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Abstract

The most powerful feature of categories of posets with directed sups is the ability to solve
domain equations such as D ∼= DD. A crucial ingredient of this technique is the fact that for
certain kinds of diagrams (in particular sequences of “projection pairs”) the limit and colimit
are isomorphic. This much is known to everyone in the subject: what appears not to be
generally known is

(i) that we only use the fact that the maps are adjoint (not that they are respectively
epi and mono) and

(ii) what the corresponding results for other limits (such as pullbacks) are.

I propose to set out the basic definitions and results here, introducing the following terms:

(i) homomorphism, for a continuous map with a left adjoint (projections being a spe-
cial case),

(ii) comparison, for this left adjoint (embeddings being a special case),

(iii) bilimit, for the common limit and colimit of filtered diagrams of homomorphisms,

(iv) bifinite, for a domain expressible as a bilimit of finite posets and

(v) saturated, for a domain of which any other is a retract.

I shall justify my strongly-held view that the last two should replace the existing terms
“profinite” and “universal”.

We begin by recalling the basic ideas of the domain-theoretic solution of equations such
as D ∼= DD, and showing that homomorphisms (not just projections) arise frequently. We
look briefly at general limits and colimits and explain the difference between bifinite and
profinite posets. Then the proof of the limit-colimit coincidence for cofiltered diagrams of
homomorphisms is given. Working with cofiltered diagrams is cleaner and no more difficult
than working with sequences. Although the case for sequences of projections is sufficient for
solving domain equations, this general form arises naturally from “indexed retracts”. We then
seek limits of other kinds of diagrams of special classes of maps, in particular pullbacks and
simply-connected limits of projections. Finally we apply this to finding saturated domains.

Introduction

I am going to take it for granted that the reader knows that a cpo is a partially ordered set with a
least element (⊥) and directed joins or sups (written

∨↑) and that a continuous map is a function
between the underlying sets of two cpos which preserves (the order and) directed sups but not
necessarily bottom. I personally prefer the term “ipo” (inductive partial order) as used in [Plotkin
1976] since (i) these are precisely the posets for which every monotone endofunction has a least
fixed point, (ii) I expect more of something called “complete” than merely directed sups and (iii)
the term “complete category” is clearly not available for the obvious generalisation. However since
I have harder axes to grind regarding other terminology, I shall here stick to the commonly used
name.
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Write CPO for the category of cpos and continuous maps. It is also convenient to consider
posets with directed sup but not necessarily bottom, again with continuous maps; we shall not
bother to name these (Reynolds calls then predomains and Gunter calls them dcpos, using the
term dcppo instead of cpo), but just write V for the category.

I shall use a semi-colon (;) for right-handed composition in a category, so f ; g : A→ C is the
composite of f : A → B and g : B → C. [Arbib & Manes 1975] is probably sufficient for the
category theory we use; otherwise the reader is referred to [Mac Lane 1971]. The new [Lambek &
Scott 1986] is much to be recommended.

The importance of projection pairs was recognised early in the development of the subject.
By this we mean a pair of continuous maps i : X � Y (the embedding) and p : Y / −X (the
projection) with the following properties:

(i) i a p (i is left adjoint to p), i.e.
ix ≤ y

x ≤ py
bijectively for x ∈ X, y ∈ Y ; equivalently 1X ≤ i ; p and p ; i ≤ 1Y .

(ii) i is injective (1–1 or mono) and p is surjective (onto or epi); equivalently (given (i)) i;p = 1X .

One of these three inequalities is of course redundant and the definition is usually given in terms
of the other two; the reason for this presentation is that we wish to drop condition (ii).

There are two major traditional reasons for interest in projection pairs, namely in order to make
the function-space construction functorial in its first argument and because it is for diagrams of
these maps that the limit-colimit coincidence holds. We shall show here that for both of these we
may drop the surjectivity condition. A third reason, as shown in [Taylor 1986], is that (with the
same extension) this is the only satisfactory class of substitution maps for indexed domains; we
shall not attempt to discuss this topic here.

It is a basic and inescapable fact that the function-space construction is contravariant in the
first argument. In other words, to convert a function X → Y to one X ′ → Y ′ we need maps
X ′ → X and Y → Y ′:

X - Y

X ′

f

6

Y ′

g

?

so that [− → −] : Cop × C → Set. The analogous result in logic is that a stronger condition is
satisfied less often.

Since we wish to solve domain equations involving function-spaces we need a way of dealing with
expressions involving function-spaces and variables. For reasons I shall not spell out here, in order
to do this we need to make the function space covariant in the first argument. This is standardly
done by providing maps in both directions, so we put D ⊂ C� and define [− → −] : D×D → D in
the obvious way. It has been customary to restrict the class D of pairs of maps to the projection
pairs. This is a red herring. We should use homomorphisms instead.

What makes it possible to solve such equations is that we may take the limit, limXi, of the
diagram

· · ·
F 3εX- F 3X

F 2εX- F 2X
FεX- FX

εX - X

The reason for using FεX and not εFX is that when we apply F to the whole diagram we get the
same diagram back (but shifted along one), so limFXi = limXi. Hence if F preserves limits of
this kind, i.e. F (limXi) ∼= limFXi, we have F (limXi) ∼= limXi. Writing F∞X = limXi, we
have a fixed point (up to isomorphism) of the functor F .

Observe that this construction depends on εX as well as the functor F and the “seed” X, unlike
the poset version of this argument (Tarski’s theorem) where there is only one instance of the order
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relation anyway. For the direct analogue of that result we may put X = {⊥}, the one-point cpo,
in which case εX is uniquely determined; then we have the final fixed point of F (unfortunately
this gives the trivial solution to D ∼= DD). Since we only use εX and not εF

nX , we only really need
the map εX : FX → X and not a natural transformation (“copointed endofunctor”) ε : F ⇒ id.

Exercise [1] Let εX : FX = XX/ −X by f 7→ f⊥, and write 2 for the two-point lattice • → •.
Show that εF2 6= Fε2; indeed they are incomparable in [(22)(22) → (22)]. Hint: see [Stoy 1977],
page 114.

In order to solve D ∼= DD we need the pairs of maps, and also that the limit be preserved.
The latter follows because (by definition of lim and colim) [colimXi → limY j ] ∼= limij [Xi → Y j ]
and the fact that for a diagram of projection pairs the limit of the projections is isomorphic to
the colimit of the embeddings.

Often it is more intuitive to look at the comparisons instead, especially in the case of an
embedding ηX : X � FX where we think of X as a subset of FX. A particular example of this
arises in Denotational Semantics. Suppose we have a language with certain constructors (say two
unary and one binary operator and some atoms); we want to form the domain of expressions in
these constructors, possibly with some holes. This leads us to an equation of the form E = F (E)⊥
(where in the example F (X) = A+X +X +X ×X), with seed η : {⊥}� F ({⊥})⊥. In this case
ηX is only defined for X = {⊥}, so again we see we have to use FnηX and not ηFnX . In terms of
comparisons, F∞X is an initial fixed point.

Since the foregoing motivation was standard literature fifteen years ago, we shall not discuss
recursive domain equations further. In the next section we introduce homomorphisms, and show
that they arise naturally in Domain Theory not just as projections. The remainder of the paper
is devoted to more formal proofs of results.

First we look at general limits of continuous functions in CPO and V. This is instructive both
as a convenient setting for subsequent calculation and also as an indication of the relationship
between domains and more general kinds of topological spaces. Then we prove the limit-colimit
coincidence in V, generalising not only from projections to homomorphisms but also from sequences
to filtered diagrams; this latter extension disposes of a lot of unnecessary but common tergid
notation without any increase in difficulty. Finally we investigate limits of other kinds of diagrams
of homomorphisms (in particular pullbacks) and conclude with an application to the construction
of saturated (“universal”) domains.

There are no new domain equations which can be solved with homomorphisms rather than
projections, and indeed the limit-colimit coincidence for homomorphisms can be derived quite
easily from that for projections. The homomorphism from the bilimit to a term in the diagram
factors as a projection followed by an injective homomorphism; the diagram of projections drives
the bilimit, whereas the injective homomorphisms give rise to closures on the terms (which can be
derived directly from the diagram as the directed sup of the closures to other terms) which simply
serve to discard part of the information they provide. Nevertheless the ordered retracts example
(and the indexed domain theory to which it leads) needs the full form, and I personally prefer
clean concise proofs with precisely the right hypotheses.

This does not necessarily mean the most general form: [Plotkin & Smyth 1982], for instance,
considers “O-categories” (enriched over posets with countable

∨↑). However the additional gener-
ality of this approach is potentially spurious. If we insist on regarding the symbols in categorical
calculus as ranging over sets in a very classical “bag of sand” sense, then clearly the O-category
case is separate; but if in stead we regard them as varying over objects in a cartesian-closed cate-
gory (as is consistent with our use of them), then the generalisation is immediate by inspection. On
the other hand, dealing with O-categories makes the proof untidy, especially if, as Gordon Plotkin
and Michael Smyth are accustomed to do, everything is introduced as a sequence. Anyway, that’s
the point of view of a mathematician rather than a computer scientist.
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1 Homomorphisms and Comparisons

A homomorphism of domains is a continuous function h : Y → X possessing a left adjoint c
(which is necessarily continuous and uniquely determined by h). I have two justifications for the
use of this term. First, restricted to continuous lattices (see [Day 1975] and [Gierz et al. 1980]) it
gives precisely the maps preserving the (

∨↑
, inf) operations for which continuous lattices are the

algebras. Secondly, homomorphisms turn out to be the only satisfactory choice of substitution
maps for indexed domains [Taylor 1986]. The term was introduced independently in [Gunter 1985]
and [Taylor 1986]. The left adjoint of a homomorphism is called a comparison.

Write CPOhm and CPOcp for the categories of cpos and respectively homomorphisms and
comparisons, so CPOhm ∼= (CPOcp)op. In fact we also have duality at the 2-level, since for two
homomorphisms h ≤ h′, the corresponding comparisons have c′ ≤ c. The same superscripts may
be used for other categories of domains, such as continuous lattices, boundedly complete countably
based algebraic lattices (sometimes known as Scott domains) and countably based bifinite cpos
(hitherto known as SFP domains).

Examples 1.1 Let X,Y ∈ V. The the following pairs are respectively comparisons and corre-
sponding homomorphisms:

(a) x←7 x x 7→ cx X/ −c(X) c is a coclosure on X
(b) cy ←7 y y 7→ y c(Y ) ↪→ Y c is a closure on Y
(c) (x,⊥)←7 x (x, y) 7→ x X × Y / −X Y has ⊥
(d) x1 g x2 ←7 (x1, x2) x 7→ (x, x) X ↪→ X ×X X is a lattice
(e) (x, x)←7 x (x1, x2) 7→ x1 f x2 X ×X/ −X X is boundedly complete
(f) Kx←7 x f 7→ f⊥ XX/ −X X has ⊥

(g)
{
x←7 x
⊥X ←7 ⊥new

x 7→ x X ↪→ X⊥ X has ⊥

(h) x←7 x
{
x 7→ x
y 7→ ⊥ X ⊕ Y / −X X and Y have ⊥

(i) likewise X +⊥ Y ∼= X⊥ ⊕ Y⊥/ −X⊥

Identities and composites of homomorphisms (respectively comparisons) are also homomorphisms
(respectively comparisons). Beware that the ↪→ symbol above means an injective homomorphism,
not an injective comparison (embedding). We shall use the terms coembedding and coprojection
for an injective homomorphism and its corresponding surjective comparison, although I think they
are somewhat unsatisfactory.

The above examples are all either epi or mono, so apart from ad hoc composition of them we
have not seen a naturally occurring homomorphism which is neither.

Exercise [2] Let Λ be a cpo model of the λ-calculus, such as Pω, D∞, T ω or one of the saturated
domains which we shall construct later. Let A,B ∈ Λ be types (idempotents) as in [Scott 1976]
with A ≤ B. Then A ; B a B ; A gives a homomorphism from B to A. [Hint: show that A ; B,
B ;A, A ;B ;A and B ;A ;B are idempotent and exhaust the composites, and investigate the order
relation among them.]

This explains the term comparison: a map which arises from an instance of the order relation.
[Taylor 1986] shows how comparisons in a category of domains are analogous to the order relation
inside domains themselves.

There is, however, a sense in which epis and monos do account for all homomorphisms, in that
we have a factorisation result:

Proposition 1.2 Let h : Y → X be a homomorphism of domains with corresponding comparison
c : X → Y . The h factors as a projection Y / −I followed by a coembedding I ↪→ X. There is a
closure c ; h on X and a coclosure h ; c on Y whose images are isomorphic to I. Moreover every
isomorphism between the images of a closure and of a coclosure arises uniquely in this way. �
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It is easy to show that any epi or mono homomorphism arises up to isomorphism from some
instance of the order relation between idempotents, so if we require all isomorphisms to be com-
parisons by fiat we have precisely the maps which arise in this way.

The following are worth noting:

CPOcp(X,2)op ∼= CPOhm(2, X) ∼=
{
X if X has >
∅ otherwise

where the comparison corresponding to x ∈ X, which we write as [x], is the characteristic function
of X \ ↓x, and the homomorphism takes ⊥ and > to x and > respectively.

CPOhm(X,2)op ∼= CPOcp(2, X) ∼= Xfp

where the homomorphism corresponding to x ∈ Xfp is the characteristic function of ↑x, and the
comparison takes ⊥ and > to ⊥ and x respectively. These show that CPOhm(X,Y ) may be any
poset, not necessarily a cpo like CPO(X,Y ).

The original reason for introducing projection pairs was to make the function space functorial,
i.e. to extend the object part of the construction to the morphisms of a category. Of course we
can do this with homomorphisms as well, the category being CPOhm.

Exercises Show that the following type-expressions give rise to functors (Vhm)n → Vhm for
appropriate values of n:

[3] product, X × Y

[4] function-space, [X → Y ] or Y X

[5] lifting, X⊥ = X ∪ {⊥new}

[6] amalgamated sum (with ⊥ identified), X ⊕ Y on CPO

[7] coproduct (disjoint sum), X + Y

[8] separated sum (with new bottom), X +⊥ Y = (X + Y )⊥ ∼= X⊥ ⊕ Y⊥

[9] Smyth powerdomain, PSX

[10] Hoare powerdomain, PHX

[11] Plotkin powerdomain, PPX

From the point of view of solving domain equations such as D ∼= DD, we are also interested
in natural transformations. The examples previously given of homomorphisms provide examples
of natural transformations between functors of the above kind. We use “dropping a variable”,
f 7→ f⊥ : XX/ −X, to solve D ∼= DD.

Exercise [12] Show that proposition 1.2 fails for categories because in general adjunctions need not
be idempotent. However (using the same notation) there is a category Z whose objects are arrows
x → hy in X (with x ∈ X, y ∈ Y ), or equivalently cx → y in Y , such that the forgetful functors
give a factorisation of h the opposite way into a coembedding followed by a projection. Hence the
argument that all maps with continuous right adjoint should be considered to be comparisons still
holds.
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2 Limits

Recall that a cone over a diagram d : I → C with vertex X is a family φi : X → d(i) for i ∈ I
such that for every arrow u : i → j in I we have φj = φi ; d(u). φ is limiting if, given any other
cone gi : Y → d(i), there is a unique mediating map g : X → Y with gi = g ; φi. The vertex of
the limiting cone is called the limit and, being unique up to isomorphism, is written limi∈I d(i).
There are dual terms cocone and colimit(ing).

Lemma 2.1 Let d : I → V be any diagram of posets with
∨↑ and continuous maps. Then the limit,

limi∈I d(i), exists in V and consists of compatible families, 〈xi : i ∈ I〉 such that d(u)(xi) = xj for
all u : i → j in I, with the componentwise order. The limiting cone is given by the component
projections and the mediating map for the cone gi : X → d(i) is given by x 7→ 〈gi(x) : i ∈ I〉.
Proof We calculate directed sups componentwise because d(u) is continuous. Likewise it is easy
to verify that the component projections are continuous and yield a cone, also that f is continuous
and uniquely determined as the mediating map. �

We have used nothing about filteredness, homomorphisms or bottom in this result, and we
shall see in due course what the effects of omitting these conditions are. We may speak of “limits”
without mention of the ambient category because

Proposition 2.2 Let C be a full subcategory of V containing some non-discrete domain and
d : I → C any diagram. If d has a limit limCi∈I d(i) in C then it is the limit in V, i.e. the mediating
map φ : L = limCi∈I d(i)→ limVi∈I d(i) = X in V is an isomorphism.
Proof Let u, v ∈ U ∈ C with u < v. Let x ∈ X; we must show that there is a unique l ∈ L
with φ(l) = x. Since L is the limit in C, let f : U → L be the mediating map for the cone
! ; pxq ; πi : U → 1 → X → Xi. Put l = f(u), so φ(l) = x. If φ(l′) = x then Kl′ satisfies the
defining property of f so f = Kl = Kl′. Hence l is the unique preimage of x. Now let x ≤ y in
X; we have to show that φ−1(x) ≤ φ−1(y) in L. Let s : U → 2 by w 7→ ⊥ iff w ≤ u, so s(u) = ⊥
and s(v) = >. Consider the cone s ; px ≤ yq ; πi : U → 2 → X → Xi and let f : U → L be the
mediating map. This is continuous, so φ−1(x) = f(u) ≤ f(v) = φ−1(y). Hence φ is bijective and
reflects order, whence it is an isomorphism. �

Exercises

[13] Find a parallel pair of maps in CPO whose equaliser does not have ⊥.

[14] Let C be a full subcategory of CPO with products. If the exponential XY exists in C then
it is [Y → X] from CPO.

[15] Let Cn be the “flat domain” with 2n maximal points, together with bottom. Consider the
diagram with vertices the Cn and maps Cn+1 → Cn which identify the maximal points in
pairs. The limit topological space of this diagram is obtained by lifting (i.e. adding ⊥ to) the
Cantor space. However this topology is coarser than the Scott topology, which is discrete
on the maximal points.

[16] Find a parallel pair in BiPosf whose equaliser is an algebraic but not bifinite cpo. [Hint
(Gunter): to the standard example which has a pair with infinitely many mubs, add two
extra points; then consider the pair which send them both to each, fixing the rest.]

3 “Bifinite” versus “Profinite”

It is established usage to call an object which can be expressed as a limit of finite objects profinite.
For instance profinite groups are of importance because by the Galois correspondence the limit of
finite groups corresponds to the colimit of finite algebraic field extensions, and so profinite groups
arise as Galois groups of possibly infinite algebraic extensions. Gunter [1985] adopted the term
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for Plotkin’s SFP domains, which we call bifinite; apparently this was suggested to him by Scott.
However I wish to discourage this usage.

Galois theory provides a duality between arithmetic (fields) and geometry (groups). Analo-
gously we have a duality between topology (domains) and logic (distributive lattices). Specifically,
the spectrum (space of prime ideals) and compact-open set lattice provide a duality between the
categories of finite spaces (posets or domains) and finite distributive lattices. Since any distributive
lattice is ind-finite, i.e. a colimit of finite distributive lattices, this duality extends to one between
profinite posets and distributive lattices, where by profinite I mean its strict interpretation in a
category whose morphisms are all continuous maps.

The characterisation of profinite posets as totally order-separated compact Hausdorff spaces
was first made by [Speed 1972]; this topology is the Lawson or patch topology. Giving the finite
posets a topology which relates to their order leads to the coherent topology on the profinite
objects (this is not in general the Scott topology). [Johnstone 1983], pp 72–75 and 246–251, gives
a full description.

The exercises of the preceding section illustrate profinite posets which are not bifinite. It may
be argued that the use of the word profinite follows that of homomorphism, in which case Gunter’s
usage is justified. However I believe that the whole of Coherent Logic (which is, after all, only
PROLOG with disjunction) will be needed in due course in Computer Science, and so the term
profinite should be reserved for the established (more general) concept. The forthcoming [Vickers
1988] argues along these lines, and so although this claim has yet to be fully justified, it would be
embarrassing if when it is the necessary word is no longer available.

4 Colimits

Colimits also exist in V, although they are harder to describe. Given a diagram d : I → V we
construct the colimit in six stages:

(i) First take the disjoint union U =
⋃
|d(i)| of the underlying sets.

(ii) Identify elements of U as necessary for compatibility with the diagram, so if x = d(u)(y) for
x ∈ d(i), y ∈ d(j) and u : j → i then we identify x with y. Notice that this entails many
more identifications via “zig-zags”. Write U/R for the quotient set; this is the colimit in
Set.

(iii) Impose the preorder on U/R so that [x] ≺ [y] whenever x ≤ y in some d(i). Transitivity
makes many more instances of this because of the new identifications from (ii); this is the
colimit preorder.

(iv) Quotient the preorder (U/R,≺) by the equivalence relation (≺)∩(�) to get a poset (U/S,≤)
(S is a coarser equivalence relation); this is the colimit in Pos.

(v) Adjoin
∨↑ to get Idl(U/S,≤). The ideals may as well be represented by the union of the

S-equivalence classes, so are still subsets of U , now under inclusion.

(vi) Quotient the ideals as forced by continuity of the colimiting cocone; we may do this by
closing the sets in (v) under directed joins from d(i). This gives the colimit L in V.

Proposition 4.1 V has colimits.
Proof Let us begin by being more precise about the foregoing construction. The points of the
colimit may be represented as subsets of

⋃
|d(i)|, or alternatively as families of subsets αi ⊂ d(i).

These are closed under the following conditions (corresponding to those above):

(i)

(ii) If x = d(u)(y) for x ∈ d(i), y ∈ d(j) and u : j → i then x ∈ αi iff y ∈ αj .
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(iii) If x′ ≤ x ∈ αi then x′ ∈ αi; the order is now by inclusion.

(iv) Inclusion is automatically antisymmetric

(v) and has directed joins.

(vi) if x =
∨↑

xj and xj ∈ αi then x ∈ αi.

Write 〈x〉 for the closure of {x} ⊂ d(i) under these conditions.
The colimiting cocone takes x ∈ d(i) to 〈x〉, and the colimit consists of directed joins of such

〈x〉. The values taken by another cocone fi at 〈x〉 form a set with greatest element fi(x) which
is independent of the choice of generator x; moreover this value is continuous in x. Hence the
mediating map is defined, unique and continuous. �

The subsets αi are Scott-closed by conditions (iii) and (v), and form a compatible family under
d(u)−1 by condition (ii). We are therefore interested in the limit of the lattices of closed sets. Not
every compatible family arises, however, only those generated under directed sup from the 〈x〉.
These are irreducible: if p ⊂ a ∪ b for p ∈ L and a, b and compatible families of closed sets then
either p ⊂ a or p ⊂ b. In fact not every irreducible closed set occurs either.

The lattice of Scott-open sets of a cpo X is in fact isomorphic to [X → 2], and by the definition
of colimits, [colimXi → 2] ∼= lim[Xi → 2]. Hence we know what the Scott topology of the colimit
is (the lattice of closed sets is opposite).

Given the topology on a space we can try to recover the space. The closure of a point is an
irreducible closed set and for cpos if one point is below another then its closure is contained in
that of the other. Since the Scott topology on a cpo is T0 this correspondence with closed sets
distinguishes the points. A space in which every irreducible closed set is the closure of a unique
point is said to be sober. This technique of transferring attention from points to open (or closed)
sets is called the theory of locales; for a comprehensive introduction see [Johnstone 1983], which
in particular gives an example of a non-sober cpo.

We can, however, say that the colimit of a diagram of cpos is a certain subspace of the space
of points of the limit of the corresponding diagram of Scott topologies and inverse image maps.
This subspace consists of the images of the points of the terms of the diagram, together with
directed joins. This problem seems to me a good reason for restricting attention to sober cpos (in
fact algebraic⇒continuous⇒sober) or moving to locales. As with limits, we need not worry about
mentioning the category with respect to which colimits are defined.

Proposition 4.2 Let C be a full subcategory of CPO containing a non-discrete domain and
d : I → C a diagram. If d has a colimit L in C then the mediating map φ : X → L, where X is
the colimit in CPO, factors through the natural map from X to its sobrification.
Proof Let u < v ∈ U ∈ C as before and s = pu < vq : 2 → U . We aim to show that
φ∗ : [L → 2] → [X → 2] is bijective and hence an isomorphism of Scott topologies. For V ⊂ X
open, let χV : X → 2 be the characteristic function and f : L → U the mediating map for the
cone ιi ; χV ; s : Xi → X → 2→ U . The function g : L→ U by l 7→ u if f(l) ≤ u and v otherwise
is continuous and satisfies the defining property of f , so this describes f . Also if W ⊂ L with
φ−1(W ) = V then h : L→ U by l 7→ v if l ∈W and u otherwise also satisfies the property. Hence
f−1(v) is the unique such W . L and X therefore have the same topology, so since they are both
T0, L contains X and is contained in its sobrification. �

Exercise [17] Show that the directed sups and the problems with sobriety still arise even for finite
diagrams.

5 Proof of the Limit-Colimit Coincidence for CPO

We have given a completely explicit description of limits and an almost explicit description of
colimits of cpos and shall now turn to the phenomenon of their isomorphism. We prefer to
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proceed from the limit to the colimit. Observe carefully the distinction between (co)limits of
homomorphisms or comparisons in Vhm (or Vcp) and in V.

We shall work with (co)filtered diagrams rather than sequences. Filtered diagrams are the
categorical generalisation of directed sets. A category I is filtered if

(i) it is nonempty

(ii) for any two objects i, j ∈ I, there is an object k ∈ I and two morphisms i→ k and j → k

(iii) for any two objects i, j ∈ I and morphisms u, v : i ⇒ j, there is an object k ∈ I and a
morphism w : j → k with u ; w = v ; w.

The third condition does not arise for posets; nor does it arise for categories if all of the maps in
the category are mono, as is the case for diagrams of embeddings. A filtered diagram is a functor
d : I → C from a filtered category. Dually cofiltered. It avoids confusion if we refer to the objects
and morphisms of a diagram category like I as points and arrows.

Let d : I → Vhm be a cofiltered diagram of homomorphisms with limit (quâ continuous maps)
L = limi∈I d(i) and limiting cone πi : L → d(i). For u : i → j in I write hu = d(u) : d(i) → d(j)
for the homomorphism and cu : d(j)→ d(i) for its left adjoint (comparison).

Lemma 5.1 For i ∈ I, πi is a homomorphism.
Proof Given x ∈ d(i), we have to find the least compatible family 〈yj〉 with x ≤ yi. For j ∈ I,
choose u : k → i and v : k → j by cofilteredness. Since 〈yj〉 is to be a compatible family, we must
have x ≤ yi = hu(yk), so since cu a hu, cu(x) ≤ yk. Again using compatibility, hv(yk) = yj , so
hv[cu(x)] ≤ yj .

Now let u′ : k′ → i, v′ : k′ → j be another choice. Again using cofilteredness (first to choose a
point with arrows to both k and k′, then to choose an arrow into this making the composites equal),
let w : l→ k and w′ : l→ k′ be such that u′′ = w ;u = w′ ;u′ : l→ i and v′′ = w ;v = w′ ;v′ : l→ j.
Then cu′′ ; hv

′′
= cu ; cw ; hw ; hv ≥ cu ; 1 ; hv, so hv

′′
[cu′′(x)] bounds hv[cu(x)] and hv

′
[cu′(x)].

Now I claim that yj =
∨↑{hv[cu(x)] : u : k → i, v : k → j} gives a compatible family. We

have to check that yj
′

= hw(yj) for w : j → j′. Since hw preserves
∨↑ and h is functorial, we have

only to consider the sets

{hv;w[cu(x)] : u : l→ i, v : l→ j} ⊂ {hv
′
[cu(x)] : u : k → i, v′ : k → j′}

where the inclusion holds by postcomposition with w. By a similar argument as before using
filteredness, we can choose l → k, l → j in order to find a point of the smaller set above any
chosen point in the larger. The directed sups are therefore equal. The foregoing argument shows
that 〈yj〉 is the least compatible family with x ≤ yi, and so automatically the adjoint exists and
is continuous (indeed preserves all sups). �

Write ιi a πi and ρi = πi ; ιi, but do not suppose from this choice of notation that we have a
projection pair. However

Lemma 5.2 If the hu are projections, then so are the πi.
Proof cw ; hw = 1d(k), so hv

′′
[cu′′(x)] = hv[cu(x)] and yj is also equal to this. In particular

πi[ιi(x)] = yi = x, so ιi ; πi = 1d(i) as required. �

Lemma 5.3 〈ιi〉 is a cocone for the diagram of comparisons.
Proof Since the πs form a cone, πj = πi ; hu. Now a diagram of left adjoints commutes iff the
corresponding diagram of right adjoints commutes, so it follows immediately that ιj = cu ; ιi for
all u : i→ j as required. �

Lemma 5.4
∨↑

ρi = 1L
Proof Clearly ρi ≤ 1L. Let 〈yj〉 ∈ L be a compatible family. Then for i ∈ I let x = yi and
〈zj〉 = ιi(x) be the least compatible family with x ≤ zi. Then of course yi = x ≤ zi ≤ yi so yi =
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πi[ιi(yi)]. Then πi〈yj〉 = πi[ρi〈yj〉] ≤ πi[
∨↑

k ρk〈yj〉] ≤ πi〈yj〉. In this we have componentwise
equality, so 〈yj〉 =

∨↑
k ρk〈yj〉 as required. �

Lemma 5.5 〈ιi〉 is a colimiting cocone for the diagram of comparisons quâ continuous maps.
Proof Let φi : d(i)→ X be another cocone for this diagram. We need ιi ;φ = φi for all i ∈ I so
φ =

∨↑
πi ; ιi ; φ =

∨↑
πi ; φi by lemma 5.4. It’s easy to see that this is continuous and the unique

mediating map. �

Lemma 5.6 Let qij be directed in each suffix. Then
∨↑

ij qij =
∨↑

k qkk. �
(This is the lemma used to prove that componentwise continuity suffices for continuity on a

binary product).

Lemma 5.7 〈πi, ιi〉 is a limiting cone for the diagram of homomorphisms quâ homomorphisms.
Proof Let gi : X → d(i) be a cone of homomorphisms and fi : d(i) → X the corresponding
cocone of comparisons. Since L is the colimit we have a unique mediating map f : L → X with
fi = ιi ; f , and since it is the limit we also have unique continuous g : X → L with gi = g ; πi. We
have to use 1d(i) ≤ fi ; gi and gi ; fi ≤ 1X to show 1L ≤ f ; g and g ; f ≤ 1X .

By lemma 5.6,
∨↑

ij π
i ;ιi ;f ;g ;πj ;ιj =

∨↑
k π

k ;ιk ;f ;g ;πk ;ιk. By lemma 5.4, the left-hand side

of this is f ; g, whilst the right-hand side is
∨↑

πk ; fk ; gk ; ιk ≥
∨↑

πk ; 1d(k) ; ιk = 1L. Conversely
g ; f =

∨↑
g ; πi ; ιi ; f =

∨↑
gi ; fi ≤ 1X . �

Lemma 5.8 If we have a diagram of projections, and a cone of projections over it, then the
mediating map is a projection.
Proof Equality holds in the calculation of f ; g. �

Theorem 5.9 For any filtered diagram of homomorphisms, the limit of the homomorphisms quâ
continuous functions, the colimit of the comparisons quâ continuous functions and the limit of the
homomorphisms quâ homomorphisms exist and are naturally isomorphic.
Proof It only remains to formulate and prove naturality. This is left as an exercise [18]. �

We say that L is the bilimit of the diagram.

Exercises

[19] Show that each of the functors given as examples before preserves bilimits. Such a functor
is said to be continuous.

[20] Show that Idl (which gives the poset of ideals of a domain) and Cocl (which gives the poset
of coclosures) are not continuous functors.

[21] Show that for a cone of homomorphisms 〈fi, gi〉 we have
∨↑

gi ; fi = 1 iff the mediating
homomorphism g is mono (a coembedding).

6 Limit-Colimit Coincidence
for Other Categories of Domains

We now have the result for CPO. In order to extend it to other categories of domains, we need
only show that properties such as continuity (or algebraicity), being countably-based and lattice
conditions are preserved by cofiltered limits of homomorphisms.

Lemma 6.1

(a) Comparisons preserve � and compactness.

10



(b) Embeddings also reflect them.
Proof

[a] Let c : X → Y be a comparison with right adjoint h and x1 � x2 in X. Suppose c(x2) ≤∨↑
yi in Y ; then by adjointness and since h is continuous, x2 ≤

∨↑
h(yi) in X. By hypothesis

we now have x1 ≤ h(yi) for some i, and using adjointness again we have c(x1) ≤ yi as
required. x ∈ X is compact iff x� x.

[b] Easy exercise [22]. �

Proposition 6.2 A bilimit of continuous (algebraic) posets is continuous (respectively algebraic).
Proof Let 〈yi〉 ∈ bilimXi. By lemma 6.1 and since ιi(yi) ≤ 〈yj〉,

{ιi(x) : x ∈ Xi, x� yi} ⊂ {x : x ∈ bilimXi, x� 〈yi〉}

(both sets being directed) so in order to show that 〈yi〉 is�-approximated it suffices to show that
it is the join of the smaller set. But 〈yi〉 =

∨↑
ιi(yi) by the previous section and yi =

∨↑{x : x ∈
Xi, x� yi} by continuity of Xi. Similarly for algebraic. �

Proposition 6.3 A countable bilimit of countably-based domains is countably based.
Proof The proof is the same: we take the (countable) union of the (countable) approximating
sets. �

Proposition 6.4 A bilimit of domains with any of the following properties also has that property:

(a) lattice

(b) boundedly complete

(c) L-domain [Jung 1987]: every principal lower set is a continuous lattice.

(d) SFP [Plotkin 1976]: every finite set of finite elements is contained in a finite mub-closed set
of finite elements.

Proof

[a,b,c] These properties say that the algebraic operations of (a) arbitrary, (b) non-empty and (c)
connected meet exist. Algebraic operations in a limit are inherited from the terms, so long
as the maps in the diagram are homomorphisms for them, and homomorphisms in our sense
are.

[d] A subset is mub-closed if it contains all minimal upper bounds for subsets of it, and every
bound (in the ambient set) of such a subset lies above a minimal upper bound for it. The
SFP property is inherited by a directed union of sets of finite elements. �

Exercise [23] Exhibit a diagram of complete lattices and continuous maps whose limit is not a
lattice.

A domain is a bilimit of finite posets iff it is algebraic and satisfies the last of these properties;
we call such a domain bifinite. The prefix “bi” is intended for use in any 2-category for bilimits
and objects which can be expressed as bilimits of special objects, just as we have, for instance,
procyclic groups such as the p-adic numbers.
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7 Other Limit-Colimit Coincidences

The phenomenon of the limit of a diagram being naturally isomorphic to the colimit of the same
kind of diagram did not arise first in Domain Theory but in Linear Algebra. The categorical
product and coproduct of finitely many vector spaces are isomorphic, usually being called their
direct sum (written ⊕) because the dimensions add. [The symbol ⊗ is used for the tensor product
because the dimensions multiply.] This limit-colimit coincidence is one of the defining properties
of an Abelian category [Mac Lane 1971].

Where CPO has the limit-colimit coincidence for filtered diagrams and Abelian categories
have it for finite ones, CSLat (complete [semi]lattices and

∧
-preserving maps) has it for all of

them. By the Adjoint Functor Theorem, a function has a left adjoint iff it preserves
∧

. This
preserves

∨
, which is

∧
on the opposite lattices. We therefore have a duality CSLat ∼= CSLatop

which takes a lattice to its opposite and a
∧

-homomorphism to its adjoint.

Theorem 7.1 Let d : I → CSLat be any diagram of complete semilattices and πi : L→ d(i) its
limiting cone. Then ιi : d(i)op → Lop is the colimiting cone of the diagram c : Iop → CSLat of
adjoints. �

There is an intermediate example which to some extent unifies these. Abelian groups and
semilattices are special cases of commutative monoids, namely with the additional axioms of
invertibility and idempotence respectively.

Theorem 7.2 The product and coproduct of any finite collection of commutative monoids are
naturally isomorphic.
Proof Define δji : Xi → Xj to be the identity if i = j and the zero map (which takes everything
to the unit of the commutative, associative operation) otherwise. Taking the limit over j we then
have a map ιi : Xi → L and as before ρi = πi ; ιi. Just as we had

∨↑
ρi = 1L before, we now have∑i

ρi(x) = x for x ∈ L. (In fact the category of commutative monoids, like CPO, has an internal
hom, and is a symmetric monoidal-closed category with tensor product ⊗). We show that ιi is
a colimiting cocone precisely as before. Again formulation and proof of naturality are exercises
[24]. �

Exercise [25] Why is commutativity necessary?
It is this result which justifies the use of matrices. A homomorphism between two direct sums

is given by an array of homomorphisms between the respective components. ρi is the matrix with
a single 1 in the ith place on the diagonal.

It is only possible to define the contravariant map (adjoint) in the idempotent (lattice) case
(unless perhaps we could do something with adjoint matrices), so the result does not extend to non-
discrete diagrams such as pullbacks. With some work we may extend the notion of a commutative
monoid to the infinite case and hence generalise the CSLat example. We see, therefore, that

the limit-colimit coincidence arises from
the similarity of a category to its objects

The Scott limit-colimit coincidence generalises to categories with an initial object and filtered
colimits. We call these inductive categories and write I for the 2-category of them. Icp is then
itself a (large) inductive category, so the similarity has now become very close, but not as close as
we would want it. Some of the theory of inductive categories is a straightforward rewriting of the
cpo case, but there are many new subtleties and complications, so this is beyond the scope of this
paper.

A rival form of domain theory, originally due to Berry [1977], has recently been popularised by
Girard [1985, 1986] and discussed further in [Coquand, Gunter & Winskel 1986,7] and Lamarche
[1987]. As well as directed joins we have pullbacks (meets of pairs bounded above), these being
preserved by the maps (stability). In fact these pullbacks should really be connected limits, but the
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strong finiteness condition obscures the codirected meets. Remarkably, this category is cartesian
closed, although the order relation on the function-space is not pointwise.

In the early parts of this paper we emphasised general adjoint pairs of maps, but in the stable
case it turns out that these are forced to be embedding-projection pairs. Once again the category
of stable domains and rigid embeddings resembles its objects (having directed joins and connected
meets) and has a limit-colimit coincidence.

For a more abstract case let Cre be the category of retraction-pairs in an arbitrary category C,
i.e. 〈p, i〉 with i ; p = 1. Writing lim, colim and bilim for the limit of the surjections, the colimit of
the injections and the limit in Cre respectively, we have

Proposition 7.3

[a] If lim and bilim both exist then they are isomorphic.

[b] Likewise for colim and bilim.

[c] If lim and colim both exist and are isomorphic then so does bilim (and is isomorphic to them).

[d] The existence of bilim does not imply that of lim or colim, even in the presense of the other.
Proof

[a] Let πi : lim→ Xj and (ii, pi) : Xi → bilim be the limiting cones. By the universal property
of lim there is a comparison map p : bilim → lim in C with p ; πi = pi. Put ιi = ii ; p, then
ιi ; πi = 1 so 〈ιi, πi〉 are Cre-maps, and they form a cone in Cre. But bilim is universal, so
we have a comparison map (ι, π) : bilim → lim in Cre with ii ; ι = ιi = ii ; p and π ; pi = πi.
Then π ; p ; πi = π ; pi = πi so π ; p = 1 by the universal property of lim. Since 〈ι, π〉 form a
retract, ι ; π = 1 also and π has inverses on both sides and hence is an isomorphism.

[b] The same argument in Cop.

[c] Put bilim = lim = colim with limiting cones ii : Xi → colim and pj : lim → Xi. Then
(ii, pi) : bilim→ Xi is limiting.

[d] ContLatpr and ContLat have products, but the latter does not have coproducts. �

This result is intended as suggestive of ways of showing that limits of diagrams of pairs do not
exist other than as bilimits, since V has all limits and colimits, rather as we showed that limits
and colimits in categories of domains and continuous maps are those from V. It does not answer
all such questions, since we have assumed that (ιi, πi) is a valid pair and used the fact that it
is a retraction. Perhaps there is some way of using our requirement that the function-space be
functorial and continuous to prove this result another way. However we shall not pay any further
attention to distinctions of in which category we have the limit.

Exercise [26] Find a subcategory D ⊂ C� for which the above results fail.

8 Carrable Maps

CPO does not have all finite limits, so what are the maps against which we can pull back any map
with the same codomain? Such maps are called carrable (French, means squarable). In fact we
shall show that projections (not homomorphisms this time) provide a class of display maps [Taylor
1986] for CPO, which we need for studying indexed domain theory and hence polymorphism.

Proposition 8.1

(a) A continuous map p : X → Y between cpos is carrable iff it is a projection.

(b) The pullback of a carrable map is carrable.
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(c) The composite of two carrable maps is carrable.

(d) Any terminal projection is carrable.
Proof We already know what the pullback must look like in V.

[a,⇒] If p : X → Y is carrable let y ∈ Y and take the pullback against the corresponding pyq :
1 ↪→ Y . This is the inverse image of y in X and has to have a least element, which we call
iy. We now have to show that iy ≤ x iff y ≤ px; but since y = p(iy), “only if” is trivial.
Let y ≤ px; consider the map 2→ Y by ⊥ 7→ y, > 7→ px and let Z be the pullback. Z has
a least element, 〈⊥, iy〉, say, and in particular this is less than 〈>, x〉, so iy ≤ x. p therefore
has a left adjoint monotone function, and this then has to preserve all, not just directed,
sups.

[⇐] Let p : X/ −Y be a projection and f : Z → Y any continuous function. Let W = X ×Y Z
be the pullback in V. 〈i(f⊥Z),⊥Z〉 is the least element.

[b,c] are standard properties of pullbacks. We note that the left adjoint to the pullback-projection
X ×Y Z → Z is z 7→ 〈i(fz), z〉.

[d] Terminal maps are projections because of ⊥; they are carrable because we have products.�

Exercises

[27] The pullback of a coembedding against a coembedding is a coembedding; equivalently the
intersection of the images of two closure operators is the image of a closure operator. [Hint:
compose them repeatedly.] What does this say about pushouts of coprojections?

[28] The intersection of the images of two coclosure operators on a bifinite poset is another, but
the result does not generalise. [Hint: consider mub-closed sets.] Apply this to pullbacks of
embeddings and pushouts of projections.

[29] The pullback of a coembedding against a projection need not be a coembedding [Hint: the
five-point domain which is not boundedly complete gives a counterexample].

[30] The pullback of a projection from a lattice against an embedding need not have > [Hint:
try the four-point lattice 22].

[31] Likewise bounded completeness may be destroyed, contrary to the claims of [Taylor 1985]
[Hint: there’s a seven-point counterexample].

[32] Continuity and bifiniteness may be created or destroyed. [Taylor 1986] gives counterexam-
ples.

[33] The mediating map for a cone over the pullback need not be a projection. [Hint: the left
adjoint to the diagonal ∆ : X → X ×X must be g.]

Exercises The corresponding results for pushouts.

[34] A map is cocarrable in CPO iff it is strict, i.e. preserves ⊥.

[35] The pushout of an embedding against any continuous map is an embedding. [Hint: stick
close to the definition of a pushout, using the dual construction to the above.]

[36] The pushout of X and Y into which Z is embedded is given by the union of X and Y with
the two copies of Z identified. [Hint: x ≤ i(qy)]

[37] The pushout of a coprojection against an embedding need not be a coprojection [Hint: there’s
a three-point counterexample].
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9 General Limits of Projections

We have already seen that mediating maps for pullbacks are not homomorphisms. The case for
most other diagrams is worse. It would appear that unless I is equivalent to a tree then there
is some way of using it to calculate the equaliser of π0, π1 : X × X ⇒ X. This equaliser is the
diagonal, ∆ : X → X ×X, which has a left adjoint (∨) iff X is a complete lattice. Fortunately
we only need trees to construct saturated domains.

Lemma 9.1 Any diagram of cpos and surjective continuous functions (in particular any diagram
of projections) has a limit cpo.
Proof We construct the limit in V using lemma 2.1. Since surjective maps preserve ⊥, 〈⊥〉 is a
compatible family for the diagram and hence in the limit; it is easily seen to be the least element.�

What interests us in order to make saturated domains is when the maps in the limiting cone
are split epi, i.e. when the cpos in the diagram are retracts of the limit. A particular case of this
is when the limiting cone consists of projections, generalising the question of when a pullback of
a projection is a projection. It turns out that there is a simple positive answer to this.

Suppose we have an embedding ιi : d(i) � L of a point in the diagram into the limit; then
of course it has components ιji : d(i) → d(j): how can we construct them? Well the most näıve
answer (almost) works: take the composite of a path of projections and embeddings in the diagram
(so we are allowed to go backwards as well as forwards along the arrows). Taking a detour via
and embedding and returning by its projection makes no difference, but the other way round
reduces the function, so just consider paths which are irredundant in this sense, or alternatively
those which are maximal in the order relation on functions. We shall say that a diagram is simply
connected if there is a unique irredundant (or maximal) path between any two points.

Exercise [38] Reformulate this as a condition on I alone, using the notions of equivalence of
diagrams (any cone over a subdiagram may be extended uniquely to one over the whole diagram)
and trees (in the undirected graph theoretic sense of having a unique path between any two points).

Lemma 9.2 Let d : I → CPOpr be a simply connected diagram of cpos and projections and
i, j, j′ ∈ I with j → j′. Then ιji ; d(j → j′) = ιj

′

i (i.e. ιji is a cone) and πi ; ιji ≤ πj , where πi is the
limiting cone.
Proof Follows easily from the above discussion about detours. �

Proposition 9.3 Let d : I → CPOpr be a simply connected diagram of cpos and projections.
Then the limiting cone consists of projections.
Proof The previous two lemmas guarantee that the limit exists and that we have a cone. We
have only to check that πi : L→ d(i) and ιi : d(i)→ L are a projection-embedding pair, and these
two calculations have just been done. �

Exercise [39] Can you show that the simple connectivity condition is necessary, either for a
particular diagram d : I → CPOpr or for the category I?

We want to apply this to other categories of domains, and so we want to simplify the condition
of having simply connected limits. In fact what we need is (bilimits and) pullbacks of projections,
so let C be a full subcategory of CPO closed under these. The reduction is of course demonstrated
by a piece of graph theory. We call a category I a tree if it is non-empty and for any two points
i, j ∈ I there is a unique (possibly empty) sequence of nonidentity arrows in alternate directions
between them. Clearly any (diagram over a) tree is simply connected, and in fact a tree is a poset.

Exercises

[40] Any simply connected diagram is equivalent to a diagram over a tree which is at most as
big.
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[41] Any tree is the filtered union of its finite subtrees.

Lemma 9.4 Let I be a finite tree and J the full subcategory obtained by deleting the points with
precisely one incoming arrow (i.e. a non-identity arrow through which any other factors). Then

(a) J is a tree, and

(b) J ⊂ I is an equivalence of diagrams.

Moreover unless J is a singleton,

(c) J has a point i with no incoming arrows and a unique outgoing arrow u : i < j

(d) and a point k with no incoming arrows and an arrow v : k < j.
Proof Exercise [42]. �

Lemma 9.5 C has limits of finite simply connected diagrams of projections.
Proof Let d : I → Cpr be such a diagram. The proof is by induction on the number of points:
the result for a singleton is trivial, by the exercise w.l.o.g. the diagram is a tree and lemma 9.4
allows us further simplification. Then we may add a point l and arrows l → i, l → k. We extend
a d : I → Cpr to I ∪ {l} by putting e(l) = d(i) ×d(j) d(k); by proposition 9.1 the d(l → i) and
d(l→ k) are projections, and by hypothesis on C the pullback is in C.

The extension is an equivalence of diagrams. i and j now have a unique incoming arrow, and so
their deletion yields an equivalent diagram K, which is a tree with fewer vertices than the original
I. Hence by the induction hypothesis the limit of K → Cpr exists and the limiting cone consists
of projections. By the equivalences the same holds for I ∪ {l} and I. �

Lemma 9.6 Let d : I → Vpr be as before and J a subtree of I; then the mediating map between
the limits is a projection.
Proof Let K be obtained from I by adjoining a new point l and arrows j → l for j ∈ J . Extend
d to K by letting its value at l be the limit over J and at arrows j → l the projections of the
limiting cone. Then I ⊂ K is an equivalence and K is simply connected. The required mediating
map is part of the limiting cone over K and so is a projection by proposition 9.3. �

Theorem 9.7 Let C be a full subcategory of V closed under bilimits and pullbacks of projections.
Let I be a tree and d : I → Cpr a diagram of projections. Then the limit exists in C and the
limiting cone consists of projections.
Proof Let J be the poset of finite subtrees of I under reverse inclusion, so J is a cofiltered
category. Define e : J → Cpr as follows. Let e(J) be the limit over the finite tree J , which exists
in C by lemma 9.5. If J is a subtree of J ′, so we have an arrow u : J ′ → J in J , let e(u) be the
mediating map between the limits, which is a projection by lemma 9.6. e extends d because we
may include I in J as the singleton subtrees, and I ⊂ J is an equivalence. e : J → Vpr is now
a cofiltered diagram of projections and so has a bilimit in C, and the (bi)limiting cone consists of
projections. Restricting to I gives the required result. �

Theorem 9.8 Similarly if C is closed under bilimits and pushouts of embeddings then it has
colimits of simply connected diagrams of embeddings. �

Exercise [43] Is there a mediating map between limits of projections and colimits of embeddings?
If so, which way does it go, and when is it invertible?
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10 Saturated Domains

We now have the machinery required to construct a saturated domain. Let Σ be a countable class
of finite cpos which is closed (up to isomorphism) under retracts and pullbacks of projections.

Examples 10.1 Σ may be

(a) All finite lattices

(b) All finite cpos with the property that if a subset is pairwise bounded then it has a least
upper bound

(c) All finite boundedly-complete posets

(d) All posets with ⊥

(e) All L-domains, i.e. posets for which ↓x is a lattice

whose underlying sets are finite subsets of N. In (b) we may replace “pairwise” by an n-fold
condition.

Consider the chains of projections in Σ, i.e. the finite sequences (Xi)

Xn/ −Xn−1/ − · · · / −X1/ −X0 = 1

where n is the length and Xn the end of the chain. Let I be the category of chains, where
(Xi) → (Y i) if the length, n, of X is at most that of Y , and for 0 ≤ i ≤ n Xi = Y i (and the
projections also coincide).

Lemma 10.2 I is simply connected (§9).
Proof Easy. �

Define a diagram d : I → Vpr by mapping a diagram to its end and an arrow to the corre-
sponding homomorphism from the end of the longer to that of the shorter.

Lemma 10.3 Λ = limi∈I d(i) can be expressed as a countable bilimit of Σ-domains.
Proof In the previous section we showed how to construct this limit as a bilimit of pullbacks,
and Σ is closed under pullbacks. It is easy to check countability. �

Lemma 10.4 Any countable cofiltered diagram is equivalent to one over ωop.
Proof Enumerate the points and arrows and use cofilteredness to choose points successively
which have maps to the given points and equalising the given pairs of arrows. �

Proposition 10.5 Any countable bilimit of Σ-domains can be expressed as a coclosure on Λ.
Proof By lemma 10.4 the bilimit may as well be an infinite sequence. Taking its initial (or rather,
final) segments gives a diagram of (finite) chains, i.e. in I. The limiting cone from Λ consists of
projections by the previous sections, and in particular this gives a cone over our sequence. Since
this is a cofiltered diagram the mediating map is a projection. The domain is therefore a coclosure
of Λ. �

Theorem 10.6 The categories of countably-based algebraic posets which are (a) lattices, (b)
pairwise-bounded-complete, (c) bounded-complete, (d) SFP and (e) L-domains have saturated
domains.
Proof Apply proposition 10.5 to examples 10.1a–d. �

If Σ is closed (up to isomorphism) under exponentiation then ΛΛ / Λ and so Λ carries the
structure of a model of the λβ-calculus.

Exercise [44] Perform the analogous calculation with colimits of embeddings.
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11 “Saturated” versus “Universal”

The term universal domain has, in my opinion, been extremely misleading. There is nothing
unique about the result of the foregoing construction. More seriously than non-uniqueness is non-
functoriality: we have yet another example of a construction which accounts for the object but
not morphism parts of a definition. In short, “universal” domains have been an excuse for failure
to discuss the category of domains.

Exercises

[45] Pω is a distributive lattice.

[46] Λ = Pω ∪ {∗}, where ⊥ < ∗ < > but no other new order relations hold, is a saturated
domain for ContLatω.

[47] Λ is a non-distributive lattice [Hint: if a is an element of a distributive lattice then there is
at most one b with ag b = > and af b = ⊥].

The term “saturated” has been adopted from Model Theory. We say that a model M realises
a set of formulae Γ in free variables ~x if there is some assignment ~m of elements of M to the
variables ~x such that Γ[~x := ~m] is true in M . Then M is saturated if it realises any collection of
formulae of a certain kind. Given a finite poset P = {p0, p1, ..., pk} with p0 = ⊥P and a cpo X,
there is a set ΓP of coherent sequents which says that the assignment ~x is the image of ~p under
an embedding P � X. Specifically ΓP is

> ` x0 ≤ x
> ` xi ≤ xj whenever pi ≤ pj

xi ≤ xj ` ⊥ whenever pi 6≤ pj

xi ≤ x ∧ xj ≤ x ` xm
1 ≤ x ∨ ... ∨ xmr ≤ x where {pm1

, ..., pm
r}

is the set of mubs of {pi, pj}

Then X realises ∀x.ΓP iff P can be expressed as a coclosure on X. A saturated domain in our
sense is then saturated in the model-theoretic sense for a certain class of formulae.

Rather a lot of discussion has been based on the accidental existence of a closure operator in
Pω which fixes precisely the closure operators. Many authors have considered this an adequate
candidate for a “type-of-types”. Indeed it can be used to show that certain toy polymorphic
languages are consistent. However since it is only a type of types and not of terms it is unable to
deal fully with dependent-type expressions.

Exercise [48!] For a given small category of domains C, construct a saturated domain Λ, and
an element V ∈ Λ such that V ∈ ‖V‖ ⊂ Idem(Λ) and if A ∈ C and X : A → Ccp is continuous
then there is some A ∈ ‖V‖ representing A and some X : A → I making the notation X(a)
unambiguous.

Such a thing I might begin to consider worthy of the name “type-of-types”. [Taylor 1988],
which includes an application of the general limit-colimit coincidence as we have proved it here to
ordered retracts and discusses polymorphism in both the domain theory we have been discussing
and the new Berry-Girard style, constructs some kind of type-of-types.

Bibliography

M.A. Arbib and E.G. Manes

[1975] Arrows, Structures and Functors — the Categorical Imperative, Academic Press

G. Berry

18



[1978] Stable Models of Typed λ-Calculi, Proc ICALP, Springer LNCS 62 72–89

Th. Coquand, C.A. Gunter and G. Winskel

[1986] DI-domains as a model of polymorphism, Univ. Cambridge Computer Lab. technical report
107

[1987] Domain-Theoretic Models of Polymorphism, idem 116

A. Day

[1975] Filter Monads, Continuous Lattices and Closure Systems, Canad. J. Math. 27 (1975) 50–59

J.-Y. Girard

[1985] The System F of Variable Types, Fifteen Years Later, Theor Comp Sci
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