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Abstract Stone duality is a radical reformulation of general topology, in which the topology
on a space X is not considered as a set carrying an infinitary lattice structure, but as another
space that’s the exponential ΣX in the category. In this way it restricts attention to recursive
unions, in place of arbitrary ones, and thereby provides a natural formulation of computably based
locally compact spaces [E], into which traditional arguments involving open and compact spaces
nevertheless lift very easily.

As ASD axiomatises spaces and continuous functions directly, arguments involving points and
non-continuous functions cannot be imported directly into it. In fact, “underlying sets” may be
added as a further axiom, with the result that the theory is equivalent to the standard one for
locally compact locales over an elementary topos [G], but the recursive character is thereby lost.

The difficulty over arbitrary unions cannot be defined away by substituting recursive ones.
They are used very heavily in traditional topology, often in the guise of the right adjoints to
which they give rise, the most familiar being the interior of a subspace. The categorically more
sophisticated treatment in locale theory shows this very clearly, and introduces further ideas that
depend on such right adjoints, notably the nucleus of a subspace. We cannot, therefore, expect
every topological idea to survive the unification with recursion theory.

ASD does not completely deprive us of tools besides the continuous functions X → Y them-
selves, as we may also use continuous functions between the spaces ΣY and ΣX . In the traditional
formulation, these spaces carry the Scott topology, and “Scott-continuous” functions are those
between the infinitary lattices that preserve directed joins. All frame homomorphisms are Scott-
continuous, but Scott-continuous functions in general need not preserve finite meets and joins.
Continuous functions between the spaces that the frames represent in locale theory correspond,
of course, to frame homomorphisms in the opposite direction.

The general plan for translating a theorem of topology into abstract Stone duality is therefore
to massage the localic formulation in such a way that only Scott-continuous functions between
frames are used. In particular, direct image maps (f∗) and Heyting implications have to be
eliminated. Except, that is, in the special situations in which they are Scott continuous, such as !∗
for ! : K → 1, where K is compact. It is in this fashion that we formulate a particular technique
in topology in Sections 1–5 of this paper, before adapting it to abstract Stone duality. Thus you
can appreciate the topological ideas without first studying the abstract setting.

Our argument then “factors through” the interpretation of abstract Stone duality, in the sense
that, for example, what we say concretely about Scott continuous functions between frames is
replaced by use of abstract morphisms ΣY → ΣX in the category axiomatised by ASD. You have
to read the paper twice: once wearing localic spectacles, then again in terms of abstract Stone
duality; on each reading, certain parts may be transparent (i.e. vacuous) and others opaque (not
soundly defined). The strictly recursion-theoretic point of view is confined to Example 4.3.

The particular topological question considered in this paper is the recovery of a space Γ from
an open subspace U and its complementary closed subspace C. (We also need some information
about how they fit together.) Michael Artin showed that the frame of open subsets of Γ may be
expressed as a comma square that involves the frames corresponding to U and C and a functor
linking them. Artin actually studied this problem for Grothendieck toposes [AGV64, Exposé IV,
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§9.5] [Joh77, Theorem 4.27], but we shall only consider locales, first recalling Artin’s construction
in this rather simpler setting.

Our interest is specifically in the classifier for partial maps with open domain of definition.
This is found as a special case of gluing, written Γ = U⊥ and called the lift of U , where C = {⊥}
is a closed point. Clearly the lift is an important step in the development of domain theory
and the semantics of programming languages, and Section 8 uses it to construct the search or
minimalisation operation for general recursion in domain theory.

The humble partial map classifier is also related to many other universal properties [DT87,
especially Section 4]. In particular, X⊥ is the partial product of the object X along the morphism
> : 1→ Σ. In topology, partial products were introduced by Boris Pasynkov [Pas65] and studied
further by Susan Niefield [Nie82]. They are in turn a special case of dependent products, which
capture the universal quantifier categorically. Conversely, the considerably more complicated
construction of dependent products can actually be reduced to partial products [Tay99, §9.4].
Future work will construct (some) partial products in abstract Stone duality from the partial map
classifier. In view of the difficulty in constructing this one special case, such simplifications are
extremely valuable.

Unfortunately, in Section 4 we find that Artin’s cosy relationship between open and closed
subspaces in traditional topology fails entirely when we consider a recursively enumerable (semi-
decidable) set of numbers and its complement. The Artin gluing construction is therefore an
example of something in point-set topology that depends on the use of functions that are not
Scott-continuous, and does not survive the desired unification with recursion theory. So Artin is
rather a “straw man” in this paper — he is set up only to be knocked down. The role of the
counterexample in the construction of the partial map classifier is to anticipate a “why can’t you
just” question.

Nevertheless, by further massaging of the argument, we find that the partial map classifier
may still be constructed as a special case of Artin gluing. The proof is of course lattice-theoretic,
and ASD requires topologies to be distributive lattices just as traditional formulations do, but we
find that the crux is not distributivity but the modular law.

We said in the opening paragraph that arguments involving open and compact subspaces may
be lifted very easily into ASD. In fact, morphisms ΣY → ΣX that preserve the finitary lattice
operations can be shown to be of the form Σf for f : X → Y . Using this result, it is actually
quite easy to show that the Artin gluing construction yields the partial map classifier.

However, these results depend on the axiom of ASD, known as the Scott principle, that
provides as much infinitary structure as is appropriate to recursion theory, and thereby fixed points
in domain theory. On the other hand, [C] showed that many important notions in topology (such
as compact Hausdorff spaces) already have a natural formulation and familiar properties without
this axiom. The weaker theory is precisely lattice dual between open and closed phenomena, but
this duality is broken by the extra axiom — as of course it must be in order to recover the standard
theory completely.

There is another reason1 for developing the partial map classifier or lift without the Scott
principle. Other authors in synthetic domain theory have discussed alternatives to this axiom
that involve an isomorphism between the initial algebra and final coalgebra for the lift functor,
(−)⊥. For them, this functor plays the fundamental role that Σ(−) has in ASD. In order to make
use of their alternative fixed point axioms, we have to construct the lift without using the Scott
principle.

As we cannot therefore characterise inverse image maps Σf as lattice homomorphisms ΣY →
ΣX , we have to deal explicitly with Eilenberg–Moore homomorphisms for the monad on which
ASD is based. The fully massaged topological argument leaves us at the end of Section 5 with

1There is of course the mathematician’s favorite answer to the question of why they want to investigate some-
thing, namely “because it’s there”. In particular, the construction in this paper was developed when only the
results of [C] and [B, Section 7] were available, so Eilenberg–Moore algebras and their homomorphisms had to be
manipulated directedly. However, those who like to use this quotation from George Mallory, who had been asked
why he wanted to climb Everest, should bear in mind that he died there a year later.
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an order-isomorphism, namely the one that states the modular law. In the traditional or localic
setting, every order-isomorphism is a frame isomorphism. In ASD, we still have to show that it is
an Eilenberg–Moore isomorphism, which we do in Section 7.

1 Gluing as a comma square

We shall use the letters Γ, U , C, ... in the same roles throughout the paper.

Notation 1.1 Let U,C ⊂ Γ be complementary open and closed subspaces, as indicated by the
different hooks on the arrows. Then there are the following adjunctions of monotone functions
amongst the frames A, S and G of open subsets of U , C and Γ respectively.

U A

Γ

i open

?

∩

G

∃i ≡ i!

?

?

a i∗
66

a i∗

?

?................

C

c closed

t

6

S

c!

6

6
................

a c∗

??

a ∀c ≡ c∗

6

6

For open subsets W ⊂ Γ, T ⊂ U and D ⊂ C, the inverse image maps i∗ and c∗ and their adjoints
act as follows:

i∗(W ) = W ∩ U ⊂ U
c∗(W ) = W ∩ C ⊂ C
∃i(T ) = T ⊂ Γ
i∗(T ) = (U ⇒ T ) = int(T ∪ C) ⊂ Γ
∀c(D) = D ∪ U ⊂ Γ.

We write i∗ as a dotted line because this monotone function between frames is not in general
Scott-continuous (Examples 1.5). On the other hand, although it may lack its right adjoint, i∗

does preserve all joins, both finite and (where they exist) directed.

Remark 1.2 The other map that we have drawn dotted (c!) does not exist in the general open–
closed situation, whatever our axiomatisation of topology. In this paper, however, we shall specif-
ically be interested in the case where the closed subset C is {⊥}, ⊥ being the least point of the
lift or scone (Sierpiński cone) Γ = U⊥. In this case the continuous map c : {⊥} → Γ is left adjoint
(in the ordered category of spaces, continuous maps and the specialisation order) to the terminal
projection !Γ : Γ→ 1. In terms of frames, c! = !∗Γ is the left adjoint of c∗ = !∗. Hence

!∗Γc
∗W = Γ | (⊥ ∈W ), which, classically, is

{
Γ if ⊥ ∈W
∅ otherwise.

All three maps between S and G are Scott-continuous.

Lemma 1.3 (a,b) Disjointness of U and C is expressed by the equations

c∗∃i(T ) = c∗∃i(U) = ∅ ⊂ C or, equivalently, i∗∀c(∅) = i∗∀c(D) = U

for open T ⊂ U and D ⊂ C, whilst (c,d) the fact that they cover Γ is stated for open W ⊂ Γ by

∃ii∗(W ) ∪ c!c∗(W ) = W or i∗i
∗(W ) ∩ ∀cc∗(W ) = W. �
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Notation 1.4 It is natural to try to use some combination of the six morphisms in Notation 1.1
to recover the frame G from A and S. In view of the disjointness characterisation in the Lemma,
we are obliged to make use of one or other of the dotted maps, so we write

` ≡ i∗ · c! : S → A and r ≡ c∗ · i∗ : A→ S so ` a r.

Examples 1.5
(a) For the disjoint union U +C of two clopen subsets, `(D) = ∅ ⊂ U , r(T ) = C and G ∼= S ×A.
(b) Let Γ = [0, 1] be the real unit interval, which is a compact Hausdorff space, and let U be (0, 1],

which is an open subset that is not closed. Put Tn = (2−n, 1]. Then i∗ and r do not preserve
the directed union

⋃
Tn = (0, 1], since 0 ∈ i∗U .

(c) For the scone or lift (Γ = U⊥), ` = i∗ · !∗Γ = !∗U by Remark 1.2, which is the inverse image map
corresponding to the terminal projection !U : U → 1, so it is a homomorphism. Hence ` has
a right adjoint r that is Scott-continuous iff U is a compact space [C, Definition 7.7].

(d) Likewise, for the inverted scone Γ = C> (drop, dunk or dip, maybe), r = !∗C is the homomor-
phism corresponding to the terminal projection !C : C → 1, and has a left adjoint ` iff C is
an open or overt space [loc. cit.].

(e) In the sheaf analogue of U⊥, which is known as the Freyd cover, ` is the functor that assigns
constant sheaves on U to “sets” s ∈ S, and its right adjoint r is the global sections functor.

(f) In the analogous situation in recursion theory, however, the set U ⊂ N of Gödel numbers of
programs that terminate and its complement C are not glued together in anything like this
way (Example 4.3).

What we learn from these examples is that, although r is always available in the traditional
axiomatisation of point-set topology, it need not be Scott-continuous, so it cannot be used in
abstract Stone duality. On the other hand, ` may sometimes exist, in which case it is necessarily
continuous, and can be used in the construction instead of r. However, there are analogous
situations in recursion theory where neither ` nor r nor anything similar is available.

Remark 1.6 Artin showed that the frame G is given by the comma square S ↓ r on the right:

` ↓ A
i∗ - A S ↓ r

i∗ - A

S

c∗

? ` - A

id

?↗
S

c∗

? id - S

r

?↗

but, when ` a r both exist, this is isomorphic to the comma square on the left, because

` ↓ A ≡ {(s, a) | `(s) ≤ a} = {(s, a) | s ≤ r(a)} ≡ S ↓ r.

There are many accounts of the gluing construction using r : A → S, (for example [Tay99,
§ 7.7], where it is written U : A → S), so for the sake of variety we shall give it in terms of `. This
is the version that we require for the scone or lift, which will turn out to classify partial maps with
open domain of definition. On the other hand, the inverted scone classifies partial maps defined
on closed subsets, and this is constructed from r.

We have just given the “set-theoretic” formulae for the comma squares, which are good enough
for the purposes of this paper, but the categorical definition is contained in the proof of the next
result.
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Proposition 1.7 G is the comma square ` ↓ A in the ordered category of frames and Scott-
continuous functions.
Proof Let S �

s
∆

a- A be functions such that i∗ · c! · s ≤ a. I claim that g = ∃i · a∨ c! · s :
∆→ G is the unique function with c∗ · g = s and i∗ · g = a.

∆
a

G
i∗

-

g

.............-

A
?

s

- S

c∗

? ` = i∗ · c!- A

id

?↗

This follows from Lemma 1.3 and the fact that i∗ and c∗ preserve binary joins, which are con-
structed componentwise in ` ↓ A as ` itself preserves binary joins. �

Remark 1.8 If a and s preserve > then so does g (by Lemma 1.3(c)); if a and s preserve I-
indexed joins then so does g, and if a a a∗ and s a s∗ then g a g∗ = a∗ · i∗ ∧ s∗ · c∗. To see that g
preserves ∧ so long as a and s do, observe that ` ↓ A is a subframe of S ×A, with ∧ constructed
componentwise. �

Conversely, any such ` : S → A yields an open–closed pair.

Proposition 1.9 Let ` : A → S be a function between frames that preserves ⊥ and ∨. Then
there are adjoint monotone functions between frames as shown,

` ↓ A
� ∃i �

⊥
i∗

--
A

S

c!

6

6

a c∗

??

a ∀c

6

6

` - A

id

?↗

where
(a) π1 = i∗ and π0 = c∗ are frame homomorphisms,
(b) i∗ preserves whatever joins ` does,
(c) if ` has a right adjoint, ` a r, then so does i∗, namely i∗(a) = (r(a), a),
(d) i∗ has a left adjoint, ∃i(a) = (⊥, a), satisfying the Frobenius law,

∃i(a ∧ i∗g) = (∃ia) ∧ g,

so i is an open inclusion [C, Proposition 3.11],
(e) c∗ has a right adjoint, ∀c(s) = (s,>), which is Scott -continuous (even if ` isn’t) and satisfies

the lattice dual of the Frobenius law, so c is a closed inclusion [C, Corollary 5.6],
(f) c∗ has a left adjoint c!(s) = (s, `(s)),
(g) ` = i∗ · c!, so c! is a homomorphism iff ` is.
Hence the inclusions ∃i and ∀c make A ∼= (G ↓ u) and S ∼= (u ↓ G) as open and closed sublocales
respectively, where u = (⊥,>) ∈ ` ↓ A. �
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2 The partial map classifier

Our main interest in this paper is to show that the lift (X⊥), which we construct as an example
of Artin gluing, also has a quite different universal property in the category of spaces.

Definition 2.1 The open inclusion i : X ⊂ - X̃ is the partial map classifier for X if, given
any partial map Γ ⇀ X (defined by p : U → X, where i : U ⊂ - Γ is another open inclusion),
there is a unique map f : Γ→ X̃ such that the square is a pullback.

U
p - X

Γ

j

?

∩

....................
f
- X̃

i

?

∩

In terms of frames, f∗ must be a homomorphism such that j∗ · f∗ = p∗ · i∗ and f∗X = U .

Remark 2.2 In the case where X is a singleton, {>}, this reduces to the diagram that defines
the open-subobject classifier, Σ [C, Definition 2.2]. This has the same definition as the subobject
classifier Ω in an elementary topos, apart from the restriction from all to just open subsets.
In topology, Σ is the Sierpiński space, > is its open point and ⊥ the closed one.

Although the analogy between Ω in set theory and Σ in topology is often exploited in abstract
Stone duality, it does not extend to the construction of the corresponding notions of partial map
classifier. We have embarked on a study of the gluing construction, which only provides X̃ in
topology, not intuitionistic set theory, where we must use the rather uninformative formula

X̃ = {ξ ∈ ΩX | ∀x, y ∈ X. x ∈ ξ ∧ y ∈ ξ ⇒ x = y}.

So the construction works only under some special condition, which we can easily identify by
considering the case X = 1, where A = ΣX = Σ and the gluing construction gives

ΣX⊥ = G = ` ↓ Σ = {(s, a) ∈ Σ× Σ | s ≤ a} ≡ Σ≤,

with ` = r = idΣ. The necessary condition is therefore

Definition 2.3 The Phoa principle is that ΣΣ ⊂ Σ2 is the order relation that arises from the
lattice structure on Σ. Symbolically, this means that

F : ΣΣ, σ : Σ ` Fσ = F⊥ ∨ σ ∧ F>,

whilst topologically it says that the two elements >,⊥ : Σ of the Sierpiński space classify open
and closed subspaces respectively.

This principle emerged from Wesley Phoa’s Ph.D. thesis about synthetic domain theory [Pho90a,
Pho90b]. It is a trivial fact about the classical Sierpiński space, but is proved for intuitionistic
locale theory and stated as an axiom of abstract Stone duality in [C, Section 5]. The link relation,
x vL y, which says that there is a “path” from x to y (measured by Σ, rather than by the real unit
interval as in homotopy theory), was also introduced by Phoa. It is indiscriminate for (classical
or intuitionistic) sets, but agrees with the specialisation order for topology, where all functions
Σ→ Σ are monotone.

Lemma 2.4 The map b : 1→ X̃ that classifies 1 � ⊃ ∅ - X is the least element of X̃.
Proof Consider the dotted map h : X̃ × Σ → X̃, where the squares and parallelograms in the
diagram are pullbacks. The upper composite X̃ → X̃ is id, so h(ξ,>) = ξ ∈ X̃, whilst the lower
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one 1→ X̃ is b, so h(ξ,⊥) = b.

X

X
id -

id
-

X - 1

∅

-

X̃

?

X̃ × Σ

i×>

?

∩

...................
h
-

(id,>)
-

X̃

i

?

∩

- Σ

>

?

1
?

(b,⊥) -

This means (by definition) that b vL ξ in the link order. Then the composites

ΣX̃
h∗ - ΣX̃×Σ ∼= (ΣX̃)Σ ∼= (ΣX̃)≤

ev> -

ev⊥
- ΣX̃

are !∗Γ · b∗ ≤ idH . But b∗ · !∗Γ = idΣ anyway, so !∗Γ a b∗. �

As we need to prove a Theorem (5.1) to show that the gluing construction X⊥ satisfies the
universal property of the partial map classifier X̃, we use the term lift to mean this special case
of the Artin construction.

Definition 2.5 The lift of a space X is the space X⊥ whose topology is obtained by gluing:

X⊥ �
i

⊃ X H = ΣX⊥ = ` ↓ A
i∗- A

{⊥}

b

t

6

a !X⊥

?
Σ

b! = !∗

6

a b∗

? ` = !∗X- A = ΣX

id

?↗

H = ΣΓ = {(s, a) ∈ Σ×A | `(s) ≤ a}, where ` = !∗X in Proposition 1.9.

Remark 2.6 In classical topology [AAB80], X⊥ is the union of the open subset X and the
closed point {⊥}. The pullback condition in Definition 2.1 of the partial map classifier says that
f : Γ→ X⊥ takes the value ⊥ throughout the closed subset C that is complementary to the open
subset U ⊂ Γ on which p : U → X is defined.

This situation is, therefore, an example of the effect on morphisms of the gluing of comple-
mentary open and closed subspaces (gluing as a functor). As such, it is given in terms of frames
by the mediator f∗ between comma squares, as shown in the diagram on the right below.

X⊥ �
i

⊃ X ΣX⊥
i∗ - ΣX

ΣΓ j∗ -

f∗
................-

ΣU

p∗
-

Γ �
j

⊃

f

�...............................
U

p

6

Σ{⊥}

b∗

?

{⊥}

b

t

6

� !C
C

c

t

6

ΣC

c∗

?
id -

!∗C-

ΣC

c∗ · j∗

?↗
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Remark 2.7 Although the topology on X⊥ itself is constructed using a comma square, the square
whose universal property we are using to show that X⊥ classifies partial maps is the one for the
arbitrary open–closed pair U,C ⊂ Γ. The ` and r versions of Proposition 1.7 then offer the
formulae

∃ip∗a ∨ c!!∗Cs and j∗p
∗a ∧ ∀c!∗Cs

respectively for the mediator f∗(s, a). However, c! need not be defined, and j∗ need not be Scott-
continuous.

In fact, f∗(s, a) = !∗Γ ∨ ∃jp∗a. This makes the parallelogram on the left commute because

c∗f∗(s, a) = c∗!∗Γs ∨ c∗∃jp∗a = !∗Cs ∨ ⊥ = !∗Cb
∗(s, a)

by Lemma 1.3(a) and Proposition 1.9(a). The one at the top commutes because

j∗f∗(s, a) = j∗!∗Γs ∨ j∗∃jp∗a = !∗Us ∨ p∗a = p∗a

since j∗ · ∃j = id as j is mono, and

!∗Us = p∗!∗Xs = p∗`s ≤ p∗a

by the construction in Definition 2.5.
For locales, the same argument as in Remark 1.8, namely that ΣΓ is a subframe of ΣU ×

ΣC , shows that (whatever the formula for it actually is) the mediator is unique and is a frame
homomorphism. In view of the counterexample in Section 4, ΣΓ is not given by a comma square,
so we must find a different way to justify this formula for the total extension f of the partial
map p.

3 Modularity and distributivity

The modular law was first identified by Richard Dedekind in 1900, though, as he used the term
Dualgruppe for lattice, this work went unrecognised until Øystein Ore co-edited his Gesammelte
mathematische Werke in 1932. It plays a very important role in the structure theory of certain
kinds of algebra, notably submodules (hence the name) and normal subgroups, where it is known
by names such as the “nth isomorphism theorem” (1 ≤ n ≤ 4) and Zassenhaus’s butterfly lemma.
In linear algebra it is directly connected with the notion of dimension, whilst in group theory it
shows how to decompose any (finite) group into an invariant collection of simple groups.

How is this relevant to gluing?

Remark 3.1 Recall from Lemma 1.3 that any open subset W ⊂ Γ may be recovered as

W = V ∪ Z = I ∩ J

where
V = c!c

∗(W ) Z = ∃ii∗(W ) I = i∗i
∗(W ) J = ∀cc∗(W )

(are open subsets of Γ but) are used to represent open subsets of U or C. (As usual, c! and V
only exist for the lift, where C = {⊥}.) These subsets form a sublattice of G (the topology on Γ)

8



as shown:

int(W ∪ C) ∪ U = I ∪ U

I = i∗i
∗W = int(C ∪W )

− ∪ U -

W ∪ U = ∀cc∗W = U ∪ V = J

W

− ∪ U -

U

− ∩ U
-

V = !∗c∗W = Γ | (⊥ ∈W ) U ∩W = ∃ii∗W = I ∩ U = Z

− ∪ U
-− ∩ U

-

U ∩ V = U | (⊥ ∈W )

− ∩ U
-

Remark 3.2 The open subspace W is uniquely determined by either of the equations

W ∩ U = Z or W ∪ U = J,

together with the requirement that it be sandwiched amongst I, J , V and Z. We concentrate on
the equation Z = W ∩ U , of which the solution is W = Z ∪ V . �

This last observation, which will be the basis of our proof in Section 5, is just the modular law:

Definition 3.3 In any lattice we have an adjunction

E = {(u, v, z) | (u ∧ v ≤ z ≤ u}
[v ∨ z/w]-
⊥�

[u ∧ w/z]
{(u, v, w) | v ≤ w ≤ u ∨ v} = F.

The lattice is modular if this is an isomorphism.

Examples 3.4 This characterisation says that the lattice contains no configuration of the type
(a), i.e. in any such situation, in fact w1 = w2:

u ∨ w1

w2

u
w1

(a) u ∧ w2

u ∨ w1 = u ∨ w2

w1 u w2

u ∧ w1 = u ∧ w2 (b)

The distributive law implies the modular law, but the modular lattice (b) is not distributive.

Remark 3.5 There are many ways of stating modularity as an equation, but I have always got
lost when trying to use them: you only have to look at the proof of the Jordan–Hölder theorem
in any random book on group theory to see how much care is needed to obtain a clear argument
that involves this law. It seems to be much easier just to evaluate the expressions that you want
to study in the free modular lattice on three variables {t, u, v}, which appeared in Dedekind’s
original paper. (Really it would be nicer in 3D, as it has three wings and two cubes.)
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>
m = (t ∨ u) ∧ (t ∨ v) ∧ (u ∨ v)

t ∨ u ∨ v ◦

◦ ◦ ◦ t ∨ v

◦ ◦ ◦ (t ∨ v) ∧ (u ∨ v)

◦ m ◦ ◦ ◦ (t ∧ u) ∨ v

u ◦ u′ ◦ t′ ◦ ◦ v′ ◦ t ◦ v

u ∧ (t ∨ v) ◦ n ◦ ◦ ◦ (t ∨ u) ∧ v

u ∧ ((t ∧ u) ∨ v) ◦ ◦ ◦ (t ∧ v) ∨ (u ∧ v)

t ∧ u ◦ ◦ ◦

◦ t ∧ u ∧ v
u′ = (u ∧ (t ∨ v)) ∨ (t ∧ v) n = (t ∧ u) ∨ (t ∧ v) ∨ (u ∧ v)

⊥

Notice Example 3.4(b) in the middle, whilst the other bold edges express the distributive law
itself. Any lattice image of the diagram that collapses one of these twelve edges kills the others
too, leaving the free distributive lattice on {t, u, v}.

Remark 3.6 We have just provided a visual and intuitionistic proof that a lattice is distributive
iff it contains neither of Examples 3.4. �

In this work we are just flirting with the mysterious beauty of the modular law, as we make no
suggestion that general topology can be formulated using anything less than distributivity. The
reason for doing things in terms of modularity is that the isomorphism in Definition 3.3 is the
substance of our construction in Sections 5 and 7.

Back to gluing. There doesn’t seem to be any formula to recover W from Z and J without
using either I or V , but we shall use an argument similar to Remark 3.1 to prove Theorem 5.1 for
the lift. We can, however, show that W is at least uniquely determined by Z and J , so ΣΓ is a
subalgebra of ΣU × ΣC .

Lemma 3.7 Let U,C ⊂ Γ be the complementary open and closed subspaces, and W1,W2 ⊂ Γ
open subsets that have the same restrictions to U and C, i.e.

Z = W1 ∩ U = W2 ∩ U and J = W1 ∪ U = W2 ∪ U.

Then W1 = W2. More generally, if φ, ψ : Γ⇒ Σ∆ agree on both U and C then they are equal.
Proof This says that if Example 3.4(b) occurs as in ΣΓ or Σ∆×Γ then W1 = W2, which is
equivalent to the distributive law by Remark 3.6. �

Definition 3.8 We say that e : X → Y is Σ-epi if Σe : ΣY → ΣX is mono.
So e satisfies the usual definition of epi (indeed internally),

X
e -- Y

f -

g
- Σ∆

10



that e ; f = e ; g ⇒ f = g, so long as the common target of the pair is a power of Σ. A continuous
map of spaces is Σ-epi iff it hits enough points of Y to distinguish its open subsets, whilst a
continuous map of locales is Σ-epi iff it is an epimorphism.

Theorem 3.9 {⊥,>} → Σ is stably Σ-epi.

{⊥,>} -- Σ

C + U

6

-- Γ

6

φ -

ψ
- Σ∆

Proof As Σ is a distributive lattice, the coproduct 1+1 is stable under pullback [C, Theorem 9.2],
and yields the diagram shown. Then U + C → Γ is Σ-epi by Lemma 3.7. �

Corollary 3.10 Let f : Γ→ Θ be any continuous map such that the images of U and C both lie
within the subspace M ⊂ Θ. Then the image of Γ is also contained in M .

By a “subspace” of a locale here we mean that m : M � Θ is regular mono, and for abstract
Stone duality m is to be extremal mono [Tay91], although when we use this result in the next
section m is split mono.

M � U + C - {>,⊥}

Θ
?

?

� Γ
??

-

�................................
Σ
??

Proof This is just an application of the orthogonality of epis and regular monos of locales, or
of Σ-epis and extremal monos in abstract Stone duality. �

4 The failure of Artin gluing

We saw in Section 1 that open and closed subspaces may be glued by a comma square involving
either ` or r, but that we could not rely on having one or other of these functions available in all
circumstances: r may exist in topology as a monotone but not Scott-continuous function between
frames, whilst ` is only defined in special cases.

In this section we show that, in classical recursion theory, recursively enumerable subsets are
not glued to their complements by means of any comma square whatever. Then we adapt the
argument to discrete and Hausdorff spaces in abstract Stone duality.

As Artin gluing is a well known technique in standard topology and locale theory, the “failure”
that we are about to discuss does not apply to that situation, and the “counterexample” is actually
a well known result. It says that, if a space is “discrete” in the sense that all singletons are open,
then so too are all closed subspaces.

However, as in any “algebraic” or “type-theoretic” (re)axiomatisation of a mathematical topic,
we are simultaneously interested in two models in particular: the classical one from which we are
drawing our intuition, and the free or term model of the new axioms. The Halting Set is a feature
of the term model, and is constructed in [F]. The real unit interval, which we shall use later in
this section, is defined using the new axioms (and therefore in any model) in [E].

Definition 4.1 Writing ΣΓ for the lattice of open or recursively enumerable subsets of any ob-
ject Γ, we shall call a complementary open/closed (or RE/coRE) pair U , C of Γ Artinian if there
is some comma square,

11



G = ΣΓ i∗- A = ΣU

S = ΣC

c∗

?
` - Θ

r

?↗

in which ` and r are any continuous (or computable) functions whatever — not necessarily those
defined in Notation 1.4.

Remark 4.2 For the sake of directness, and in the absence of any suitable well known category
for recursion theory, we introduce the idea of the counterexample in an entirely classical way. The
letters U,C, T,D ⊂ N below denote ordinary sets of numbers, and ΣN is merely an unusual name
for the lattice of all recursively enumerable subsets of N. There is no abstract categorical setting,
and ΣN is not an exponential; indeed, there is no object to call Σ. Also, the object Θ in the
Definition that ought to be variable will just be taken to be ΣN too.

ΣN is a “topology” on N only in the sense of the intuitive analogy between open and recursively
enumerable subsets, since this lattice does not have arbitrary joins. This intuition is good enough
for our purpose: we only need N, and not ΣN, to get the counterexample. The Rice–Shapiro and
Myhill–Shepherdson theorems impress themselves as topological ideas more forcefully on anyone
familiar with the Scott topology for a lattice such as ΣN (but who still considers N to be topo-
logically discrete in the strongest sense), but we don’t need anything so complicated to make our
point.

Just as we normally do with open subsets of subspaces in point-set topology (Notation 1.1),
we represent a recursively enumerable set T ⊂ U ⊂ N of terminating programs by T = T ∩ U
itself, and an RE set D ⊂ C ⊂ N of non-terminating programs as D ∪ U . As before, A and S
respectively denote the lattices of all such subsets.

The example illustrates yet again that something may be defined pointwise in recursion theory
but not as a computable function.

Example 4.3 Consider N as the set of Gödel numbers for programs that run without input. Let
U ⊂ - N be the recursively enumerable subset consisting of terminating programs, and C @ - N

its complement.
I claim that, if U and C were Artinian, we would have a solution to the Halting Problem.

Proof Suppose that there are computable functions ` and r such that G, A, S and Θ form a
comma square:

U,C ⊂ N
Tn = ∅

G = ΣN
i∗ ≡ − ∩ U -

Wn
.............-

A
?

Dn = {n} ∪ U

- S

c∗ ≡ − ∪ U

? ` - Θ = ΣN

r

?↗

We shall test the alleged comma square with maps T(−) : N → A and D(−) : N → S as shown
in the diagram that assign recursively enumerable subsets of the two subspaces to each program
n ∈ N in a computable way. For the “triangles” to commute we need

i∗Wn = Wn ∩ U = Tn ∩ U = ∅ and c∗Wn = Wn ∪ U = Dn ∪ U = {n} ∪ U.

12



•But if n ∈ C, so n /∈ U , the second equation gives n ∈Wn, whilst
• if n ∈ U, it gives Wn ⊂ U , but Wn ∩ U = ∅ by the first equation, so n /∈Wn = ∅.

Hence W(−) : U → G by n 7→ ∅ and W(−) : C → G by n 7→ {n} are well defined, but if the
mediator W(−) : N→ G were represented by a program, the diagonal evaluation “n ∈Wn” would
solve the Halting Problem.

We still have to show that the maps N⇒ Θ do in fact form a lax square that needs a mediator
to the supposed comma square. Note that we already have a diagram of computable functions:
the only question is whether the inequality holds between them.

Since mediators U → G and C → G do exist, the squares U ⇒ Θ and C ⇒ Θ are indeed lax.
This means that `Dn ≤ θ (where θ ≡ r∅ ∈ Θ) for all n ∈ U , and also for all n ∈ C. Hence it is
true for all n ∈ N, so N⇒ Θ satisfy the inequality, as it is defined pointwise. �

Now we return to using ΣN etc. as exponentials, according to the usual formalism of abstract
Stone duality, which can be interpreted in the categories of locally compact sober spaces or locales.
We shall adapt the foregoing argument to show that the only Artinian pairs of subspaces in either
a discrete or a Hausdorff space are the decidable ones. On the face of it, the last paragraph of
the proof makes blatant use of excluded middle, but Corollary 3.10 will provide the justification
at this point in the argument for locales or abstract Stone duality.

Definition 4.4 [C, Section 6]
(a) A space Γ is discrete if the diagonal Γ ↪→ Γ×Γ is open. The classifying map (=Γ) : Γ×Γ→ Σ

is called equality and its exponential transpose {−} : Γ→ ΣΓ the singleton, so each {n} ⊂ Γ
is an open subspace.

(b) Similarly, Γ is Hausdorff if the diagonal is closed, with classifier (6=Γ) : Γ × Γ → Σ. Then
there is a continuous function n 7→ Γ \ {n}, making each {n} is closed, so Γ is T1.

Theorem 4.5 If U , C is an Artinian open–closed pair in a discrete space Γ then C is also open.

U,C ⊂ Γ
Tn = ∅

G = ΣΓ i∗ ≡ − ∩ U -

W(−)
..............-

A
?

Dn = {n} ∪ U

- S

c∗ ≡ − ∪ U

? ` - Θ

r

?↗

Proof Define T(−) : Γ→ A and D(−) : Γ→ S as before. We need to solve the equations

i∗Wn = Wn ∩ U = Tn ∩ U = ∅ and c∗Wn = Wn ∪ U = Dn ∪ U = {n} ∪ U.

The open space R = {n | n ∈Wn}, i.e. the one classified by Γ
〈id,W 〉- Γ × ΣΓ ev- Σ, satisfies

R ∩ U = ∅ by the first equation and R ∪ U = Γ by the second, so it is the complement of U . But
C ∩ U = ∅ and C ∪ U = Γ too, so C = R [C, Proposition 9.5].

Again we have the question of whether the maps Γ ⇒ Θ form a lax square, that is, whether
` · D(−) ≤ θ, where θ ≡ r∅ ∈ Θ. We know that the restrictions to U and C have this property,
and the inclusion M = (Θ ↓ θ)� Θ is split by (−) ∧ θ, so Corollary 3.10 applies. �

The Theorem is, of course, well known in traditional point-set topology: if every singleton is
open then so is every subset.2 The difference is that, in the term model of abstract Stone duality,

2In the classical notion of discreteness, any subset is the union of its singletons, but this union is indexed by (the
underlying set of) the subspace itself, and adjoining “underlying sets” to the recursive axiomatisation of abstract
Stone duality yields standard locale theory [G].
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the topology ΣN on N consists of the recursively enumerable subsets, and in particular the Halting
Set is open but not closed.

Abstract Stone duality (as far as it has been developed in [A, B, C] and here) has a tight lattice
duality between open and closed concepts, so the Theorem is also true of Hausdorff spaces. This
result even tells us something new about spaces or locales as traditionally axiomatised: whilst
Artin gluing works for R, for example, it necessarily involves maps between frames that are not
Scott continuous (Example 1.5(b)).

Theorem 4.6 If U , C is an Artinian open–closed pair in a Hausdorff space Γ then C is also open.
Proof The contravariance argument in Example 4.3 and Theorem 4.5 relies on having n ∈ Dn

and n /∈ Tn for all n, so when {n} is closed rather than open, we put Dn = Γ and Tn = U \ {n}.
Then in the final paragraph we require `Γ ≡ θ ≤ rTn, so for Corollary 3.10 we use M = (θ ↓ Θ)�
Θ, which is split by (−) ∨ θ. �

Remark 4.7 One might suppose that the failure of Artin gluing is simply a lack of ingenuity:
that we just need cleverer formulae than Artin’s to characterise when open subsets D ⊂ C and
T ⊂ U glue together, and to name their union. However, closer inspection of the arguments that
we have used shows that

gluability of (D,T ) ∈ ΣC × ΣU is not equationally characterised
because m : ΣΓ � ΣC × ΣU is not the equaliser of any pair of maps into a power of Σ.
Proof If it were such an equaliser, m would be extremal mono, whilst U +C � Γ is Σ-epi, but
(T(−), D(−)) : Γ→ ΣC×ΣU in Theorems 4.5 and 4.6 do not factor through ΣΓ as in Corollary 3.10.

�
For locally compact Hausdorff locales, this result says that m is not the equaliser of any pair of

Scott-continuous maps between frames. You may also like to translate the statement into recursion
theory yourself, but it becomes rather long-winded without an adequate categorical setting.

5 The partial map classifier again

Despite the failure of the Artin comma square, Definition 2.5 (the lift) still gives the partial map
classifier (Definition 2.1), and we have the formula for the mediator in Remark 2.7:

f∗(s, a) = !∗Γs ∨ ∃jp∗a.

The following proof settles the question for locales or traditionally defined spaces. It can also be
adapted to abstract Stone duality, but does not complete the proof in that situation, as it only
provides a lattice homomorphism f∗. Therefore we still have to show that this is an Eilenberg–
Moore homomorphism, as we shall do in Section 7. In fact, the additional argument is redundant
in the presence of the Scott continuity axiom, as then every lattice homomorphism is an Eilenberg–
Moore homomorphism [E].

Theorem 5.1 Lifting provides the partial map classifier.
Proof According to Definition 2.1, we are given the maps p, i and j that are shown in bold in
the following diagram, and have to find a map f , shown dashed, that makes the square a pullback.
Moreover, f has to be unique. We shall capture f by defining Y ≡ f∗W for any open subset
W ⊂ X⊥.
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Z = p∗i∗W =
j∗f∗W = Y ∩ U - i∗W = W ∩X

U
p -

⊂

-

∩

X
!X -

⊂

-

{>} A = ΣX

Y = f∗W
?

∩......................
..... ...........- W

?

Γ

j

?

∩

f -

⊂...............-

X⊥

i

?

∩

-

⊂

-

Σ
?

∩

ΣX⊥

∃i

?

?

a i∗

66

V = !∗Γb
∗W
⊂

-

C

c

t

6

!C- B = {⊥}

b

t

6

a !Γ

? !B -

!Γ

-

{⊥}
t

6

S = Σ

b! = !∗Γ

6

6

a b∗

??

a ∀b

6

Using Remark 1.2, put

V = !∗Γb
∗W = Γ | (⊥ ∈W ) ⊂ Γ

Z = p∗i∗W ⊂ U.

I claim that U ∩ V = Z as in Remark 3.2:

U ∩ V = j∗!∗Γb
∗W = p∗i∗!∗Γb

∗W ⊂ p∗i∗W = Z ⊂ U.

The first equality is just j∗ ≡ U ∩ (−) applied to the definition of V . The second uses the fact
that !Γ · j and !Γ · i · p are maps to the terminal object, so must be equal. The containment follows
from Definition 2.5, which says that !∗Γ · b∗ = b! · b∗ ≤ idΓ, whilst p∗ · i∗ preserves order.

Hence we have open subspaces of X with the following sublattice of inclusions:

U ∪ V

Y
.....

.....
..

V
.....

.....
..

U

Z

.................................

U ∩ V
By modularity, there is a unique Y such that V ⊂ Y ⊂ U ∪V and Z = Y ∩U , namely Y = V ∪Z
(cf. Remark 3.2).

Remark 5.2 (Continuation of the proof.) I claim that this construction yields Y = f∗W as
required. With W = X, it gives V = ∅ (by Lemma 1.3(a)) and Y = U ∪ V = U as required for
the pullback condition. Similarly, W = X⊥ and ∅ give Y = Γ and ∅, and it is also easy to see
that f∗ : W 7→ Y preserves unions. What is more difficult to show is that binary intersections are
preserved: attacking it with the blunt instrument of distributivity is not a good idea when the
issue is modularity. In the obvious notation,

V1 ∩ V2 ⊂ Y1 ∩ Y2 ⊂ U ∪ (V1 ∩ V2) and (Y1 ∩ Y2) ∩ U = Z1 ∩ Z2
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(albeit using distributivity), so Y1 ∩ Y2 uniquely does the job of Y .

Remark 5.3 (Continuation of the proof.) Suppose conversely that a total extension f exists, and
put Y = f∗W . Commutativity of the bold square says that Y ∩ U = Z ⊂ U , where V and Z are
defined as above. Then

V = !∗Γb
∗W = f∗!∗Γb

∗W ⊂ f∗W = Y

by the same argument as for U ∩ V ⊂ Z above, using monotonicity of f∗ and Definition 2.5.
From Lemma 1.3(c) and Definition 2.5, and since ∃ii∗W ⊂ X,

W = ∃ii∗W ∪ b!b∗W ⊂ X ∪ !∗Γb
∗W,

and f∗ preserves this union, so

Y = f∗W ⊂ f∗X ∪ f∗!∗Γb∗W = U ∪ V.

Again, by modularity, we must have Y = Z ∪ U . �

Remark 5.4 We have found f∗ by means of the composite construction

W - (V,Z)
Y = U ∪ V- (V, Y ) - Y

ΣX⊥
(p∗ · i∗, !∗Γ · b∗)- EU - FU

π1 - ΣΓ

where the order-isomorphism between

EU = {(V,Z) ∈ G2 | U ∩ V ⊂ Z ⊂ U} and FU = {(V, Y ) ∈ G2 | V ⊂ Y ⊂ U ∪ V }

is that stating the the modular law in Definition 3.3. In fact, EU and FU are (isomorphic) frames,
and the maps displayed are frame homomorphisms. It is this construction that we shall adapt to
abstract Stone duality in Section 7.

Remark 5.5 The modular law has a sting in its tail. It would be a little prettier to use the
isomorphic three-variable lattices

E = {(U, V, Z) | U ∩ V ⊂ Z ⊂ U} and F = {(U, V, Y ) | V ⊂ Y ⊂ U ∪ V },

but unfortunately they are not modular, except in the trivial case G = 1. So they cannot be
frames, or algebras for abstract Stone duality monad. This is because E contains the following as
a sublattice (Example 3.4(a)), where >>⊥ is excluded by U ∩ V ⊂ Z, whilst ⊥⊥> and ⊥>> fail
Z ⊂ U (⊥>⊥ in E becomes ⊥>> in F ).

>>>

>⊥>
⊥>⊥

>⊥⊥

⊥⊥⊥
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6 Comma squares of algebras in ASD

Having described the lift for locales in a way that does not depend on the unacceptable features
of the traditional axiomatisation, we now begin to adapt the argument to abstract Stone duality.
Despite the switch to the more abstract language, you can continue to read this for locally compact
locales, as they form a model of the axioms.

Definition 6.1 Abstract Stone duality says, briefly, that the category S of spaces satisfies the
following properties:
(a) S has products and an object Σ of which all powers ΣX exist, and moreover the contravariant

adjunction Σ(−) a Σ(−) is to be monadic. We also assume that idempotents (retracts) split.
This idea is developed in [A, B], and exploited in the next section.

(b) Σ is an internal distributive lattice satisfying the Phoa principle (Definition 2.3): the order
relation defined by the lattice structure is Σ≤ ∼= ΣΣ. This has the effect that Σ classifies both
open and closed subspaces[C].

(c) There is a natural numbers object N, which is overt, i.e. admits an existential quantifier
∃N : ΣN → Σ. We use this to define general recursion in Section 8.

(d) The Scott principle: for any F : ΣΣN and φ : ΣN,

Fφ = ∃n. F (λm. m < n) ∧ ∀m < n. φ[m].

This axiom is exploited in [E], but not used in this paper: by withholding it, we see how
powerful its finitary version, the Phoa principle, is in explaining certain apparently infinitary
aspects of topology.

In this section we simply recall the main results from [C, Sections 3 and 5], in particular the
definitions of open and closed subspaces. Using this, we construct the lift as a comma square
(cf. Sections 1 and 2 above). The proof involving modularity that this gives the partial map
classifier (cf. Section 5) will be given in the next section.

Besides saying that Σ is a distributive (and ā fortiori modular) lattice, the Phoa principle can
be resolved into three parts, on which the following results respectively depend [C, Proposition 5.7].

Remark 6.2 In the category so axiomatised, the objects and hom-sets inherit the order from
Σ. In fact, most of the objects that we consider in the proof are algebras, and are in any case
retracts of powers of Σ. The first part of the Phoa principle is that all maps Σ→ Σ be monotone
[C, Lemma 5.2]. It follows that the functor ΣΣ(−)

, which we abbreviate as Σ2(−), preserves this
order. �

Corollary 6.3 G2 and G≤ carry Eilenberg–Moore algebra structures for the monad in Defini-
tion 6.1(a), such that the inclusion

GΣ ∼= G≤ = {(x, y) | x ≤ y}� G2

is an Eilenberg–Moore homomorphism. �

Corollary 6.4 The diagonal G→ G≤ by x 7→ (x, x) is also a homomorphism. �

The second part of the Phoa principle is called the Euclidean principle. It characterises
dominances (“subobject classifiers”) in the context of the monadic axiom, i.e. the fact that the
characteristic map of an open subset is unique [C, Section 3].

In the next two results, u ∈ G = ΣΓ is a global element, u : 1→ ΣΓ.

Proposition 6.5 In the retraction,

G

i∗--
>�
∃i
�A = (G ↓ u) = {a | a ≤ u} by (−) ∧ u,

17



A is an algebra such that i∗ is a homomorphism and ∃i satisfies the Frobenius law, so i is an open
inclusion [C, Proposition 3.11].
Proof The map i∗ is the inverse image for the inclusion of the open subspace U , which is an
equaliser:

U ⊂
i - Γ

⊂
x 7→ 〈x,>〉 -

x 7→ 〈x, (x ∈ U)〉
- Γ× Σ

(G ↓ u)
��i

∗ ≡ (−) ∧ u
>-
∃i

- G = ΣΓ W 7→ λxσ. σ ∧ (x ∈W )- ΣΓ×Σ

The corresponding coequaliser of topologies and homomorphisms (exists because it) is split by the
Scott-continuous maps shown. The relevant equation in Beck’s theorem is given by the Euclidean
principle, and the Frobenius law is a third way of seeing the same thing [C, Lemma 3.3]. �

The third part of the Phoa principle is the lattice dual of the Euclidean principle, and does
the same for closed subspaces:

Proposition 6.6 In the retraction

G

c∗--
⊥�
∀c
�S = (u ↓ G) = {s | s ≥ u} by (−) ∨ u,

S is an algebra such that the map c∗ is a homomorphism and ∀c satisfies the dual Frobenius law,
so c is a closed inclusion [C, Corollary 5.6]. �

Now we are ready to construct the lift X⊥ by forming H = ΣX⊥ as a comma square involving
A = ΣX , just as in Definition 2.5. Here (A,α) may any Eilenberg–Moore algebra for the monad
— the whole point of the monadic adjunction is that, to define a space X, it is necessary and
sufficient to construct ΣX . This is the most general kind of comma square that we shall need to
construct directly in abstract Stone duality.

Lemma 6.7 The object H = ` ↓ A = {(s, a) | `(s) ≤ a} ⊂ Σ × A exists, being the image of the
closure operation (s, a) 7→ (s, `(s) ∨ a), where ` : Σ → A is the unique homomorphism (that is,
!∗X when A = ΣX). �

Proposition 6.8 H is the comma object ` ↓ A in the Eilenberg–Moore category.

Σ2H - Σ2A

H
π0 -

θ
.................-

A

α
-

Σ2Σ
?

- Σ2A

?↙

Σ

π1

? ` -
η∗1 -

A

id

?↙

α-

Proof In the construction of the lift, ` is a homomorphism, although it would be enough to
have ` · η∗1 ≤ α · Σ2` in this construction. Then we have a lax square from Σ2H to A, and hence
a mediator θ : Σ2H → H that makes the left and top faces of the cube commute. These say that
π0 and π1 are Eilenberg–Moore homomorphisms. By uniqueness of mediators from a similar lax
square involving Σ4H, (H, θ) is an algebra. A similar argument shows that the mediator from any
other lax square involving homomorphisms ∆→ A and ∆→ Σ is also a homomorphism. �
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7 The modular law and lifting in ASD

The remaining issue is to show that the map f∗ in Theorem 5.1 that we have claimed to be the
inverse image of the total extension in the partial map classifier) is in fact a homomorphism of
Eilenberg–Moore algebras in abstract Stone duality formulation, cf. Remark 5.2.

This means that we have to show that a certain equation is valid. Equational reasoning is,
however, notoriously difficult to follow — and therefore prone to error — especially when it is
based on the modular law. (Our equation involves composition and the functor Σ(−), which may
be defined in terms of the λ-calculus, so some people would want to express it as a string of step-
wise equations and β-reductions, but I rather doubt whether they would succeed in doing this
correctly, let alone informatively.) For this reason, it is vital to identify the conceptual structure
behind the symbol-pushing, and in particular to employ commutative diagrams to record the both
types of the sub-formulae and the names and roles of the equational laws being invoked.

Much of the original body of results about monads [Eck69, BW85] depends on the availability
of equalisers and coequalisers of arbitrary pairs of functions between sets, or of homomorphisms
between algebras, and is therefore of no use in abstract Stone duality. This is not the case for
the theorem of Jon Beck that characterises monadic adjunctions in terms of “U -split coequalisers”
[Tay99, Theorem 7.5.9] [BW85, Section 3.3] [ML71, Section VI 7], so we rely very heavily on this
result, and are forced to learn how to find such coequalisers when we need them. An account of
how Beck’s theorem provides certain subspaces is given in [B, Section 3].

As well as U -split or absolute coequalisers, a certain species of absolute pushout also shows
up rather commonly when we start looking [B, Section 7] (Absolute means that the universal
property, being given by equations, is preserved by any functor.)

The objects and maps in the following result are given the names that they have in the Karoubi
construction, although the letters i, j, k, p, q and r now play different roles from those earlier in
the paper.

Lemma 7.1 Let e and e′ be idempotents on an object in any category that has splittings of
idempotents, such that the composites e ; e′ and e′ ; e are also idempotent (but not necessarily
equal), so we have the equations

e ; e = e, e′ ; e′ = e′, e ; e′ ; e ; e′ = e ; e′ and e′ ; e ; e′ ; e = e′ ; e.

Then the objects E and F that split the idempotents e ; e′ and e′ ; e are isomorphic.

id

e
j = e

-

-q = e

��
e′

q′ = e′

--j′ = e′

�

�

E ≡ e ; e′

i = e ; e′ ; e

6

6

p = e ; e′

?? b = e ; e′ ; e -
∼=�

a = e′ ; e ; e′

-

k = e ; e
′

-

��

s = e
′ ; e ; e

′

e′ ; e ≡ F

p′ = e′ ; e

??

i′ = e′ ; e ; e′

6

6
�

k ′= e ′ ; e

�

s ′= e ; e ′ ; e

--

Moreover, we have the equations:

(7.6) k ; s = idE = e ; e′ (7.9) b = a−1 = e ; e′ ; e
(7.6) j ; q′ = p ; k = e ; e′ (7.11) i = b ; k′ = e ; e′ ; e
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(7.10) k′ ; s′ = idF = e′ ; e (7.8) i′ = a ; k = e′ ; e ; e′

(7.9) a = k′ ; p = e′ ; e ; e′ (7.8) s′ = p ; b = e ; e′ ; e �

Remark 7.2 With h and r both given by e ; e′ ; e, we also have split equalisers and coequalisers,

F
- k′ -
��.......

s′
........... e

- j -
h -

��.......
q
...........

id id

q --
r -

�.........
j
..........�

e
p --

�.........
i
..........�E

together with the versions with the primes the other way. From the coequaliser (on the right) it
follows that E (or F ) is the absolute pushout of the surjections in Lemma 7.1. Beware, however,
that the diamonds of monos do not commute, so we don’t have a pullback (unless e ;e′ ;e = e ;e′).�

The idempotents e and e′ that interest us are defined for any internal lattice (G,∧,∨) in any
category with finite products, essentially by

G×G
〈π0,∨〉 -

〈π0,∧〉
- G×G,

though we shall use a rather less pedantic notation than this. The familiar symbolic notation is
justified, at least for the morphisms, in any category with finite products [Tay99, Section 4.6], with
the convention that morphisms act as the identity on those variables that occur in the names of
both their source and target but not in the name of the morphism. The objects exist in abstract
Stone duality because they are defined by retracts of G2 or G3, where G = ΣΓ.

Proposition 7.3 Let G be an internal modular lattice any a category with finite products and
splittings of idempotents. Then the following diagram has the properties listed in Lemma 7.1.

{(u, v, t)} = G3

{(u, v, y) | v ≤ y}
��
q = [t ∨

v/y
]

⊥
j = [y/t]

-

-

{(u, v, z) | z ≤ u}

q ′= [t ∧ u/z]>
--

j′ = [z/t]

�

�

E = {(u, v, z) | u ∧ v ≤ z ≤ u}

i = [v ∨ z/y]

6

6

a p = [u ∧ y/z]

?? b = [v ∨ z/y]-
∼=�

a = [u ∧ y/z]

-

⊥
k

-

��

[u ∧
(v ∨

z)/
z]

{(u, v, y) | v ≤ y ≤ u ∨ v} = F

p′ = [v ∨ z/y]

??

a i′ = [u ∧ y/z]

6

6�

>
k ′

�

[(u ∧ y) ∨ v/y]

--

Proof Our idempotents are, more precisely,

e : (u, v, t) 7→ (u, v, t ∨ v) and e′ : (u, v, t) 7→ (u, v, t ∧ u),

so the equation e ; e′ = e ; e′ ; e ; e′ amounts to

u ∧ (t ∨ v) = u ∧
(
(u ∧ (t ∨ v)) ∨ v

)
,
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which is one of the many versions of the modular law, as is its dual (Remark 3.5). Since the name
of each map in the Karoubi notation consists of its source (which acts as the identity) followed by
(usually just of one of) e or e′, it is not too difficult to translate Lemma 7.1 into lattice notation.�

Remark 7.4 The simpler equation

e ; e′ ; e = e′ ; e, which is u ∧
(
(t ∧ u) ∨ v

)
= u ∧ (t ∨ v),

expresses distributivity and, of course, implies the ones used above. However, this is not the same
as the equation mentioned in Remark 7.2 that would make the diamond of monos commute, which
only holds when G = 1. In fact, the pullback of i and j is {(u, v, t) | v ≤ t ≤ u}.

Remark 7.5 Because of Remark 5.5, we must restrict the diagram by fixing a global element
u ∈ G. The following maps are then lattice homomorphisms (indeed, frame homomorphisms as
they are also continuous): we shall show that these objects are Eilenberg–Moore algebras for our
monad and that the maps are homomorphisms in that sense too.

{(v, t)} = G2

G≤ ≡ {(v, y) | v ≤ y}
- j (6.3

)

-

-

h (7.1
2) -

{(v, z) | z ≤ u} ≡ G× (G ↓ u)

q′ (6.5)

--

Eu ≡ {(v, z) | u ∧ v ≤ z ≤ u}

i (7.11)

6

6

a p (7.6)

?? b (7.9) -
∼=�

a (7.9)

k (7.6)

-

-

{(v, y) | v ≤ y ≤ u ∨ v} ≡ Fu

i′ (7.8)

6

6s ′ (7.8)

--

�

k ′ (7.10)

�

The symmetry has been lost: h′, p′, q, r, r′ and s don’t preserve ∧, whilst j′ doesn’t preserve >.

Lemma 7.6 There is a unique Eilenberg–Moore algebra structure on the object Eu for which
p : G≤ → Eu and k : Eu → G× (G ↓ u) are homomorphisms.

Σ2(G≤)
Σ2p-- Σ2Eu

Σ2k- Σ2(G× (G ↓ u))

G≤
?

p -- Eu
?

................
- k- G× (G ↓ u)

?

Proof The maps G≤
j- G2 q′- G × (G ↓ u) are homomorphisms by Corollary 6.3 and

Proposition 6.5. Then p ; k is the image factorisation of the composite, indeed with p split epi and
k split mono. The structure map on Eu is therefore given by composition, so that p and k are
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also homomorphisms. The Eilenberg–Moore equations for the algebra Eu are justified in a similar
way using Σ4. �

Corollary 7.7 Eu can be expressed as a comma square of algebras,

ΣX⊥ - A = ΣX

Eu -

.................-

G ↓ u 3 z
-

S = Σ

b∗

?

v ∈ G
? (−) ∧ u-

!∗
-

G ↓ u

id

?↗

and the mediator ΣX⊥ → Eu provides the first part, W 7→ (V,Z), of the construction in Section 5.
Proof Eu is clearly a comma square of objects, but the homomorphism k makes it a subalgebra
of G× (G ↓ u). �

Lemma 7.8 By the same method, the object Fu = {(v, y) | v ≤ y ≤ u ∨ v} carries a unique
structure for which s′ : G≤ → Fu and i′ : Fu → G × (G ↓ u) are homomorphisms. In fact it is
unique for either of them to be a homomorphism. �

Lemma 7.9 Similarly, a and b are isomorphisms of algebras (“monadic forgetful functors reflect
invertibility”). �

The factorisation method doesn’t help to show that the inclusions i : Eu- - G≤ and k′ :
Fu- - G≤ are homomorphisms. (We shall need k′ ; π1 to project out the result y.) Although k′

is the equaliser of j and h by Remark 7.2, we do not yet know that h is a homomorphism.

Lemma 7.10 The following square is a pullback of homomorphisms.

{(v, y) | v ≤ y} = G≤
6.6 : (c∗)≤

[u ∨ v/v′, u ∨ y/y′]
- (u ↓ G)≤ = {(v′, y′) | u ≤ v′ ≤ y′}

{(v, y) | v ≤ y ≤ u ∨ v} = Fu

k′

6

6

a s′ = [(u ∧ y) ∨ v/y]

??

......................
[u ∨ v/v′] - u ↓ G = {v′ | u ≤ v′}

6.4 ∆

6

6

In particular, the inclusion k′ : Fu- - G≤ is a homomorphism.
Proof First we have to show that the square is a pullback of functions, but any test square with
(v, y) : ∆→ G≤ and v′ : ∆→ u ↓ G satisfies

v ≤ y ≤ u ∨ y = v′ = u ∨ v

since v ≤ y ≤ u ∨ v iff v ≤ y & u ∨ v = u ∨ y.
Then, given the known structure on the other three objects and since “monadic forgetful

functors create pullbacks”, there is a unique structure on Fu for which the square is a pullback of
homomorphisms.

Using this (new) structure on Fu, the homomorphism s′ : G≤ → Fu mediates to the pullback
from the commutative square involving id : G≤ → G≤ and c∗ · π0 = [u ∨ v/v′] : G≤ → u ↓ G, the
latter being a homomorphism by Proposition 6.6.
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This is the same algebra structure as in Lemma 7.8, because there is only one such structure
that makes s′ a homomorphism. �

Lemma 7.11 i = b ; k′ = [v ∧ z/y] : Eu → G≤ is a homomorphism by composition. �

Lemma 7.12 h = p ; i ; j = e ; e′ ; e = [(u ∧ y) ∨ v/t] : G≤- - G2 is a homomorphism by
composition. �

Theorem 7.13 Lifting provides the partial map classifier in abstract Stone duality.
Proof The construction and proof are the same as in Theorem 5.1, where W 7→ (V,Z) 7→
(V, Y ) 7→ Y is a composite of maps that we have just shown to be homomorphisms. �

Remark 7.14 The spaces and continuous maps that correspond to the algebras and homomor-
phisms that we have used in this section are as illustrated:

U U

C C
Γ + Γ = Γ× 2

U

U
C

C
��

Γ× Σ
���
�

Γ + U

�

⊃ U U

C

U

U

C

��

�

�--

Each linked pair U–C denotes a copy of the original space Γ, whilst U–U and U U with or without
a link denote U × Σ and the disjoint union (U × 2) respectively. Of the two parallel surjections,
one (whose inverse image map is j) matches the four parts in the obvious way, whilst the other
(corresponding to h) sends both Cs to the lower one. Similarly, the inclusion of the three-part
object at the bottom sends C to the lower copy.

8 General recursion

As an application of lifting, we construct the search or minimalisation operator µ : (2⊥)N →
N⊥ for general recursion. Here we regard this as a problem in domain theory, and not as part
of the construction of the recursion-theoretic halting set that we needed in Section 4. Besides
the obvious uses of lifting in the definition, gluing ideas are used again towards the end of the
proof. This construction is included in this paper, rather than in a later one on domain theory or
recursion theory [F], in order to emphasise that it is done without an additional fixed point axiom.

We do, of course, now assume that N admits primitive recursion, although we actually only
need this at type ΣN. In fact, the properties of N that we use are:

Lemma 8.1 N carries a binary relation <N such that
(a) n,m : N ` n <N m ∨ n =N m ∨m <N n and
(b) {m | m < n} is compact, i.e. we may form ∀m < n.φ[m]. �

We also use the existential quantifier ∃N : ΣN → Σ, so N is overt [C, Definition 7.7]. These
two axioms of abstract Stone duality, together with the more basic ones that we have used so far
(Remark 6.1), can be seen as universal properties, which the traditional definition of µ cannot.
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Recall that the idea of µ(f) is that it runs f(0), f(1), ..., returning as its value the first n for
which f(n) returns an affirmative result. All f(m) for m < n must have returned definite negative
results, and in particular f(m) must terminate for each m ≤ n. If we know ∃n. f(n) = 0 then [A,
Lemma 9.11] defines µ(f) using description:

µ(f) = then. f(n) = 0 ∧ ∀m < n. f(m) > 0.

In this paper we have constructed the partial map classifier. This allows us to remove the
existential hypothesis on f , makin µ(f) partial, and f itself may also be a partial function.

Traditionally, 0 ∈ N denotes affirmative, and any other (i.e. positive) number denotes negative.
Instead, we consider f : N → 2⊥, as there are only two definite results, and N⊥ does not have a
convenient representation in the absence of the fixed point axiom.

In fact, we shall represent f : N→ 2⊥ by (φ, ψ) ∈ ΣN × ΣN such that

T (φ, ψ) ≡ ∃n. φ[n] ∧ ψ[n] = ⊥,

and so we begin by showing that 2, 2⊥, (2⊥)> ∼= (2>)⊥ and Σ × Σ are related in the expected
way.

Lemma 8.2 2⊥ is the closed subspace {φ, ψ | φ ∧ ψ = ⊥} @ - Σ× Σ, and 2>⊥ ∼= Σ× Σ.

2⊥ - 1

Σ× Σ
?

u

∧ - Σ

⊥

?

Proof This could be shown by lattice-theoretic manipulation of the double comma object that
provides the topology on 2>⊥, but we prove instead that Σ×Σ has the universal property of (2⊥)>.
We must show that maps (φ, ψ) : Γ→ Σ×Σ correspond to partial maps p : Γ ⇀ 2 whose domain
of definition is locally closed, i.e. an open subset D of a closed subset C ⊂ Γ.

D = W \ U
p - 2

C = Γ \ U
?

∩

2⊥
?

∩

Γ
?

u

....................................
(φ, ψ)

- Σ× Σ
?

u

As usual, D = W ∩ C for some open subset W ⊂ Γ, and the topologies on C and D are U ↓ G
and U ↓ G ↓W , where U is the open complement of C.

The partial map p is determined by two (cl)open subsets of D, which are the restrictions to D
of open subsets Φ,Ψ ⊂ Γ such that

Φ ∩Ψ = U ⊂ Φ,Ψ ⊂ U ∪W = Φ ∪Ψ,

which together provide a map (φ, ψ) : Γ → Σ × Σ. Conversely, U , W , C, D and p : D → 2 may
be recovered from (φ, ψ).

When C = Γ, so U = ∅, the domain of definition is open, and p : D ⇀ 2 is a partial map
of the kind treated in Definition 2.1, so the corresponding subspace {(φ, ψ) | φ ∧ ψ = ⊥} has the
universal property of 2⊥. �
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Corollary 8.3 (2⊥)N is the closed subspace {φ, ψ | (∃n. φ[n] ∧ ψ[n]) = ⊥} of ΣN × ΣN.
Proof Using [C, Proposition 7.10],

(2⊥)N - 1 - 1

ΣN × ΣN
?

u

∧ - ΣN

⊥
? ∃ - Σ

⊥

?

�

Remark 8.4 Similarly, N⊥ = {θ | D(θ) = ⊥} ⊂ ΣN,

N⊥ - {⊥}

ΣN
?

u

D - Σ
?

where D(θ) says that θ has at least two distinct elements (see below). But this is only valid if we
assume the fixed point axiom, that F (λn.>) = ∃m. F (λm. m < n) for all F : ΣN → Σ.

This axiom would make the lower right square below a pullback too. The big square P ⇒ Σ×Σ
commutes because D · S ≤ T , so the mediator to the pullback N⊥ provides µ0 and µ.

We shall show that µ can be constructed without such an assumption.

Notation 8.5 Let S(φ, ψ) = σ = λn. σn and T (φ, ψ) = τ = ∃n. τn, where

σn = φ[n] ∧ ∀m < n. ψ[m]
τn = φ[n] ∧ ψ[n]
D(θ) = ∃nm. θ[n] ∧ θ[m] ∧ (n < m).

Then we shall define µ by means of the diagram

1 � P ..............................
µ0

- N - 1

Σ

>

?
� (2⊥)N

?

∩

........................
µ

- N⊥

?

∩

- Σ

>

?

Σ× Σ

〈id,⊥〉

?
�〈∃ · S, T 〉 ΣN × ΣN

?

u

S - ΣN
? 〈∃, D〉 - Σ× Σ

〈id,⊥〉

?

We leave the interested reader to show that the lower middle square is not a pullback in any
circumstances, and that P ∼= (2⊥)N × N.

Lemma 8.6 {n} ∧ σn ≤ σ, D · S ≤ T and σ ∧ σn ∨ τn ≤ {n} ∨ τ .
Proof (

{n} ∧ σn
)
(m) = (m =N n) ∧ φ[n] ∧ ∀m < n. ψ[m]

≤ φ[m] ∧
∧

m′<m

ψ[m′]

= σ(m)
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DS(φ, ψ) = ∃mn. φ[n] ∧ ∀m < n. ψ[m] ∧ φ[m] ∧
∧

m′<m

ψ[m′] ∧ (n < m)

≤ ∃n. φ[n] ∧ ψ[n]
= T (φ, ψ).

Similarly, using trichotomy of <N (Lemma 8.1(a)) and with k = min(n,m),

(σn ∧ σ ∨ τn)(m) =
(
φ[n] ∧ ∀m < n. ψ[m] ∧ φ[m] ∧

∧
m′<m

ψ[m′
]
)

∨
(
φ[n] ∧ ψ[n]

)
≤ (n =N m) ∨ ∃k. φ[k] ∧ ψ[k]
= (n =N m) ∨ τ �

Remark 8.7 The inclusions P- - ΣN × ΣN and N- - ΣN are Σ-split:
(a) P is locally closed, so by Section 6, ΣP splits the idempotent H : G 7→ (G ∧ ∃ · S) ∨ T on

ΣΣN×ΣN ;
(b) ΣN splits J : F 7→ λθ. ∃n. F{n} ∧ θ[n] on ΣΣN [C, Proposition 7.12].
Then we define µ0 : P → N by constructing the homomorphism Σµ0 as a map between splittings
of idempotents, or as the composite of the other three sides of the square:

P ΣP
- -
�� ΣΣN×ΣN ΣN × ΣN

N

µ0

?

.................
ΣN

Σµ0

6
................
-θ 7→ λφ. ∃n. φ[n] ∧ θ[n]-
��

λn. F{n} ←7 F
ΣΣN

ΣS
6

ΣN

S

?

Σµ0 is an Eilenberg–Moore homomorphism because the maps ΣΣN → ΣΣN × ΣΣN → ΣP are
homomorphisms and ΣΣN → ΣN is a quotient algebra.

What we have to check is:

Lemma 8.8 H · ΣS = H · ΣS · J .
Proof Apply them to F ∈ ΣΣN and φ, ψ ∈ ΣN. The left hand side is

L = H · ΣS(F )(φ, ψ) = HFS(φ, ψ) = (F ∧ ∃)σ ∨ τ
= F

(
λn. φ[n] ∧ ∀m < n. ψ[m]

)
∧
(
∃n. φ[n] ∧ ∀m < n. ψ[m]

)
∨
(
∃n. φ[n] ∧ ψ[n]

)
= ∃n. Fσ ∧ σn ∨ τn

using Frobenius, whilst the right hand side is

R = H · ΣS · J(F )(φ, ψ) = H(JF )S(φ, ψ) = (JF ∧ ∃)σ ∨ τ
=

(
∃n. F{n} ∧ φ[n] ∧ ∀m < n. ψ[m]

)
∧
(
∃n. φ[n] ∧ ∀m < n. ψ[m]

)
∨
(
∃n. φ[n] ∧ ψ[n]

)
= ∃n. F{n} ∧ σn ∨ τn

Writing ∃n. Ln and ∃n. Rn for these expressions, we show that Rn ≤ Ln ≤ ∃n. Rn. For the first,

F{n} ∧ σn = F ({n} ∧ σn) ∧ σn ≤ Fσ ∧ σn
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by Lemma 8.6 and since F is monotone and satisfies the Euclidean principle. For the second,

Fσ ∧ σn ∨ τn = F (σ ∧ σn ∨ τn) ∧ σn ∨ τn Phoa
≤ F ({n} ∨ τ) ∧ σn ∨ τn Lemma 8.6
≤ F ({n} ∨ τ) ∧ σn ∨ τ
= F{n} ∧ σn ∨ τ dual Euclid
≤ ∃n. Rn �

Theorem 8.9 There is a uniquely defined map µ : (2⊥)N → N⊥ making the diagram in Nota-
tion 8.5 commute.

P
µ0 - N

{−} - ΣN

ΣN × ΣN

S -

(2⊥)N
?

∩

........................
µ

-
@

-

N⊥

?

∩

{−}⊥- (ΣN)⊥
?

∩
6

Q
t

6

- 1

⊥

6

- 1

⊥

6

Proof We have already constructed µ0 to make the upper quadrilateral commute, and then
µ : (2⊥)N → N⊥ is defined by lifting, which makes the upper left square a pullback. The question
is whether the maps (2⊥)N ⇒ ΣN × ΣN agree (the lower middle square in Notation 8.5).

Let Q ⊂ ΣN ×ΣN be the closed subspace classified by ∃ · S = ⊥ and T = ⊥, so Q is the closed
complement of P ⊂ (2⊥)N. By construction, µ takes the value ⊥ ∈ N⊥ on Q, and this is carried
to λn.⊥ ∈ ΣN, which is also the value of S on Q.

Thus the diagrams P ⇒ ΣN and Q⇒ ΣN commute, so maps agree on (2⊥)N by Theorem 3.9.�
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