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Abstract. We define well founded coalgebras and prove the recursion
theorem for them: that there is a unique coalgebra-to-algebra homo-
morphism to any algebra for the same functor. Earlier, this was proved
intuitionistically by adapting von Neumann’s original argument for ordi-
nals or well founded relations in set theory, which considers the union of
partial solutions. However, that required subobjects to form a complete
Heyting algebra and the functor to preserve inverse images. Our new
argument for functors that just preserve monos exploits Pataraia’s fixed
point theorem and only uses directed unions of subobjects.

1 Introduction

Although Georg Cantor introduced well-ordered sets in 1883 [3, 4], it was 45
years later when John von Neumann, in his reformulation of the ordinals that
became standard in set theory textbooks, gave the construction for transfinite
recursion [15, § III]. What may now seem the obvious generalisation to well-
founded relations was made by Ernst Zermelo in 1935, with application to proof
theory [22].

Christian Mikkelsen [13, Appendix A] and Gerhard Osius [16, §§4&6] [17, §6]
put these ideas in categorical form in the 1970s, representing a binary relation by
a coalgebra for the covariant powerset functor. These works were part of the early
history of elementary toposes, when it was being demonstrated that toposes can
do anything that sets can do, in particular that we can use the traditional { | }
notation for objects of any topos.

In particular, Mikkelsen proved the recursion theorem in a categorical style
and Osius proved that coalgebra monomorphisms capture set-theoretic inclusion.
Coalgebra homomorphisms later arose as simulations in process algebra.

These results were extended in the 1990s to general endofunctors of a topos
that preserve inverse images in [21, §6.3] and to other categories satisfying certain
conditions in [20].

In response to demand from the coalgebra research community, we now only
ask that the functor preserve monos, not their pullbacks, and also weaken the
conditions on the category. This requires a much more subtle construction and
in particular a fixed point theorem for posets with least element and directed
joins instead of all of them, the intuitionistic proof of which was found by Dito
Pataraia in 1996.

Classically, a binary relation ≺ on a carrier A is well founded if
(a) every non-empty subset U ⊂ A has a ≺-minimal element; or

(b) there is no infinite descending sequence · · · ≺ d ≺ c ≺ b ≺ a.
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Definition 11 Intuitionistically, a binary relation ≺ on a carrier A is well
founded if it obeys the induction scheme

∀φ.
∀x:A. (∀y :A. y ≺ x⇒ φy) =⇒ φx

∀x:A. φx

Instead of using this general notion of well-foundedness, mathematicians often
say that they are doing induction or recursion on the length of a string, the height
of a tree, its depth in CS, or some other such numerical measure.

The general result that is being invoked is this:

Proposition 12 If (A,≺) is well founded and f : (B,<) → (A,≺) is strictly
monotone in the sense that

∀b1b2 :B. b1 < b2 =⇒ fb1 ≺ fb2,

then (B,<) is also well founded.

Proof If B has an infinite descending sequence then so does A, which is for-
bidden. Alternatively, if ∅ 6= U ⊂ B then ∅ 6= fU ⊂ A, so there is a minimal
a ∈ fU , where a = fb for some b ∈ U and this is minimal there. The more
difficult intuitionistic proof is discussed in Section 4. �

Our goal is a new categorical form of von Neumann’s General Recursion
Theorem . Adapted to intuitionistic well-founded relations, here is his proof,
which it is essential to understand before proceeding with the rest of this paper:

Theorem 13 Let (A,≺) be a carrier with a well founded binary relation and
Θ another carrier with a function θ : PΘ → Θ that takes an arbitrary subset of
Θ as its argument and returns a single element. Then there is a unique function
f : A→ Θ satisfying the recursion scheme :

∀x:A. f(x) = θ({fy | y ≺ x}).

Proof An initial segment of A is a subset B ⊂ A such that

∀z :A. z ≺ y ∈ B =⇒ z ∈ B

and an attempt is a partial function f : A ⇀ Θ whose support (domain of
definition) B ⊂ A is an initial segment and

∀x:A. x ∈ B =⇒ f(x) = θ({fy | y ≺ x}).

(a) There is a unique attempt with empty support.

(b) The union of any directed family of initial segments or attempts is another
such.

(c) The restriction of ≺ to any initial segment is well founded.

(d) Any two attempts f , g with the same support B are equal, by induction
over B for the predicate φx ≡ (fx = gx).
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(e) Hence any two attempts with supports B1 and B2 agree on B1 ∩B2 and so
may be combined into an attempt with support B1 ∪B2.

(f) For any attempt f with support B, the successor attempt g has support

C ≡ {x | ∀y. y ≺ x =⇒ y ∈ B} and is given by gx ≡ θ{y | y ≺ x}.

(g) In this construction, C = B iff B = A, by induction over A for the predicate
φx ≡ (x ∈ B).

(h) The required solution to the recursion equation is the union of all of the
attempts; this is total because it is equal to its successor. �

Remark 14 In the generalisation that we consider, Proposition 12 fails (Sec-
tion 4). Because of this, we lose steps (c) and (e) of the proof and so cannot
simply form the union of all attempts in the final part.

Steps (a) and (f) provide the initial and next attempts, so by Peano recursion
we can define the nth one for all n : N. Can we not then just use step (b) at
limit stages to continue this through the ordinals?

No.

First of all, ordinals are not “transfinite numbers” but require a proof to
justify recursion over them: von Neumann gave this in the classical setting and
we are now adapting it to our categorical one. Using ordinals would therefore
be begging the question.

Secondly, the ordinals go on “forever” — Cesare Burali-Forti [2] showed early
on that they do not form a “set”. So when do we stop?

This is answered by a crucial but frequently overlooked lemma, due to Fried-
rich Hartogs [8], which is this: For any set X, let λ be the set of isomorphism
classes of well-orderings of subsets of X. Then λ is well ordered and there is no
injection λ� X. In the application, we deduce that the construction reaches a
fixed point at stage λ.

Hartogs’ proof was one of the earliest formal applications of Zermelo’s set
theory [23] and he set out the prerequisites from that and Cantor’s original work
[4] very clearly. Principal amongst them is that, for any two well ordered sets,
one is uniquely isomorphic to an initial segment of the other; we would now
say that this is a consequence of von Neumann’s (later) recursion theorem, but
Cantor had actually given a proof of it.

Thirdly, the traditional theory of the ordinals depends very heavily on ex-
cluded middle. There are two existing intuitionistic accounts [10, 19], which show
that there are several different notions. Even so, Hartogs’ lemma remains irre-
trievably classical.

Now consider how we may use category theory to express these ideas. We
have a binary relation ≺ on a carrier A, which could be represented in a variety
of ways, but the one that we choose is as a function (morphism)

A
α- PA by x - {y | y ≺ x}.
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Definition 15 A coalgebra for an endofunctor T : C → C of any category is an
object A of C together with a morphism α : A→ TA.

TA
Tf- TB

A

α

6

f - B

β

6

A homomorphism of coalgebras is a C-morphism f : A → B that makes the
square commute. We write CoAlgT or just CoAlg for the category of coalgebras
and homomorphisms.

To exploit this idea, we first need a full understanding of the powerset as a
functor:

Notation 16 We work throughout in the logic of an elementary topos S, but
you may just take this to be Set. That is, we do not use Excluded Middle
or the Axiom of Choice, although we do use Impredicative reasoning. Then
the covariant powerset functor P : S → S is defined on an object X by
PX ≡ ΩX and a function f : X → Y by

PfU ≡ {fx | x ∈ U} ≡ {y : Y | ∃x:X. y = fx ∧ x ∈ U} ⊂ Y

for U ⊂ X. We shall also need to define, for V ⊂ Y ,

f∗V ≡ {x : X | fx ∈ V }
f∗U ≡ {y : Y | ∀x:X. fx = y =⇒ x ∈ U}.

These also provide the morphism parts of functors S → S that are respectively
contravariant and covariant, since (g ;f)∗W = f∗(g∗W ) and (g ;f)∗U = g∗(f∗U).
More importantly for us, there are (order-)adjunctions

U- - X PX

V- - Y

f

?
PY.

Pf

?

a f∗
6

a f∗

?

Diagrammatically, Pf and f∗ are given by composition and pullback respec-
tively. The logical formulae that define PfU and f∗U are the same except that
one involves an existential and the other a universal quantifier. We shall use f∗
in Section 4. �

Remark 17 Let f : B → A be any function. Then β ;Pf ⊂ f ; α (as marked in
the diagram on the left below) iff

∀b, y :B. y ≺B b =⇒ fy ≺A fb,



Well founded coalgebras and recursion 5

i.e. f is strictly monotone or preserves the binary relation.

b ∈ B
β - PB ∃y ....................

≺B
- b B

⊃

A

f

? α - PA

Pf

?
x

f

?

................ ≺A - fb

f

?
A

f

?

The reverse inclusion is

∀b:B. ∀x:A. x ≺A fb =⇒ ∃y :B. x = fy ∧ y ≺B b,

which is a “lifting” property similar to that defining a fibration, as illustrated
on the right. In process algebra a function f with this property is known as a
simulation [1].

If f : B � A is a subcoalgebra inclusion then the lifting is unique and being
a simulation says that B is down-closed or an initial segment ,

∀a, b:A. a ≺ b ∈ B =⇒ a ∈ B.

A coalgebra is extensional if its structure is mono. Andrzej Mostowski
showed (using the recursion theorem and the axiom-scheme of replacement) that
any extensional well founded relation is isomorphic to a unique set (∈-structure)
[14, Thm 3]. Osius characterised set-theoretic inclusions as homomorphisms of
extensional well founded P-coalgebras [16, §6]. �

Here is our central concept, which we generalise from the powerset to any
functor that preserves monos:

Definition 18 A coalgebra α : A → TA is well founded if in any pullback
diagram of the form

TU-
Ti - TA

H

6

- j - U-
i - A

α

6

the maps i and therefore j are necessarily isomorphisms. We write WfCoAlgT or
just WfCoAlg for the category of well founded coalgebras and homomorphisms.

Essentially this “broken pullback” appears (with T ≡ P) on page 99 of [13]
and it is written symbolically as α−1(PU) ⊂ U =⇒ U = A in [16, §4] and [17,
Prop 6.1]. It was first given as the definition of well-foundedness in [20, 21].

Lemma 19 A binary relation (A,≺) is well founded in the sense of Definition 11
iff the corresponding (A,α) is a well founded P-coalgebra.
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Proof Write U ≡ {x ∈ A | φx} for some predicate φ defined on A.
An element (a, V ) ∈ H ⊂ A × TU of the pullback consists of a ∈ A and

V ⊂ U ⊂ A such that

α(a) ≡ {x ∈ A | x ≺ a} = V.

Thus V is determined uniquely by a (and the structure α : A → TA), but for
such a V to exist, a must satisfy

{x ∈ A | x ≺ a} ⊂ U, i .e. ∀x ∈ A. x ≺ a =⇒ φx.

The pullback H therefore corresponds to the induction hypothesis.
The induction premise is that, for every such a ∈ A that satisfies the hypoth-

esis, we have a ∈ U or φa. In the diagram this means that H ⊂ U . The strict
induction premise corresponds to having H ∼= U instead; this makes U ⊂ A a
subcoalgebra where the square is a pullback.

Well-foundedness of the coalgebra says that whenever we have a diagram of
this form then U ∼= A, just as the induction scheme says that whenever the
premise holds then we must have ∀x. φx. �

Our goal is to prove that well founded coalgebras admit recursion:

Definition 110 A coalgebra α : A → TA obeys the recursion scheme if, for
every algebra θ : TΘ → Θ, there is a unique map f : A → Θ such that the
square

TA
Tf- TΘ

A

α

6

f - Θ

θ

?

commutes. Such f is also called a coalgebra-to-algebra homomorphism [7].
To obtain parametric recursion , in which the top line is replaced by

Tf × id : TA×A - TΘ ×A,

we would just need to make Lemma 34 a bit more complicated. In fact Mikkelsen
had an even more general scheme than this, although still with T ≡ P [13,
pp 98–99] [17, Def 6.2]. Osius’s account of categorical set theory [16] largely
used recursion instead of well-foundedness (induction).

In a topos, well-foundedness is necessary for recursion [13, p100] [17, Prop 6.3]
[21, Exercise 6.14]:

Proposition 111 If α : A → TA obeys the recursion scheme for every algebra
structure on the subobject classifier (set of truth values) Θ ≡ Ω ≡ P(1) then it
is well founded. �
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We would like to prove the recursion theorem for a more general category C
than just Set or a topos, so what do we require of it to do this? In the final step
of Theorem 13, we took unions, so we first need to be clear what they are in a
general category:

Definition 112 A union in a category is the colimit of a diagram such that
(a) the maps in the diagram are mono;

(b) the maps in the colimiting cocone are mono; and

(c) for any other cocone consisting of monos, the colimit mediator is also mono.

There is no need to introduce a corresponding special definition of an intersec-
tion, since if the maps in a limit diagram are monos then so (automatically) are
those in the limiting cone and the mediator from another cone of monos. Dually,
colimits of epis are straightforward, whilst limits of epis in, for example, Set,
bring us into the territory of the axiom of choice. It is therefore misleading to
think of monos as subsets in this Definition, because in other categories (even
Setop) the additional conditions are not so easily satisfied.

Assumption 113 The category C must have
(a) an initial object, which we call ∅, all maps out of which must be mono;

(b) equalisers;

(c) inverse images, i.e. pullbacks of monos against arbitrary maps; and

(d) “set”-indexed directed unions of subobjects.
Moreover, C must be
(e) well powered , which means that the isomorphism classes of monos into any

object of C form a “set”.

Remark 114 The word “set” here is rather an embarrassment, given that we
want to use category theory as our foundations and study ∈-structures like
ordinary mathematics. The point is that we want to use the poset of subobjects
to index a union. The appropriate tools are either indexed or fibred categories,
of which the existing account that comes nearest to what we need is [18]. This
treats the adjoint functor theorem but not unfortunately the particular results
that we require. This will be done in the extended version of this paper.

Assumption 115 The endofunctor T : C → C must preserve monos.

Remark 116 This is an unnaturally weak assumption, given that the proof of
Theorem 13 was all about partial functions. Their composition in a category
makes use of inverse images, so to define a category of coalgebras and partial
homomorphisms, the functor T ought to preserve inverse image diagrams. This
is true of the powerset and term algebra functors.

Moreover, the very natural Proposition 12 depends on preservation of inverse
images, together with other set-like conditions on the category C, as we shall see
in Section 4.
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However, there is demand from researchers who use coalgebras in theoretic
computer science to prove our main theorem on weaker assumptions. Even
though I do not presently know of a mathematically compelling application,
we have taken up this challenge in this paper.

As we noted after Theorem 13, the effect of weakening the assumption on T
on the proof of our main result is that we cannot form binary unions of attempts.
We therefore need a fixed point theorem that only demands a least element and
directed joins. This was proved intuitionistically by Dito Pataraia in 1996, but
he didn’t publish it before his death in 2011. Recall that a dcpo is a partial
order that has all directed joins and an ipo also has a least element.

Proposition 117 Any dcpo (X,≤) has a greatest inflationary monotone endo-
function, t : X → X. This is idempotent and its fixed points are exactly the
points that are fixed by all inflationary monotone endofunctions.

Proof Consider the set

Y ≡ {s : X → X | (∀x:X. x ≤ sx) ∧ (∀xy :X . x ≤ y =⇒ sx ≤ sy)}

of inflationary monotone endofunctions of X. In the pointwise order, this inherits
directed joins from (the values in) X, and idX is the least element, so Y is an ipo.

For any r, s ∈ Y , the composites r ; s and s ; r both lie above both r and s
in Y , because

∀x:X. x ≤ rx, sx ≤ r(sx), s(rx),

using both the inflationary and monotone properties. So the whole ipo Y is
directed. Since it is also directed-complete, it has a greatest element, t : X → X.

For any s ∈ Y , the composites s ; t and t ; s are in Y too, so s ; t ≥ t ≤ t ; s
by the previous argument, but also s ; t ≤ t ≥ t ; s since t is the greatest element
of Y . Hence s ; t = t = t ; s and in particular t = t ; t.

Finally, if a = ta then sa = s(ta) = ta = a. �

Theorem 118 Any monotone endofunction s : X → X of an ipo has a least
fixed point.

Proof Consider the subset X0 ⊂ X that is generated by ⊥, s and directed
joins. Since the subset {x : X | x ≤ sx} ⊂ X is closed under these operations, it
contains X0 and so s restricts to an inflationary monotone function X0 → X0.
Applying the previous result to X0, there is a greatest of these, t : X0 → X0.
Then with a ≡ t⊥ = tt⊥ = ta, we have a = sa ∈ X0. �

We will need not only the least fixed point of s itself, but also a principle
that we call Pataraia induction :

Corollary 119 Let s : X → X be a monotone endofunction of an ipo and
U ⊂ X a subset containing ⊥ and closed under s and directed joins. Then U
also contains the (same) least fixed point of s in X.

Proof The set U has the same properties as X in the Theorem, so it contains
a fixed point of s, but this must be the same as the one for the whole of X. �
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2 Generating well founded coalgebras

Before tackling the recursion theorem itself, we study how well founded coalge-
bras are built up. Proposition 12 is another way of constructing them, but we
postpone it to Section 4 because it depends on hypotheses that we have chosen
to avoid. The first lemma is about initial segments or simulations, cf. Remark 17.

Lemma 21 The induction premise (broken pullback) is stable under pullback
against coalgebra homomorphisms.

TV-
Tj - TB

K

6

TU-
Ti -

- β
6

TA

Tf
-

V-
j
-

...............................-
B

-

-

H

6

- -
-

U-
i -

pbk

-

A

α

6

f
-

Proof The thick lines show the given induction premise for i : U � A and
the homomorphism f : B → A.

Let j : V � B be the inverse image of i along f . Apply T to this pullback
square to give the parallelogram at the top, although this need not be a pullback.

Form the inverse imageK of Tj along β, so thatK is the induction hypothesis
for V � B.

The top, back and right quadrilaterals commute (from K to TA), so there
is a pullback mediator K → H that makes the left and bottom quadrilaterals
commute.

Because of the latter, there is a pullback mediator K → V that makes ev-
erything commute, in particular from K to A. This is the required induction
premise. �

Von Neumann’s proof of the recursion theorem for ordinals (Theorem 13)
forms the union of attempts, so we consider colimits next. Note, however, that we
are merely enhancing the properties of those that already exist in the category C,
not asking for any more of them.

Lemma 22 The initial object ∅ of C carries a unique T -coalgebra structure and
this is well founded. It is a subcoalgebra of any coalgebra.

Proof Any mono U � ∅ splits, so it is an isomorphism and we have assumed
that all maps ∅ → X are mono. �

Proposition 23 The forgetful functors WfCoAlg −→ CoAlg −→ C create
colimits. That is, the colimit of any diagram of coalgebras and homomorphisms
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is given by the colimit of their carriers, if this exists. If the individual coalgebras
are well founded then so is their colimit.

Proof The structure map α on the colimit is the colimit mediator, as shown
in the diagram on the left, where the colimiting cocone consists of coalgebra
homomorphisms, i.e. the parallelograms from Ai to TA commute.

TA TU-
Ti - TA

TAi -

-

TAj

-

TUi-.................................................
Tki

-
.....

.....
.....

....- 6

TAi

-

A

α

6
.......................

H- - U-
k - A

α

6

Ai

αi

6

-

-

Aj

αj

6
-

Ki

6
........................
-...................-
....

....
....

....
....

.-

Ui-......................
pbk

ki

-
....

....
....

....
....

.-

Ai

αi
6

-

Now suppose that the αi are well founded and let k : U � A be a predicate
satisfying the induction premise for the colimit α (the upper rectangle, from H
to TA).

Form the inverse images Ki of this induction premise against the homomor-
phisms Ai → A of the colimiting cocone, using Lemma 21.

Since each Ai is well founded, ki : Ui ∼= Ai.
Now U is the vertex of a cocone over the diagram Ai, so it has a mediator

from the colimit A, and U ∼= A as required. �

The next four results study notions of “successor” for attempts. We leave the
proof of the first as an exercise because it is a special case of Lemma 27 with
c ≡ id and we don’t actually use it.

Lemma 24 The functor T preserves well founded coalgebras. �

Lemma 25 Let i : (B, β) � (A,α) be a subcoalgebra. Then its relative suc-
cessor k : (C, γ) � (A,α) is given by pullback of α and Ti.

A
α - TA

C

k

6

6

c - TB

Ti

6

6

B

i

-

-

β

-

j

-

-

TC

Tk

�

�

Tj

-

-

γ

-



Well founded coalgebras and recursion 11

The pullback mediator j : B → C makes (B, β) � (C, γ) � (A,α) as subcoal-
gebras when we we define γ ≡ c ; Tj.

Proof i = j ; k and k ; α = c ; Ti = c ; Tj ; Tk = γ ; Tk and
j ; γ = j ; c ; Tj = β ; Tj. �

Lemma 26 If (A,α) is well founded then j : B ∼= C iff i : B ∼= A.

Proof If B ∼= C then A, B, TB and TA form a pullback. It is the one in
Definition 18 of well-foundedness, except that K = U = B. Therefore B ∼= A.
The converse is immediate from the pullback construction. �

In the case of the covariant powerset, any subcoalgebra of a well founded
coalgebra is again well founded. Using this, we could deduce well-foundedness
of C from that of TB and hence from that of B by Lemma 24. As we have chosen
to use weaker conditions in our account, we need a slightly more complicated
result at this point, which we call the sandwich lemma .

Lemma 27 Let (B, β) be a well founded coalgebra and j : B → C and c : C →
TB maps such that β = j ; c. Put γ ≡ c ; Tj. Then (C, γ) is also a well founded
coalgebra and j and c are homomorphisms.

Proof They are homomorphisms because

j ; γ ≡ j ; c ; Tj = β ; Tj and γ ; Tc ≡ c ; Tj ; Tc = c ; Tβ.

Now let k : W � C satisfy the induction premise given by the pullback H and
form the inverse image of this along j, using Lemma 21. This gives the induction
premise K for the subobject ` : V � B:

TW-
Tk - TC

TV-............................................................................
T`

-
....

....
....

....
.- 6

TB

Tj -Th
�..........................................................

H- - W-
k - C

γ

6

c

�

K

6
.........................
-.............................-
....

....
....

....
.-

V-.......................................
`

-
....

....
....

....
..-

B

β
6

j

-h
�.........................

Since B is well founded, ` : V ∼= B and so there is a map h : B → W making
the triangle with C commute. The one with TB, TW and TC also commutes.

The top right triangle (γ = c ; Tj) commutes too, so the maps C → TB →
TW and idC form a commutative square at TC. This factors through the pull-
back H, splitting the inclusion H �W � C as required. �

Proposition 28 The (isomorphism classes of) well founded subcoalgebras of any
coalgebra A form an ipo, on which the relative successor operation is monotone
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and inflationary. This operation has a unique fixed point, which is the greatest
well founded subcoalgebra of A.

Proof The first sentence sums up the results of this section, together with
Assumption 113 that the category C be well powered (Remark 114). Notice that
Lemmas 23, 25 and 27 did not assume that A or the vertex of a cocone was well
founded.

The second part comes from Pataraia’s Theorem 118. If we use this with the
empty coalgebra as ⊥, we get the least fixed point B of the successor.

However, we may apply the Theorem with any well founded coalgebra D
as ⊥, obtaining a fixed point A′ with D ≤ A′. Since B was least, B ≤ A′.

Now we use Lemma 26 with A′ instead of A: since B agrees with its successor,
D ≤ A′ ∼= B. Therefore B is the greatest well founded subcoalgebra of A. �

In the next section we will use Pataraia induction on the dcpo with ⊥ and >
of well founded subcoalgebras of a well founded coalgebra to prove the recursion
theorem. But first, on an additional assumption, we can improve the “greatest
subcoalgebra” to an adjoint.

Definition 29 A map e : A � B is extremal epi if it is orthogonal to all
monos i : C � D, written e ⊥ i. That is, in any commutative square

A
e -- B

C
?
- i -
�..

....
....

....
....

....
....

....
.

D
?

there is a unique map B → C making the two triangles commute. If, as in our
case, pullbacks of monos exist, this is equivalent to saying that if e = f ; i with
i mono then in fact i is invertible.

Lemma 210 Let E be a well founded coalgebra and e : E � C a homomorphism
that is extremal epi as a C-map. Then C is also well founded.

TW-
Tj - TE

TV-
Ti -

- ε
6

TC

Te
-

K

6

- W
j

pbk
- E

H

6

-

-

V-
i -

-

C

γ

6

e
--
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Proof Let i : V � C be a subobject that satisfies the induction premise that
is given by the broken pullback from H to TC (at the front).

Pull this back along the homomorphism e : E � C, using Lemma 21.

By well-foundedness of E, we have j : W ∼= E.

Since e : E � C is extremal epi and it factors through the mono i : V � C,
the latter is also an isomorphism. �

Theorem 211 If C has factorisation into extremal epis and monos then the
inclusion WfCoAlg � CoAlg has a right adjoint.

TE
Tf - TA

TC-...................................
Tk

-

Tj

-

-

Te -

TD

Ti
-

-

E

ε

6

f - A

α

6

C

γ
6
.........................
-.......................................

k
-

j

-

-

e --

D

δ
6

i
-

-

Proof We claim that the largest well founded subcoalgebra i : D � A from
Proposition 28 provides the adjoint. This means that any coalgebra homomor-
phism f : E → A with E well founded factors uniquely through i.

Let E � C � A be the factorisation of f as an extremal epi followed by
a mono. Applying T gives Tf = Te ; Tj with Tj mono. Using E � C and
TC � TA in Definition 29, there is a unique map γ : C → TC making the two
parallelograms commute.

Then (C, γ) is a well founded coalgebra by Lemma 210 and it is a sub-
coalgebra of (A,α) by construction. It is therefore a subcoalgebra of (D, δ) by
Proposition 28. The map E → D is unique since i : D � A is mono. �

3 The recursion theorem

The proof of the recursion theorem has similar components to the constructions
in the previous section. The ipo to which we apply Pataraia’s Theorem now
consists of partial functions instead of subobjects. However, there is no need
to modify the “well powered” assumption, because it suffices to consider the
collection of subobjects of A×Θ instead of those of A.

Remark 31 An attempt from a coalgebra α : A→ TA to an algebra θ : TΘ → Θ
is intended to be a partial map f : A ⇀ Θ with well founded support that is a
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subhomomorphism in the sense that if the composite via TA is defined then so
is that via Θ and then they are equal.

TA
Tf

⇀ TΘ

v

A

α

6

f
⇀ Θ

θ

?

Despite our concerns in Remark 116, we can avoid the need to define a category
of coalgebras and partial homomorphisms, because the notion of attempt has a
simple equivalent form:

Definition 32 An attempt is a diagram of the form

TA �
Ti �TB

Tf- TΘ

A

α

6

� i �B

β

6

f - Θ

θ

?

with B well founded. That is, a subcoalgebra inclusion (or initial segment, cf. Re-
mark 17) B � A together with a coalgebra-to-algebra homomorphism B → Θ.

A map f satisfies the recursion scheme (Definition 110) exactly when it is a
total attempt , i.e. with i : B ∼= A.

Lemma 33 Let A be a well founded coalgebra, Θ an algebra and f, g : A⇒ Θ
be total attempts. Then f = g.

Proof The two parallel squares on the right commute since f and g are total
attempts. Let i : E � A⇒ V be the equaliser in C.

TE-
Ti - TA

Tg-

Tf
- TΘ

E

H

6

- -......
......

......
.....-

A

α

6

f -

g
-

i
-

-
Θ

θ

?

Form the pullback H of A → TA ← TE; the composites H ⇒ TΘ are equal
by construction, so H � A ⇒ Θ are equal. Then H � A factors through the
equaliser, so H � E � A. Hence i : E ∼= A by well-foundedness of A and
so f = g [13, page 99] [16, Prop 6.5] [17, Prop 6.3] [19, 2.5] [21, Prop 6.3.9]. �
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Next we lift attempts to the relative successor (C, γ) that we constructed in
Lemma 25.

Lemma 34 Let (A,α) �
i �(B, β)

f- (Θ, θ) be an attempt. Then the diagram

A
α - TA

C

k

6

6

c - TB

Ti

6

6

B
f -

i

-

-

β

-

j

-

-

Θ

g
?
� θ

TΘ

Tf
?
� Tg

TC

Tk

�

�

Tj

-

-

γ

-

defines another one, extending f , where γ ≡ c ; Tj and g ≡ c ; Tf ; θ.

Proof
f = β : Tf ; θ = j ; c ; Tf ; θ = j ; g

g ≡ c ; Tf ; θ = c ; Tj ; Tc ; TTf ; Tθ ; θ = c ; Tj ; Tg ; Tθ ≡ γ ; Tg ; Tθ �

Recall from Lemma 26 that if B is well founded then so is C, whilst if A is
well founded and B ∼= C then B ∼= A.

Lemma 35 The initial object is the support of a unique attempt. The union of
any directed family of attempts with well founded supports is another such.

Proof By Lemma 22, Proposition 23 and the universal property of colimits. �

We can now achieve our principal goal, the Recursion Theorem .

Theorem 36 From any well founded coalgebra to any algebra there is a unique
total attempt.

Proof Let A be the collection of attempts A ⇀ Θ with well founded support,
ordered by inclusion. Since each of these can be expressed as a subobject of A×Θ
and the category C is well powered, this collection is a set. This means that C
has directed unions indexed by it, whence A is a dcpo (Lemma 35). It also has
a least element, given by the attempt whose support is the initial object of C
(Lemma 35). The relative successor (Lemma 34) defines a monotone inflationary
endofunction of A.

Similarly, Proposition 28 said that the well founded subcoalgebras of A also
form an ipo B. But B has a top element, given by A itself, which is the unique
fixed point of the relative successor.

Moreover there is a function supp : A → B that forgets the values of the
attempts but preserves the least element, directed joins and the successor.
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By Lemma 33, supp is injective, so we may consider it as an inclusion A ⊂ B
that is closed under ⊥, successor and directed joins. Therefore, by Pataraia
induction (Corollary 119), A contains the unique fixed point of the successor,
which is the unique total attempt A→ Θ [13, pp 101–4] [17, Prop 6.5]. �

From this we deduce the relationship between well founded coalgebras and the
initial algebra. Of course, the latter need not exist, as in the case of the powerset,
in which case well founded coalgebras provide a “good enough” substitute. Two
of the steps in the circular equivalence below were identified by Joachim Lambek
[11] and Daniel Lehmann and Michael Smyth [12]:

Lemma 37 The structure maps of the initial algebra, final coalgebra and final
well founded coalgebra, if they exist, are isomorphisms.

TΘ
� Tθ

.........
Tα

.....- TTΘ TA
Tα-

�.......
Tθ

....... TTA

Θ

θ

?� θ

...........
α
.......- TΘ

Tθ

?
A

α

6

α -
�.........

θ
......... TA

Tα

6

These objects are therefore both algebras and coalgebras for T , so coalgebra-
to-algebra homomorphisms from or to them are respectively the same as plain
algebra or coalgebra homomorphisms.

Proof This is illustrated by the diagrams. It also applies to the final well
founded coalgebra because the functor T preserves them (Lemma 24). �

Lemma 38 The initial algebra has no proper subalgebra. �

Corollary 39 If any of the following exists then it satisfies the other properties
too:
(a) a final well founded coalgebra;

(b) a well founded coalgebra whose structure map is an isomorphism;

(c) an initial fixed point (A ∼= TA);

(d) an initial algebra.

Moreover, it is unique up to unique isomorphism.

Proof The Recursion Theorem says that the final well founded coalgebra has
the universal property of the initial algebra.

Conversely, let A be the initial algebra qua coalgebra and suppose that i :
U � A satisfies the induction premise. This makes U into a subalgebra, so by
Smyth’s lemma i is split. Hence A is well founded.

Again by the Recursion Theorem, from any other well founded coalgebra B
there is a unique coalgebra-to-algebra homomorphism B → A. But this is the
same as a coalgebra homomorphism, so A is the final well founded coalgebra. �
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4 Reflecting well-foundedness

We mentioned Proposition 12 as a very important result about well founded
relations that is lost if we only require the functor to preserve monos and not
inverse images. In this section we impose the stronger condition and give the
categorical proof of the result. See [21, Prop 2.6.2] for a box-style proof in natural
deduction for well founded relations.

The essential logical tool in this proof is the universal quantifier in the sub-
object f∗V , as Gerhard Osius noted in [16, Prop 6.3(a)]. Any topos has this, but
we are considering more general categories, so this is a further assumption on
the subobjects.

In order to show that these two extra conditions are necessary (and as an
aid to understanding the categorical proof), we briefly consider what our main
definition means when the category C is merely a partial order.

Definition 41 Let (X,≤,∧) be a poset with binary meets and s : X → X be a
monotone endofunction. We say that x : X is a well founded element if

x ≤ sx and ∀u:X. (su ∧ x ≤ u) =⇒ x ≤ u.

Lemma 42 Joins (such as they exist) and s preserve well-foundedness. �

Definition 43 A Heyting semilattice (X,≤,∧,→) is a poset with meets and
another binary operation, called implication , that satisfies

(a ∧ b) ≤ c ⇐⇒ a ≤ (b→ c), so b ∧ (b→ c) ≤ c.

Lemma 44 In a Heyting semilattice, (−)∧b preserves (distributes over) all joins
that exist. If this holds in a complete lattice then b→ (−) exists. �

Proposition 45 Let X be a Heyting semilattice, s : X → X preserve binary
meets and x, y : X. If x is well founded and x ≥ y ≤ sy then y is well founded
too.

Proof Suppose that v : X satisfies sv ∧ y ≤ v and put u ≡ (y → v). Then

su ∧ y = s(y → v) ∧ sy ∧ y = s
(
(y → v) ∧ y

)
∧ y ≤ sv ∧ y ≤ v,

since y = sy ∧ y, s preserves meets and (y → v) ∧ y ≤ v. Hence, by definition of
(y → v),

su ∧ x ≤ su ≤ (y → v) ≡ u.

Then y ≤ x ≤ u ≡ (y → v) by well-foundedness of x, and y ≤ (y → v)∧y ≤ v. �

Examples 46 The additional hypotheses are necessary.

y ≤ sy = ss⊥ y ≤ sy ≤ ssy ≤ sssy ≤ · · · ≤ sωy

∨ ∨ ∨ ∨ ∨ ∨
⊥ ≤ s⊥ ⊥ ≤ s⊥ ≤ ss⊥ ≤ sss⊥≤ · · · ≤ sω⊥

ww



18 Paul Taylor

In both cases, the elements sn⊥ and sω⊥ are well founded by Lemma 42, but
y is not, because s⊥ ∧ y ≤ ⊥ but y � ⊥.

The first is a Heyting semilattice, but s does not preserve the meet y∧s⊥ = ⊥.
The second is also distributive but it is not a Heyting semilattice, since y∧(−)

does not preserve the directed join
∨
� sn⊥. However, s preserves meets because,

for n < ω and m ≤ ω,

sn⊥ ∧ smy = smin(n,m)⊥. �

Assumption 47 In addition to Assumption 113,
(a) the category C must now have inverse images (pullbacks) of monos against

any map f , and so an order-preserving operation f∗ on subobjects;

(b) the functor T : C → C must preserve inverse image diagrams; and

(c) each operation f∗ must have a right adjoint f∗ on subobjects.

See Notation 16 for f∗ and f∗ in a topos.

Theorem 48 Let f : (B, β) → (A,α) be a coalgebra homomorphism, where
(A,α) is well founded. Then (B, β) is also well founded.

Proof Given the diagram marked in thick lines, apply the right adjoint f∗ to
j : V � B, to get i : f∗V � A. The counit of this adjunction is ε : f∗f∗V → V
and makes the little triangle (∗) commute, where f∗ is given by pullback (inverse
image) along f . The upper part of the diagram is the T -image of the lower part,
including the pullback but not K. Let H ≡ α∗T (f∗V ) be the pullback of Ti
and α and f∗H its pullback along f .

(Tf)∗T (f∗V ) = T (f∗f∗V )
pbk

- T (f∗V )

TV-
Tj -

Tε

�

6
..............

TB
Tf -

-

-

6

TA

Ti

-

-

f∗H

..............

pbk
- H pbk

K

6

- -
�...

....
....

....
....

....
...

V-
j

(∗)
- B

β

6

f -

-

-

..............
A

α

6

-

-

f∗f∗V

ε

6

pbk --

-

f∗V
?

..............

i

-

-

By construction, the whole diagram of solid lines commutes from f∗H to TA.
In particular, f∗H � B → TB and f∗H → H → T (f∗V ) agree at TA, so there
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is a pullback mediator f∗H → T (f∗f∗V ). Then f∗H → T (f∗f∗V )→ TV agrees
with f∗H � B at TB, so there is also a pullback mediator f∗H → K.

This shows that f∗H ⊂ V as C-subobjects of B. Therefore, by the adjunction
f∗ a f∗, we have H ⊂ f∗V as subobjects of A.

That is, there is a map H → f∗V that makes the right-hand part of the
diagram into a broken pullback. Now, since A is well founded, i : f∗V ∼= A, so
f∗f∗V ∼= B and j : V ∼= B. �

Further work

An extended version of this paper may be found at
www.Paul Taylor.EU/ordinals

I began this work in the 1990s in the hope of including intuitionistic, categor-
ical versions of techniques in set theory, particularly recursion over the ordinals,
in [21]. A particular goal was Theorem 118, but Dito Pataraia not only got there
first but did it by much simpler methods; indeed it does not seem to be possible
to use ordinals to prove this result intuitionistically.

The two fruitful applications of well founded coalgebras were not for sets but
posets, where using different notions of formal monos for the structure maps of
extensional coalgebras yields many kinds of ordinals [21, §6.7]. Then working in
categories of fibrations provides a way of defining (not constructing) transfinite
iteration of functors [21, §9.5] and maybe a categorical version of the axiom
scheme of replacement.

However, the simpler excursions into different categories and functors tend
to reduce to well founded relations, although the functors serve to relate these
to other structure.

I also envisaged that characterising well founded coalgebras might give a way
of describing free algebras for complicated functors, such as partial models of
type theories. The generalisation to functors that only preserve monos rather
than inverse images might help with the construction of free algebras for infini-
tary equational theories.

My research has been funded by my late parents, Cedric and Brenda Taylor.
I am now an Honorary Research Fellow in Achim Jung’s group in the School of
Computer Science in the University of Birmingham.
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