
Subspaces in Abstract Stone Duality

Paul Taylor

August 11, 2003

Abstract
By abstract Stone duality we mean that the topology or contravariant powerset functor,

seen as a self-adjoint exponential Σ(−) on some category, is monadic. Using Beck’s theorem,
this means that certain equalisers exist and carry the subspace topology. These subspaces are
encoded by idempotents that play a role similar to that of nuclei in locale theory.

Paré showed that any elementary topos has this duality, and we prove it intuitionistically
for the category of locally compact locales.

The paper is largely concerned with the construction of such a category out of one that
merely has powers of some fixed object Σ. It builds on Sober Spaces and Continuations,
where the related but weaker notion of abstract sobriety was considered. The construction is
done first by formally adjoining certain equalisers that Σ(−) takes to coequalisers, then using
Eilenberg–Moore algebras, and finally presented as a lambda calculus similar to the axiom of
comprehension in set theory.

The comprehension calculus has a normalisation theorem, by which every type can be
embedded as a subspace of a type formed without comprehension, and terms also normalise
in a simple way. The symbolic and categorical structures are thereby shown to be equivalent.

Finally, sums and certain quotients are constructed using the comprehension calculus,
giving an extensive category.

Contents 6 Structure in C 24
1 Introduction 1 7 Algebras 28
2 The subspace topology 5 8 Comprehension 32
3 Beck’s theorem 10 9 Normalisation for types 36
4 Adding Σ-split subspaces 15 10 Normalisation for terms 40

5 Injectives and products in C 19 11 Sums and quotients 47

1 Introduction

The existence or otherwise of extensional subspaces is a point of demarcation between pure math-
ematics and computer science. The ubiquitous axiom of comprehension seems to be what main-
stream mathematicians have in mind when they insist that Set Theory provides the foundations
of their subject. On the other hand, neither programming languages nor the type theories that are
most popular in computer science admit subtypes. (We do not mean the notion of this name in
object-oriented programming, which is like an extension of the signature of an algebraic theory.)
Subtypes in our sense are used in software development, in the form of Floyd–Hoare logic, with
pre- and post-conditions, but it is an up-hill struggle to teach programmers to use them!

The reason for this demarcation is that the essence of the development in a mathematical
argument is quite different from that in a computation. Before the referee will allow me to say
that an element belongs to a subset, I must prove that it satisfies the defining property. Otherwise,
the rest of the argument has no meaning whatever, and my paper is not published. From this
point of view, compilation of high level programming languages lies on the mathematical side of
the boundary. A (low level) computation, on the other hand, proceeds irrespectively of whether
or not a purported mid-condition is satisfied: if it doesn’t, the behaviour of the program may not
be what the programmer had in mind, but it nevertheless does something.

1

I am, of course, in favour of constructive mathematics, and appreciate the analogy between
programs and proofs, but opinions differ as to what is regarded as constructive: my notion is
stronger than Johnstone’s [Joh82] but weaker than Martin-Löf’s [ML84]. I have argued that what
Per Martin-Löf calls the “existential quantifier” and the “axiom of choice” are not those used
in geometry [Tay99, Section 2.4], and nor do I consider that an element of a subset needs to be
accompanied by a proof of the defining predicate. Such proofs may serve as guarantees, but at
some point we must eventually trust (the verification of) the guarantee and carry on with the
computation.

In crossing the demarcation from pure mathematics to programming, we therefore have to
extend the definition of functions that were intended to be defined on a subset to the whole of the
ambient set, possibly at the cost of results that lie outside the intended target. A target object
that permits such extension without itself being expanded is called injective, and such objects will
play an important role in this paper.

I see the crossing as building a “mathematically comfortable” platform, with more types (sets,
spaces) than the underlying programming language, but such that the terms (elements) become
programs when the richer type information is erased. The programming language that we shall use
was justified and developed in the previous paper [A], so now we must consider ways of building
mathematical platforms. Category theory provides the language in which to express both our
requirements for “comfort” and the means of satisfying them, although equivalent λ-calculi are
needed for the idioms of both mathematics and programming.

Programming languages include constructors for making new types from old ones, but the
additional mathematical types depend on terms. A very general theory of such dependent types is
formulated in [Tay99, Chapter VIII], although I now consider that to be too complicated. Simpler
notions than the axiom of comprehension are familiar in category theory: equalisers, pullbacks,
coequalisers and pushouts.

The present work is by no means the first to provide such extensions. One very simple idea
is to split idempotents (Remark 4.1), which Dana Scott developed [Sco76]. However, a great deal
of artificiality was piled on top of this, notably sum types with spurious additional elements: we
shall find in Section 11 that stable disjoint coproducts are a mathematical comfort that we may
reasonably demand as standard.

Another idea is to expand the monoid of (partial general) recursive functions on N to the cate-
gory whose objects are recursively enumerable subsets. Giuseppe Rosolini formulated the abstract
notion of partial maps (composing a p-category), and constructed a category with subobjects from
it [RR88]. Peter Freyd and Andre Scedrov started instead from binary relations (composing an al-
legory) [FS90]. Their theory also accounts for the way in which general sets may be obtained from
iterated powersets, traditionally known as the von Neumann hierarchy. Bill Lawvere’s treatment
[Law70] describes and generalises the behaviour of comprehension in toposes and other categories
in which it already exists, but does not explain how it creates new sets [Tay99, Exercises 9.45ff].
Other ways of expanding the class of types include the regular and exact completions of categories.

The particular construction performed in this paper is based on a monad. In the original
mathematical development of monads, Eilenberg–Moore algebras were given a preferential role
[Eck69, BW85]. Later, Eugenio Moggi demonstrated how they could be used to encode features of
computation [Mog91], but the new types that he introduced were objects of the Kleisli category,
which consists of just the free algebras. So the literature that has ensued illustrates the demarca-
tion between mathematics and computer science. In particular, the basic form of our construction
without the subspaces (Section1 A 6) is similar to work of Hayo Thielecke [Thi97], which uses the
the Kleisli category.

In none of these constructions is a type defined as a “collection”, as Solomon Feferman claimed
to be a necessary ingredient of mathematical foundations [Fef77], and nor is a subtype a sub-
collection selected by some kind of demon. Both the underlying programming language and its
mathematical enrichment may be defined as λ-calculi with certain syntactic rules of formation.

1My papers Sober Spaces and Continuations and Geometric and Higher Order Logic are cited as if they were
respectively “Chapters” A and C of a book, this paper being Chapter B.

2

Of course, there is a (recursive) collection of well formed formulae (or of objects and morphisms
in the category), but this cannot be what Feferman’s argument means, as it applies equally to
Set Theory itself. The metalanguage of category theory and type theory is not only first order,
as is that of Set Theory, but essentially algebraic. In our case, the universal properties of Σ-split
(co)equalisers are equational, so the quantifier complexity is even less.

Many of the mathematical intuitions on which our calculus is based come from general topology,
regarded as a more subtle form of set theory. This research programme is named after Marshall
Stone because he was the first to emphasise that one should always look for the topology on any
mathematical object that one has constructed, since the appropriate morphisms are continuous
functions, not arbitrary set-theoretic ones à la Cantor. (See the Introduction to [Joh82] for a
historical survey of this point of view.)

Contrary to what Richard Dedekind and Georg Cantor have told us, this is how the real line
R is defined : we understand the topology ΣR because this is the abstraction of the convergence of
sequences of rationals (or of otherwise algebraically definable numbers), and this is the only way by
which we gain access to transcendental numbers. The space R exists by fiat, being defined formally
as pts(ΣR). Indeed, Bourbaki also constructed R at the end of a tortuous chain of definitions that
spans an entire volume [Bou66], but essentially recovers it from a topology that is defined in terms
of Q.

It was Dana Scott who promoted the analogy between continuity and computability. However,
there cannot be a precise connection with the traditional axiomatisation of general topology,
because it relies on arbitrary unions, rather than recursive ones. It is principally this problem that
Abstract Stone Duality seeks to address.

Monads provide a way of handling infinitary algebra of the kind that we need to re-axiomatise
topology, and may be defined over any category, not just the category of sets. Specifically, we
define the algebras that replace the lattices of open subsets of a space using a monad over the
category of spaces itself.

This use of monads was also inspired by Marshall Stone’s work. By Stone duality we understand
the dual equivalence between a category of algebraically defined objects and another whose objects
we think of as “spaces”, though they may be sets, posets or algebraic varieties as well as topological
spaces.

By abstract Stone duality we mean some category C of “spaces” whose opposite category
Cop ' A is itself “algebraic” over C in the sense of being the category of Eilenberg–Moore algebras
over C.

The analogy between the two concrete examples of sets and locally compact spaces drives the
intuition behind this programme. Temporarily using classical logic, including the axiom of choice,
to present this intuition, these two monadic situations are illustrated by the following diagrams.

Setop
powerset-
'�

atoms
CABA LKSpop

topology-
'�

pts

LKFrm

Set

Ω(−)

6

a Ω(−)

?
=============== Set

6
.................

a U

?
LKSp

Σ(−)

6

a Σ(−)

?
============= LKSp

6
.................

a U

?

Adolf Lindenbaum and Alfred Tarski characterised full powerset lattices classically as complete
atomic Boolean algebras [Tar35]. In modern terms, we formulate their result as a mutually inverse
pair of functors, one of which takes a set X to its powerset PX, and the other extracts the set of
“atomic” elements of any complete atomic Boolean algebra.

The morphisms of CABA preserve arbitrary meets and joins, and the forgetful functor U :
CABA → Set from this category has a left adjoint. The free complete atomic Boolean algebra
on a set X is its double powerset, PPX, and it may be shown that this adjunction is monadic.

The equivalence of categories re-states this concrete adjunction in more abstract terms: the
contravariant powerset functor P : Setop → Set is self -adjoint, and (since the squares commute)

3

the Lindenbaum–Tarski theorem says that this adjunction is also monadic. Robert Paré proved
the same result intuitionistically for any elementary topos [Par74]. Classically, PX ∼= 2X , whilst
PX ∼= ΩX in a topos, where Ω denotes the type of truth values.

In the second diagram, Frm is the category of frames, i.e. lattices with arbitrary joins over
which binary meets distribute, and homomorphisms that preserve finite meets and arbitrary joins.
Frames are therefore the kind of lattices that open subsets constitute in general topology, whilst
the homomorphisms capture the properties of inverse image maps for continuous functions. LKSp
and LKFrm are the categories of locally compact sober spaces and the frames that arise as their
topologies, namely those that are also continuous lattices [HM81].

LKSp and LKFrm are dual categories, where the “points” of a frame may be characterised
lattice-theoretically [Joh82, Section II 1] or by means of an exponential Σ(−) and its associated λ-
calculus [A]. Frm is also a category of Eilenberg–Moore algebras for a monad over Set. However,
if U forgets just the finitary lattice structure, but leaves the carrier equipped with its directed
joins and so the Scott topology, LKFrm is monadic over LKSp.

Again, the monadic adjunction may be seen abstractly, where the powerset PX ∼= ΩX is
replaced by the topology, i.e. the lattice of open subsets of X, and the lattice itself is regarded as a
space with the Scott topology. The topology may be expressed as ΣX , where Σ is the Sierpiński
space. Classically Σ also has two points, one of which is open.

The theorems of Stone, Tarski and Lindenbaum that we have given identified “atoms” or
“points” in the lattices as sets of sets. This turns the set-theoretic membership relation on its
head: each “open set” (element of the algebra) belongs to certain “points”, i.e. these correspond
to certain subsets of the algebra. However, the existence of enough ideal points to separate the
elements of the algebra is equivalent to the axiom of choice, or at least to some weaker proper
axiom such as the prime ideal theorem. Just the same problem arises in model theory, models
being the “ideal points” of the predicate calculus.

In the following two sections we show how, when the category of “spaces” satisfies the abstract
Stone duality, it admits subspaces that carry the subspace topology. This is a special case of Jon
Beck’s general characterisation of monadic adjunctions: under the duality, subspaces correspond to
quotient algebras, and Beck’s theorem says that we may calculate certain kinds of quotient algebras
simply as quotients of their carriers. For textbook accounts of monads and Beck’s theorem, see
[ML71, Section VI 7], [BW85, Section 3.3] or [Tay99, Section 7.5]. Our discussion in Section 3 is
partly intended to amplify these accounts by giving a worked example of Beck’s theorem, in the
hope that it will cross the demarcation and become better understood in the theoretical computer
science community.

Theorem 3.11 gives an intuitionistic proof of Stone duality for locally compact locales. After
this, there is no more topology in this paper: that story — in particular, the equivalence between
Eilenberg–Moore and frame homomorphisms — is taken up in [C, D, F].

Sections 4–6 build a new category C with the abstract Stone duality from one that simply has
products, powers of Σ and all objects sober. The construction is based directly on Beck’s theorem,
formally adding Σ-split equalisers. The main difficulty is in showing that C has products, for which
injective objects are needed as a tool.

Section 7 briefly describes an alternative construction that uses algebras instead.
Sections 8–10 investigate an equivalent λ-calculus, whose types admit subspaces that are de-

scribed using something like the axiom of comprehension in set theory. However, these type
annotations, like the mid-conditions in Floyd–Hoare logic, are computationally anodyne: they re-
main in the journal papers and are not used at run-time. The terms may be stripped of this
complex type information, leaving a simple λ-calculus with application and abstraction.

The final section constructs stable disjoint coproducts and Σ-split coequalisers.

Some comment is in order on the fact that locally compact locales, rather than all locales,
provide the leading model of our axioms. Fundamentally, it is the category that we seek to
axiomatise, not the spaces, and one category has the monadic property, whilst the other doesn’t.
Indeed, the axioms for locales hardly enjoy the same unanimous acceptance in the mathematical

4

community as do those for, say, groups. Spatial locales agree with sober spaces, but even then
disagree as to their products outside the locally compact case, whilst there are numerous competing
axiomatisations of convergence and other features of topology. The traditional one has also long
been regarded as unsatisfactory on the grounds that its logical properties (such as cartesian closure)
are inadequate. This paper breaks new ground in treating topology as λ-calculus.

The simple technical reason for the “restriction” is that the exponential ΣX is only defined
when X is locally compact. However, Steven Vickers has shown how the functor ΣΣ(−)

may be
extended to all locales, decomposing it into two covariant functors that are of interest in themselves
[Vic01]. However, the Eilenberg–Moore category for his monad is not the category of frames, but
one whose opposite he calls the category of colocales. When X is a locale, ΣX is a colocale, and vice
versa, so observations belong not merely to a different type from values, but to another category,
whilst meta-observations are again like values. Our experience since Turing that computations are
ultimately untyped seems to have been sacrificed on the altar of conformity with a pre-existing
mathematical structure.

I acknowledge, on the other hand, that my mathematical platform is not as comfortable as we
might like. In particular, the intersection of two Σ-split subspaces need not be another locally
compact space. Before we are allowed to form an equaliser or coequaliser, we have to satisfy a
very awkward property, which turns out to have no computational meaning anyway. (It also leads
to mis-conceived questions such as largest cartesian closed categories: the statement that “John
is the tallest person who can stand up in here” may say more about the ceiling than about John,
if we are talking about children in a tent.) You pays your money, you takes your choice: my
construction has a good λ-calculus, whilst locales have (infinitary) algebra, which Vickers’ work
has exploited very fluently. Plainly we should be asking for both, and there is no fundamental
reason why we shouldn’t have them. The resulting category will have many more objects besides
locales and colocales, and will in fact be cartesian closed. So the argument from authority (or at
least from familiarity) seems to caution against a too hasty search for generality.

The applications to topology do, unfortunately, go rather quickly outside local compactness.
Some account of the category of locales is therefore needed quite urgently in abstract Stone duality,
and I hope that Vickers’ work will help towards this. It is possible that such a construction would
be the first step of an iteration that would lead to the bigger category, whilst retaining the essence
of topology that we distill here. I believe that this lies in the preservation by ΣΣ(−)

of certain
kinds of equalisers, but more liberal notions of subspace and injectivity will be needed.

Nevertheless, both domain theory and rather a lot of the corpus of pure mathematics may
be seen as going on in the category of locally compact spaces, so it is well worth continuing to
investigate what can be done in the abstract setting that we have so far.

2 The subspace topology

A subset X ⊂ Y of a topological space is said to carry the subspace topology if its open subsets
U ⊂ X are exactly those of the form U = X ∩V for some open subset V ⊂ Y . Since open subsets
U ⊂ X correspond bijectively to continuous maps φ : X → Σ, there is a more categorical way of
saying this:

Remark 2.1 The Sierpiński space Σ is injective with respect to the inclusion i:

X-
i - Y

Σ

ψ

�..
....

....
....

....
....

....

φ

-

for any continuous map φ : X → Σ, there is some continuous map ψ : Y → Σ such that
φ(x) = ψ(ix).

5

In the traditional axiomatisation of general topology, the collections of open subsets of X and
Y admit arbitrary unions, and i∗ ≡ (−) ∩X preserves them. This means that there is a greatest
open V = i∗U ⊂ Y such that U = V ∩ X, where i∗ a i∗. In particular, if X ⊂ Y is the closed
subspace complementary to open W ⊂ Y , we have V = U ∪W .

As this argument manipulates open subsets and not points, it can be expressed in locale theory.
We say that the locale (represented by the frame) A is a sublocale of B if there are monotone
functions i∗ a i∗ such that i∗ is a frame homomorphism and2 i∗ ; i∗ = idA. These can be recovered
from the endomorphism j = i∗ ; i∗ on B, which satisfies idB ≤ j = j2 and j(b1 ∧ b2) = jb1 ∧ jb2.
Such a j is called a nucleus. In particular, the nuclei corresponding to the open subspace W ⊂ Y
and its closed complement are W ⇒ (−) and W ∪ (−) respectively.

The lattice of open subsets of a space Y is the exponential ΣY in the category of locally compact
spaces and continuous functions, when we equip Y with the Scott topology. In this setting, the
inverse image map i∗ is Σi. However, the monotone functions i∗ and j need not be morphisms
between the objects ΣX and ΣY in this category, as, in terms of the lattices, they need not be
Scott continuous.

Many of the features of general topology can be expressed in terms of the λ-calculus that
arises from the exponential Σ(−), together with finitary lattice operations and laws [A, C]. Apart
from Theorem 3.11 and some Examples, whose purpose is to motivate the ideas, the whole theory
will be formulated in these abstract terms: C denotes a category with an internal distributive
lattice Σ, of which all powers ΣX exist in C. In fact, even the lattice structure is not used in the
main development of the present paper.

Returning to the idea of injectivity, in practice we need to state it with parameters.

Lemma 2.2 The following are equivalent for i : X → Y :
(a) Σ is injective with respect to i× U : X × U → Y × U for any object U ;
(b) ΣU is injective with respect to i : X → Y for any object U ;
(c) there is some morphism I : ΣX → ΣY such that I ; Σi = idΣX .

X × U-
i× U- Y × U X-

i - Y

Σ

�...
....

....
....

....
..

-

ΣU

ψ

�...
....

....
....

....
.

φ -

Proof. Parts (a) and (b) are exponential transposes of each other, and (c) is the special case
of (b) with U = ΣX and φ = ηX . Using (b), we obtain I = ηΣX ; Σψ : ΣX → ΣY , as

I ; Σi = ηΣX ; Σψ ; Σi = ηΣX ; ΣηX = id.

Conversely, ψ = ηY ; ΣI ; ΣΣφ ; ΣηU satisfies

i ;ψ = i ;ηY ;ΣI ;ΣΣφ ;ΣηU = ηX ;ΣΣi ;ΣI ;ΣΣφ ;ΣηU = ηX ;ΣΣφ ;ΣηU = φ ;ηΣU ;ΣηU = φ.

We therefore have a situation in which i : X- - Y is a subspace (and Σ is injective with
respect to it) in a very explicit sense, namely that the way in which open subsets U ⊂ X are
expanded to V ⊂ Y is dictated by a morphism I.

2We write “;” for composition in diagrammatic order as far as Section 7, while we argue categorically. Then we
switch the order and use “·” in the development of our new λ-calculus.

6

Definition 2.3 i : X → Y is a Σ-split (mono or) subspace if there is some morphism I : ΣX →
ΣY such that I ; Σi = idΣX .

X-
i - Y

ΣX
�� Σi

-
I

- ΣY

We shall mark Σ-split monos with a hook like this.

Remark 2.4 The idempotent E = Σi ; I on ΣY plays a role in our λ-calculus similar to that of
the nucleus j in locale theory, except that j is uniquely determined by i, whereas E is not. (So in
Section 4 we shall appropriate the name “nucleus” for E.) Beware, however, that it is not enough
for E to be idempotent, as its epi part Σi must be a (frame) homomorphism. For locales, this
happens iff

E(φ ∧ ψ) = E(Eφ ∧ Eψ) and E(φ ∨ ψ) = E(Eφ ∨ Eψ),

though we shall characterise E by a different (λ-)equation in our abstract setting.
ΣY is a continuous lattice, whilst E is Scott-continuous, so its splitting ΣX is also a continuous

lattice, and the space X is therefore also locally compact.

Examples 2.5 If a localic nucleus j is Scott-continuous, then it can serve as E. Otherwise, E
may still exist, no longer providing the largest V , and the map I may extend open subsets from
X to Y in very complicated ways. Some sublocales need not, however, be represented at all in our
formulation.
(a) In both approaches, I = i∗ and E = j = i∗ ; i∗ = (− ∨W) encode a closed subspace of Y ,

namely that complementary to the open subspace W .
(b) In locale theory, j = (W ⇒ −) encodes the open subspace W , but j is not Scott continuous

unless W is also closed. Nevertheless, there is another, and rather more obvious, way of
“extending” the open subset U ⊂ X to one of Y , namely as U itself. This is of course
the smallest V that does the job, so U 7→ V is the left adjoint i! a i∗. Then I = i! and
E = i∗ ; i! = (− ∧W) provide our encoding.

(c) If X-
i1- Y-

i2- Z are successively Σ-split subspaces, with ΣX-
I1- ΣY-

I2- ΣZ , then the
composite X-

i1;i2- Z is Σ-split, with ΣX-
I1;I2- ΣZ .

(d) Hence locally closed subspaces (open subsets of closed subsets) may be also expressed in this
way.

Compact and overt subspaces are considered in [E–].

Example 2.6 In set theory, subspaces and open subspaces are the same thing, but we can still
distinguish two roles in the preceding discussion. Consider a predicate φ ∈ ΩX , which classifies
the “open” subset U = {x : X | φ[x]} ⊂ X. This may be expanded from the “subspace” X to Y
using either of the quantifiers:
(a) I∃φ = ∃iφ = λy :Y . ∃x:X. (y =Y ix) ∧ φ[x], or
(b) I∀φ = ∀iφ = λy :Y . ∀x:X. (y =Y ix)⇒ φ[x].
As for open and closed subspaces, ∃i and ∀i are the left and right adjoints respectively to the
inverse image map i∗. This analogy between open subspaces and the existential quantifier, and
between closed subspaces and the universal quantifier, is explored in [C].

7

The (Scott) topology on an object Y of Dcpo is determined by its order, and is also the
exponential ΣY in that category. However, for a subset X ⊂ Y that is closed under directed joins,
the Scott topology on X derived from the restricted order need not be the subspace topology.

Example 2.7 (Moggi) Let Y be the domain of lazy natural numbers, and X ⊂ Y the subset of
maximal points ◦ in it, i.e. the numerals sn0 together with the “top” point∞, omitting the points
• of the form sn⊥.

◦ ∞

s20 ◦ · ·
·

s0 ◦ • s2⊥

0 ◦ • s⊥

• ⊥

X is the equaliser of the (continuous, recursive) functions f, g : Y ⇒ Y for which f(sn0) =
g(sn0) = sn+10 but f(sn⊥) = sn+1⊥ and g(sn⊥) = sn⊥.

The order on X is discrete, as therefore is its Scott topology.
However, its subspace topology is that of the one-point compactification of N: any open subset

U ⊂ X with ∞ ∈ U is of the form

U =
(
{sm0 | m ≥ n} ∪ {∞}

)
∪ F with F ⊂ {sm0 | m < n}

for some n. Then V = {y ∈ Y | y ≥ sn⊥} ∪ F is open in Y with U = X ∩ V . Choosing the
least such n, the assignment I : U 7→ V is monotone, so it is Scott-continuous as there are no
non-trivial directed joins to be considered. Hence X ⊂ Y is Σ-split, classically. For intuitionistic
locale theory, recursion theory and our λ-calculus, the subspace is still an equaliser but the map
I is not well defined.

Remark 2.8 The notion of Σ-split subspace has a direct impact on computation in the λ-calculus
associated to the exponential ΣX . In any category where it is meaningful, evaluation ev : ΣX×X →
Σ is always dinatural in X with respect to any map i : X → Y [ML71, Section IX 4], i.e. the
square from ΣY ×X to Σ commutes:

ΣY ×X
Σi × id--

�
I × id

�ΣX ×X

ΣY × Y

id× i

?

?

evY - Σ

evX

?

Combining the splitting I with this property, evX is equal to the composite around the other three
sides, or, in symbols,

φ : ΣX , x : X ` φx = (Iφ)(ix). (η)

This equation will later feature as an η-rule of a new λ-calculus for subspaces, based on the axiom
of comprehension in set theory. The associated introduction and elimination rules are provided
by Σi and I, whilst the β-rule expresses the composite Σi ; I = E:

ψ : ΣY ` I
(
λx. ψ(ix)

)
= Eψ. (β)

The importance of the η-rule is that it enables us to evaluate a function φ on a value x in
the subspace X by regarding them both as belonging to the ambient space Y instead. Therefore
we may reason mathematically in a rich category of subspaces, but execute the computation using

8

the types of the restricted λ-calculus, simply ignoring the new connectives of the comprehension
calculus (Section 10).

Remark 2.9 The equation I ; Σi = id says what we require of the open subsets of X and Y , but
does not in fact even force i to be mono on points. We would actually like it to be regular mono,
i.e. for there to be an equaliser

X-
i - Y

u -

v
- Z.

The corresponding effect on the topologies is

ΣX
�� Σi

-
I

- ΣY
� Σu

............J-
�

Σv
ΣZ ,

where the fifth map J will be explained in the next section.
Any Σ-split subspace may be expressed in this form, with

Z = ΣΣY ≡ Σ2Y u = ηY v = ηY ; ΣI ; ΣΣi J = ηΣY .

Here the natural transformation ηY is given by the λ-expression y 7→ λψ. ψy and is the unit of
the adjunction Σ(−) a Σ(−). Iteration of the functor Σ(−) obliges us to use the shorthand Σ2Y .

We have, however, been making an assumption about the category.

Definition 2.10 The maps i = ηX : X → Y = ΣΣX and I = ηΣX always satisfy I ; Σi = id (we
call the equation ηΣX ;ΣηX = id the unit law), so X ought to be a subspace of Σ2X. The diagram
above becomes

X-
ηX - Σ2X

ηΣ2X -

Σ2ηX
- Σ4X

with J = ηΣ3X . Recall from Section A 4 that an object X for which this is an equaliser is called
sober. Definition 2.3 and the ensuing discussion only make sense if we assume that all objects of
C have this property.

A map P : U → Σ2X that has equal composites with this pair is called prime, and we write
focusP : U → X for the mediator to the equaliser. Equivalently, the double exponential transpose
H : ΣX → ΣU is an Eilenberg–Moore homomorphism, the algebra structures being ΣηX and ΣηY .
Section A 8 developed the λ-calculus with focus, and in particular focus(λφ. φa) = a.

Notation 2.11 We shall also make use of maps J : ΣX → ΣU that need not be homomorphisms.
We write Ĵ : U −−× X as if this were a “second class” map between these objects, and HC for the
category with these morphisms, but the same objects as C. For example, we may now write the
equation for a Σ-split subspace as i ; Î = idX .

We define forceX ≡ η̂ΣX : Σ2X −−× X, which is natural in HC and (by the unit law) satisfies
ηX ; forceX = idX .

If H : ΣX → ΣU is a homomorphism, then we write Ĥ : U → X, with an ordinary arrowhead
instead of −−×, and SC for the category with these morphisms. When all objects are sober, SC ∼= C,
i.e. any such Ĥ : U → X is of the form H = Σf for some unique ordinary morphism f : U → X

in C, and we write f : U → X instead of Σ̂f .
In fact, Ĥ = focusP = P ; forceX , where the prime P is the double exponential transpose of H

(Lemma A 7.5). The reason for the distinction between focus and force is that the former is part
of a denotational calculus, whilst the latter introduces “computational effects”.

Example 2.12 When C = LKLoc is the category of locally compact locales, SC is the opposite of
the category of (continuous) frames and frame homomorphisms, so SC ∼= C. H : U −−× X denotes
a Scott-continuous map from the topology on X to that on U .

9

3 Beck’s theorem

Now we relate subspaces as we have just described them to Stone duality as presented in Section 1.
In the abstract setting, the diagrams shown there are as follows, where Alg is the category of
Eilenberg–Moore algebras for the monad induced by the adjunction Σ(−) a Σ(−).

Cop
X 7→ (ΣX ,ΣηX) -

'�
pts

Alg

C

Σ(−)

6

a Σ(−)

?
============================== C

X 7→ (ΣΣX, µX)

6

a (A,α) 7→ A

?

We shall show that subspaces (i.e. certain equalisers) exist in C and carry the subspace topology
iff (idempotents split and) the functor Cop → A is an equivalence of categories. This functor is
full and faithful iff all objects are sober (Theorem A 4.10), so our task in this paper is to say when
it is essentially surjective. In fact we shall construct the pseudo-inverse functor. The argument
works though the proof Beck’s theorem in our special case.

Definition 3.1 An algebra (A,α) is spatial if there is some algebra isomorphism

Σ2A
Σ2H- Σ3X

A

α

? H - ΣX

ΣηX

?

Recall from Lemma A 4.3 that a map H : A → ΣU (not necessarily an isomorphism) is a homo-
morphism iff its double exponential transpose P has equal composites

U
P - ΣA

Σα -

ηΣA

- Σ3A,

so our first attempt at spatiality of (A,α) is to form this equaliser [Fak70]. Afterwards we have
to find out when H is an isomorphism.

Proposition 3.2 The contravariant functor X 7→ (ΣX ,ΣηX) : Cop → A has a symmetric adjoint
on the right, called pts, so

X - pts(A,α) in C
=================
A - ΣX in Alg

iff for each algebra (A,α) the equaliser

pts(A,α)
i - ΣA

Σα -

ηΣA

- Σ3A

exists in C.

Proof. By the foregoing argument, there must also be a correspondence with maps

X - ΣA
-
- Σ3A,

10

but this is just the universal property of the equaliser.

The inverse functor pts : Alg → Cop takes the algebra A to the “set” Alg(A,Σ) of homomor-
phisms, just as the forward one took the object X to the function-space C(X,Σ). (Remark 7.4
explains how Alg(A,B) can sometimes be defined as an object of C, rather than as an external
hom-set.)

Theorem 3.3 The contravariant adjunction of Σ(−) and pts is an equivalence between Cop and
Alg iff all objects of C are sober and all algebras in Alg are spatial.

Proof. Sobriety and spatiality merely say that the units of the symmetric adjunction,

X → pts(ΣX ,ΣηX) and H : A→ ΣptsA,

are isomorphisms.

More particularly, without assuming that all objects are sober, the functor pts : Algop → C is
full and faithful (making Algop reflective in C) iff all algebras are spatial. Joachim Lambek and
Basil Rattray considered this situation abstractly (writing QA for our ΣptsA), together with ap-
plications to Abelian categories and elementary toposes [LR75]. More recently, Giuseppe Rosolini
connected their results with topos models of synthetic domain theory [BR98].

We can characterise spatiality in terms more like those of the previous section.

Proposition 3.4 (A,α) ∼= ΣX iff there are i : X → ΣA and I : ΣX → Σ2A such that

i is prime, I ; Σi = idΣX and Σi ; I = α ; ηA ≡ ηΣ2A ; Σ2α.

In this case, X = pts(A,α)
i- ΣA is the equaliser in Proposition 3.2, and Σ(−) takes it to a

split coequaliser.

A
- ηA -
��

α
Σ2A

� Σ2α

�� ΣηΣA
-

ηΣ2A

-
Σ4A

ΣX

H

?

................
Σi

�

Proof. If H : A ∼= ΣX is an isomorphism of algebras then its double exponential transpose
i = ηX ; ΣH is prime, and we may put I = H−1 ; ηA = ηΣX ; Σ2H−1. Then

I ; Σi = ηΣX ; Σ2H−1 ; Σ2H ; ΣηX = ηΣX ; ΣηX = id

Σi ; I = Σ2H ; ΣηX ;H−1 ; ηA = α ;H ;H−1 ; ηA = α ; ηA.

Conversely, if i is prime then its double transpose H = ηA ;Σi is a homomorphism, and H−1 = I ;α
because

ηA ; Σi ; I ; α = ηA ; α ; ηA ; α = id

I ; α ; ηA ; Σi = I ; ηΣ2A ; Σ2α ; Σi = I ; ηΣ2A ; ΣηΣA ; Σi = I ; Σi = id

since i, being prime, has equal composes with Σα and ηΣA .
To show that X is the equaliser, consider Γ P→ ΣA ⇒ Σ3A. The double transpose K : A =

ΣX → ΣΓ of P is a homomorphism, so, since X is sober, K = Σk, where k : Γ → X mediates
to the equaliser. The image of the equaliser diagram under Σ(−) is the split coequaliser shown
above.

11

Remark 3.5 In the λ-calculus, these equations are

x : X, φ : ΣX ` (Iφ)(ix) = φ(x) (η)
F : ΣA, F : Σ2A ` I

(
λx. F(ix)

)
(F) = F (αF). (β)

The η-equation, which says that ΣX is a retract of A, was discussed in the previous section:
it makes X a Σ-split subspace of ΣA.

The β-equation makes H : A- - ΣX a subalgebra that is “U -split” in Beck’s language,
i.e. split by a function that need not be a homomorphism. This property says that there are
enough points to distinguish the elements of A, considered as “open subsets” of X.

Remark 3.6 The same caveat applies to our definition of “spatial” algebras as to that of “sober”
spaces in Remark A 5.10: the correspondence with the lattice-theoretic notion in [Joh82, Section
II 1.5] is a conceptual one rather than a theorem. In particular, recall from [Joh82, Theorem
VII 4.3] that (using the axiom of choice) any distributive continuous lattice A has enough points
(completely coprime filters) in the classical sense. All algebras over LKLoc are spatial in the
constructive sense that there are enough generalised “points” Γ→ pts(A,α), cf. [Vic95].

Beck’s theorem and our treatment of subspaces consider the maps and equations in the main
equaliser diagram, without requiring the objects to be Σ2A, Σ3X, etc.

Definition 3.7 A parallel pair u, v : Y ⇒ Z in C is called a Σ-split pair if there is some map
(not necessarily a homomorphism) J : ΣY → ΣZ such that

J ; Σu = idΣY and Σu ; J ; Σv = Σv ; J ; Σv.

Notice that we just mark one of the maps with a hook, to emphasise the fact that the conditions
are not symmetrical in u and v.

ΣY
�� Σu

- J -
�

Σv
ΣZ Y

- u -

v
- Z

J -

Y

- u -

× Ĵ

v
-

Z Σ

θ

�

ψ

-

It is helpful to see these equations expressed in other ways. Using Notation 2.11, they are

u ; Ĵ = id and v ; Ĵ ; u = v ; Ĵ ; v.

Mixing application with categorical composition, we have

u ; J(ψ) = ψ and v ; J(u ; θ) = v ; J(v ; θ).

Using the λ-calculus, the equations are

y : Y, ψ : ΣY ` (Jψ)(uy) = ψ(y)
y : Y, θ : ΣZ ` J

(
λy. θ(uy)

)
(vy) = J

(
λy. θ(vy)

)
(vy).

We shall need the equaliser i : X → Y of u and v, for which we would like Σi : ΣY → ΣX also
to be the coequaliser of Σu and Σv. In this case there is a (unique) map I : ΣX → ΣY with
I ; Σi = idΣX and Σi ; I = J ; Σv.

Reversing the arrows, there is a similar notion of Σ-split coequaliser (Section 11), whilst (un-
qualified) split equalisers and coequalisers also arise, in which the equations already hold at the

12

base level, without applying the functor Σ(−). Split (co)equalisers are absolute in the sense that,
being equationally defined, they are preserved by all functors. Absolute coequalisers were first
studied by Robert Paré [Par71]. Examples of absolute pushouts may be found in Section 7, [Tay99,
Exercise 5.3] and [D].

We construct the equaliser of a split pair by splitting an idempotent (Remark 4.1). In partic-
ular, ΣX splits E = Σv ; J . Conversely, any idempotent e : Y → Y gives rise to a split pair (e, id),
with J = E = Σe, so such splittings are necessary.

There is no greater generality in supposing that i is split only after further iteration of the
functor Σ(−), since if I ; Σ3i = id then I ; Σi = id by the unit law, where I = ηΣX ; I ; ΣηY .

Proposition 3.8 If the functor pts exists, all objects are sober and idempotents split, then C has
equalisers of all Σ-split pairs. If, additionally, all algebras are spatial, Σ(−) takes these equalisers
to (split) coequalisers.

Conversely, if C has equalisers of all Σ-split pairs, and Σ(−) takes them to coequalisers, then
all algebras are spatial.

Proof. Let u, v : Y ⇒ Z have splitting J : ΣZ → ΣY , so that E = Σv ; J is an idempotent
on ΣY , and let A be its splitting, as in the top rows of the diagrams. Since this coequaliser is
absolute, Σ2A is also a coequaliser, so the structure α may be obtained as the mediator; similar
arguments involving Σ4A show that it satisfies the equations for an Eilenberg–Moore algebra.

pts(A,α)- Y
- u -

v
- Z

A
�� q

-
I
- ΣY

� Σu

J -
�

Σv
ΣZ

ΣA

i

?

?

Σq - Σ2Y

ηY

?

?

- Σ2u-

Σ2v
- Σ2Z

ηZ

?

?

Σ2A

α

6

� Σ3Y

ΣηY

6

�
� Σ3Z

ΣηZ

6

Σ3A

Σα

?

ηΣA

?
- Σ4Y

?

?

?
- -

- Σ4Z

?

?

?

I claim that pts(A,α) is the equaliser of u and v.
All composites pts(A,α) → Σ4Y are equal, so they factor through ηY since Y is sober. This

defines the dotted map. It has equal composites with u and v because all composites pts(A,α)→
Σ2Z are equal and ηZ is mono.

Any test map Γ → Y having equal composites with u and v also has equal composites with
Σ2u and Σ2v, since η is natural, so it factors through their equaliser, ΣA. For the same reasons
it has equal composites with ΣA ⇒ Σ3A, and so factors through their equaliser pts(A,α). The
mediator is unique because i and Σq are mono.

Now apply Σ(−) to the left-hand diagram, so Σpts(A,α) ∼= A and Σi ∼= α by Theorem 3.3 since
A is spatial. Then Σ(−) takes the top two rows of the diagram on the left to the one on the right.

Since pts is itself a Σ-split equaliser, the converse follows from Proposition 3.4.

Remark 3.9 Because of the fact that Σ(−) takes it to the coequaliser of ΣY ⇔ ΣZ , the diagram
X → Y ⇒ Z is also an equaliser in HC, i.e. with respect to “second class” test maps F̂ : Γ −−×
Y ⇒ Z (Notation 2.11).

This is in contrast to the situation for products, where the failure of the extension of the
universal property from C to HC is essentially related to the interpretation of computational effects
[Thi97]. The fact that equalisers are valid even in the presence of such effects may be regarded
as the categorical justification of the use of Floyd–Hoare logic for imperative as well as functional
programs.

13

It is still not clear precisely what the exactness properties of Σ(−) should be, as not all equalisers
are taken to coequalisers:

Example 3.10 Suppose that C has disjoint coproducts, as is the case for Set and LKSp, and
also in the abstract situation by Theorem 11.8. Then

0- - 2
id -

swap
- 2,

is an equaliser (where swap interchanges the elements of 2), but Σ(−) takes it to

1 � Σ �� Σ× Σ
� id

�
swap

Σ× Σ,

where swap interchanges the components of the product.

We can now prove the intuitionistic form of Stone duality for locally compact locales.

Theorem 3.11 LKLoc is monadic.

Proof. We must show that every object is sober, that equalisers of Σ-split pairs exist, and
that Σ(−) takes them to coequalisers. Recall from the theory of locales and continuous lattices
[GHK+80, Joh82] that the topology on a locally compact locale is a distributive continuous lattice,
whilst the category Cont of continuous lattices and Scott continuous functions is fully embedded
(via the Scott topology) as a subcategory of LKLoc that is closed under retracts.

ΣX
��
- - Σ3X

��
�
- -

Σ5X

The equaliser diagram of locales involved in the definition of sobriety gives rise to diagram of
frames shown above, where �� denotes a frame homomorphism and- - a Scott continuous
function. This is a split coequaliser in Cont and so ā fortiori a coequaliser in LKFrm, i.e. an
equaliser in LKLoc.

LKLocop ====== LKFrm- - Frm

LKLoc

Σ(−)

6

a Σ(−)

?
�Σ(−) �Cont

U ′

?
- Set

F

6

a U

?

Now let u, v : Y ⇒ Z be a Σ-split pair in LKLoc. We follow it around the diagram of categories
and functors above.

E = J ; Σv is a Scott continuous idempotent on the continuous frame ΣY , so it is split by some
continuous lattice Q. Hence

ΣZ
Σu --
Σv -

�
J

ΣY
...................

q
.................--

�.................
I
....................�Q

is a split coequaliser diagram in LKLoc, although we may just as well see it as being in Cont or
Set.

The forgetful functor U : Frm → Set, being monadic [Joh82, Theorem II 1.2], creates this
coequaliser in Frm, so the lattice Q is actually a frame, and the map ΣY � Q is a frame
homomorphism. This means that Q ∼= ΣX for some locale X, which is locally compact since Q is

14

continuous, and q = Σi. Hence the diagram is a coequaliser in LKFrm, so X is the equaliser in
LKLoc, which Σ(−) takes to the original split coequaliser.

We conclude our introductory discussion with an example of a non-spatial algebra.
Classically, the two-point set classifies subsets in Set, open subsets in LKSp (when it is given

the Sierpiński topology), and upper subsets in Pos (when it is given the order ⊥ < >). The
monad may therefore be defined on Pos using this object, which we call Υ.

Example 3.12 In (Pos,Υ), all objects are sober classically but not intuitionistically (Remark C 5.10(c)).
Pos does not have the monadic property, because the unit interval, A = [0, 1] with the usual arith-
metical order, is an Eilenberg–Moore algebra (in a unique way) that does not have enough points.

This discussion of [0, 1] extends that in [FW90, Example 9]. In fact, the algebras for this
version of the monad are constructively completely distributive lattices [MRW01].

Proof. Classically, the upper sets of A are of the form (a, 1] or [a, 1]. Indeed ΣA·n = Aop ·(n+1),
where A · n is A× n with the lexicographic order: 〈a, i〉 ≤ 〈b, j〉 if a < b, or a = b and i ≤ j.

∅- - ΣA ≡ A · 2
ηA·2 : 0, 1 7→ 1, 2 -

Σα : 0, 1 7→ 0, 3
- A · 4

A ��
α

ΣΣA ≡ A · 3
�2, 2, 1, 0, 0←7 0, 1, 2, 3, 4 : ΣηA·2
�
2, 0, 0, 0, 0←7 0, 1, 2, 3, 4 : Σ2α

A · 5

The maps we’re interested in act as the identity on the real part, and as shown above on the
numerical part.

4 Adding Sigma-split subspaces

The rest of the paper shows (in three different ways) how to construct a category C in which we may
form subspaces as just described, i.e. equalisers of Σ-split pairs that Σ(−) takes to coequalisers.
As raw material, we simply require a category C with finite products and an exponentiating object
Σ, such that all objects of C are sober. A category C of this kind was defined using a λ-calculus in
Section A 8. In Section 7 we shall see that Algop does the job, but first we do it by adding formal
equalisers of Σ-split pairs.

This construction is similar to that of the so-called Karoubi completion of a category, which
forces it to have splittings of idempotents. However, as the new construction is rather more
complicated, you would be well advised to (re)familiarise yourself with the simpler version by
proving

Remark 4.1 The Karoubi completion, KC, of any category C has
• as objects, (X, e), where e : X → X is an idempotent, that is, e ; e = e, and
• as morphisms f : (X, e1)→ (Y, e2), the C-maps f : X → Y with e1 ; f = f = f ; e2.

Then
(a) composition is inherited from C, but the identity on (X, e) is e, and
(b) the idempotents e′ of KC are those of C, but they split in KC, i.e. there are maps p and i in

KC such that i ; p = id and p ; i = e′.
(c) KC is the universal way (up to equivalence) of splitting idempotents in C.

From a categorical point of view, it would be easier to assume that idempotents split in C.
This would “modularise” the construction of C as C 7→ KC 7→ AlgKC 7→ C. However, our intention
(in Section 10) is to reduce computation in C back to the restricted λ-calculus, i.e. C. KC already
has some subspaces for the convenience of mathematicians, whereas the idempotents infest com-
putations in it, so it has already crossed the line of demarcation between these subjects. For this

15

reason, we develop a representation of C-objects directly in terms of C that splits idempotents as
well as equalisers.

Definition 4.2 A typical object X of our category C is a Σ-split pair (Definition 3.7), which we
may write using Notation 2.11 simply as

Y
- u -

v -
×

Ĵ

Z,

such that u ; Ĵ = idY and v ; Ĵ ; u = v ; Ĵ ; v : Y −−× Z. This object will temporarily be called
(Y ⇒ Z), or just X, in parts of the argument up to Section 6.

The identity morphism on this object will be Ê = v ; Ĵ . As in the Karoubi construction, this is
an idempotent endomorphism of Y , but in the auxiliary category HC. In fact, its defining equation
is stronger than idempotence.

Definition 4.3 E : ΣY → ΣY is called a nucleus on Y if Ê ; ηY ; ΣE = Ê ; ηY , or

F : Σ3Y ` E
(
λy. F(λφ. Eφy)

)
= E

(
λy. F(λφ. φy)

)
using the λ-calculus. Observe carefully that the left hand side has an extra E.

We shall write {Y | E} instead of (Y ⇒ Z) for an object of C defined in terms of Ê like this.
When Ê is a first class map (E = Σe and e = Ê), the equation is just idempotence (e = e ; e).

In general, however, it says more than Ê = Ê ; Ê, for the same reason that we remarked in
Definition 2.3, namely that, in the splitting of this second class idempotent as Î ; i, the inclusion
part i must actually be first class.

Notation 4.4 Given two nuclei, E1 and E2, we write Ê2 ⊂Y Ê1 if

Ê1 ; Ê2 = Ê2 = Ê2 ; Ê1.

Definition 4.5 A typical morphism from {Y1 | E1} to {Y2 | E2} is an HC-map Ĥ : Y1 −−× Y2 such
that

Ĥ = Ĥ ; Ê2 and Ê1 ; ηY1 ; ΣH = Ĥ ; ηY2 ,

the first equation being equivalent to Ĥ ; u2 = Ĥ ; v2 when {Y2 | E2} is defined by the pair
u2, v2 : Y2 ⇒ Z2. Using λ-calculus, the second equation is

G : Σ3Y2 ` E1

(
λx:Y1. G(λψ :ΣY2 . Hψx)

)
= H

(
λy :Y2. G(λψ. ψy)

)
,

which adds E1 to the λ-equation for a homomorphism (Remark A 4.11).

Lemma 4.6 Any morphism Ĥ : {Y1 | E1} → {Y2 | E2} also satisfies Ĥ = Ê1 ; Ĥ.

Proof.

Ĥ = Ĥ ; ηY2 ; η̂ΣY2 unit law

= Ê1 ; ηY1 ; ΣH ; η̂ΣY2 second H equation

= Ê1 ; ηY1 ; η̂ΣY1 ; Ĥ naturality

= Ê1 ; Ĥ unit law.

16

Lemma 4.7 For any split pair, E = J ; Σv is a nucleus (Definition 4.3); in particular, Ê is
idempotent in HC.

Proof. The equation for Ê is the same as the second one for a morphism Ĥ = Ê in Remark 4.5.
It follows from the defining equations for u, v and J :

Ê ; ηY ; ΣE = v ; Ĵ ; ηY ; Σ2v ; ΣJ

= v ; Ĵ ; v ; ηZ ; ΣJ naturality of η
= v ; Ĵ ; u ; ηZ ; ΣJ second uvJ equation
= v ; Ĵ ; ηY ; Σ2u ; ΣJ naturality of η
= v ; Ĵ ; ηY = Ê ; ηY first uvJ equation.

The first equation for a morphism is idempotence of Ĥ = Ê, which follows from the previous
result, but explicitly from the uvJ equations,

Ê ; Ê = v ; Ĵ ; v ; Ĵ = v ; Ĵ ; u ; Ĵ = v ; Ĵ = Ê.

Proposition 4.8 C is a category.

Proof. We have to show that composition is well defined. Let Ĥ : Y1 → Y2 and K̂ : Y2 → Y3.
Then Ĥ ; K̂ ; Ê3 = Ĥ ; K̂ = K̂;H and

Ê1 ; ηY1 ; ΣK;H = Ê1 ; ηY1 ; ΣH ; ΣK

= Ĥ ; ηY2 ; ΣK second H equation

= Ĥ ; Ê2 ; ηY2 ; ΣK first H equation

= Ĥ ; K̂ ; ηY3 second K equation,

so Ĥ ; K̂ satisfies the definition of a morphism. Associativity is inherited from C, whilst the
equations that say that Ê is the identity on {Y | E} are those in Definition 4.5 and Lemma 4.6.

Remark 4.9 Although there is more to the data for an object of C than the maps u and v, the
justification of calling such an object a “pair” is that, if we have two splittings J1 and J2, then
Ê1 = v ; Ĵ1 and Ê2 = v ; Ĵ2 define an isomorphism between these objects of C. For example,
we shall see in Proposition 5.12 that the binary product of any two non-trivial objects has two
different splittings.

Lemma 4.10 C is embedded as a full subcategory of C by

X 7→ {X | id} ≡ X
- id -

id -
×

id

X

f : X → Y 7→ H = Σf : ΣY → ΣX .

(Recall that we assume that all objects of C are sober.)

Remark 4.11 Definition 2.10 provided another embedding, which represents X by its standard
resolution,

X
- ηX -
×

η̂ΣX

Σ2X
- ηΣ2X -

Σ2ηX -
×

η̂Σ3X

Σ4X.

This makes

17

X

ηX -
∼=�
η̂ΣX

{Σ2X | E},

where E = ηΣ3X ; Σ3ηX = ΣηX ; ηΣX by F 7→ λF. F
(
λx. F(λφ. φx)

)
.

The nucleus E is enough on its own to represent the object.

Lemma 4.12 For any object (Y ⇒ Z), we have the isomorphism in C

Z Σ2Y

∼=

Y

Ĵ

×

u

6

6

v

6

Y

η̂ΣY

×

ηY

6

6

(ηY ; ΣE)

6

encoded by Ê = v ; Ĵ in both directions.

Proof. The object on the right gives rise to the same nucleus because

ηY ; ΣE ; η̂ΣY = ηY ; η̂ΣY ; Ê = Ê

by naturality and the unit law. It satisfies Definition 4.2 because ηY ; η̂ΣY = idY and

Ê ; ηY ; ΣE = Ê ; ηY

since E is a nucleus. Hence both objects are {Y | E}, on which Ê is the identity, and it also serves
as the isomorphism in both directions.

Corollary 4.13
(a) Every Σ-split mono arises in this way.
(b) In particular, so does any first class retract.
(c) Composites of Σ-split monos are Σ-split monos (Example 2.5(c)).

Proof. Given X
- i-
×
Î

Y with i ; Î = idX , put Ê = Î ; i as in Remark 2.9.

This satisfies the Ê equation because

Î ; i ; ηY ; ΣI ; Σ2i = Î ; ηX ; Σ2i ; ΣI ; Σ2i = Î ; ηX ; Σ2i = Î ; i ; ηY

by naturality of η and i ; Î = idX . For composition, Ê = i1 ; i2 ; Î2 ; Î1.

Although Ê suffices to describe an object of the new category, and will be used in the new
calculus in Section 8, it is not very illuminating. The reason for introducing the Σ-split pair
(Y ⇒ Z) is that the new object is its formal equaliser, as in Proposition 3.8.

Proposition 4.14 Every object (Y ⇒ Z) of C is the equaliser in C of the diagram that it suggests,
considered to consist of images (via Lemma 4.10) of objects and maps in C. If this diagram already
has an equaliser X in C, and Σ(−) takes it to a coequaliser in C, then (Y ⇒ Z) ∼= X in C.

Proof. For any object Γ = (Y0 ⇒ Z0) of C, we check that an HC-map Ĥ : Y0 −−× Y satisfies the
conditions for being a C-map Γ→ (Y ⇒ Z) iff it satisfies those for being a C-map Γ→ (Y ⇒ Y)
that has equal composites with u and v. This is simply a matter of changing the status of the

18

equation Ĥ ; u = Ĥ ; v from being part of Definition 4.5 of a C-morphism to being a test for the
equaliser.

X-
i - Y

- u -

v
- Z

ΣX
�� Σi

-.............
I
............- ΣY

�� Σu

J -
�

Σv
ΣZ

For the second part, J ; Σv : ΣY → ΣY has equal composites with Σu and Σv, whose coequaliser
is ΣX by hypothesis, so E = J ; Σv = Σi ; I for some I as shown. Both I ; Σi and id mediate from
the equaliser to ΣX , so are equal by uniqueness. Then i : X → (Y ⇒ Z) is an isomorphism, with
inverse Î : (Y ⇒ Z)→ X.

As the construction of C is one that “freely adjoins equalisers” we would expect at this point
to have to show that C does in fact have such equalisers, including those for newly defined parallel
pairs, and that Σ(−) takes them to coequalisers. However, in our case, powers of Σ are involved in
this statement, whereas we still have a lot of work to do to construct such powers in C. This will
be done in Proposition 6.10.

We draw one easy corollary from the Proposition here, largely to show the contrast with the
more difficult study of products that follows in the next section.

Proposition 4.15 The functor C → C preserves such colimits as exist.

Proof. Let (Ui) be a diagram in C. Any cocone under it with vertex (Y ⇒ Z) in C is, by the
previous result, a cocone with vertex Y such that for each i the composites Ui → Y ⇒ Z are
equal. But this cocone might as well be in C, and has a mediator U = colimUi → Y , which also
has equal composites U → Y ⇒ Z, and is therefore a mediator U → (Y ⇒ Z) in C.

5 Injectives and products in the new category

We know from Section A 6, and from the work on continuations by others cited there, that binary
products are the crucial issue. These studies have also taught us that we must take just one step at
a time. In Section 7 below we sketch the construction of products in C as coproducts of algebras,
but the motivation of that approach involves the anticipation of results that ought to follow from
the conclusion itself.

In this section we argue forwards from the structure in the given category C, using basic (albeit
pedestrian) categorical ideas, and sticking to the objects rather than their algebras of predicates.
The plan is to regard C-objects as equalisers in C as in Proposition 4.14, and then use the given
products in C.

However, the universal property of these given products is only tested by diagrams of the form
Γ→ A×B with Γ ∈ obC, so we need to generalise this to Γ ∈ obC. This is more difficult than the
situation for colimits in Proposition 4.15: in this case we need to be able to turn maps {Y | E} → A
into Y → A, which is just the property of injectivity from which we began in Remark 2.1.

Definition 5.1 An objectA of C is said to be injective if, for any subspace inclusion {Y | E}- - Y
and map f : {Y | E} → A, there is some (not necessarily unique) map h : Y → A such that

19

f = Ê ; h.

{Y | E}-
Ê - Y

A

h

�..
....

....
....

....
....

....

f

-

Proposition 5.2 An object A of C is injective iff it is a retract of some ΣU (by which we still
mean the exponential in C). Indeed, when A ∈ obC is injective, there is a map α : Σ2A→ A such
that ηA ; α = id, though this need not satisfy the other equation that is required for (A,α) to be
an Eilenberg–Moore algebra, namely µA ; α = Σ2α ; α.

Proof. (⇐) Suppose first that A = ΣU , and put α = ΣηU . By Definition 4.5, any morphism
Ĥ : {Y | E} → A in C satisfies

Ĥ = Ĥ ; ηA ; α = Ê ; ηY ; ΣH ; α = Ê ; h,

where h = ηY ; ΣH ; α is in C. The result extends to retracts of ΣU by composition with the
inclusion and surjection.

{Y | E}-
Ê- Y-

ηY- ΣΣY {Y | E}-
Ê - Y

A = {Y | E}

h

�..
....

....
....

....
....

...

Ĥ = id -

A = {ΣU | Σe}

Ĥ

?
- e -
��

e
ΣU

h

?

................

(⇒) The composite {Y | E}- - Σ2Y is a subspace by Corollary 4.13; injectivity says that this
is split by h. When A = Y ∈ obC, α = h satisfies ηA ; α = id.

Corollary 5.3 C has enough injectives: each object {Y | E} is a subspace of some injective Σ2Y .

Examples 5.4 In LKSp, the injectives are the continuous lattices equipped with the Scott
topology [Sco72], whilst the algebras are also distributive. In Set, injectives are (sets that carry
the structure of) complete lattices and algebras are powersets (which, classically, are complete
atomic Boolean algebras).

Lemma 5.5 Any finite product of injectives (or algebras) is again injective (respectively, an
algebra).

Proof. For the terminal object, α = !ΣΣ .
For injectives (A,α) and (B, β), we define P0 = Σ2π0 ;α : Σ2(A×B)→ A and P1 = Σ2π1 ; β :

Σ2(A × B) → B, and then ηA×B ; 〈P0, P1〉 = id. This follows from naturality of η, as illustrated
in the right-hand trapezium below.

Moreover, if (A,α) and (B, β) are algebras then

Σ2〈P0, P1〉 ; 〈P0, P1〉 ; π0

= Σ4π0 ; Σ2α ; α
= Σ4π0 ; ΣηΣA ; α
= ΣηΣ(A×B) ; Σ2π0 ; α
= ΣηΣ(A×B) ; 〈P0, P1〉 ; π0

20

so (A×B, 〈P0, P1〉) is also an algebra.

Lemma 5.6 The functor C → C preserves the terminal object.

{Y | E}-
Ê - Y

1

h

�..
....

....
....

....
....

....

Ĥ

-

Proof. Since 1 is injective, Ê ; !Y is the only map Ĥ : {Y | E} → 1.

Lemma 5.7 The functor C → C preserves binary products of injectives.

ΣF

Σ2Y
ΣH -

ΣK
- Σ2(A×B)

Σ2π0 - Σ2A

?

Y

ηY

6

6

f - A

ηA

6

6

α

??

{Y | E}

Ê

6

6

Ĥ -

K̂
- A×B

ηA×B

6

6

〈P0, P1〉

??
π0

-

〈f, g〉, h, k

..-

F̂

6

Proof. Let F̂ : {Y | E} → A and Ĝ : {Y | E} → B in C. Put

f = ηY ; ΣF ; α and g = ηY ; ΣG ; β,

so F̂ = Ê ; f and Ĝ = Ê ; g by Proposition 5.2, and 〈f, g〉 is given by the product in C.
Then Ĥ = Ê ; 〈f, g〉 : {Y | E} → A×B satisfies Ĥ ; π0 = F̂ and Ĥ ; π1 = Ĝ.
Suppose that Ĥ and K̂ both satisfy these equations. Using Lemma 5.5, put

h = ηY ; ΣH ; 〈P0, P1〉 and k = ηY ; ΣK ; 〈P0, P1〉,

so Ĥ = Ê ; h and K̂ = Ê ; k by Proposition 5.2.
Since ΣH ; Σ2π0 = ΣF = ΣK ; Σ2π0, we have h ; π0 = f = k ; π0 by the way in which h, k and

f were constructed, and similarly h ; π1 = g = k ; π1. Hence h = k = 〈f, g〉, as these maps are in
C, so Ĥ = K̂.

Now we can begin the main business of this section. In view of Corollary 5.3, we may assume
that the C-objects of which we want to form the product are given by Σ-split pairs of maps between
injectives. In fact this restriction will become redundant, as the argument below can be used first
to show that all products are preserved, and then to construct products of non-injective pairs.

21

Lemma 5.8 Let (Y ⇒ Z) ∈ obC and W ∈ obC. Then

Y ×W
- u×W -

× Ĵ ×W

v ×W
-

Z ×W

is also an object of C. It is called (Y ⇒ Z)×W because, at least when U , V and W are injective,
this is the product in C. In the comprehension notation,

{Y | E} ×W = {Y ×W | EW }- ÊW- Y ×W.

This is functorial with respect to

g : W1 →W2, where {Y | E} × g = Êg

(recall that id{Y |E} = Ê) and to

F̂ : {Y1 | E1} → {Y2 | E2}, where F̂ ×W = F̂W .

Proof. Apply (−)W to the equations in Definition 4.2 to get JW ; Σu×W = id and

Σv×W ; JW ; Σu×W = Σv×W ; JW ; Σv×W .

Proposition 4.14 said that the formal pairs are equalisers, which property commutes with products.
In comprehension notation, Σv×W ; JW = EW .

The formula for {Y | E} × g is merely naturality of ̂E(−).
Using the injectivity of Y2, we may write F̂ as

Y1
f

- Y2

{Y1 | E1}

Ê1

6

6

F̂ - {Y2 | E2}

Ê2

6

6

for some (not necessarily unique) f , where (by Definition 4.5) F̂ = F̂ ; Ê2 = Ê1 ;f , so F = Σf ;E1.
Applying (−)×W to the commutative square, the formula for F̂ ×W has to be Ê1 ; (f ×W) = Ĝ
where G ≡ (Σf ; E1)W = FW .

Remark 5.9 Alternatively, one could show directly that Êg and F̂W are morphisms, and that
they satisfy the equations for the product functor. For F̂W , we need to use the strength

(Σ2Y)×W
σY,W : G,w 7→ λθ. G

(
λy. θ(y, w)

)
- Σ2(Y ×W)

Y ×W

ηY×W

-

ηY ×W

�

for the monad, which is a natural transformation and obeys the equation shown.

22

Remark 5.10 The product of two Σ-split pairs must form a pullback (intersection) in C, in the
same way that the product of any two maps in a category gives rise to a pullback.

X1 ×X2- X1 × Y2 = {Y1 × Y2 | EY2
1 }

{Y1 × Y2 | EY1
2 } = Y1 ×X2

?

...............
- - Y1 × Y2

?

?

Unfortunately, our “comprehension” notation does not admit intersections — either abstractly or
in the leading example of LKLoc — so we still have to find an E on Y1 × Y2 to describe the
subspace. If EY2

1 and EY1
2 commute (as they do if E1 = Σe1 or E2 = Σe2) then their composite

encodes the intersection. But it turns out that, even if EY2
1 ; EY1

2 6= EY1
2 ; EY2

1 , either of them
will do the job: of course products and pullbacks are unique up to isomorphism, but we have two
representations of them.

Lemma 5.11 The composite

Y1 × Y2

- u1 × Y2 -

v1 × Y2
-

×
Ĵ1 × Y2

Z1 × Y2

- Z1 × u2 -

Z1 × v2
-

×
Z1 × Ĵ2

Z1 × Z2

is an object of C, where

u = u1 × Y2 ; Z1 × u2 = Y1 × u2 ; u1 × Z2 = u1 × u2

v = v1 × Y2 ; Z1 × v2 = Y1 × v2 ; v1 × Z2 = v1 × v2

Ĵ = Z1 × Ĵ2 ; Ĵ1 × Y2 6= Ĵ1 × Z2 ; Y1 × Ĵ2

Ê = v ; Ĵ = Y1 × Ê2 ; Ê1 × Y2 ⊂Y1×Y2 Y1 × Ê2

the inclusion on the last line being in the sense of Notation 4.4.

Proof. Clearly u ; Ĵ = id, whilst

Ê ≡ v ; Ĵ = v1 × Y2 ; Z1 × v2 ; Z1 × Ĵ2 ; Ĵ1 × Y2 definitions of v and J

= v1 × Y2 ; Z1 × Ê2 ; Ĵ1 × Y2 definition of E2

= Y1 × Ê2 ; v1 × Y2 ; Ĵ1 × Y2 v1 central
= Y1 × Ê2 ; Ê1 × Y2. definition of E1.

Using the given equations of the form vi ; Ĵi ; ui = vi ; Ĵi ; vi, we must prove this equation for the
new Σ-split pair:

v ; Ĵ ; u = Y1 × Ê2 ; Ê1 × Y2 ; v1 × Y2 ; Z1 × v2

= Y1 × (v2 ; Ĵ2 ; u2) ; (v1 ; Ĵ1 ; u1)× Z2

= v ; Ĵ ; v,

using centrality of u2, and the same argument with v in place of u.

Y1 × Y2
Y1 × Ê2 × Y1 × Y2

Ê1 × Y2 × Y1 × Y2

Y1 × Z2

Y1 × v2

?

Y1 × u2

?

?

Ê1 × Z2 × Y1 × Z2

Y1 × v2

?

Y1 × u2

?

?

Y1 × Ĵ2 × Y1 × Y2

id

-

23

Finally, Y1 × Ê2 ; Ê1 × Y2 ; Y1 × Ê2 = Y1 × Ê2 ; Ê1 × Y2 by centrality of u2 and v2 with respect
to Ê1, and u2 ; Ĵ2 = id.

Proposition 5.12 The category C has finite products, where

{Y1 | E1} × {Y2 | E2} = {Y1 × Y2 | EY2
1 ; EY1

2 },

whilst the product of the morphisms F̂1 : X ′1 → X1 and F̂2 : X ′2 → X2 is F̂Y
′
2

1 ; F̂Y1
2 .

Moreover, the functor C → C takes products in C to products in C.

Proof. First consider the product of two objects X1, X2 ∈ obC, expressed in C by means of
their standard resolutions, so the products Σ2X1 × Σ2X2 etc. are preserved (Lemma 5.7). The
formal product of the Σ-split pairs (Lemma 5.11) provides an equaliser in C (Proposition 4.14),
which is the required product, isomorphic to X1 ×X2, i.e. this is preserved.

The construction is then applicable to any two Σ-split pairs, so all binary products exist in C.
Functoriality follows from that in Lemma 5.8.

Remark 5.13 The abstract situation of idempotents ε = (E2)Y1 and ε′ = (E1)Y2 (in this case on
the object ΣY1×Y2) such that ε ; ε′ and ε′ ; ε are also idempotent is studied in [D, Lemma 7.1]. It
is shown there that the splittings of ε ; ε′ and ε′ ; ε are isomorphic and form a pushout diagram, in
our case of the algebras ΣX1×X2 etc. corresponding to objects in the above pullback.

6 Structure in the new category

Now that we have overcome the main difficulty concerning binary products, we are equipped to
tackle exponentials, and then to show that C does in fact have the monadic property for which it
was designed. We still rely on injectivity, first re-casting Proposition 5.2 in terms of the double
transpose of h.

Lemma 6.1 There is a natural bijection between C-maps Ĥ : {Y | E} → ΣU and C-maps p : U →
ΣY such that p = p ; E.

Proof. Let Ĥ 7→ p = ηU ;H, which satisfies p = p ;E by Lemma 4.6. Conversely, let p 7→ Ĥ =
Ê ; ηY ; Σp, which is a composite of C-maps {Y | E}- - Y - ΣU .

Then Ĥ 7→ Ê ; ηY ; Σp = Ê ; ηY ; ΣH ; ΣηU = Ĥ ; ηΣU ; ΣηU = Ĥ by Definition 4.5 and the unit
law. Conversely, p 7→ ηU ;H = ηU ; Σ2p ; ΣηY ; E = p ; ηΣY ; ΣηY ; E = p ; E = p by naturality for
η and the unit law.

For naturality, let F̂ : {Y ′ | E′} → {Y | E} and g : U ′ → U . Then p becomes g ; p ; F .

Proposition 6.2 C has and C → C preserves powers of Σ, where

Σ{Y |E} = {ΣY | ΣE} and ΣF̂ = F.

Y1 × Y2
h - Σ Y1

k - ΣY2

X1 ×X2

ÊY2
1 ; ÊY1

2

6

6

Ĥ

-

X1

Ê1

6

6

K̂- ΣX2

E2

6

6

E2

??

Proof. C-maps Ĥ : X1 × X2 → Σ correspond bijectively to p : 1 → ΣY1×Y2 in C such that
p = p ;EY2

1 ;EY1
2 , by Lemma 6.1. By Remark 5.10, this is equivalent to p ;EY2

1 = p = p ;EY1
2 . Let

k : Y1 → ΣY2 and q : Y2 → ΣY1 be the exponential transposes of p, which satisfy k = k ; E2 and

24

q = q ;E1. But then q corresponds to K̂ : X1 → ΣY2 by Lemma 6.1, and K̂ = K̂ ;E2 by the other
equation, so it factors through ΣX2 . Conversely, K̂ defines k, q, p and Ĥ in the same way.

Now let F̂1 : X ′1 → X1 and F̂2 : X ′2 → X2, whose product is F̂X
′
2

1 ; F̂X1
2 by Proposition 5.12.

Then by the naturality part of the Lemma, p becomes p ; FX1
2 ; FX

′
2

1 and K̂ becomes F̂1 ; K̂ ; F2.

Lemma 6.3 ηX : X → Σ2X in C is given by Ê ; ηY : Y −−× Σ2Y .

Y
ηY - Σ2Y

X = {Y | E}

Ê

6

6

ηX - Σ2X

ΣE

6

6

ΣE

??

Proof. From functoriality in the Proposition, Σ2 takes the inclusion Ê to ΣE . Then for η to
be natural on C, we need ηX = Ê ;ηY ; ΣE . But this expression is the left hand side of the defining
equation for the nucleus E (Definition 4.3), the right hand side being Ê ; ηY .

Alternatively, we may see η{Y |E} as the double transpose of id{Y |E} = Ê. This correspondence
is that between k and q on the right hand side of the Proposition, in the case of X1 = ΣX , X2 = X.
Then K̂ = idΣX = E = k and q = ηY ; ΣE , so η{Y |E} = Ê ; q = Ê ; ηY .

Corollary 6.4 AlgC ' AlgKSC
∼= AlgKC , cf. AlgSC

∼= AlgC in Lemma A 7.3.

Proof. Let (A,α) be an algebra over C, with A = {Y | E}. Then A /Σ2A /Σ2Y , so A may as
well be in KC, since this is fully embedded in C by Corollary 4.13.

Lemma 6.5 HC-maps Ĥ : X1 −−× X2 are given by

H : ΣY2 → ΣY1 such that H ; E1 = H = E2 ;H.

So HC ⊂ KHC is the full subcategory consisting of those objects (X, Ê) for which E is a nucleus.

ΣY2
H - ΣY1

ΣX2

E2

6

6

E2

??
- ΣX1

E1

6

6

E1

??

Proof. An HC-map Ĥ : X1 −−× X2 is a C-map H : ΣX2 → ΣX1 . We have just shown
that these exponentials are retracts, so this map is H : ΣY2 → ΣY1 (now just in C) such that
E2 ;H = H = H ; E1. This is also how morphisms of KHC are defined (Remark 4.1).

Lemma 6.6 An HC-map Ĥ : X1 −−× X2 is first class (a C-map) iff it respects naturality of η,
i.e. ηX1 ; Σ2Ĥ = Ĥ ; ηX2 , or H : ΣX2 → ΣX1 is a homomorphism.

Proof. Using the previous two lemmas,

ηX1 ; Σ2Ĥ = Ê1 ; ηY1 ; Σ2Ĥ and Ĥ ; ηX2 = Ĥ ; Ê2 ; ηY2 = Ĥ ; ηY2 .

Equality of these is the second equation in Definition 4.5.

25

Corollary 6.7 Every homomorphism K̂ : ΣX2 → ΣX1 in C is of the form K̂ = ΣĤ for some
unique C-map Ĥ : X1 → X2. From Section A 7 we deduce that all objects of C are sober, that
SC ∼= C and that X × (−) distributes over such colimits as exist in C.

Notation 6.8 Recall from Definition A 6.3 that we wrote force : Σ2X −−× X for the HC-map
η̂ΣX , and that this is natural with respect to HC-maps Ĥ : X −−× Y . Similarly, we now write

admit for Î : Y −−× {Y | E}.

Like the identity, the inclusion i : (Y ⇒ Z) ↪→ Y and its splitting Î are both encoded as Ê.
In Section 8 we shall add an operator admit to the λ-calculus, just as we introduced focus in
Section A 8, and they both have side-conditions. However, we shall not on this occasion give
different names to the operator in C and the map in HC.

Lemma 6.9 force{Y |E} = Σ2i ; forceY ; admit.

Σ2{Y | E}
- Σ2i -
��

Σ2 admit

Σ2Y

{Y | E}

η{Y |E}

6

6

force{Y |E}

× - i -
×

admit
Y

ηY

6

6

forceY

×

Hence if Γ ` P : Σ2{Y | E} is prime then so is Γ ` Σ2i P : Σ2Y (Lemma A 4.6) and

focus{Y |E} P = admit
(

focusY (Σ2i P)
)
.

Proof. The diagram shows naturality of force with respect to admit in HC, i.e. of η with respect
to E in C. Recall from Lemma A 4.3 that P is prime iff it has equal composites with Σ2η(−) and
ηΣ2(−), which are natural with respect to i : {Y | E}- - Y .

Now we can show that C has the new structure that it was introduced to provide.

Proposition 6.10 Σ-split equalisers exist in C, and Σ(−) sends them to coequalisers. Indeed

{{Y | E1} | E2} = {Y | E2}

where X = {Y | E1} is a C-object and E2 data on it for a C-object {X | E2}.

Proof. The defining equations for Ê2 to be an HC-map and to be a nucleus (Definition 4.3),
i.e. to define an C-object, are

Ê1 ; Ê2 = Ê2 = Ê2 ; Ê1 and Ê2 ; ηX ; ΣE2 = Ê2 ; ηX ,

the first of which says that Ê2 ⊂ Ê1 in the sense of Notation 4.4. The second equation, between
HC-maps, reduces to

Ê2 ; ηY ; ΣE2 = Ê2 ; ηY

in HC, but this is just the definition of a nucleus E2 on Y . Hence {Y | E2} as a C-object, which
Lemma 4.12 expresses as the equaliser of a Σ-split pair Y ⇒ Σ2Y :

{Y | E2}
- -
× X = {Y | E1}

- -
× Y

- -
-

×
Σ2Y

26

Finally, Σ(−) acts on this diagram in C just as it does in C, taking it to a split coequaliser, as in
Proposition 4.14.

Corollary 6.11 (C,Σ) is monadic and C ' Algop
KC .

Proof. Recall that being monadic means that C ' Algop

C . By Theorem 3.3, this happens iff
all objects are sober (which they are by Corollary 6.7) and all algebras are spatial. The latter
follows from the previous result by Proposition 3.8. Finally, the equivalence with Algop

KC is given
by Corollary 6.4.

Theorem 6.12 (C,Σ) is the (Karoubi and) monadic completion of (C,Σ):
Let (D,ΣD) be monadic and suppose that idempotents split in D (so D has products, powers

of ΣD, equalisers of ΣD-split pairs and Σ(−)
D sends them to coequalisers.) Let F : C → D be a

functor that preserves products and powers of Σ. Then there is a functor F : C → D that also
preserves these things and makes the square commute, and it is unique up to equivalence.

C
F
- D

C

6

F - D

wwwwwwwwww
Proof. Any object of C is interpreted as a Σ-split equaliser diagram in C as in Proposition 4.14.
Such diagrams are preserved by the functor F , but the diagram in D has an equaliser, which is
the required image of the given C-object. F commutes with the representation of × and Σ(−) in
Propositions 5.12 and 6.2.

Remark 6.13 The sober, Karoubi and monadic completions are related by the diagram

Algop
C ===== Algop

SC
- - Algop

KC ===== Algop

C ======= C

SC6

6

- - SKC- - KSC ====== SKSC6

6

- - C

wwwwwwwwww

C

6

- - KC

6

in which- - denotes a full inclusion and ==== an equivalence. We leave the interested reader
to find a properly general recursive idempotent on N (so SKC 6= KSC, cf. Remark A 9.12), and to
show that any retract of a sober object is sober (so KSC = SKSC).

The development so far has been entirely set in the abstract situation of a category C with an
exponentiating object Σ, for which all objects are sober. In the intended applications to topology
and computation, Σ is a distributive lattice and satisfies the Euclidean principle [C]; this structure
is preserved by the inclusion C → C since it preserves products and powers of Σ.

We also want C to have a natural numbers object N, i.e. to admit primitive recursion at all
C-types, although sobriety of N means that general recursion is also defined (Sections A 9–10).
The extension of recursion to C-types follows essentially the same argument as in Proposition 4.15
for colimits.

Proposition 6.14 The inclusion C → C preserves N.

27

Proof. The recursion data in the fully parametrised version of this result consist of

z : Γ→ {Y | E} and s : Γ× N× {Y | E} → {Y | E},

and we shall prove it symbolically like this in Lemma 8.14. Here, for brevity, we omit the param-
eters in s.

First, {Y | E} may be expressed as an equaliser as shown.

Γ

N-

0

�
{Y | E}

z

?
- - Σ2Y

-
- Σ4Y

N

+1

6

.............- {Y | E}

s

6

- - Σ2Y

S

6

-
- Σ4Y

6

Then use injectivity to extend s : {Y | E} → {Y | E} to endofunctions of Σ2Y and Σ4Y , so that
s becomes a mediator between equalisers. Then recursion in C defines a map N → Σ2Y that
makes the squares commute and also has equal composites to Σ4Y . Finally, the required map
N→ {Y | E} mediates to the equaliser.

7 Algebras

A perhaps more obvious way to construct the monadic completion of C (as I did in 1993) is to
consider the algebras, and in fact C ' Algop

KC does the job. As in other approaches, the central
difficulty remains that of binary products in C, i.e. coproducts of algebras. For convenience, we
assume in this section alone that idempotents split in C, so KC ' C.

The equivalence C ' Algop says that every algebra (A,α) is to be (ΣX ,ΣηX) for some new
object X ∈ obC (Definition 3.1). This means that we have to prove properties of A on the basis
of its algebra structure that would be obvious if we already knew that A = ΣX . The key such
property turns out to be the double exponential transposition,

A(ΣA, B) = C(Y,ΣX) ∼= C(X,ΣY) = A(ΣB , A),

where X and Y are the C-objects corresponding to the algebras A and B, and ΣX corresponds to
ΣA because the functor C → C is supposed to preserve Σ(−).

In effect, using algebras means that we insist on representing each C-object in “normal form”
by means of its standard resolution

X
- ηX -
×

η̂ΣX

Σ2X
- ηΣ2X -

Σ2ηX -
×

η̂Σ3X

Σ4X

A
�� α

ηA
- Σ2A

��µA = ΣηΣA

� Σ2α

ηΣ2A

-
Σ4A,

whereas Section 4 was much more flexible about Σ-split pairs. For example, Lemma 5.8 gave
the obvious formula for (Y ⇒ Z) ×W , but this does not take standard resolutions to standard

28

resolutions: the structure map αW that it provides must be composed with a map

ΣτΣX ,W : ΣΣΣ(X×W)

- Σ(ΣΣX ×W)
.

When we generalise from ΣX to A, we must replace ΣX×W by AW .

Remark 7.1 For any algebra (A,α) and object W , the object AW splits the idempotent EW ,
where A itself splits E = α ; ηA. Then AW carries a power algebra structure, ΣτA,W ;αW , where
the natural transformation

τA,W : W × ΣA → ΣA
W

by x, φ 7→ λf. φ(fx)

plays a similar role to that of the strength σ of the monad (Remark 5.9). If H : A → B is a
homomorphism them so is HW : AW → BW , by naturality of τ(−),W .

In fact, for any strong monad T whose algebras are exponentiable, an algebra structure
T (AW)→ AW is given by the transpose of

W × T (AW)
σW,AW- T (W ×AW)

T ev - TA
α - A.

Remark 7.2 When X and Y are expressed by means of the standard resolution, the pullback in
Remark 5.10 is as shown on the left. As ΣX×Σ2Y = (ΣX)(Σ2Y) = AΣB , the corresponding diagram
in Alg is the one on the right, and is to be a pushout of homomorphisms.

X × Y-
X × ηY- X × Σ2Y A⊗B �� AΣB

Σ2X × Y

ηX × Y

?

?

-Σ
2X × ηY- Σ2X × Σ2Y

ηX × Σ2Y

?

?

BΣA

66

-.................
(ηB)(ΣA)

............-
��

β(ΣA)

ΣΣA×ΣB

(ηA)(ΣB)

?

?...................

α(ΣB)

66

As often happens when we consider algebras, the homomorphisms on the bottom and right are
split by functions, the two idempotents in Remark 5.10 being EΣB

1 and EΣA

2 , where E1 = α ; ηA
and E2 = β ; ηB . When we construct the pushout, we shall find that the other two maps are also
split, with the result that the pushout of functions, like the coequalisers that we have used, is
absolute. In particular, Σ2(A⊗B) is also a pushout, enabling us to define the algebra structure
Σ2(A⊗B)→ (A⊗B).

(The reason for using the symbol ⊗ for the coproduct of algebras is simply that the corre-
sponding construction in locale theory is a tensor product of the underlying join semilattices.)

That is the plan for the later parts of the construction, but it also provides the idea for the
central technical result. The composite BΣA → ΣΣA×ΣB → AΣB takes G to λψ. α

(
λφ. ψ(Gφ)

)
.

We now make use of the corresponding external transformation. For A = ΣX and B = ΣY , this
is just the double exponential transposition C(ΣΣX ,ΣY) ∼= C(ΣΣY ,ΣX).

Lemma 7.3 G 7→ ΣG ; α and F 7→ ΣF ; β restrict to a bijection A(ΣA, B) ∼= Alg(ΣB , A) that’s
natural with respect to homomorphisms.

C(ΣB , A) C(ΣA, B)

Alg(ΣB , A)
6

6

-
∼=�

�
Alg(ΣA, B)

6

6

-

29

Proof. Whatever G is, F = ΣG ; α is a homomorphism, being a composite of two homomor-
phisms. If G is itself a homomorphism then ΣF ; β = Σα ; ΣΣG ; β = ΣηB ; G = G. Given
homomorphisms u : A→ A′ and v : B → B′, the correspondence takes Σv ; F ; u to Σu ;G ; v.

Remark 7.4 We can define an internal notion of “object of homomorphisms” (which should also
have its own notation) by interpreting the external Eilenberg–Moore equation as the equaliser

Alg
(
(C, γ), (B, β)

)
- - BC

γ ; (−) -

Σ2(−) ; β
- BΣ2C

or by a generalisation of the equaliser in Proposition 3.2 with B in place of Σ.
The argument in the Lemma internalises, to show that Alg(ΣA, B) is a split equaliser (retract)

of BΣA . Moreover, it is isomorphic in C to Alg(ΣB , A), and we write A ⊗ B for either of them.
The same argument shows that A ⊗ B is an absolute pushout in C, whence it carries a unique
algebra structure that makes it a pushout of algebras.

From the external result we can deduce Lemma 5.7, that C → C preserves products of injectives
(actually, just carriers of algebras, but that’s no handicap).

Lemma 7.5 If C,D ∈ obC are carriers of algebras then

ΣC
Σπ0

- ΣC×D �
Σπ1

ΣD

is a coproduct diagram of algebras.

Proof. For any other algebra Θ (playing the role of ΣΓ in Section 5),

Alg(ΣC ,Θ)×Alg(ΣD,Θ) ∼= Alg(ΣΘ, C)×Alg(ΣΘ, D) ∼= Alg(ΣΘ, C ×D) ∼= Alg(ΣC×D,Θ)

using Lemma 7.3 three times. Lemma 5.5 gave the algebra structure on C ×D.

Corollary 7.6 The algebra ΣΣA×ΣB has the universal property that

C(A,Θ)× C(B,Θ) ∼= Alg(ΣΣA×ΣB, Θ).

Proof. Put C = ΣA and D = ΣB and recall that C(A,Θ) ∼= Alg(ΣΣA ,Θ).

Next we prove that the power algebra does the job for which it was introduced in Remark 7.1.
Here A and D play the roles of Σ{Y |E} and W in Lemma 5.8

Lemma 7.7 For algebras A and D, the diagram A - AD � ΣD is a coproduct of algebras.

A- AD

Σ2A

α

66

Σπ0
- Σ(ΣA×D)

αD

66

� Σπ1

ΣD

�

Σ4A

ΣΣα

6

ΣηΣA

6

Σπ0
- Σ(Σ3A×D)

ΣΣα×D

6

ΣηΣA×D

6

Σπ1

�

30

Proof. The left-hand column is a U -split coequaliser of algebras, i.e. an absolute coequaliser in
C, which the functor (−)D therefore preserves. So the middle column is a coequaliser of (power)
algebras, in which the middle and bottom objects are coproducts by Lemma 7.5. But the universal
properties of coproducts and coequalisers commute, cf. products and equalisers in Lemma 5.8.

Corollary 7.8 The algebra AΣB has the universal property that

Alg(A,Θ)× C(B,Θ) ∼= Alg(AΣB, Θ).

Theorem 7.9 A⊗B carries the structure of the coproduct of the algebras A and B.

Proof. By Remark 7.2, A⊗B is an absolute pushout of the diagram in C, so there is a unique
algebra structure on it that makes this diagram a pushout in Alg.

Hence we have isomorphic pullbacks in Set,

Alg(A,Θ)×Alg(B,Θ) - Alg(A,Θ)× C(B,Θ) Alg(A⊗B,Θ)- Alg(AΣB ,Θ)

C(A,Θ)×Alg(B,Θ)
?

- C(A,Θ)× C(B,Θ)
?

Alg(BΣA ,Θ)
?

- Alg(ΣΣA×ΣB ,Θ)
?

or, in plain English, if the functions A → Θ and B → Θ are actually both homomorphisms then
they correspond to a homomorphism from A⊗B. Therefore this has the universal property of the
coproduct.

Example 7.10 Recall that any idempotent defines a partition and chooses an element from each
equivalence class. In this case the two partitions are the same but the choices of elements are
different. For example in the simplest case, A = B = 1, the two representations are embedded as
the singletons {pπ0q} and {pπ1q} in ΣΣ2

.

0× 0 - 0× Σ 1 � 1 F

Σ× 0
?

- Σ× Σ
?

1

6

�

pπ1q
- ΣΣ×Σ

6

pπ0q

?

λφψ. φ(Fψ)
?

Proposition 7.11 Powers of Σ (as we write it) in C ≡ Algop are given by

Σ
(A,α)

= (ΣA,ΣηA) and η̄(A,α) = α, where Σ = (ΣΣ,Ση1).

Proof. Since A⊗B was defined to have Alg(ΣA, B) as its set of global elements,

C(Γ×X,Σ) = A(ΣΣ, A⊗B) = C(1, A⊗B) = A(ΣA, B) = C(Γ,ΣX)

where A = ΣΓ and B = ΣX .

Remark 7.12 For the other structure in terms of algebras,
(a) the terminal object is (Σ,Ση1);
(b) the natural numbers object is ΣN;

(c) C ∼= C because AC ∼= AC .
The last part says that C = Aop is monadic, and therefore admits subspaces as described in
Sections 3 and 6, since we assumed that idempotents split in C.

31

8 Comprehension

Now we develop a λ-calculus for C, just as Section A 8 did for SC.
The new calculus is based on a type-theoretic presentation [Tay99, Section 2.2] of Zermelo’s

original set theory, with ΣX playing the role of the powerset (PX) and the object {X | E} from
Section 4 that of comprehension. Whereas comprehension is often presented in a way that allows
each term to belong to many types, the new operators admit, i and I in our calculus, whilst
perhaps being a little bureaucratic, ensure that each term has a unique type.

Writing D for the category obtained from the new calculus as explained in [Tay99, Sections
4.3 & 4.7] and more briefly in Remark A 2.7, we shall show in the following sections that C ' D.
This will be done by means of a weak normalisation theorem, thereby showing that we have stated
enough equations. It is a categorical equivalence, rather than the isomorphism that we had for
SC, because we’re now manipulating types.

Remark 8.1 In the calculus that we have in mind for set theory, the rules for the powerset PX ≡
ΩX are those of the restricted λ-calculus, where ξ[a] means a ∈ {X | ξ}. Then comprehension has
formation and introduction rules,

X type ` ξ : PX

{X | ξ} type

Γ ` a : X Γ ` ξ[a]

Γ ` admit a : {X | ξ}

elimination rules,

x : {X | ξ} ` iX,ξx : X x : {X | ξ} ` ξ[iX,ξx]

and β and η-rules

Γ ` a : X Γ ` ξ[a]

Γ ` a = iX,ξ(admit a) : X
x : {X | ξ} ` x = admit(iX,ξx).

The intent of these rules is to specify when there is a term admit a that makes the triangle commute:

Γ

{X | ξ}-
iX,ξ

-

admit a

�..
....

....
....

....
....

...

X

a

-

Notice that we have required ξ : PX to be a closed term (defined in the empty context), because
we do not want to get involved in dependent types in this paper.

Remark 8.2 The rules that we give below for our own monadic situation are not very pretty if
seen as a piece of pure λ-calculus. But they are in the spirit of the treatment of comprehension
above, so long as we read the the type-formation rule as

X type subtype data on X

{X | subtype data} type

where any predicate ξ : PX provides subtype data in set theory, and the nucleus E (Definition 4.3)
does so for our own calculus. Similarly, the introduction rule means

Γ ` a : X Γ ` a is admissible to the subtype

Γ ` admit a : {X | subtype data}

where our admissibility condition is unfortunately more complicated and less intuitive than that
in set theory.

32

You may think of

{X | E} as {x : X | ∀φ:ΣX . Eφx =Σ φx},

but this can only be internalised if ΣX is compact (so ∀φ : ΣX is meaningful) and Σ is discrete (so
=Σ is defined). These conditions (along with what is needed in Example 2.6(a) to define IX,Eθ in
terms of ∃) would make C into a topos (Theorem C 11.12), and thereby bring the comprehension
calculus back to that for Zermelo type theory.

Remark 8.3 As we have learned throughout this paper, we need to be explicit about the subspace
topology. The elimination rule for elements ({}E0) below provides the restriction of an open subset
φ of X to the subspace {X | E}, which we may re-interpret as the introduction rule for predicates,

Γ ` φ : ΣX
Σ{}I

Γ ` Σiφ ≡ λx. φ(iX,Ex) : Σ{X|E}

For the corresponding elimination rule, we need a new operator IX,E to expand an open subset θ
of the subspace to the whole space.

Γ× {X | E}-
Γ× iX,E - Γ×X

Σ

IX,Eθ

�..
....

....
....

....
....

....
.

θ

-

For reference, we repeat Definitions A 2.1, A 8.1, A 8.2 and 4.3.

Definition 8.4 The restricted λ-calculus has just the type-formation rules

1 type
X1 type . . . Xk type

Σ(−)F
ΣX1×···×Xk type

but with the normal rules for λ-abstraction and application,

Γ, x : X ` σ : ΣY
Σ(−)I

Γ ` λx:X. σ : ΣX×Y
Γ ` φ : ΣX×Y Γ ` a : X

Σ(−)E
Γ ` φ[a] : ΣY

together with the usual α, β and η rules.

Definition 8.5 Γ ` P : ΣΣX is prime if Γ, F : Σ3X ` FP = P
(
λx. F(λφ. φx)

)
.

Definition 8.6 The sober λ-calculus has the additional rules

Γ ` P : ΣΣX P is prime

Γ ` focusP : X
focus I

Γ ` P : ΣΣX P is prime

Γ, φ : ΣX ` φ(focusP) = Pφ : Σ
focusβ

Γ ` a, b : X Γ, φ : ΣX ` φa = φb

Γ ` a = b
T0

33

Definition 8.7 φ : ΣY ` Eφ : ΣY is called a nucleus if

F : Σ3Y ` E
(
λy. F(λφ. Eφy)

)
= E

(
λy. F(λφ. φy)

)
.

Definition 8.8 The {}-rules of the monadic λ-calculus define the subspace itself.

X type x : X, φ : ΣX ` Eφx : Σ E is a nucleus

{X | E} type
{}F

Γ ` a : X Γ, φ : ΣX ` φa = Eφa

Γ ` admitX,E a : {X | E}
{}I

x : {X | E} ` iX,Ex : X {}E0

x : {X | E}, φ : ΣX ` φ(iX,Ex) = Eφ(iX,Ex) {}E1

Γ ` a : X Γ, φ : ΣX ` φa = Eφa

Γ ` a = iX,E(admitX,E a) : X
{}β

x : {X | E} ` x = admitX,E(iX,Ex) {}η

Definition 8.9 The Σ{}-rules say that it has the subspace topology, where IX,E expands open
subsets of the subspace to the whole space.

θ : Σ{X|E} ` IX,Eθ : ΣX Σ{}E

The β-rule says that the composite ΣX -- Σ{X|E}- - ΣX is E:

φ : ΣX ` IX,E
(
λx:{X | E}. φ(iX,Ex)

)
= Eφ Σ{}β

Notice that this is the only rule that introduces E into the λ-expressions. The η-rule, which we
first saw in Remark 2.8, says that the other composite Σ{X|E}- - ΣX -- Σ{X|E} is the
identity:

θ : Σ{X|E}, x : {X | E} ` θx = IX,Eθ(iX,Ex) Σ{}η.

In any type theory where terms are embedded in the definitions of types, we must check that,
when two terms are equal according to the rules of the calculus, they give rise to interchangeable
types. This result has the flavour of the normalisation proof that follows (Proposition 9.11),
whilst being a lot simpler, so you may find it helpful to fill in the details of the verifications as a
preparatory exercise.

Lemma 8.10 If E1 = E2 then there is an isomorphism {X | E1} ∼= {X | E2} that commutes with
the structure (admit, i and I).

Proof. The isomorphism for values is x1 7→ admit2(i1x1) and vice versa. This is well formed,
i.e. the side condition for {}I is satisfied and justifies the use of admit2, because of the equation
E1 = E2. The isomorphism for properties is θ1 7→ Σi2(I1θ1). The equations for the isomorphisms
and commutativity with the structure follow easily from the β- and η-rules for the two sides.

Before embarking on the main normalisation theorem, we investigate some of the interactions
between the new admit operation and the underlying sober and recursive structures. The first

34

result is the symbolic analogue of Remark 4.11, showing that admit does the same for a general
Σ-split inclusion as focus does for η.

Lemma 8.11 The standard resolution defines an isomorphism

X

admit ·ηX-
∼=�

focus ·i
{Σ2X | E} where E = ηΣX · ΣηX .

Proof. The term x : X ` admit(λφ. φx) is well formed because of the unit law. The right hand
side of Definition 8.5 is EFP , so the subspace {Σ2X | E} exactly captures the primes and

P : {Σ2X | E} ` focus(iP) : X

is well formed. Then focus
(
i(admit(λφ. φx))

)
= focus(λφ. φx) = x by {}β and focus η.

Conversely, admit
(
ηX(focus(iP))

)
= admit(iP) = P by focusβ and {}η.

The interaction between admit and substitution, i.e. cut elimination, is as expected, cf. Lemma A 8.4.

Lemma 8.12 Let Γ ` admitX,E a : {X | E} be a well formed term and u : ∆→ Γ a substitution
[Tay99, Section 4.3]. Then ∆ ` admitX,E u

∗a : {X | E} is also well formed, and

∆ ` u∗(admitX,E a) = admitX,E(u∗a).

Proof. In the context [∆, φ : ΣX], since E and φ do not depend on Γ,

φ(u∗a) ≡ u∗(φa) = u∗(Eφa) ≡ Eφ(u∗a).

This is consistent with the {}β- and η-rules when we put u∗(iX,Ea) = iX,E(u∗a), and with the
Σ{}-rules since u∗(IX,Eθ) = IX,E(u∗θ).

Much of the business of Section A 8, which introduced the focus operation to handle sobriety,
was to eliminate it. In particular, Proposition A 8.10 showed that focus is redundant for logical
terms (i.e. of type ΣU), whilst Sections A 9–10 replaced it with descriptions for numerical terms
(i.e. of type N). The following result adds a new case to that reduction, for terms of type {Y | E},
so focus can still be pushed to the outside of any term of the comprehension calculus, or eliminated
altogether.

Lemma 8.13 If Γ ` P : Σ2{Y | E} is prime then

focus{Y |E} P = admitY,E
(

focusY (Σ2iY,EP)
)
.

So {Y | E} is sober, cf. Lemma 6.9.

Proof. Since Γ ` Σ2iP : Σ2Y is also prime (Lemma A 4.6), we may form

Γ ` a ≡ focusY (Σ2iP) : Y,

which satisfies
φa = φ

(
focusY (Σ2iP)

)
= Σ2iPφ focusβ

= P (Σiφ) = P
(
λy. φ(iy)

)
definition of Σ2i

= P
(
λy. Eφ(iy)

)
{}E1

= Eφa in the same way,

35

so we may then form Γ ` admitY,E
(

focusY (Σ2iP)
)
. Applying θ : Σ{X|E},

θ
(

admit
(

focusY (Σ2iP)
))

= Iθ
(

focusY (Σ2iP)
)

{}β, Σ{}η

= Σ2iP (Iθ) focusβ

= P
(
Σi(Iθ)

)
= Pθ Σ{}η

= θ(focus{Y |E} P) focusβ,

whence the result follows by T0.

Finally, admit can also be moved to the outside of the term, although that is in fact the
normalisation theorem to which the next two sections are devoted. Here we just consider the
interaction with recursion, which is the symbolic analogue of Proposition 6.14.

Lemma 8.14 Let X = {Y | E} with terms

Γ ` n : N, Γ ` z : Y and Γ, m : N, y : Y ` s(m, y) : Y

such that Γ ` admit z : X and Γ, m : N, x : X ` admit s(m, ix) : X are well formed. Then

Γ ` rec
(
n, admit z, λmx. admit s(m, ix)

)
= admit rec

(
n, z, λmy. s(m, y)

)
: X,

omitting the subscripts on iY,E and admitY,E .

Proof. Using the {}β- and η-rules, the claim is equivalent to

Γ ` i rec
(
n, admit z, λmx. admit s(m, ix)

)
= rec

(
n, z, λmy. s(m, y)

)
: Y

and is valid for n = 0. In order to use the rec η-rule to prove the claim, we have to check the same
equation as for the induction step in an ordinary proof by induction, namely

i rec
(
n+ 1, admit z, λmx. admit s(m, ix)

)
recursion step

= i admit s
(
n, i rec

(
n, admit z, λmx. admit s(m, ix)

))
= i admit s

(
n, rec

(
n, z, λmy. s(m, y)

))
induction hypothesis

= s
(
n, rec

(
n, z, λmy. s(m, y)

))
{}β

= rec
(
n+ 1, z, λmy. s(m, y)

)
. recursion step.

9 Normalisation for types

This section shows how each new type (generated arbitrarily from comprehension and powers of
products) may be expressed as a subtype (by a single comprehension) of a type in the original
calculus. This is like expressing any set in Zermelo set theory as a subset of an iterated powerset,
as in the von Neumann hierarchy. It will relate back to the categorical construction in Section 4,
where every new object of C is a formal equaliser in C.

The structure maps in this isomorphism are, of course, terms to be defined, but they behave like
the constructors i, I and admit of the comprehension calculus. That is, the lemmas that we have
to prove towards this isomorphism are like the β- and η-rules of the calculus, and will therefore
be presented and named as such. This is not a serious overloading of the i and I notations, as the
old use has two subscripts.

36

Remark 9.1 Given any λ-calculus (such as ours) with all of the usual structural rules, the
corresponding category has products simply because they are concatenations of contexts. The
problem with products that was a central concern in the two categorical constructions does not,
unfortunately, go away so easily: we have merely pushed it into the exponents.

A power type is Σ(−) applied to (the product of) a list of types, and λ-abstraction and ap-
plication involve the list operations of push and pop (or cons and (head,tail)) on types. The
normalisation process for types must therefore also deal with lists. This could be formalised by
introducing meta-variables to denote either lists of types, or powers of lists. However, as this
complication does not have any impact on the real issues in the argument, we leave the interested
reader to carry this through for themselves, and simply consider the case of lists of length two.
We take ΣY×Z to mean (ΣZ)Y , a typical term of which is λy. φ, where y : Y and φ : ΣZ . In this
sense, Σ contains the empty list.

The main technical question with products then manifests itself in this situation as the choice
between I YZ · IZY and the other term that could serve as iΣY×Z .

Extended notation

Notation 9.2 By structural recursion on the type X, we define a type X , terms

X
- iX -

×
admitX

X ΣX
- IX -
��

ΣiX
ΣX

and the idempotent EX on ΣX . The base cases are 1, Σ and N, for which these maps are identities.

X ΣY×Z {Y | E}

X ΣY ×Z Y

iX ΣY×Z-
IZY- ΣY ×Z- I YZ- ΣY ×Z {Y | E}-

iY,E- Y-
iY- Y

admitX ΣY ×Z ΣiY ×iZ -- ΣY×Z Y
admitY× Y

admitY,E× {Y | E}

IX Σ2(Y × Z)-
Σ2(iY × iZ)- Σ2(Y × Z) Σ{Y |E}-

IY,E- ΣY-
IY- ΣY

EX Σ2(Y × Z)
Σ(E Y

Z · E Z
Y)- Σ2(Y × Z) ΣY ΣiY-- ΣY

E- ΣY-
IY- ΣY

So X erases the comprehensions from X, and iX embeds X as a subspace of X . This has the
subspace topology because of IX .

Lemma 10.10 shows that E{Y |E} = E , where the translation E for terms is defined in the
next section.

37

The normalised type

Lemma 9.3 The Σ{}η rule, ΣiX · IX = idΣX or φ : ΣX , x : X ` (IXφ)(iXx) = φx, is valid.

Proof. By structural induction on the type X. If X = ΣY×Z then

ΣiX · IX = Σ(I YZ · IZY) · Σ2(iY × iZ)

= Σ
(
ΣiY ×Z · (ΣiZ · IZ)Y · IZY

)
ΣiY ×iZ = ΣiY ×Z · (ΣiZ)Y

= Σ
(
(ΣiY · IY)Z

)
induction hypothesis for Z

= id induction hypothesis for Y .

If X = {Y | E} then

ΣiX · IX = ΣiY,E · ΣiY · IY · IY,E
= ΣiY,E · IY,E induction hypothesis for Y
= id Σ{}η for {Y | E}.

Lemma 9.4 The Σ{}β rule, IX · ΣiX = EX , is valid.

Proof. By structural induction on the type X. If X = ΣY×Z then

IX · ΣiX = Σ2
(
iY × iZ) · Σ(I YZ · IZY

)
= Σ

(
I YZ · (IY · ΣiY)Z · ΣY ×iZ

)
= Σ(I YZ · EZY · ΣY ×iZ) induction hypothesis for Y

= Σ
(
(IZ · ΣiZ)Y · E Z

Y

)
E

(−)
Y natural w.r.t. iZ

= Σ(E Y
Z · E Z

Y) induction hypothesis for Z.

If X = {Y | E} then

IX · ΣiX = IY · IY,E · ΣiY,E · ΣiY

= IY · E · ΣiY Σ{}β for {Y | E}.

Proposition 9.5 {X | EX} is a well formed type, with structure iX and IX .

Proof. EX on X is a nucleus (Definition 8.7), by the same argument as we used in Corol-
lary 4.13.

The other rules for the extended notation

Lemma 9.6 The {}E0 rule is well formed and the {}E1 rule is valid.

Proof. There is no issue of well-formedness, as iX at any type is built using iY,E and IY,E but
not admitY,E from the comprehension calculus. Now let x : X and φ : ΣX . From Lemmas 9.3
and 9.4 we have

ΣiX · EX = ΣiX · IX · ΣiX = ΣiX ,

so φ(iXx) = ΣiXφx = (ΣiX · EX)φx = EXφ(iXx).

38

Lemma 9.7 The {}I rule is well formed, and the {}β rule is valid, at type X = ΣY×Z .

Γ ` φ : X ≡ ΣY ×Z Γ, F : ΣX ≡ Σ2(Y × Z) ` Fφ = EXFφ

Γ ` iX(admitX φ) = φ : X ≡ ΣY×Z

Proof. In the introduction rule, admitX φ = ΣiY ×iZφ with no issue of well-formedness, as this
expression does not use admit from the comprehension calculus. Also,

Fφ = EXFφ given side condition
= IX(ΣiXF)φ Lemma 9.4
= ΣadmitX (ΣiXF)φ
= F (iX admitX φ).

So φ = iX admitX φ by T0.

Lemma 9.8 If X = {Y | E} then ÊX ⊂Y ÊY in the sense of Notation 4.4.

Proof. EX = E{Y |E} = IY · E · ΣiY , whilst EY = IY · ΣiY by Lemma 9.4. Then

EY · EX = IY · ΣiY · IY · E · ΣiY = IY · E · ΣiY = EX = IY · E · ΣiY · IY · ΣiY = EX · EY

by Lemma 9.3 (Σ{}η for Y).

Lemma 9.9 The {}I rule is well formed, and the {}β rule is valid, at all types.

Proof. By structural induction on the type X, with Y = N or ΣZ as the base case (even when
Z is itself a product or comprehension type), so consider X = {Y | E}.

Γ ` a : X Γ, φ : ΣX ` φa = EXφa

Γ ` a = iX(admitX a) ≡ iY
(
iY,E(admitY,E(admitY a))

)
: X

First, φa = EXφa = (EY · EX)φa = EY φa using the given side-condition twice, and since
ÊX ⊂ ÊY . Hence b ≡ admitY a : Y is well formed, and iY b = a by the induction hypothesis, {}β
for Y .

For the whole expression to be well formed, we need ψ : ΣY ` ψb = Eψb. Put φ = IY ψ : ΣY .
Then

ψb = (IY ψ)(iY b) Σ{}η for Y
= φa

= EXφa hypothesis
= (IY · E · ΣiY)φa definition of EX
= (IY · E · ΣiY)φ (iY b)
= (E · ΣiY)φ b Σ{}η for Y
= (E · ΣiY · IY)ψ b
= Eψ b Σ{}η for Y .

Finally, iX(admitX a) = iY,E
(
iY (admitY (admitY,E a))

)
= iY,E(admitY,E a) by the induction hy-

pothesis, but this is a by {}β for {Y | E}.

39

Lemma 9.10 The {}η rule, admitX ·iX = idX , is valid.

Proof. The expression is well formed by Lemmas 9.6 and 9.9. We prove the equation by
structural induction on the type X. If X = ΣY×Z then, as in Lemma 9.3,

admitX ·iX = ΣiY ×Z · ΣY ×iZ · I YZ · IZY
= ΣiY ×Z · IZY induction hypothesis for Z
= id induction hypothesis for Y .

If X = {Y | E} then admitX ·iX = admitY,E · admitY ·iY · iY,E , which is admitY,E ·iY,E by the
induction hypothesis, but this is id{Y |E} by {}η for {Y | E}.

The isomorphism

Proposition 9.11

X

x 7→ admitX ,EX
(iXx)

-
∼=�

admitX(iX ,EX
x)←7 x

{X | EX}

Proof. For the two admit-expressions to be well formed, we need properties of the form EXφ(ix) =
φ(ix), where ix is either iXx or iX ,EX

x , cf. Lemma 8.10.
admitX ,EX

(iXx) is well formed by Lemma 9.6 ({}E1 for X) and {}I for {X | EX}.
admitX(iX ,EX

x) is well formed by {}E1 for {X | EX} and Lemma 9.9 ({}I for X).
admitX(iX ,EX

(admitX ,EX
(iXx))) = admitX(iXx) by {}β for {X | EX}, but this is x by

Lemma 9.10 ({}η for X).
admitX ,EX

(iX(admitX(iX ,EX
x))) = admitX ,EX

(iX ,EX
x) by Lemma 9.9 ({}β for X), but

this is x by {}η for {X | EX}.

Proposition 9.12 This induces ΣX
φ 7→ λx . IXφ(iX ,EX

x)
-

∼=�
λx. IX ,EX

φ(iXx)←7 θ
Σ{X |EX}.

Proof. φ
(

admitX(iX ,EX
x)
)

= IXφ
(
iX(admitX(iX ,EX

x))
)

= IXφ(iX ,EX
x) because of Lem-

mas 9.3 and 9.9 (Σ{}η and {}β for X).
θ
(

admitX ,EX
(iXx)

)
= IX ,EX

θ
(
iX ,EX

(admitX ,EX
(iXx))

)
= IX ,EX

θ(iXx) by Σ{}η and {}β
for {X | EX}.

10 Normalisation for terms

In the previous section we defined the translation X of each type X simply by erasing compre-
hensions. Although the inclusion map iX : X- - X was more complicated, we shall now see
that the corresponding translation a of terms is equally simple: erase the connectives i and admit,

40

but replace (the in any case unnatural) I with E .

Notation 10.1 By structural recursion on terms, we define the translation

> = > ⊥ = ⊥

0 = 0 succn = succn

φ ∧ ψ = φ ∧ ψ φ ∨ ψ = φ ∨ ψ

λx. φ = λx . φ φa = φ a

admitX,E a = a iX,Ea = a

IX,Eθ = E θ ∃n. φ[n] = ∃n . φ[n]

rec(n, z, λmu. s) = rec(n , z , λmu . s)

For the variable x : X, the symbol x (either as a term or as a λ-binding) is not a translation as
such, but a new variable of type X . We shall also define

focusP = force P .

Notice that focus is not translated into focus, and we shall not allow terms to involve it in the
main part of the discussion. The problem is that the translation Γ ` P : Σ2X does not respect
the equation that says that P is prime and so justifies use of the focus operator. However, from
Lemma 8.13 and Proposition A 8.10, focus is only needed on the outside of a term, and then only
for type N, so we shall deal with it separately at the end of the section.

Notation 10.2 For any context Γ, define Γ by replacing each typed variable x : X in Γ by
x : X . Similarly, let iΓ : Γ- - Γ be the list of [iX(x)/ x] : X- - X . We write i∗X and
i∗Γ for the substitutions that relate terms involving these free variables, whereas ΣiX relates the
corresponding λ-abstractions, cf. Lemma 10.7 below. Hence

i∗[] a = a and i∗[Γ,x:X] a = [iX(x)/ x]∗i∗Γ a .

Most of this section is devoted to proving

Theorem 10.3 For any term Γ ` a : X in the comprehension calculus without focus, Γ ` a : X
is well formed in the original calculus, whilst

Γ ` a = admitX(i∗Γ a) : X and Γ ` iXa = i∗Γ a : X

are provable in the comprehension calculus, i.e. the square

Γ
a - X

Γ

iΓ

6

6

a - X

iX

6

6

admitX

×

commutes. The two forms are equivalent by the {}β and {}η rules, Lemmas 9.9 and 9.10.
In particular, if Γ and X don’t involve comprehension then Γ ` a = a : X.

The proof is by structural induction on the term Γ ` a : X, and therefore has a case for each
connective: λ, i, admit, I, etc. Each of these cases is a lemma below, whereas the lemmas in
the previous section were self-contained. To avoid repetitious language, the enunciation of each
lemma is simply the introduction or elimination rule that defines the connective; by this we mean

41

to assert that “if the premises (sub-terms) obey the equation a = admitX(i∗Γ a) then so does the
conclusion”.

Since the transformation is also applied to nuclei (Lemma 10.10), the proof is actually on the
history of formation of a, rather than simply on the expression without type annotations.

Variables, constants and algebraic operations

Lemma 10.4 For x : X ` x : X, we have admitX(i∗X x) = x.

Proof. i∗X x = [iXx/x]∗ x = iXx, and admitX(iXx) = x by Lemma 9.10 ({}η for X).

There is nothing to prove for the constants >, ⊥ and 0, and almost nothing for succ, so we
just consider ∧ as (an example of) an algebraic operation.

Lemma 10.5
Γ ` φ : ΣX Γ ` ψ : ΣX

Γ ` φ ∧ ψ : ΣX

Recall from the statement of Theorem 10.3 that, by displaying this rule, we mean to claim that if
φ and ψ satisfy a certain equation then so does φ ∧ ψ.

Proof. The general plan is to expand the term in the conclusion of the rule (here φ∧ψ), using
the induction hypothesis for the sub-terms (here φ and ψ) and the formulae for admit (Notation 9.2)
and i∗Γ (Notation 10.2), then apply the extended “rules” from the previous section, followed by
the same procedure in reverse to obtain the translation of the term in question.

φ ∧ ψ = (admitΣX i
∗
Γ φ) ∧ (admitΣX i

∗
Γ ψ) induction hypothesis for φ, ψ

= (ΣiX i∗Γ φ) ∧ (ΣiX i∗Γ ψ) Notation 9.2
= ΣiX (i∗Γ φ ∧ i∗Γ ψ) ΣiX is a homomorphism
= ΣiX i∗Γ(φ ∧ ψ) subsitution into ∧
= ΣiX i∗Γ φ ∧ ψ Notation 10.1
= admitΣX i

∗
Γ φ ∧ ψ Notation 9.2.

Lemma 10.6
Γ, n : N ` φ[n] : ΣX

Γ ` ∃n. φ[n] : ΣX

Proof.
∃n. φ[n] = ∃n. admitΣX i

∗
Γ,n:N φ[n] induction hypothesis for φ[n]

= ∃n. ΣiX i∗
N
i∗Γ φ[n] Notation 9.2 and 10.2

= ΣiX∃n. i∗
N
i∗Γ φ[n] ΣiX is a homomorphism

= ΣiX i∗Γ∃n . φ[n] substitution into ∃
= admitΣX i

∗
Γ ∃n. φ[n] Notation 9.2 and 10.1.

The lambda calculus

The difference between ΣiY and i∗Y is that ΣiY acts on the exponent of the type by λ-reduction,
whilst i∗Y acts on the context by substitution.

42

Lemma 10.7 If Γ, y : Y ` θ : ΣZ then Γ ` ΣiY ×iZλ y . θ = λy. ΣiZ i∗Y θ : ΣY×Z .

Proof.

ΣiY ×iZλ y . θ = λyz. (λ y . θ)(iY y)(iZz) definition of ΣiY ×iZ

= λyz.
(
[iY (y)/ y]∗θ

)
(iZz) λβ

= λyz. (i∗Y θ)(iZz) definition of i∗Y
= λy. ΣiZ i∗Y θ definition of ΣiZ .

Lemma 10.8
Γ, y : Y ` φ : ΣZ

Γ ` λy. φ : ΣY×Z

Proof. We use Lemma 10.7 with Γ, y : Y ` θ ≡ i∗Γ φ : ΣZ .

λy. φ = λy. admitΣZ i
∗
Γ,y:Y φ induction hypothesis for φ

= λy. ΣiZ i∗Y i
∗
Γ φ Notation 9.2 and 10.2

= ΣiY ×iZλ y . i∗Γ φ Lemma 10.7
= ΣiY ×iZ (i∗Γλ y . φ) substitution into λ
= admitΣY×Z i

∗
Γ λy. φ Notation 9.2 and 10.1.

Lemma 10.9
Γ ` φ : ΣY×Z Γ ` a : Y

Γ ` φ[a] : ΣZ

Proof.
φa = (admitΣY×Z i

∗
Γ φ)(admitY i

∗
Γ a) induction hypothesis for φ and a

= (ΣY×iZΣiY ×Z i∗Γ φ)(admitY i
∗
Γ a) Notation 9.2

= ΣiZ
(
i∗Γ φ (iY admitY i

∗
Γ a)

)
= ΣiZ

(
i∗Γ φ (i∗Γ a)

)
{}β for Y

= ΣiZ i∗Γ(φ a) substitution into φ a

= admitΣZ i
∗
Γ φa Notation 9.2 and 10.1.

Subtypes

Here is where we use the main induction hypothesis in Theorem 10.3 for the nucleus E that
defines the subtype {X | E}. The prohibition on focus is not a problem: it can be eliminated, as
the type of E is ΣX (Proposition A 8.10).

Lemma 10.10 ΣiX · E = E · ΣiX and E{X|E} = IX · E · ΣiX = E .

Proof. The induction hypothesis for Eφ and φ yields

Eφ = admitΣX (E φ) = ΣiX (E φ) and φ = admitΣX φ = ΣiX φ ,

so E(ΣiX φ) = ΣiX (E φ), which is the first equation. The induction hypothesis also says that
EX = EX , since the type of EX doesn’t involve comprehension. Then

E{X|E} = IX · E · ΣiX = IX · ΣiX · E = EX · E = EX · E = E

43

by Notation 10.2 and Lemmas 9.4, 10.9 and 9.8.

Lemma 10.11
Γ ` a : X Γ, φ : ΣX ` φa = Eφa

Γ ` admitX,E a : {X | E}

Proof.
admitX,E a = admitX,E admitX i

∗
Γ a induction hypothesis for a

= admit{X|E} i
∗
Γ a Notation 9.2

= admit{X|E} i
∗
Γ admitX,E a Notation 10.2.

Lemma 10.12
Γ ` a : {X | E}

Γ ` iX,Ea : X

Proof.
iX,Ea = iX,E admit{X|E} i

∗
Γ a induction hypothesis for a

= iX,E admitX,E admitX i
∗
Γ a Notation 9.2

= admitX i
∗
Γ a {}η for X,E

= admitX i
∗
Γ iX,Ea . Notation 10.2.

Lemma 10.13
Γ ` θ : Σ{X|E}

Γ ` IX,Eθ : ΣX

Proof.

IX,Eθ = IX,E admitΣ{X|E} i
∗
Γ θ induction hypothesis for θ

= IX,EΣiX,EΣiX i∗Γ θ Notation 9.2
= EΣiX i∗Γ θ Σ{}β for X,E
= ΣiX E i∗Γ θ Lemma 10.10
= ΣiX i∗ΓE θ substitution into E θ

= admitΣX i
∗
Γ IX,Eθ Notation 9.2 and 10.2.

Recursion

Lemma 10.14

Γ ` n : N Γ ` z : X Γ, m : N, x : X ` s(m,x) : X

Γ ` rec(n, z, λmx. s) : X

Proof. Let Γ ` z′ = i∗Γ z : X and Γ, m : N, x : X ` s′(m, x) = i∗Γ s (m, x) : X .
So the induction hypotheses say that Γ ` n = i∗Γ n : N, Γ ` z = admitX z

′ : X and

Γ, m : N, x : X ` s(m,x) = admitX s
′(m, iXx) : X.

44

We use Lemma 8.14, or rather its analogue with the extended rules of Section 9 in place of the
{}β- and η-rules; the symbols x , z′ and s′ here correspond to y, z and s there.

rec(n, z, λmx. s)
= rec

(
n, admitX z

′, λmx. admitX s
′(m, iXx)

)
induction hypothesis

= admitX rec
(
n, z′, λmx . s′(m, x)

)
Lemma 8.14

= admitX rec
(
i∗Γ n , i

∗
Γ z , λmx . i∗Γ s (m, x)

)
definition

= admitX i
∗
Γrec

(
n , z , λmx . s (m, x)

)
substitution into rec

= admitX i
∗
Γ rec(n, z, λmx. s) : X Notation 10.2.

Sobriety
We have now completed the proof of Theorem 10.3, that, for any term Γ ` a : X in the

comprehension calculus without focus,

Γ ` a = admitX(i∗Γ a) : X and Γ ` iXa = i∗Γ a : X .

There are two ways of handling a term focusP : N.

Remark 10.15 Lemma 8.11 says that N ∼= {Σ2
N | EN}, where EN characterises primes. This

makes use of admit instead of focus. More generally, {N | E} ∼= {Σ2
N | E′}, where E′ encodes the

composite inclusion. Another way of saying this is that, in Notation 9.2, we define the base case
N as Σ2

N instead of N. This way we only ever deal with subspaces of injectives (cf. Corollary 5.3),
and never need to use focus.

Remark 10.16 Alternatively, if Γ ` P : Σ2X is a prime not involving focus,

focusX P = admitX
(

focusX (Σ2iXP)
)

Lemma 8.13

= admitX
(

focusX (iΣ2XP)
)

Notation 9.2

= admitX
(

focusX (i∗Γ P)
)

Theorem 10.3

= admitX (i∗Γ forceX P) cf. Lemma A 8.4
= admitX (i∗Γ focusX P) Notation 10.2.

Lemma A 8.4 actually said

u : ∆→ Γ Γ ` P : Σ2X prime

∆ ` u∗P : Σ2X prime

∆ ` u∗(focusP) = focus(u∗P) : X

and we’re trying to use its converse, which is not valid. Although Γ ` i∗Γ P : Σ2X is prime,
Γ ` P : Σ2X need not be. This is why we write force instead of focus here.

Semantically, Γ- - Γ is a subspace, on which the relevant equation holds, but it need
not hold on the ambient space Γ. That such a situation arises is more obvious for descriptions
(Remark A 9.13): any predicate Γ ` φ : ΣN becomes a description when restricted to the locally
closed subspace Γ- - Γ defined by

(∃n. φ[n]) = > and (∃nm. φ[n] ∧ φ[m] ∧ n 6= m) = ⊥.

In the terms of this paper, the equation in Definition 4.5 defining a (prime or) homomorphism on
a subspace {Y1 | E1} involves Ê1, and does not imply the form without it.

Nevertheless, it is a legitimate alternative way of treating focusP to translate it into force P .
For, if Γ ` ψ : ΣX then

ψ[focusP] = Pψ = (admitΣ2X i
∗
Γ P)(admitΣX i

∗
Γ ψ) = i∗Γ Pψ = i∗Γ ψ [force P]

45

using the unrestricted β-rule for force.
As we know from Sections A 8 and 11, and the work on computational effects cited there,

we may obtain different terms Γ ` a : X by applying or reversing the β- and η-rules of the
λ-calculus with force. So, for such a calculus to be defined consistently, an order of evaluation
must be specified.

However, these computational terms with possibly different denotations on Γ become equal
when we apply i∗Γ to restrict them to the required context Γ. In other words, as we know very
well from experience, there are different programs Γ ` a : X , possibly involving computational
effects, to compute the same denotational value Γ ` a : X.

Categorical equivalence

Theorem 10.17 Let C and D be the categories generated by the restricted λ-calculus (possi-
bly with the extra structure) and the comprehension calculus. Then there is an equivalence of
categories C ' D whose effect on types is

{X | E} - {X | E}

C
-

'� D

{X | EX } � X,

where the notation {X | E} in C is the categorical one in Section 4, whilst in D it is understood
as the comprehension calculus in Section 8.

Proof. The previous section defined the transformation D → C on types, and showed that the
composite D → C → D is isomorphic to the identity: Proposition 9.11 provided mutually inverse
terms in the comprehension calculus that relate any type X to {X | EX}. The other composite
is the identity on types, so we just have to show that C → D is full and faithful.

Let X1 and X2 be types that are defined without comprehension, and E1 and E2 nuclei on
them. We shall show that there is a bijection between the C-morphisms

Ĵ : {X1 | E1} −→ {X2 | E2}

defined in Section 4 and the terms

x : {X1 | E1} ` focusP : {X2 | E2}

that we have just expressed in normal form. Of course {X1 | E1} = X1, and we write i1 = iX1 ,
etc.

In each of the categories, these morphisms correspond bijectively to homomorphisms

Σ{X2|E2} −→ Σ{X1|E1},

but first we consider ordinary maps, without the homomorphism requirement.
By Proposition 6.2 for C, Σ{X|E} ∼= {ΣX | ΣE}, which is simply a retract of the power type

ΣX in C (the restricted λ-calculus), so a C-morphism J : Σ{X2|E2} → Σ{X1|E1} is a C-morphism
J : ΣX2 → ΣX1 such that E2 ; J = J = J ; E1.

ΣX2
J - ΣX1 ΣX2

H - ΣX1

Σ{X2|E2}

E2

6

6

E2

??
J - Σ{X1|E1}

E1

6

6

E1

??

Σ{X2|E2}

iΣX2 = I2

6

6

Σi2

??
H- Σ{X1|E1}

I1

6

6

Σi1 = admitΣX1

??

46

The corresponding power type in D is also a retract, and Theorem 10.3 characterised its morphisms
H in the same fashion. Hence HC ' HD.

Now, homomorphisms are characterised equationally amongst all maps, and we have already
shown that the functor is full and faithful for them, i.e. that maps and their equations agree, so
the homomorphisms also agree.

In C, the equation that defines homomorphisms is more clearly understood by means of
Lemma 6.6, i.e. with reference to the subtypes {Xi | Ei}, rather than using Definition 4.5, which
transfers the condition to the ambient types Xi. We have seen the same phenomenon in D, where
the translation P of a prime P relative to the sub-types need not be prime with respect to the
translated types.

That deals with single-type contexts, but that is enough as products may be encoded as
comprehension types in each category.

Therefore our first construction, adjoining formal Σ-split equalisers to the category in Sec-
tions 4–6, is equivalent to the third, the extension of the λ-calculus in Sections 8–10.

11 Sums and quotients

Paré’s theorem, that any elementary topos has the monadic property [Par74], which originally
inspired abstract Stone duality, was itself motivated by the simple way that it affords for con-
structing colimits. So we conclude this paper with applications of the comprehension calculus to
coproducts and coequalisers.

Example 11.1 The idea of Stone duality is to consider spaces in terms of the corresponding
algebras. For any algebra (A,α), we have

pts(A,α) = {ΣA | ηA · α ≡ λFφ. φ(αF)},

in which ηA · α is a nucleus (Definition 8.7) because of the Eilenberg–Moore equations for α. The
homomorphism H : B → A corresponds to the function

x : pts(A,α) ` admit
(
λψ. Hψ(ix)

)
: pts(B, β),

in which H is behaving as a continuation-transformer. (We saw in the previous section that the
operators i and admit merely serve as compile-time type-annotation.) In particular, if H = Σf ,
where f : X → Y , this is just focus

(
λψ. ψ(fx)

)
= fx by Lemma 8.11.

The continuation-passing style is more clearly visible in a more complicated example.

Example 11.2 The coproduct X + Y of spaces corresponds to the product A = ΣX × ΣY of
algebras, whose structure map α = 〈P0, P1〉 was given in Lemma 5.5:

P0 : Σ2(ΣX × ΣY)→ ΣX by H 7→ λx.H (λφψ. φx).

Then X + Y = pts(A,α) = {ΣΣX×ΣY | EX+Y }, where

EX+Y = ηΣX×ΣY · α : H 7→ λH. H 〈P0H, P1H〉.

The inclusion ν0 : X → X + Y satisfies Σν0 = π0, so

ν0(x) = admit(λφψ. φx) and ν1(y) = admit(λφψ. ψy).

Then, for f : X → Z and g : Y → Z, the mediator X + Y → Z is

[f, g] : u 7→ focus
(
λθ. (iu)

(
λx. θ(fx)

)(
λy. θ(gy)

))
,

47

in which the continuation θ from Z is passed either as θ · f to X or as θ · g to Y . When u = ν0(x)
or ν1(y), one of the two branches is selected and that continuation is applied to x or y.

We already know that products distribute over coproducts (Proposition A 7.11), and coproducts
are disjoint and stable under pullback on the assumption that Σ is a distributive lattice and
satisfies the Euclidean principle (Section C 9). In fact this extra structure is unnecessary: if (C,Σ)
is monadic then C is extensive on a very much weaker assumption.

Lemma 11.3 The map 0→ 1 is a Σ-split mono iff Σ has a constant.

Proof. I : Σ0 = 1→ Σ = Σ1.

If I = >, this makes 0 a closed subspace; if I = ⊥ then it’s open (Examples 2.5). However,
we shall call the constant ? here to emphasise that we are not using any lattice structure. Then
coproduct inclusions are also Σ-split monos:

Lemma 11.4 X ∼= {X + Y | 〈π0, ?〉} and Y ∼= {X + Y | 〈?, π1〉}.

Proof. These idempotents arise from the diagram

ΣX
�� π0 ≡ Σν0

-
〈id, ?〉

- ΣX × ΣY
π1 ≡ Σν1

--
�

〈?, id〉
�ΣY

We want to show that every map U → 2 arises in this way from a unique coproduct. Because
of the continuation-passing behaviour, it is convenient to treat 2 as a subspace of ΣΣ×Σ. Then
the definable elements are π0 ≡ λxy. x and π1 ≡ λxy. y, which simply select the appropriate
continuation from the pair.

Lemma 11.5 2 ∼= {ΣΣ×Σ | λFF . F (Fπ0,Fπ1)}.

Proof. This is the primality equation, FP = P
(
λx. F(λφ. φx)

)
, with λx replaced by the two

values 0, 1 : 2, and φ : Σ2 by a pair.
We shall abuse our language by calling the two-argument functions P : ΣΣ×Σ that belong to

this subspace “prime”. However, we need yet another characterisation of them.

Lemma 11.6 Γ ` P : ΣΣ×Σ is prime iff, for x, y, z : Σ and G : ΣΣΣ
,

P (x, x) = x P
(
P (x, y), z

)
= P (x, z) = P

(
x, P (y, z)

)
G
(
λz. P (z, ?)

)
= P

(
Gid, G(λz. ?)

)
G
(
λz. P (?, z)

)
= P

(
G(λz. ?), Gid

)
.

Proof. If P is prime, so Γ, F : Σ2(Σ× Σ) ` FP = P (Fπ0,Fπ1), then
• put F ≡ λQ. x, so FP = Fπ0 = Fπ1 = x and primality says that x = P (x, x);
• put F ≡ λQ. Q

(
Q(x, y), z

)
, so Fπ0 = x, Fπ1 = z and P

(
P (x, y), z

)
≡ FP = P (x, z);

• put F ≡ λF. G
(
λz. F (z, ?)

)
, so Fπ0 = Gid, Fπ1 = G(λz. ?) and primality says that G

(
λz. P (z, ?)

)
≡

FP = P
(
Gid, G(λz. ?)

)
.

Conversely, we first put G ≡ λθ. F
(
λxy. θP (x, y)

)
, so G(λz. ?) = F(λxy. ?), Gid = FP ,

G
(
λz. P (z, ?)

)
= F

(
λxy. P (P (x, y), ?)

)
= F

(
λxy. P (x, ?)

)
,

G
(
λz. P (?, z)

)
= F

(
λxy. P (?, P (x, y))

)
= F

(
λxy. P (?, y)

)
,

with which the equations involving G give

F
(
λxy. P (x, ?)

)
= P

(
FP, F(λxy. ?)

)
F
(
λxy. P (?, y)

)
= P

(
F(λxy. ?), FP

)
.

48

Next put G ≡ λθ. F(λxy. θx), so

G(λz. ?) = F(λxy. ?), G
(
λz. P (z, ?)

)
= F

(
λxy. P (x, ?)

)
and Gid = Fπ0,

with which the first G-equation gives

F
(
λxy. P (x, ?)

)
= P

(
Fπ0, F(λxy. ?)

)
,

and similarly G ≡ λθ. F(λxy. θy) yields F
(
λxy. P (?, y)

)
= P

(
F(λxy. ?), Fπ1

)
.

From these four consequences of the higher-type G-equations, together with the ones of base
type, we deduce that P is prime:

FP = P
(
P (FP, F(λxy. ?)), P (F(λxy. ?),FP)

)
= P

(
F(λxy. P (x, ?)), F(λxy. P (?, y))

)
= P

(
P (Fπ0, F(λxy. ?)), P (F(λxy. ?), Fπ1)

)
= P (Fπ0,Fπ1).

Proposition 11.7 Let u : U ` Pu : ΣΣ×Σ be prime. Then the following subspaces are well
defined, their coproduct is U and the squares are pullbacks.

{U | E0 ≡ λφu. Pu(φu, ?)}- - U � �{U | E1 ≡ λψu. Pu(?, ψu)}

1
?

- 2

u 7→ focus(Pu)

?
� 1

?

Proof. To show that E0 is a nucleus, we must show for u : U and F : Σ3U that

E0

(
λv. F(λφ. E0φv)

)
u = Pu

(
F(λφ. Pu(φu, ?)), ?

)
≡ Pu(y, ?)

is equal to
E0

(
λv. F(λφ. φv)

)
u = Pu

(
F(λφ. φu), ?

)
≡ Pu(x, ?).

Put G ≡ λθ. F
(
λφ. θ(φu)

)
in the Lemma. Then

y = F
(
λφ. Pu(φu, ?)

)
= G

(
λz. Pu(z, ?)

)
= Pu

(
Gid,G(λz. ?)

)
= Pu

(
F(λφ. φu), F(λφ. ?)

)
≡ Pu(x, t),

so Pu(y, ?) = Pu
(
Pu(x, t), ?

)
= Pu(x, ?) as required.

To test that the left hand square is a pullback, we are given Γ ` v : U such that Γ ` Pv = π0.
Then

Γ, θ : ΣU ` E0θv = Pv(θv, ?) = π0(θv, ?) = θv,

as is required to form the mediator Γ ` admit v : {U | E0}.
To show that U is the coproduct, we must show that ΣU is the associated product, i.e. that

θ : ΣU corresponds bijectively to 〈φ, ψ〉 where φ = E0φ and ψ = E1ψ. In fact, P serves for the
pairing operation as well as for the projections: θ = λu. Pu(φu, ψu).

θ 7→
〈
λu. Pu(θu, ?), λu. Pu(?, θu)

〉
7→ λu. Pu

(
Pu(θu, ?), Pu(?, θu)

)
= λu. θu

49

(φ, ψ) 7→ λu. Pu(φu, ψu)
π0- λu. Pu

(
Pu(φu, ψu), ?

)
= λu. Pu(φu, ?) = E0φ.

Theorem 11.8 If (C,Σ) is monadic and Σ has a constant then C is extensive, i.e. it has stable
disjoint coproducts [Tay99, Section 5.5].

X - U � Y

1
?

- 2
?
� 1

?

Proof. We have to show that the commutative diagram is a pair of pullbacks iff its top row
is a coproduct. The map U → 2 must arise from a prime u : U ` Pu : ΣΣ×Σ, from which
Proposition 11.7 constructs subspaces forming pullbacks and a coproduct. Since pullbacks are
unique up to isomorphism, if the given diagram is a pair of pullbacks then it is isomorphic to that
in the Proposition.

Conversely, if we are given a coproduct U = X + Y then u : U ` Pu : ΣΣ×Σ is defined by
x : X ` Px ≡ π0 and y : Y ` Py ≡ π1. Then E0 in the Proposition becomes

E0θ = E0〈φ, ψ〉 =
〈
λx. π0〈φ, ψ〉x, λy. ?

〉
= 〈φ, ?〉,

which agrees with Lemma 11.4.

Corollary 11.9 Let x : X ` fx, gx : Z and x : X ` Px : ΣΣ×Σ with P prime. Then

if (focusP) then fx else gx = focus
(
λθ. Px(θ(fx))(θ(gx))

)
.

Turning from coproducts to coequalisers, of course we can only construct those that are Σ-split.
We leave the reader to formulate Beck-style equations as in Section 3, concentrating instead on
the analogue for quotients of the comprehension calculus for subspaces in Section 8. Beware also
that the class of Σ-epis is stable under products but not necessarily pullbacks. For the topological
motivation, recall that the quotient topology on a set Y induced by the function q : X → Y
from a topological space has V ⊂ Y open iff q−1V is open in X.

Lemma 11.10 Let X
q--
×
Q̂

Y be a Σ-split epi, and put R̂ = Q̂ · q. Then

Y ∼= {Σ2X | E}, where EFF = F
(
λx. F(λφ. Rφx)

)
,

qx = admit(λφ. Rφx) and Qφ = λy. iyφ.

Proof. Three of the four squares

Σ2X
Σ2q --

�
ΣQ

�Σ2Y

X

ηX

6

6

η̂ΣX

× q --
×

Q̂

Y

ηY

6

6

η̂ΣY

×

50

commute by naturality, but that from Y to Σ2X need not. So Ê is the composite from Σ2X
anticlockwise back to itself:

Ê = Σ2q ; η̂ΣY ; ηY ; ΣQ = η̂ΣX ; q ; ηY ; ΣQ = η̂ΣX ; ηX ; ΣΣq ; ΣQ,

so EFF = ηΣX
(
ΣηX (Σ2RF)

)
F = F

(
λx. F(λφ. Rφx)

)
. Next,

i(qx) = ΣQ
(
ηY (qx)

)
= ΣQ

(
Σ2q(ηXx)

)
= ΣR(ηX) = λφ. Rφx,

whence qx = admit(λφ. Rφx). Finally, iyφ = ΣQ(ηY y)φ = (λφ. φy)(Qφ) = Qφy.

Proposition 11.11 Y ≡ X/R, qx ≡ [x] and(
let y = [x] in fx

)
≡ focus

(
λθ. Q(θ · f)y

)
≡ focus

(
λθ. (iy)(θ · f)

)
satisfy the rules

x : X ` [x] : X/R /I

Γ, x : X ` fx : Z Γ, θ : ΣZ ` (θ · f) = R(θ · f) : Σ

Γ, y : X/R `
(
let y = [x] in fx

)
: Z

/E

Γ, x : X ` fx : Z Γ, θ : ΣZ ` (θ · f) = R(θ · f) : Σ

Γ, x : X `
(
let [x] = [x′] in fx′

)
= fx

/β

y : X/R `
(
let y = [x] in [x]

)
= y /η,

together with those for the quotient topology (Σ/
I, Σ/

E, Σ/
β and Σ/

η),

φ : ΣX ` Qφ : ΣX/R φ : ΣX , x : X ` (Qφ)(qx) = Rφx
ψ : ΣX/R ` Σqψ : ΣX ψ : ΣX/R ` Q(Σqψ) = ψ.

Proof. We verify the /β and /η rules:

let [x] = [x′] in fx′ = focus
(
λθ. i(qx)(λx′. θ(fx′))

)
definition

= focus
(
λθ. (λφ. Rφx)(λx′. θ(fx′))

)
Lemma 11.10

= focus
(
λθ. R(θ · f)x

)
= focus

(
λθ. (θ · f)x

)
= fx R(θ · f) = (θ · f)

let y = [x] in [x] = focus
(
λψ. (iy)(ψ · q)

)
= focus

(
λψ. Q(ψ · q)y

)
Lemma 11.10

= focus
(
λψ. (Q · Σq)ψy

)
= focus(λψ. ψy) = y Q · Σq = id.

Remark 11.12 Notice that the β-rule is not a computational reduction, but a denotational
equation that is a consequence of the equation R(θ · f) = (θ · f) in its hypothesis. A compiler
equipped with a proof assistant might perhaps be able know this, but otherwise we can only hope
that the implementation will somehow find its way from one side of the β-rule to the other.

Let us specialise this to sets and (discrete) topological spaces, now making use of the lattice
structure.

51

Example 11.13 Section C 10 constructs the quotient X/δ of an overt discrete object X by the
open equivalence relation classified by δ : X ×X → Σ. Overt discrete means that X is equipped
with predicates ∃X : ΣX → Σ and (=X) : X ×X → Σ satisfying the usual properties.

The construction in Lemma C 10.8 obtains ΣX/δ (which is unfortunately called ΣQ = E there,
for “quotient” and “equaliser”) as a retract of ΣX , namely as the image of the closure operation

R ≡ Σq · ∃q ≡ λφx. ∃y. δ(x, y) ∧ φ(y).

The quotient space is therefore X/δ = X/R = {Σ2X | E}, where

EFF ≡ F
(
λx. F(λφ. ∃y. δ(x, y) ∧ φy)

)
q(x) ≡ admit

(
λφ. ∃y. δ(x, y) ∧ φ(y)

)
.

If f : X → Z respects the equivalence relation δ then the β-rule is

focus
(
λθ. ∃y. δ(x, y) ∧ θ(fy)

)
= fx.

In principle this computation involves a search of the equivalence class, which makes sense, given
the connection between coequalisers and while programs [Tay99, Section 6.4].

Example 11.14 As explained in Remark C 10.12, there is another representation of X/δ that is
more like the familiar one with equivalence classes. It arises from the factorisation

X
q --

×
∃̂q

X/δ
- {} -
× ΣX/δ

- Σq -
>��
∃q

ΣX

of the transpose δ̃ of the equivalence relation. This generalises

N ∼= {ΣN | E} by n 7→ {n}, where E = λFφ. ∃n. F (λm. m = n) ∧ φn,

cf. Section A 10. The quotient is now given by {ΣX | E}, where

E = λFφ. ∃x. F
(
λy. δ(x, y)

)
∧ φx,

with qx = admit
(
λy. δ(x, y)

)
.

If f : X → Z respects the equivalence relation then the mediator X/δ → Z is

y 7→ focus
(
λθ. ∃x′. iyx′ ∧ θ(fx′)

)
.

This selects an element x′ from the equivalence class y ∈ X/δ (classified by a predicate iy ∈
ΣX) and applies f to it, as we would expect. Substitution of y = qx yields the same formula
focus

(
λθ. ∃x′. δ(x, x′) ∧ θ(fx′)

)
as before.

Remark 11.15 Here is a summary of the comprehension types that we have used.

X ∼= {Σ2X | λFF . F
(
λx. F(λφ. φx)

)
} Remark 4.11

{X | E0} × {Y | E1} = {X × Y | EX1 · EY0 } Proposition 5.12

{X | E0}+ {Y | E1} = {ΣΣX×ΣY | E} Example 11.2
where EHH = H

〈
λx.H(λφψ. E0φx), λy.H(λφψ. E1φy)

〉
Σ{X|E} = {ΣX | ΣE} Proposition 6.2

{{X | E1} | E2} = {X | E2} Proposition 6.10
pts(A,α) = {ΣA | λFφ. φ(αF)} Example 11.1

X/R = {Σ2X | λFF . F
(
λx. F(λφ. Rφx)

)
} Proposition 11.11

U ∩ (X \ V) = {X | λφ. U ∧ φ ∨ V } Examples 2.5
X/δ = {Σ2X | λFF . F

(
λx. F(λφ. ∃y. δ(x, y) ∧ φy)

)
}

∼= {ΣX | λFφ. ∃x. F
(
λy. δ(x, y)

)
∧ φx} Examples 11.13f.

52

References

[Bou66] Nicolas Bourbaki. Topologie Générale. Hermann, 1966. Chapter I, “Structures
Topologiques”. English translation, “General Topology”, distrubuted by
Springer-Verlag, 1989.

[BR98] Anna Bucalo and Giuseppe Rosolini. Repleteness and the associated sheaf. Journal of
Pure and Applied Algebra, 127:147–151, 1998.

[BW85] Michael Barr and Charles Wells. Toposes, Triples, and Theories. Number 278 in
Grundlehren der mathematischen Wissenschaften. Springer-Verlag, 1985.

[Eck69] Beno Eckmann, editor. Seminar on Triples and Categorical Homology Theory,
number 80 in Lecture Notes in Mathematics. Springer-Verlag, 1969.

[Fak70] Sabah Fakir. Monade idempotente associée à une monade. Comptes Rendues de
l’Academie des Sciences de Paris, Série A–B, 270:A99–101, 1970.

[Fef77] Solomon Feferman. Categorical foundations and foundations of category theory. In
Robert Butts and Jaakko Hintikka, editors, Logic, Foundations of Mathematics and
Computability Theory, pages 149–169. Reidel, 1977.

[FS90] Peter Freyd and Andre Scedrov. Categories, Allegories. Number 39 in Mathematical
Library. North-Holland, 1990.

[FW90] Barry Fawcett and Richard Wood. Completely distributive lattices I. Mathematical
Proceedings of the Cambridge Philosophical Society, 107:81–9, 1990.

[GHK+80] Gerhard Gierz, Karl Heinrich Hoffmann, Klaus Keimel, Jimmie Lawson, Michael
Mislove, and Dana Scott. A Compendium of Continuous Lattices. Springer-Verlag,
1980.

[HM81] Karl Hofmann and Michael Mislove. Local compactness and continuous lattices. In
Bernhard Banaschewski and Rudolf-Eberhard Hoffmann, editors, Continuous Lattices,
number 871 in Springer Lecture Notes in Mathematics, pages 209–248, 1981.

[Joh82] Peter Johnstone. Stone Spaces. Number 3 in Cambridge Studies in Advanced
Mathematics. Cambridge University Press, 1982.

[Law70] Bill Lawvere. Equality in hyperdoctrines and the comprehension schema as an adjoint
functor. In Alex Heller, editor, Applications of Categorical Algebra, number 17 in
Proceedings of Symposia in Pure Mathematics, pages 1–14. American Mathematical
Society, 1970.

[LR73] Joachim Lambek and Basil Rattray. Localizations at injective objects in complete
categories. Proceedings of the American Mathematical Society, 41:1–9, 1973.

[LR75] Joachim Lambek and Basil Rattray. Localizations and sheaf reflectors. Transactions
of the American Mathematical Society, 210:279–293, 1975.

[ML71] Saunders Mac Lane. Categories for the Working Mathematician. Number 5 in
Graduate Texts in Mathematics. Springer-Verlag, 1971.

[ML84] Per Martin-Löf. Intuitionistic Type Theory. Bibliopolis, Naples, 1984.
[Mog91] Eugenio Moggi. Notions of computation and monads. Information and Computation,

93:55–92, 1991.
[MRW01] Francisco Marmolejo, Robert Rosebrugh, and Richard Wood. A basic distributive

law. Journal of Pure and Applied Algebra, 168:209–226, 2001.
[Par71] Robert Paré. On absolute colimits. Journal of Algebra, 19:80–95, 1971.
[Par74] Robert Paré. Colimits in topoi. Bulletin of the American Mathematical Society,

80(3):556–561, 1974.
[RR88] Edmund Robinson and Giuseppe Rosolini. Categories of partial maps. Information

and Computation, 79:95–130, 1988.

53

[Sco72] Dana Scott. Continuous lattices. In Bill Lawvere, editor, Toposes, Algebraic Geometry
and Logic, number 274 in Lecture Notes in Mathematics, pages 97–137.
Springer–Verlag, 1972.

[Sco76] Dana Scott. Data types as lattices. SIAM Journal on Computing, 5:522–587, 1976.
[Tar35] Alfred Tarski. Zur Grundlegung der Boole’schen algebra. Fundamenta

Mathemematica, 24:177–198, 1935.
[Tay99] Paul Taylor. Practical Foundations of Mathematics. Number 59 in Cambridge Studies

in Advanced Mathematics. Cambridge University Press, 1999.
[Thi97] Hayo Thielecke. Categorical Structure of Continuation Passing Style. PhD thesis,

University of Edinburgh, 1997. Also available as technical report ECS-LFCS-97-376.
[Vic95] Steven Vickers. Locales are not pointless. In Ian Mackie and Rajagopal Nagarajan,

editors, Theory and Formal Methods of Computing, 1995.
[Vic01] Steven Vickers. The double powerlocale and exponentiation. Submitted to Theory

and Applications of Categories, 2001.

The papers on abstract Stone duality may be obtained from
www.cs.man.ac.uk/∼pt/ASD

[A] Paul Taylor, Sober spaces and continuations. Theory and Applications of Categories,
10(12):248–299, 2002.

[C] Paul Taylor, Geometric and higher order logic using abstract Stone duality. Theory
and Applications of Categories, 7(15):284–338, 2000.

[D] Paul Taylor, Non-Artin gluing in recursion theory and lifting in abstract Stone
duality. 2000.

[E–] Paul Taylor, Local compactness and the Baire category theorem in abstract Stone
duality. Category Theory and Computer Science, Ottawa, 2002. ENTCS 69.

[E] Paul Taylor, Computably based locally compact spaces. May 2003.
[F] Paul Taylor, Scott domains in abstract Stone duality. March 2002.
[G] Paul Taylor, An elementary theory of the category of locally compact locales. March

2003.

54

http://www.cs.man.ac.uk/~pt/ASD/index.pdf
http://www.cs.man.ac.uk/~pt/ASD/sobsc.pdf
http://www.cs.man.ac.uk/~pt/ASD/geohol.pdf
http://www.cs.man.ac.uk/~pt/ASD/nonagr.pdf
http://www.cs.man.ac.uk/~pt/ASD/nonagr.pdf
http://www.cs.man.ac.uk/~pt/ASD/loccbc.pdf
http://www.cs.man.ac.uk/~pt/ASD/loccbc.pdf
http://www.cs.man.ac.uk/~pt/ASD/comblc.pdf
http://www.cs.man.ac.uk/~pt/ASD/pcfasd.pdf
http://www.cs.man.ac.uk/~pt/ASD/undset.pdf

	Introduction
	The subspace topology
	Beck's theorem
	Adding Sigma-split subspaces
	Injectives and products in the new category
	Structure in the new category
	Algebras
	Comprehension
	Normalisation for types
	Normalisation for terms
	Sums and quotients

