their powerful namesakes in intuitionistic
logic, they do not allow us to recover a witness for ΞI, or knowledge which disjunct (p or q) was
true.
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12.8. Since we defined ∀=. in §12.3 from equalisers of exponentials, we may form subspaces
using comprehension, and terms belong to the subspace iff they satisfy the defining predicate.
Unlike the nuclei in §6, these may be manipulated in a way that is very similar to set theory. In
particular, open, closed, compact and overt subspaces of X are given by

{x | θx = >}, {x | θx = ⊥}, {x | ∀θ.� θ ⇒ θx} and {x | ∀θ.θx⇒ ♦ θ}.

We can use the arbitrarily nestable implications in equideductive logic to write more compli-
cated definitions in general topology. For example, the overt subspace I ⊂ X defined by a modal
operator ♦ is connected [J, §13] if

♦> ⇔ > and . . . , φ, ψ : ΣX , φ ∨ ψ = >I ` ♦φ ∧ ♦ψ ⇒ ♦(φ ∧ ψ).

In the new notation, where I ≡ {x : X | ∀θ.θx =. ♦ θ}, the second part of this becomes

∀φ, ψ.
(
∀x. (∀θ.θx =. ♦ θ) =. φx ∨ ψx

)
==.

(
♦φ ∧ ♦ψ ⇒ ♦(φ ∧ ψ)

)
.

Unfortunately, the variable-binding rule means that this formulation can only be used when ♦
has no parameters, whereas these were an important feature of the treatment of the solution of
equations in [J]. As we said in §12.4, we would hope to allow discrete or Hausdorff parameters in
a future generalisation. However, before you dismiss this as a defect of the calculus, you should
think carefully whether it might be telling us something about the topology of the connected
components of, for example, the zero-set of a function.

12.9. We are running ahead of ourselves: although we introduced equideductive logic as a nec-
essary feature of a category with both exponentials and equalisers, we still have to show that it
is sufficient. In fact, it provides exactly the abstract basis that is needed to construct (a version
of) Scott’s category of equilogical spaces. As in §6, this construction is independent of the lattice
structure on Σ.

We start with some urtypes that play the role of unions of algebraic lattices, closed under
product and Σ(−). It is convenient to assume that they also admit stable disjoint sums, although
these could be eliminated in what follows by using lists of urtypes instead. The urterms are
generated from variables and certain combinators, for which we assert equations of type Σ as
equideductive axioms without =..

Then an equideductive space X is a triple (A, p, q) where A is an urtype, p is a predicate in
this logic on ΣA, and q one on A, for which

φ, ψ : ΣA, p(φ), (∀a:A. q(a) =. φa = ψa) ` p(ψ).

The left hand side of this is essentially the partial equivalence relation φ ∼ ψ in Scott’s con-
struction. Hence X is represented as a partial quotient of ΣA; in particular 1 = (0,>,>) and
Σ = (1,>,>).

A function M : X ≡ (A, p, q)→ Y ≡ (B, r, s) is an equivalence class of urterms M : ΣA → ΣB

such that
φ : ΣA, p(φ) ` r(Mφ)

and φ, ψ : ΣA, p(φ), ∀a. q(a) =. φa = ψa ` ∀b. s(b) =. Mφb = Mψb,

where M1 = M2 if φ : ΣA, b : B, p(φ), s(b) ` M1φb = M2φb.

We have to make full use of the rules of the logic, including substitution under ∀ and the condition
relating p and q for a space, just to prove that this is a category, S. Then the product is

(A, p, q) × (B, r, s) ≡ (A+B, p · π0&r · π1, [q, s]),

50



where [q, s] is the predicate on A+B given by q on A and s on B. The equaliser

(A, t, q)-
I - (A, p, q)

M -

N
- (B, r, s)

is given by t(φ) ≡ p(φ) &
(
∀b:B. s(b) =. Mφb = Nφb

)
.

Finally, for X ≡ (A, p, q) the exponential ΣX is given by (ΣA, qp, p), where

qp(F ) ≡ ∀φ, ψ :ΣA. p(φ) & (∀a:A. q(a) =. φa = ψa) ==. Fφ = Fψ.

Since the category has all finite limits and powers of Σ, it has an interpretation of equideductive
logic and the examples that we have given. There is a syntactic criterion on p and q that charac-
terises when (A, p, q) is definable using this structure, and we restrict the notion of equideductive
space to these objects. General exponentials and other categorical operations may be derived from
this.

If Σ ≡ (1,>,>) is a lattice and satisfies the rules in §12.6 then it is a dominance, so we may
reproduce (some of) the abstract topology in §8.

12.10. This is a very pretty picture, but it is misleading, as serious problems remain. As we have
seen, we must take a lot of care over the variable-binding rule. It would be nice to weaken this,
but its alternative may be more difficult for customers (i.e. mathematicians who are interested in
the applications of topology, rather than logic itself) to use, in contrast to the clear topological
motivation for only allowing U over compact subspaces.

The similarity with set theory should also serve as a warning of a more fundamental issue for
the new calculus. As it stands, it is neither an extension of the letter of ASD as set out in §6, nor
faithful to its spirit in ensuring that the objects that we construct have the right topology.

Take, for example, the “compact” subspace K ≡ {x : X | ∀φ.�φ⇒ φx} ⊂ X that is defined
by a modal operator �. Is K actually a compact space, with its own universal quantifier UK :
ΣK → Σ? This is a problem that we could dodge in [J] because that studied a Hausdorff space
(R), where all compact subspaces are closed. Categorically, the inclusion i : K � X induces a
map ΣΣi

: ΣΣK → ΣΣX

. For K to be compact, we need to find UK : ΣΣK

that this map takes to
our given � : ΣΣX

. The theory should then relate parametric modal operators to proper maps,
showing that these obey the Beck–Chevalley condition (2.9) and descent properties.

Another way of seeing this issue is that UK is a total function that it is convenient, both
mathematically and computationally, to represent by the partial function �. This is similar to a
long-standing problem in recursion theory, concerning definable total maps of higher type such as
NN → N or RR → R. Amongst many authors, Hyland and Bauer studied it in their settings of
filter and equilogical spaces [Hyl79, BBS04].

Applications in functional analysis also have something to say about this. Typically, a space X
in this subject is not locally compact, so the space C(X) of continuous functions X → R cannot
be the exponential RX in the category of Bourbaki spaces. When I have asked analysts what “the
right” topology on C(X) might be, they have said that there are horses for courses. Since X often
carries either a metric (norm) or a measure (integration), there are various topologies on C(X)
defined from norms and semi-norms that are useful for different purposes.

Is there perhaps a fundamental topology on Y X , for which the others are continuous additional
structure? So long as we can at least agree to exclude the discrete one, the clear candidate is the
point–open or weak∗-topology, which is the weakest or coarsest one for which each evx : Y X → Y is
continuous. This means that the topology on Y X is generated as an algebra by all of the λf. φ(fx)
for φ : ΣY and x : X.

Finally, we repeat that our category of equideductive spaces does not necessarily satisfy the
sobriety and monadicity properties in §6.
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12.11. There is an unambiguous, if rather tedious, procedure for investigating questions such as
these.

Consider, for example, a modal operator � on an equideductive space (A, p, q). This is given
by a certain urterm, of type Σ3A. From this we may compute the subspace K as an equaliser
(A, t, q), and then also Σ2X and Σ2K. The formulae for these are not very pretty, but the
inclusions i : K � X and Σ2i are realised by the identity, so UK , if it exists, has the same urterm
as �.

The question is therefore whether this satisfies the equideductive properties that are required
of a function ΣK → Σ. We write the hypotheses at the top of the page, the conclusion at the
bottom and try to fill in the proof in between. In general, there need be no such proof using the
abstract rules of the calculus, and nor need the property follow from the accidental judgements
that hold in any particular model, such as Scott’s original equilogical spaces.

This is where an abstract approach wins over a preconceived set-theoretic model, as we have
left open the option to add more axioms. You can’t fill in the necessary proof? No problem. Just
add it as an axiom.

There is, of course, a price to pay for doing this. The resulting system may be inconsistent, in
the sense of being able to prove undesirable theorems like 0 = 1. Indeed, since we have already
got a complete axiomatisation of computably based locally compact spaces, we don’t want any
additional equations to be provable for them. In terms of the construction of the category of
equideductive spaces, we don’t want any new equations between urterms without hypotheses.

For equideductive logic, its weakness is its strength, as we can easily apply some proof theory
to it. In particular, using the analogy between propositions and types (§2.2), proofs in this
fragment may be considered as typed λ-terms, and strongly normalise (§2.3). They also have
a domain-theoretic interpretation [HP89], in which Scott continuity corresponds to the proof-
theoretic observation that, in a proof whose conclusion is an equation, any ∀-formula that occurs
as a hypothesis must be used by instantiation at finitely many terms. This suggests a technique
for rearranging the proof of the hypotheses of an instance of an additional axioms into one of its
conclusion, thereby demonstrate the conservativity of the new principle.

12.12. This may make a profitable architectural practice, but it’s not good science. According
to Karl Popper, we must lay down a theory that is coherent in itself, and put our head on the
block with a prediction that is open to falsification. That is what ASD did for the Heine–Borel
theorem (§5.12). A new axiomatisation should state both its principles and its applications in
its own language, not in some encoding, which is what the construction in §12.9 provides. For
example, functional programming languages such as Haskell [HHPJW07] add expressiveness by
developing the mathematical theory, not by taking short cuts in the underlying C implementation.

The principle for doing this was laid down by Galileo in his rejection of Aristotle: we assume
that the universe beyond our own reach obeys the same laws as hold in familiar places. This has
been applied many times in mathematics, in particular to successive generalisations of numbers
and spaces: the complex numbers were introduced to solve quadratic and cubic equations, but
otherwise their arithmetic agrees with the reals. In recursion theory, Scott continuity is a theorem
for ground types, so we adopt it as an axiom for higher types (§9.13), which are “beyond our
reach” in the sense that actual computation cannot proceed when there are free variables.

The criterion by which we regard certain territory as familiar and believe that we have the
correct laws for it is that we have several theories whose motivations come from different sources
but which yield equivalent results. In the case of topology, this applies to locally compact spaces,
because Bourbaki spaces and locales agree (give or take some Choice) [Joh82, Ch. VII] and another
essentially equivalent version is given by [JKM01]. Whilst the old and new formulations of ASD are
not yet compatible, they do provide further accounts of this topic that are more or less equivalent
to the others.
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12.13. The more general spaces do not have plentiful compact subspaces, so what feature can
they have in common with locally compact ones? For this we have to examine the construction in
§12.9 more carefully. It is by no means the free extension to a category with all finite limits and
exponentials. It has an exactness property, relating limits and colimits, that marshals the otherwise
chaotic information about successive equalisers and exponentials into just two predicates on an
urtype. On the full subcategory L ⊂ S consisting of the (A, p,>), all objects are sober and Σ2

preserves regular monos. This property is similar to but not the same as monadicity in ASD (§6).
However, this property does not extend to the whole of the category of equideductive spaces.

Following the Galilean principle, maybe we should add this, rather than ad hoc properties from
potential applications, to the axioms of equideductive logic.

But it is not clear whether this is possible. Consider, for example, Baire space, NN. This has
a regular mono X ≡ NN � ΣN×N ≡ A that cannot be Σ-split since NN is not locally compact.
Hence evX classifies an open subspace of ΣX×X that does not extend to one of ΣX×A. However,
applying our proposed exactness property to i : ΣX ×X � ΣX ×A would make Σi a categorical
epi.

On the other hand, there are grounds for believing that the proposal is nevertheless consistent.
Whilst rejecting its näıve applications, we have on several occasions exploited the analogy with
set theory. In §9.3 we showed that the ASD axioms yield a topos if we require all objects to be
overt discrete, in which case all monos are Σ-split. This situation is also a (degenerate) case case
of §12.9. The difference is that
(a) in set theory, all objects are (compact,) overt and discrete, which as we saw in §10, is logically

extremely powerful; whilst
(b) topology obeys Scott continuity, which, in its most general form (§11.4), is just an =.-free

equation in equideductive logic.

12.14. If the example that we gave does not actually threaten the consistency of the proposal,
it means that some of the generalised spaces would be even more lacking in points than locales
are.

What more powerful conceptual tools might we gain from this? Our pointless extended calculus
might be a good setting in which to study measure theory or distributions, since integration is
closely analogous to the modal logic that we have used for compact and overt subspaces.

Such applications in analysis are one of the three ways in which I envisage developing ASD
in the coming years. However, further work is required in the foundations of the subject to
justify this, and then the structure that we have discussed in this paper needs to be reformulated,
using the new foundations, in a textbook style. Finally, the claim that the theory is amenable to
computational interpretation (§2.3) needs to be put into practice.

Acknowledgements: I would like to thank Andrej Bauer, David Corfield, Anders Kock, Fred
Linton, Gabor Lukasz, Andy Pitts, Pino Rosolini, Giovanni Sommaruga, Hayo Thielecke and
Graham White for their very helpful comments on earlier drafts of this paper.
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