A Lambda Calculus for Real Analysis

Paul Taylor¹ Andrej Bauer²

¹Department of Computer Science University of Manchester UK EPSRC GR/S58522

²Department of Mathematics and Physics University of Ljubljana

Computability and Complexity in Analysis Sunday, 28 August 2005

www.cs.man.ac.uk/~pt/ASD

This is not a Theorem (à la Brouwer) but a design principle.

The language only introduces continuous computable functions.

This is not a Theorem (à la Brouwer) but a design principle.

The language only introduces continuous computable functions.

In particular, all functions $\mathbb{R} \times \mathbb{R} \to \Sigma$ are continuous and correspond to open subspaces.

This is not a Theorem (à la Brouwer) but a design principle.

The language only introduces continuous computable functions.

In particular, all functions $\mathbb{R} \times \mathbb{R} \to \Sigma$ are continuous and correspond to open subspaces.

Hence a < b, a > b and $a \neq b$ are definable, but $a \le b$, $a \ge b$ and a = b are not definable.

This is not a Theorem (à la Brouwer) but a design principle.

The language only introduces continuous computable functions.

In particular, all functions $\mathbb{R} \times \mathbb{R} \to \Sigma$ are continuous and correspond to open subspaces.

Hence a < b, a > b and $a \neq b$ are definable, but $a \le b$, $a \ge b$ and a = b are not definable.

This is because \mathbb{R} is Hausdorff but not discrete.

This is not a Theorem (à la Brouwer) but a design principle.

The language only introduces continuous computable functions.

In particular, all functions $\mathbb{R} \times \mathbb{R} \to \Sigma$ are continuous and correspond to open subspaces.

Hence a < b, a > b and $a \neq b$ are definable,

but $a \le b$, $a \ge b$ and a = b are not definable.

This is because \mathbb{R} is Hausdorff but not discrete.

N and Q are discrete and Hausdorff.

So we have all six relations for them.

Geometric, not Intuitionistic, logic

A term σ : Σ is called a proposition.

A term $\phi : \Sigma^X$ is called a predicate or open subspace.

We can form $\phi \wedge \psi$ and $\phi \vee \psi$.

Also $\exists n : \mathbb{N}. \ \phi x, \exists q : \mathbb{Q}. \ \phi x, \exists x : \mathbb{R}. \ \phi x \text{ and } \exists x : [0,1]. \ \phi x.$

Geometric, not Intuitionistic, logic

A term σ : Σ is called a proposition.

A term $\phi : \Sigma^X$ is called a predicate or open subspace.

We can form $\phi \wedge \psi$ and $\phi \vee \psi$.

Also $\exists n : \mathbb{N}. \ \phi x, \exists q : \mathbb{Q}. \ \phi x, \exists x : \mathbb{R}. \ \phi x \text{ and } \exists x : [0,1]. \ \phi x.$

But not $\exists x : X$. ϕx for arbitrary X — it must be overt.

Geometric, not Intuitionistic, logic

A term σ : Σ is called a proposition.

A term $\phi : \Sigma^X$ is called a predicate or open subspace.

We can form $\phi \wedge \psi$ and $\phi \vee \psi$.

Also $\exists n : \mathbb{N}. \ \phi x, \exists q : \mathbb{Q}. \ \phi x, \exists x : \mathbb{R}. \ \phi x \text{ and } \exists x : [0,1]. \ \phi x.$

But not $\exists x : X$. ϕx for arbitrary X — it must be overt.

Negation and implication are not allowed.

Because:

- this is the logic of open subspaces;
- ▶ the function $\odot \leftrightharpoons \bullet$ on $\binom{\odot}{\bullet}$ is not continuous;
- ▶ the Halting Problem is not solvable.

Universal quantification

When $K \subset X$ is compact (e.g. $[0,1] \subset \mathbb{R}$), we can form $\forall x : K. \phi x$.

$$\frac{x:K \vdash \top \Leftrightarrow \phi x}{\vdash \top \Leftrightarrow \forall x:K.\ \phi x}$$

Universal quantification

When $K \subset X$ is compact (e.g. $[0,1] \subset \mathbb{R}$), we can form $\forall x : K. \phi x$.

$$\frac{x:K \vdash \top \Leftrightarrow \phi x}{\vdash \top \Leftrightarrow \forall x:K.\ \phi x}$$

The quantifier is a (higher-type) function $\forall_K : \Sigma^K \to \Sigma$. Like everything else, it's Scott continuous.

Universal quantification

When $K \subset X$ is compact (e.g. $[0,1] \subset \mathbb{R}$), we can form $\forall x : K. \phi x$.

$$\frac{x:K \vdash \top \Leftrightarrow \phi x}{\vdash \top \Leftrightarrow \forall x:K.\ \phi x}$$

The quantifier is a (higher-type) function $\forall_K : \Sigma^K \to \Sigma$. Like everything else, it's Scott continuous.

The useful cases of this in real analysis are

$$\forall x : K. \exists \delta > 0. \phi(x, \delta) \iff \exists \delta > 0. \forall x : K. \phi(x, \delta)$$
$$\forall x : K. \exists n. \phi(x, n) \iff \exists n. \forall x : K. \phi(x, n)$$

in the case where
$$(\delta_1 < \delta_2)$$
 \land $\phi(x, \delta_2) \Rightarrow \phi(x, \delta_1)$ or $(n_1 > n_2)$ \land $\phi(x, n_2) \Rightarrow \phi(x, n_1)$.

Recall that uniform convergence, continuity, *etc.* involve commuting quantifiers like this.

What's the problem with \forall ?

What's the problem with \forall ? We can't write $\forall \epsilon > 0$!

What's the problem with \forall ? We can't write $\forall \epsilon > 0$!

Propositions may be computationally observable.

Equations and implications amongst propositions or predicates may be logically provable from the axioms.

We call them statements.

What's the problem with \forall ? We can't write $\forall \epsilon > 0$!

Propositions may be computationally observable.

Equations and implications amongst propositions or predicates may be logically provable from the axioms.

We call them statements.

```
For example, with \downarrow a \equiv (\lambda d. d < a), \downarrow a = \downarrow b iff a = b and \downarrow a \Rightarrow \downarrow b iff a \leq b in the arithmetical order.
```

Hence $a \le b$, $a \ge b$ and a = b are meaningful, as statements, not as propositions.

What's the problem with \forall ? We can't write $\forall \epsilon > 0$!

Propositions may be computationally observable.

Equations and implications amongst propositions or predicates may be logically provable from the axioms.

We call them statements.

For example, with $\downarrow a \equiv (\lambda d. d < a)$, $\downarrow a = \downarrow b$ iff a = b and $\downarrow a \Rightarrow \downarrow b$ iff $a \leq b$ in the arithmetical order.

Hence $a \le b$, $a \ge b$ and a = b are meaningful, as statements, not as propositions.

In fact, $a \le b$ is equivalent as a statement to $(a > b) \Rightarrow \bot$, and a = b to $(a \ne b) \Rightarrow \bot$.

We deal with $\forall \epsilon > 0$ by allowing ϵ as parameter or free variable.

Examples: continuity and uniform continuity

Recall that, from local compactness of \mathbb{R} ,

$$\phi x \iff \exists \delta > 0. \ \forall y \colon [x \pm \delta]. \ \phi y$$

Theorem: Every definable function $f : \mathbb{R} \to \mathbb{R}$ is continuous:

$$\epsilon > 0 \implies \exists \delta > 0. \ \forall y : [x \pm \delta]. \ (|fy - fx| < \epsilon)$$

Proof: Put $\phi_{x,\epsilon}y \equiv (|fy - fx| < \epsilon)$, with parameters $x, \epsilon : \mathbb{R}$.

Theorem: Every function f is uniformly continuous on any compact subspace $K \subset \mathbb{R}$:

$$\epsilon > 0 \implies \exists \delta > 0. \ \forall x : K. \ \forall y : [x \pm \delta]. \left(|fy - fx| < \epsilon \right)$$

Proof: $\exists \delta > 0$ and $\forall x : K$ commute.

Example: Dini's theorem

Theorem: Let $f_n : K \to \mathbb{R}$ be an increasing sequence of functions

$$n: \mathbb{N}, \ x: K \vdash f_n x \leq f_{n+1} x: \mathbb{R}$$

that converges pointwise to $g: K \to \mathbb{R}$, so

$$\epsilon > 0$$
, $x : K \vdash \top \Leftrightarrow \exists n. gx - f_n x < \epsilon$.

If K is compact then f_n converges to g uniformly.

Proof: Using the introduction and Scott continuity rules for ∀,

$$\epsilon > 0 \vdash \top \iff \forall x \colon K. \exists n. gx - f_n x < \epsilon$$

$$\Leftrightarrow \exists n. \forall x \colon K. gx - f_n x < \epsilon$$

Corollary: Since ASD has a computational interpretation, Dini's theorem is computationally valid.

Relative containment of open subspaces

Let σ , α , β be propositions with parameters $x_1 : X_1, ..., x_k : X_k$.

(We conventionally write $\boldsymbol{\Gamma}$ for this list.

Semantically, Γ is the space $X_1 \times \cdots \times X_k$.)

Then σ , α , β define open subspaces of Γ .

They satisfy a Gentzen-stle rule of inference:

$$\frac{\Gamma, \ \sigma \Leftrightarrow \top + \alpha \Rightarrow \beta}{\Gamma + \sigma \land \alpha \Rightarrow \beta}$$

in which the top line means

within the open subspace of Γ defined by σ , the open subspace defined by α is contained in the open subspace defined by β .

and the bottom line means

the intersection of the open subspaces defined by σ and α is contained in that defined by β .

Relative containment of closed subspaces

Let σ , α , β be propositions with parameters $x_1 : X_1, ..., x_k : X_k$.

(We conventionally write Γ for this list.

Semantically, Γ is the space $X_1 \times \cdots \times X_k$.)

Then σ , α , β define closed subspaces of Γ .

They satisfy a Gentzen-stle rule of inference:

$$\frac{\Gamma, \ \sigma \Leftrightarrow \bot + \alpha \Rightarrow \beta}{\Gamma + \alpha \Rightarrow \sigma \lor \beta}$$

in which the top line means

within the closed subspace of Γ defined by σ , the closed subspace defined by α contains the closed subspace defined by β .

and the bottom line means

the intersection of the closed subspaces defined by σ and β is contained in that defined by α .

Exercise for everyone!

Make a habit of trying to formulate statements in analysis according to (the restrictions of) the ASD language.

This may be easy — it may not be possible

The exercise of doing so may be 95% of solving your problem!

Constructive intermediate value theorem

Suppose that $f : \mathbb{R} \to \mathbb{R}$ doesn't hover, *i.e.*

$$b, d : \mathbb{R} + b < d \implies \exists x. (b < x < d) \land (fx \neq 0),$$

and f0 < 0 < f1. Then fc = 0 for some 0 < c < 1.

Interval trisection: Let $a_0 \equiv 0$, $e_0 \equiv 1$,

$$b_n \equiv \frac{1}{3}(2a_n + e_n)$$
 and $d_n \equiv \frac{1}{3}(a_n + 2e_n)$.

Then $f(c_n) \neq 0$ for some $b_n < c_n < d_n$, so put

$$a_{n+1}, e_{n+1} \equiv \begin{cases} a_n, c_n & \text{if } f(c_n) > 0 \\ c_n, e_n & \text{if } f(c_n) < 0. \end{cases}$$

Then $f(a_n) < 0 < f(e_n)$ and $a_n \to c \leftarrow e_n$. (This isn't the ASD proof/algorithm yet!)

Stable zeroes

The interval trisection finds zeroes with this property:

Definition: $c : \mathbb{R}$ is a stable zero of f if

$$a,e: \mathbb{R} + a < c < e \Rightarrow \exists bd.$$
 $(a < b < c < d < e)$
 $\land (fb < 0 < fd \lor fb > 0 > fd).$

The subspace $Z \subset [0,1]$ of all zeroes is compact. The subspace $S \subset [0,1]$ of stable zeroes is overt (as we shall see...)

Straddling intervals

An open subspace $U \subset \mathbb{R}$ contains a stable zero $c \in U \cap S$ iff U also contains a straddling interval,

$$[b,d] \subset U$$
 with $fb < 0 < fd$ or $fb > 0 > fd$.

 $[\Rightarrow]$ From the definitions. $[\Leftarrow]$ The straddling interval is an intermediate value problem in miniature.

Straddling intervals

An open subspace $U \subset \mathbb{R}$ contains a stable zero $c \in U \cap S$ iff U also contains a straddling interval,

$$[b,d] \subset U$$
 with $fb < 0 < fd$ or $fb > 0 > fd$.

 $[\Rightarrow]$ From the definitions. $[\Leftarrow]$ The straddling interval is an intermediate value problem in miniature.

Notation: Write $\Diamond U$ if U contains a straddling interval. We write this containment in ASD using the universal quantifier.

The possibility operator

By hypothesis, $\Diamond(0,1) \Leftrightarrow \top$, whilst $\Diamond \emptyset \Leftrightarrow \bot$ trivially.

$$\Diamond \bigcup_{i \in I} U_i \iff \exists i. \Diamond U_i.$$

If $f : \mathbb{R} \to \mathbb{R}$ is an open map, this is easy.

If $f : \mathbb{R} \to \mathbb{R}$ doesn't hover, it depends on connectedness of \mathbb{R} .

The possibility operator

By hypothesis, $\Diamond(0,1) \Leftrightarrow \top$, whilst $\Diamond \emptyset \Leftrightarrow \bot$ trivially.

 $\Diamond \bigcup_{i \in I} U_i \iff \exists i. \ \Diamond U_i.$

If $f : \mathbb{R} \to \mathbb{R}$ is an open map, this is easy.

If $f : \mathbb{R} \to \mathbb{R}$ doesn't hover, it depends on connectedness of \mathbb{R} .

Definition: A term \diamond : Σ^{Σ^X} with this property is called an **overt subspace** of *X*.

A simpler example: For any point a: X, the neighbourhood filter $\diamond \equiv \eta a \equiv \lambda \phi$. ϕa is a possibility operator.

 \Diamond is a point iff it also preserves \top and \land .

The Possibility Operator as a Program

Theorem: Let \Diamond be an overt subspace of \mathbb{R} with $\Diamond \top \Leftrightarrow \top$.

Then \diamond has an accumulation point $c \in \mathbb{R}$, *i.e.* one of which every open neighbourhood $c \in U \subset \mathbb{R}$ satisfies $\diamond U$:

$$\phi: \Sigma^{\mathbb{R}} \vdash \phi c \Rightarrow \Diamond \phi$$

Example: In the intermediate value theorem, any such *c* is a stable zero.

Proof: Interval trisection.

Corollary: Obtain a Cauchy sequence from a Dedekind cut.

(I expect to get a representation $2^{\mathbb{N}} \to \mathbb{R}$ in the sense of TTE by proving a result of Brattko & Hertling in ASD.)

Possibility operators classically

Define $\lozenge U$ as $U \cap S \neq \emptyset$, for any subset $S \subset X$ whatever.

Then $\Diamond (\bigcup_{i \in I} U_i)$ iff $\exists i. \Diamond U_i$.

Conversely, if \Diamond has this property, let

$$S \equiv \{a \in X \mid \text{ for all open } U \subset X, \quad a \in U \Rightarrow \Diamond U\}$$

$$W \equiv X \setminus S = \bigcup \{U \text{ open } | \neg \Diamond U\}$$

Then *W* is open and *S* is closed.

 $\neg \diamond W$ by preservation of unions.

Hence $\lozenge U$ holds iff $U \not\subset W$, *i.e.* $U \cap S \neq \emptyset$.

If \Diamond had been derived from some S' then $S = \overline{S'}$, its closure.

Classically, every (sub)space *S* is overt.

Necessity operators

Let $K \subset \mathbb{R}$ be any compact subspace. (For example, all zeroes in a bounded interval.)

 $U \mapsto (K \subset U)$ is Scott continuous.

Notation: Write $\Box \phi$ for $\forall x : K. \phi x$.

Modal operators, separately

□ encodes the compact subspace $Z \equiv \{x \in \mathbb{I} \mid fx = 0\}$ of all zeroes. \diamond encodes the overt subspace S of stable zeroes.

```
\Box X \text{ is true} \quad \text{and} \quad \Box U \land \Box V \Rightarrow \Box (U \cap V) \Diamond \emptyset \text{ is false} \quad \text{and} \quad \Diamond (U \cup V) \Rightarrow \Diamond U \lor \Diamond V.
```

$$(Z \neq \emptyset)$$
 iff $\square \emptyset$ is false

$$(S \neq \emptyset)$$
 iff $\Diamond \mathbb{R}$ is true

Modal operators, together

 \Diamond and \Box for the subspaces $S \subset Z$ are related in general by:

$$\Box U \land \Diamond V \implies \Diamond (U \cap V)$$
$$\Box U \iff (U \cup W = X)$$
$$\Diamond V \implies (V \not\subset W)$$

S is dense in Z iff

$$\Box(U \cup V) \Rightarrow \Box U \lor \Diamond V$$
$$\Diamond V \Leftarrow (V \not\subset W)$$

In the intermediate value theorem for functions that don't hover (*e.g.* polynomials):

- S = Z in the non-singular case
- ▶ $S \subset Z$ in the singular case (*e.g.* double zeroes).

Modal laws in ASD notation

Overt subspace
$$\Diamond \bot \Leftrightarrow \bot$$
 $\Diamond (\phi \lor \psi) \Leftrightarrow \Diamond \phi \lor \Diamond \psi$ $\sigma \land \Diamond \phi \Leftrightarrow \Diamond (\sigma \land \phi)$

Overt subspaceCompact subspace
$$\Diamond \bot \Leftrightarrow \bot$$
 $\Box \top \Leftrightarrow \top$ $\Diamond (\phi \lor \psi) \Leftrightarrow \Diamond \phi \lor \Diamond \psi$ $\Box (\phi \land \psi) \Leftrightarrow \Box \phi \land \Box \psi$ $\sigma \land \Diamond \phi \Leftrightarrow \Diamond (\sigma \land \phi)$ $\sigma \lor \Box \phi \Leftrightarrow \Box (\lambda x. \sigma \lor \phi x)$

Commutative laws:

$$\Diamond \left(\lambda x. \, \blacklozenge (\lambda y. \, \phi xy) \right) \quad \Leftrightarrow \quad \blacklozenge \left(\lambda y. \, \, \Diamond (\lambda x. \, \phi xy) \right)$$
$$\Box \left(\lambda x. \, \blacksquare (\lambda y. \, \phi xy) \right) \quad \Leftrightarrow \quad \blacksquare \left(\lambda y. \, \, \Box (\lambda x. \, \phi xy) \right)$$

Mixed modal laws for a compact overt subspace.

$$\Box \phi \lor \Diamond \psi \Leftarrow \Box (\phi \lor \psi) \quad \text{and} \quad \Box \phi \land \Diamond \psi \Rightarrow \Diamond (\phi \land \psi)$$

Empty/inhabited is decidable

Theorem: Any compact overt subspace (\Box, \Diamond) is either empty $(\Box \bot)$ or non-empty $(\Diamond \top)$.

Proof:

Empty/inhabited is decidable

Theorem: Any compact overt subspace (\Box, \Diamond) is either empty $(\Box \bot)$ or non-empty $(\Diamond \top)$.

Proof:

The dichotomy (either $\Box \bot$ or $\Diamond \top$) means that the parameter space Γ is a disjoint union.

So, if it is connected, like \mathbb{R}^n , something must break at singularities.

It is the modal law $\Box(\phi \lor \psi) \Rightarrow \Box \phi \lor \Diamond \psi$.

Non-empty compact overt subspace of \mathbb{R} has a maximum

Theorem: Any overt compact subspace K ⊂ \mathbb{R} is

- either empty
- ▶ or has a greatest element, $\max K \in K$.

Definition: $\max K$ satisfies, for $x : \mathbb{R}$,

$$(x < \max K) \Leftrightarrow (\exists k \colon K. \ x < k)$$

$$(\max K < x) \Leftrightarrow (\forall k \colon K. \ k < x)$$

$$k \colon K + k \le \max K$$

$$\frac{\Gamma, \ k \colon K + k \le x}{}$$

 $\Gamma \vdash \max K < x$

Compact overt subspace of \mathbb{R} has a maximum

Proof: Define a Dedekind cut (next slide)

$$\delta d \equiv \exists k \colon K. \ d < k \text{ and } vu \equiv \forall k \colon K. \ k < u$$

Hence there is some $a : \mathbb{R}$ with

$$\delta d \Leftrightarrow (d < a)$$
 and $vu \Leftrightarrow (a < u)$

Moreover, $a \in K$.

K is also the closed subspace co-classified by $\omega x \equiv \Box(\lambda k. \ x \neq k)$, so we must show that $\omega a \Leftrightarrow \bot$.

$$\omega a \equiv \Box(\lambda k. \, a \neq k) \iff \Box(\lambda k. \, a < k) \lor (k < a)$$

$$\Rightarrow \Diamond(\lambda k. \, a < k) \lor \Box(\lambda k. \, k < a)$$

$$\equiv \delta a \lor \upsilon a$$

$$\Leftrightarrow (a < a) \lor (a < a) \Leftrightarrow \bot.$$

Compact overt subspace of $\mathbb R$ defines a Dedekind cut

\top , \wedge and \bigvee^{\bullet}
$vu \equiv \Box(\lambda k. k < u)$
$vt \wedge (t < u) \equiv$
$\Box(\lambda k. k < t) \land (t < u)$
$\Leftrightarrow \Box (\lambda k. k < t < u)$
$\Rightarrow \ \Box(\lambda k. k < u) \ \equiv \ \upsilon u$
on)
$\exists u. vu \equiv \exists u. \ \Box(\lambda k. k < u)$
$\Leftrightarrow \Box(\lambda k. \exists u. k < u)$
$\Leftrightarrow \Box \top \Leftrightarrow \top$

The Bishop-style proof

Definition: K is totally bounded if, for each $\epsilon > 0$, there's a finite subset $S_{\epsilon} \subset K$ such that $\forall x \colon K. \exists y \in S_{\epsilon}. |x - y| < \epsilon$.

Proof: If *K* is closed and totally bounded,

- either the set S_1 is empty, in which case K is empty too,
- ▶ or $x_n \equiv \max S_{2^{-n}}$ defines a Cauchy sequence that converges to $\max K$.

But *K* is also overt, with $\Diamond \phi \equiv \exists \epsilon > 0$. $\exists y \in S_{\epsilon}$. ϕy .

Definition: *K* is located if, for each $x \in X$, inf {|x - k| | $k \in K$ } is defined. (A different usage of the word "located".) closed, totally bounded ⇒ compact and overt ⇒ located (in TTE) also r.e. closed

- ► Total boundedness and locatedness are metrical concepts.
- Compactness and overtness are topological.

The real interval is connected (usual proof)

Any closed subspace of a compact space is compact. Any open subspace of an overt space is overt.

Any clopen subspace of an overt compact space is overt compact, so it's either empty or has a maximum.

Since the clopen subspace is open, its elements are interior, so the maximum can only be the right endpoint of the interval.

Any clopen subspace has a clopen complement.

- ► They can't both be empty, but
- ▶ in the interval they can't both have maxima (the right endpoint).

Hence one is empty and the other is the whole interval.

Connectedness in modal notation

We have just proved

$$\Diamond(\phi \land \psi) \Leftrightarrow \bot$$
, $\Box(\phi \lor \psi) \Leftrightarrow \top \vdash \Box \phi \lor \Box \psi \Leftrightarrow \top$

where $\Box \theta \equiv \forall x : [0,1]$. θx and $\Diamond \theta \equiv \exists x : [0,1]$. θx .

Using the mixed modal law $\Diamond \phi \land \Box \psi \Rightarrow \Diamond (\phi \land \psi)$ and the Gentzen-style rules

$$\frac{\sigma \Leftrightarrow \top \vdash \alpha \Rightarrow \beta}{\vdash \sigma \land \alpha \Rightarrow \beta} \qquad \frac{\sigma \Leftrightarrow \bot \vdash \alpha \Rightarrow \beta}{\vdash \alpha \Rightarrow \beta \lor \sigma}$$

connectedness may be expressed in other ways:

Weak intermediate value theorems

Let $f : [0,1] \to \mathbb{R}$, and use two of these forms of connectedness.

Put $\phi x \equiv (0 < fx)$ and $\psi x \equiv (fx < 0)$. Use $\Diamond(\phi \land \psi) = \bot \vdash \Box(\phi \lor \psi) \land \Diamond \phi \land \Diamond \psi \Rightarrow \bot$. $\Diamond(\phi \land \psi) \Leftrightarrow \bot$ by disjointness. Then $(f0 < 0 < f1) \land (\forall x : [0,1]. fx \neq 0) \Leftrightarrow \bot$.

So the closed, compact subspace $Z \equiv \{x : \mathbb{I} \mid fx = 0\}$ is not empty.

Put $\phi x \equiv (e < fx)$ and $\psi x \equiv (fx < t)$. Use $\Box(\phi \lor \psi) \land \Diamond \phi \land \Diamond \psi \Rightarrow \Diamond(\phi \land \psi)$. $\Box(\phi \lor \psi)$ by locatedness.

Then $(f0 < e < t < f1) \Rightarrow (\exists x : [0,1]. \ e < fx < t)$. or $\epsilon > 0 + \exists x. |fx| < \epsilon$.

So the open, overt subspace $\{x \mid e < fx < t\}$ is inhabited.

Straddling intervals in ASD

Let $f : [0,1] \to \mathbb{R}$ be a function that doesn't hover.

Proposition: \Diamond preserves joins, $\Diamond(\exists n. \theta_n) \Leftrightarrow \exists n. \Diamond \theta_n$.

Proof: Consider

 $\phi^{\pm}x \equiv \exists n. \exists y. (x < y < u) \land (fy < 0) \land \forall z: [x, y]. \theta_n z.$

Then $\exists x. \phi^+ x \land \phi^- x$ by connectness.

Lemma: 0 < a < 1 is a stable zero of f iff it is an accumulation point of \Diamond , *i.e.* $\phi a \Rightarrow \Diamond \phi$.

Theorem: \Diamond and \Box obey $\Box \phi \land \Diamond \psi \Rightarrow \Diamond (\phi \land \psi)$.

They also obey $\Box(\phi \lor \psi) \Rightarrow \Box \phi \lor \Diamond \phi$ iff f doesn't touch the axis without crossing it.

When *f* is a polynomial, this is the non-singular case, where *f* has no zeroes of even multiplicity.

Solving equations in ASD

In the non-singular case, all zeroes are stable, \Diamond and \Box define a non-empty overt compact subspace, which has a maximum.

So the classical textbook proof of IVT,

$$a \equiv \sup \{x : [0,1] \mid fx \le 0\},\$$

is computationally meaningful!

The set of zeroes varies discontinuously at singularities in the parameters.

The modal operators \square and \lozenge are Scott-continuous throughout the parameter space.

The interval trisection algorithm for \Diamond finds some zero, even in the singular case, but it behaves non-deterministically and catastrophically.

Differentiation

Define (fx, f'x) together by a Dedekind cross-hair.

Characterise
$$(e_0 < fx < t_0) \land (e_1 < f'x < t_1)$$
 by

$$\exists \delta. \ \forall h: [0, \delta].$$
 $e_1 + e_1 h < f(x+h) < t_0 + t_1 h$ $\land e_1 - t_1 h < f(x-h) < t_0 - e_1 h$

This is a Dedekind cut in (e_0, t_0) since $f : \mathbb{R} \to \mathbb{R}$ is a function.

It is bounded in (e_1, t_1) if f is Lipschitz at x.

It is a Dedekind cut in (e_1, t_1) if f is differentiable at x.

I need help!

I'm a categorist, not an analyst.

I last did real analysis as a second year undergraduate.

I need a real analyst to set an agenda for me.

I also need a job from September 2006.