A Lambda Calculus for Real Analysis

Paul Taylor ${ }^{1} \quad$ Andrej Bauer ${ }^{2}$
${ }^{1}$ Department of Computer Science
University of Manchester
UK EPSRC GR/S58522
${ }^{2}$ Department of Mathematics and Physics
University of Ljubljana

Computability and Complexity in Analysis Sunday, 28 August 2005

www.cs.man.ac.uk/~pt/ASD

All functions are continuous and computable

This is not a Theorem (à la Brouwer) but a design principle. The language only introduces continuous computable functions.

All functions are continuous and computable

This is not a Theorem (à la Brouwer) but a design principle. The language only introduces continuous computable functions.

In particular, all functions $\mathbb{R} \times \mathbb{R} \rightarrow \Sigma$ are continuous and correspond to open subspaces.

All functions are continuous and computable

This is not a Theorem (à la Brouwer) but a design principle. The language only introduces continuous computable functions.

In particular, all functions $\mathbb{R} \times \mathbb{R} \rightarrow \Sigma$ are continuous and correspond to open subspaces.

Hence $a<b, a\rangle b$ and $a \neq b$ are definable, but $a \leq b, a \geq b$ and $a=b$ are not definable.

All functions are continuous and computable

This is not a Theorem (à la Brouwer) but a design principle. The language only introduces continuous computable functions.

In particular, all functions $\mathbb{R} \times \mathbb{R} \rightarrow \Sigma$ are continuous and correspond to open subspaces.

Hence $a<b, a\rangle b$ and $a \neq b$ are definable, but $a \leq b, a \geq b$ and $a=b$ are not definable.

This is because \mathbb{R} is Hausdorff but not discrete.

All functions are continuous and computable

This is not a Theorem (à la Brouwer) but a design principle. The language only introduces continuous computable functions.

In particular, all functions $\mathbb{R} \times \mathbb{R} \rightarrow \Sigma$ are continuous and correspond to open subspaces.

Hence $a<b, a\rangle b$ and $a \neq b$ are definable, but $a \leq b, a \geq b$ and $a=b$ are not definable.

This is because \mathbb{R} is Hausdorff but not discrete.
\mathbb{N} and \mathbb{Q} are discrete and Hausdorff.
So we have all six relations for them.

Geometric, not Intuitionistic, logic

A term $\sigma: \Sigma$ is called a proposition.
A term $\phi: \Sigma^{X}$ is called a predicate or open subspace.
We can form $\phi \wedge \psi$ and $\phi \vee \psi$.
Also $\exists n: \mathbb{N} . \phi x, \exists q: \mathbb{Q} . \phi x, \exists x: \mathbb{R} . \phi x$ and $\exists x:[0,1] . \phi x$.

Geometric, not Intuitionistic, logic

A term $\sigma: \Sigma$ is called a proposition.
A term $\phi: \Sigma^{X}$ is called a predicate or open subspace.
We can form $\phi \wedge \psi$ and $\phi \vee \psi$.
Also $\exists n: \mathbb{N} . \phi x, \exists q: \mathbb{Q} . \phi x, \exists x: \mathbb{R} . \phi x$ and $\exists x:[0,1] . \phi x$. But not $\exists x: X . \phi x$ for arbitrary X - it must be overt.

Geometric, not Intuitionistic, logic

A term $\sigma: \Sigma$ is called a proposition.
A term $\phi: \Sigma^{X}$ is called a predicate or open subspace.
We can form $\phi \wedge \psi$ and $\phi \vee \psi$.
Also $\exists n: \mathbb{N} . \phi x, \exists q: \mathbb{Q} . \phi x, \exists x: \mathbb{R} . \phi x$ and $\exists x:[0,1] . \phi x$.
But not $\exists x: X . \phi x$ for arbitrary X - it must be overt.
Negation and implication are not allowed.
Because:

- this is the logic of open subspaces;
- the function $\odot \leftrightarrows \bullet$ on $(\stackrel{\odot}{\bullet})$ is not continuous;
- the Halting Problem is not solvable.

Universal quantification

When $K \subset X$ is compact (e.g. $[0,1] \subset \mathbb{R}$), we can form $\forall x: K . \phi x$.

Universal quantification

When $K \subset X$ is compact (e.g. $[0,1] \subset \mathbb{R}$), we can form $\forall x: K . \phi x$.

The quantifier is a (higher-type) function $\forall_{K}: \Sigma^{K} \rightarrow \Sigma$.
Like everything else, it's Scott continuous.

Universal quantification

When $K \subset X$ is compact (e.g. $[0,1] \subset \mathbb{R}$), we can form $\forall x: K . \phi x$.

$$
\frac{x: K \vdash \mathrm{~T} \Leftrightarrow \phi x}{\vdash \mathrm{~T} \Leftrightarrow \forall x: K . \phi x}
$$

The quantifier is a (higher-type) function $\forall_{K}: \Sigma^{K} \rightarrow \Sigma$.
Like everything else, it's Scott continuous.
The useful cases of this in real analysis are

$$
\begin{array}{ll}
\forall x: K . \exists \delta>0 . \phi(x, \delta) & \Leftrightarrow \exists \delta>0 . \forall x: K \cdot \phi(x, \delta) \\
\forall x: K . \exists n \cdot \phi(x, n) & \Leftrightarrow \quad \exists n \cdot \forall x: K \cdot \phi(x, n)
\end{array}
$$

in the case where $\left(\delta_{1}<\delta_{2}\right) \wedge \phi\left(x, \delta_{2}\right) \Rightarrow \phi\left(x, \delta_{1}\right)$
or $\left(n_{1}>n_{2}\right) \wedge \phi\left(x, n_{2}\right) \Rightarrow \phi\left(x, n_{1}\right)$.
Recall that uniform convergence, continuity, etc. involve commuting quantifiers like this.

Propositions and statements

What's the problem with \forall ?

Propositions and statements

What's the problem with \forall ? We can't write $\forall \epsilon>0$!

Propositions and statements

What's the problem with \forall ? We can't write $\forall \epsilon>0$!
Propositions may be computationally observable.
Equations and implications amongst propositions or predicates may be logically provable from the axioms.
We call them statements.

Propositions and statements

What's the problem with \forall ? We can't write $\forall \epsilon>0$!
Propositions may be computationally observable.
Equations and implications amongst propositions or predicates may be logically provable from the axioms.
We call them statements.
For example, with $\downarrow a \equiv(\lambda d$. $d<a)$,
$\downarrow a=\downarrow b$ iff $a=b$ and $\downarrow a \Rightarrow \downarrow b$ iff $a \leq b$ in the arithmetical order.
Hence $a \leq b, a \geq b$ and $a=b$ are meaningful, as statements, not as propositions.

Propositions and statements

What's the problem with \forall ? We can't write $\forall \epsilon>0$!
Propositions may be computationally observable.
Equations and implications amongst propositions or predicates may be logically provable from the axioms.
We call them statements.
For example, with $\downarrow a \equiv(\lambda d$. $d<a)$,
$\downarrow a=\downarrow b$ iff $a=b$ and $\downarrow a \Rightarrow \downarrow b$ iff $a \leq b$
in the arithmetical order.
Hence $a \leq b, a \geq b$ and $a=b$ are meaningful, as statements, not as propositions.
In fact, $a \leq b$ is equivalent as a statement to $(a>b) \Rightarrow \perp$, and $a=b$ to $(a \neq b) \Rightarrow \perp$.

We deal with $\forall \epsilon>0$ by allowing ϵ as parameter or free variable.

Examples: continuity and uniform continuity

Recall that, from local compactness of \mathbb{R},

$$
\phi x \Leftrightarrow \exists \delta>0 . \forall y:[x \pm \delta] . \phi y
$$

Theorem: Every definable function $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous:

$$
\epsilon>0 \Rightarrow \exists \delta>0 . \forall y:[x \pm \delta] .(|f y-f x|<\epsilon)
$$

Proof: Put $\phi_{x, \epsilon} y \equiv(|f y-f x|<\epsilon)$, with parameters $x, \epsilon: \mathbb{R}$.
Theorem: Every function f is uniformly continuous on any compact subspace $K \subset \mathbb{R}$:

$$
\epsilon>0 \Rightarrow \exists \delta>0 . \forall x: K . \forall y:[x \pm \delta] .(|f y-f x|<\epsilon)
$$

Proof: $\exists \delta>0$ and $\forall x: K$ commute.

Example: Dini's theorem

Theorem: Let $f_{n}: K \rightarrow \mathbb{R}$ be an increasing sequence of functions

$$
n: \mathbb{N}, x: K \vdash f_{n} x \leq f_{n+1} x: \mathbb{R}
$$

that converges pointwise to $g: K \rightarrow \mathbb{R}$, so

$$
\epsilon>0, x: K \vdash \top \Leftrightarrow \exists n . g x-f_{n} x<\epsilon .
$$

If K is compact then f_{n} converges to g uniformly.
Proof: Using the introduction and Scott continuity rules for \forall,

$$
\begin{aligned}
\epsilon>0 \vdash \top & \Leftrightarrow \forall x: \text { K. ヨn.gx-f} n<\epsilon \\
& \Leftrightarrow \exists n \cdot \forall x: K \cdot g x-f_{n} x<\epsilon
\end{aligned}
$$

Corollary: Since ASD has a computational interpretation, Dini's theorem is computationally valid.

Relative containment of open subspaces

Let σ, α, β be propositions with parameters $x_{1}: X_{1}, \ldots, x_{k}: X_{k}$.
(We conventionally write Γ for this list.
Semantically, Γ is the space $X_{1} \times \cdots \times X_{k}$.)
Then σ, α, β define open subspaces of Γ.
They satisfy a Gentzen-stle rule of inference:

$$
\frac{\Gamma, \sigma \Leftrightarrow \top \vdash \alpha \Rightarrow \beta}{\Gamma \vdash \sigma \wedge \alpha \Rightarrow \beta}
$$

in which the top line means
> within the open subspace of Γ defined by σ,
> the open subspace defined by α
> is contained in the open subspace defined by β.

and the bottom line means
the intersection of the open subspaces defined by σ and α is contained in that defined by β.

Relative containment of closed subspaces

Let σ, α, β be propositions with parameters $x_{1}: X_{1}, \ldots, x_{k}: X_{k}$.
(We conventionally write Γ for this list.
Semantically, Γ is the space $X_{1} \times \cdots \times X_{k}$.)
Then σ, α, β define closed subspaces of Γ.
They satisfy a Gentzen-stle rule of inference:

$$
\frac{\Gamma, \sigma \Leftrightarrow \perp \vdash \alpha \Rightarrow \beta}{\Gamma \vdash \alpha \Rightarrow \sigma \vee \beta}
$$

in which the top line means
> within the closed subspace of Γ defined by σ,
> the closed subspace defined by α
> contains the closed subspace defined by β.

and the bottom line means
the intersection of the closed subspaces defined by σ and β is contained in that defined by α.

Exercise for everyone!

Make a habit of trying to formulate statements in analysis according to (the restrictions of) the ASD language.

This may be easy - it may not be possible
The exercise of doing so may be 95% of solving your problem!

Constructive intermediate value theorem

Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ doesn't hover, i.e.

$$
b, d: \mathbb{R} \vdash b<d \Rightarrow \exists x .(b<x<d) \wedge(f x \neq 0)
$$

and $f 0<0<f 1$. Then $f c=0$ for some $0<c<1$.
Interval trisection: Let $a_{0} \equiv 0, e_{0} \equiv 1$,

$$
b_{n} \equiv \frac{1}{3}\left(2 a_{n}+e_{n}\right) \quad \text { and } \quad d_{n} \equiv \frac{1}{3}\left(a_{n}+2 e_{n}\right)
$$

Then $f\left(c_{n}\right) \neq 0$ for some $b_{n}<c_{n}<d_{n}$, so put

$$
a_{n+1}, e_{n+1} \equiv \begin{cases}a_{n}, c_{n} & \text { if } f\left(c_{n}\right)>0 \\ c_{n}, e_{n} & \text { if } f\left(c_{n}\right)<0\end{cases}
$$

Then $f\left(a_{n}\right)<0<f\left(e_{n}\right)$ and $a_{n} \rightarrow c \leftarrow e_{n}$.
(This isn't the ASD proof/algorithm yet!)

Stable zeroes

The interval trisection finds zeroes with this property:

Definition: $c: \mathbb{R}$ is a stable zero of f if

$$
\begin{aligned}
a, e: \mathbb{R} \vdash a<c<e \Rightarrow \exists b d . \quad & (a<b<c<d<e) \\
\wedge \quad & (f b<0<f d \vee f b>0>f d) .
\end{aligned}
$$

The subspace $Z \subset[0,1]$ of all zeroes is compact. The subspace $S \subset[0,1]$ of stable zeroes is overt (as we shall see...)

Straddling intervals

An open subspace $U \subset \mathbb{R}$ contains a stable zero $c \in U \cap S$ iff U also contains a straddling interval,

$$
[b, d] \subset U \text { with } f b<0<f d \text { or } f b>0>f d
$$

$[\Rightarrow$] From the definitions. [\Leftarrow] The straddling interval is an intermediate value problem in miniature.

Straddling intervals

An open subspace $U \subset \mathbb{R}$ contains a stable zero $c \in U \cap S$ iff U also contains a straddling interval,

$$
[b, d] \subset U \quad \text { with } \quad f b<0<f d \quad \text { or } \quad f b>0>f d .
$$

[\Rightarrow] From the definitions. [\Leftarrow] The straddling interval is an intermediate value problem in miniature.
Notation: Write $\diamond U$ if U contains a straddling interval. We write this containment in ASD using the universal quantifier.

$$
\begin{aligned}
\diamond \phi \equiv \exists b d . & (\forall x:[b, d] \cdot \phi x) \\
& \wedge \quad(f b<0<f d) \vee(f b>0>f d)
\end{aligned}
$$

The possibility operator

By hypothesis, $\diamond(0,1) \Leftrightarrow T$, whilst $\diamond \emptyset \Leftrightarrow \perp$ trivially.
$\diamond \bigcup_{i \in I} U_{i} \Longleftrightarrow \exists i . \diamond U_{i}$.
If $f: \mathbb{R} \rightarrow \mathbb{R}$ is an open map, this is easy.
If $f: \mathbb{R} \rightarrow \mathbb{R}$ doesn't hover, it depends on connectedness of \mathbb{R}.

The possibility operator

By hypothesis, $\diamond(0,1) \Leftrightarrow T$, whilst $\diamond \emptyset \Leftrightarrow \perp$ trivially.
$\diamond \bigcup_{i \in I} U_{i} \Longleftrightarrow \exists i . \diamond U_{i}$.
If $f: \mathbb{R} \rightarrow \mathbb{R}$ is an open map, this is easy.
If $f: \mathbb{R} \rightarrow \mathbb{R}$ doesn't hover, it depends on connectedness of \mathbb{R}.
Definition: A term $\diamond: \Sigma^{\Sigma^{X}}$ with this property is called an overt subspace of X.

A simpler example: For any point $a: X$, the neighbourhood filter $\diamond \equiv \eta a \equiv \lambda \phi$. ϕa is a possibility operator.
\diamond is a point iff it also preserves T and \wedge.

The Possibility Operator as a Program

Theorem: Let \diamond be an overt subspace of \mathbb{R} with $\diamond T \Leftrightarrow T$.
Then \diamond has an accumulation point $c \in \mathbb{R}$, i.e. one of which every open neighbourhood $c \in U \subset \mathbb{R}$ satisfies $\diamond U$:

$$
\phi: \Sigma^{\mathbb{R}} \vdash \phi c \Rightarrow \diamond \phi
$$

Example: In the intermediate value theorem, any such c is a stable zero.

Proof: Interval trisection.
Corollary: Obtain a Cauchy sequence from a Dedekind cut.
(I expect to get a representation $2^{\mathbb{N}} \rightharpoonup \mathbb{R}$ in the sense of TTE by proving a result of Brattko \& Hertling in ASD.)

Possibility operators classically

Define $\diamond U$ as $U \cap S \neq \emptyset$, for any subset $S \subset X$ whatever .
Then $\diamond\left(\bigcup_{i \in I} U_{i}\right)$ iff $\exists i . \diamond U_{i}$.
Conversely, if \diamond has this property, let

$$
\begin{aligned}
S & \equiv\{a \in X \mid \text { for all open } U \subset X, \quad a \in U \Rightarrow \diamond U\} \\
W & \equiv X \backslash S=\bigcup\{U \text { open } \mid \neg \diamond U\}
\end{aligned}
$$

Then W is open and S is closed.
$\neg \diamond W$ by preservation of unions.
Hence $\diamond U$ holds iff $U \not \subset W$, i.e. $U \cap S \neq \emptyset$.
If \diamond had been derived from some S^{\prime} then $S=\overline{S^{\prime}}$, its closure.
Classically, every (sub)space S is overt.

Necessity operators

Let $K \subset \mathbb{R}$ be any compact subspace.
(For example, all zeroes in a bounded interval.)
$U \mapsto(K \subset U)$ is Scott continuous.
Notation: Write $\square \phi$ for $\forall x:$ K. ϕx.

Modal operators, separately

\square encodes the compact subspace $Z \equiv\{x \in \mathbb{I} \mid f x=0\}$ of all zeroes. \diamond encodes the overt subspace S of stable zeroes.
$\square X$ is true and $\quad \square U \wedge \square V \Rightarrow \square(U \cap V)$ $\diamond \emptyset$ is false and $\diamond(U \cup V) \Rightarrow \diamond U \vee \diamond V$.

$$
\begin{array}{lll}
(Z \neq \emptyset) & \text { iff } & \square \emptyset \text { is false } \\
(S \neq \emptyset) & \text { iff } & \diamond \mathbb{R} \text { is true }
\end{array}
$$

Modal operators, together

\diamond and \square for the subspaces $S \subset Z$ are related in general by:

$$
\begin{gathered}
\square U \wedge \diamond V \Rightarrow \diamond(U \cap V) \\
\square U \Longleftrightarrow(U \cup W=X) \\
\diamond V \Rightarrow(V \not \subset W)
\end{gathered}
$$

S is dense in Z iff

$$
\begin{gathered}
\square(U \cup V) \Rightarrow \square U \vee \diamond V \\
\diamond V \Leftarrow(V \not \subset W)
\end{gathered}
$$

In the intermediate value theorem for functions that don't hover (e.g. polynomials):

- $S=Z$ in the non-singular case
- $S \subset Z$ in the singular case (e.g. double zeroes).

Modal laws in ASD notation

$$
\begin{array}{cc}
\text { Overt subspace } & \text { Compact subspace } \\
\diamond \perp \Leftrightarrow \perp & \square \top \Leftrightarrow \top \\
\diamond(\phi \vee \psi) \Leftrightarrow \diamond \phi \vee \diamond \psi & \square(\phi \wedge \psi) \Leftrightarrow \square \phi \wedge \square \psi \\
\sigma \wedge \diamond \phi \Leftrightarrow \diamond(\sigma \wedge \phi) & \sigma \vee \square \phi \Leftrightarrow \square(\lambda x . \sigma \vee \phi x)
\end{array}
$$

Commutative laws:

$$
\begin{aligned}
& \diamond(\lambda x \cdot(\lambda y \cdot \phi x y)) \Leftrightarrow \bullet(\lambda y \cdot \diamond(\lambda x \cdot \phi x y)) \\
& \square(\lambda x \cdot \square(\lambda y \cdot \phi x y)) \Leftrightarrow \square(\lambda y \cdot \square(\lambda x \cdot \phi x y))
\end{aligned}
$$

Mixed modal laws for a compact overt subspace.

$$
\square \phi \vee \diamond \psi \Leftarrow \square(\phi \vee \psi) \quad \text { and } \quad \square \phi \wedge \diamond \psi \Rightarrow \diamond(\phi \wedge \psi)
$$

Empty/inhabited is decidable

Theorem: Any compact overt subspace (\square, \diamond) is either empty $(\square \perp)$ or non-empty $(\diamond T)$.
Proof:

$\diamond T \Leftrightarrow \perp$	empty	$\square \perp \Leftrightarrow T$
$\diamond T \Leftrightarrow T$	inhabited	$\square \perp \Leftrightarrow \perp$
$\square \perp \vee \diamond T \Leftarrow$	complementary	$\square \perp \wedge \diamond T \Rightarrow$
$\square(\perp \vee T) \Leftrightarrow \square T \Leftrightarrow T$	(mixed)	$\diamond(\perp \wedge \perp) \Leftrightarrow \diamond \perp \Leftrightarrow \perp$

Empty/inhabited is decidable

Theorem: Any compact overt subspace (\square, \diamond) is either empty $(\square \perp)$ or non-empty $(\diamond T)$.
Proof:

$$
\begin{array}{ccc}
\diamond T \Leftrightarrow \perp & \text { empty } & \square \perp \Leftrightarrow T \\
\diamond T \Leftrightarrow T & \text { inhabited } & \square \perp \Leftrightarrow \perp \\
\square \perp \vee \diamond T \Leftarrow & \text { complementary } & \square \perp \wedge \diamond T \Rightarrow \\
\square(\perp \vee T) \Leftrightarrow \square T \Leftrightarrow T & \text { (mixed) } & \diamond(\perp \wedge \perp) \Leftrightarrow \diamond \perp \Leftrightarrow \perp
\end{array}
$$

The dichotomy (either $\square \perp$ or $\diamond T$) means that the parameter space Γ is a disjoint union.
So, if it is connected, like \mathbb{R}^{n}, something must break at singularities.

It is the modal law $\square(\phi \vee \psi) \Rightarrow \square \phi \vee \diamond \psi$.

Non-empty compact overt subspace of \mathbb{R} has a maximum

Theorem: Any overt compact subspace $K \subset \mathbb{R}$ is

- either empty
- or has a greatest element, $\max K \in K$.

Definition: max K satisfies, for $x: \mathbb{R}$,

$$
\begin{aligned}
& (x<\max K) \Leftrightarrow(\exists k: K . x<k) \\
& (\max K<x) \Leftrightarrow(\forall k: K . k<x) \\
& k: K \quad \vdash \quad k \leq \max K \\
& \Gamma, k: K \vdash k \leq x \\
& \Gamma \vdash \max K \leq x
\end{aligned}
$$

Compact overt subspace of \mathbb{R} has a maximum

Proof: Define a Dedekind cut (next slide)

$$
\delta d \equiv \exists k: K . d<k \quad \text { and } \quad v u \equiv \forall k: K . k<u
$$

Hence there is some $a: \mathbb{R}$ with

$$
\delta d \Leftrightarrow(d<a) \text { and } v u \Leftrightarrow(a<u)
$$

Moreover, $a \in K$.
K is also the closed subspace co-classified by $\omega x \equiv \square(\lambda k . x \neq k)$, so we must show that $\omega a \Leftrightarrow \perp$.

$$
\begin{aligned}
\omega a \equiv \square(\lambda k \cdot a \neq k) & \Leftrightarrow \square(\lambda k \cdot a<k) \vee(k<a) \\
& \Rightarrow \diamond(\lambda k \cdot a<k) \vee \square(\lambda k \cdot k<a) \\
& \equiv \delta a \vee v a \\
& \Leftrightarrow(a<a) \vee(a<a) \Leftrightarrow \perp .
\end{aligned}
$$

Compact overt subspace of \mathbb{R} defines a Dedekind cut

Overt subspace \diamond
\perp, \vee, \bigvee and so $\exists_{\mathbb{R}} \quad$ commutes with

$$
\delta d \equiv \diamond(\lambda k . d<k) \quad \text { Dedekind cut } \quad v u \equiv \square(\lambda k . k<u)
$$

$$
(d<e) \wedge \delta e \equiv \quad \text { lower/upper }
$$

$$
(d<e) \wedge \diamond(\lambda k . e<k)
$$

$$
\Leftrightarrow \diamond(\lambda k \cdot d<e<k)
$$

$$
\Rightarrow \diamond(\lambda k \cdot d<k) \equiv \delta d
$$

$$
\Leftarrow \quad \text { rounded (interpolation) }
$$

Compact subspace \square
T, \wedge and

$$
v t \wedge(t<u) \equiv
$$

$$
\square(\lambda k . k<t) \wedge(t<u)
$$

$$
\Leftrightarrow \square(\lambda k . k<t<u)
$$

$$
\Rightarrow \square(\lambda k . k<u) \equiv v u
$$

$$
\Leftarrow
$$

$$
\begin{array}{ccc}
\exists d . \delta d \equiv \exists d . \diamond(\lambda k . d<k) & \text { inhabited } & \exists u \cdot v u \equiv \exists u . \square(\lambda k . k<u) \\
\Leftrightarrow \diamond(\lambda k . \exists d \cdot d<k) & \text { (directed joins) } & \Leftrightarrow \square(\lambda k . \exists u \cdot k<u) \\
\Leftrightarrow \diamond \top \Leftrightarrow T \text { (inhabited) } & \text { (extrapolation) } & \Leftrightarrow \square \top \Leftrightarrow \top
\end{array}
$$

The Bishop-style proof

Definition: K is totally bounded if, for each $\epsilon>0$, there's a finite subset $S_{\epsilon} \subset K$ such that
$\forall x: K . \exists y \in S_{\epsilon} .|x-y|<\epsilon$.
Proof: If K is closed and totally bounded,

- either the set S_{1} is empty, in which case K is empty too,
- or $x_{n} \equiv \max S_{2^{-n}}$ defines a Cauchy sequence that converges to max K.
But K is also overt, with $\diamond \phi \equiv \exists \epsilon>0$. $\exists y \in S_{\epsilon} . \phi y$.
Definition: K is located if, for each $x \in X$, $\inf \{|x-k| \mid k \in K\}$ is defined.
(A different usage of the word "located".) closed, totally bounded \Rightarrow compact and overt \Rightarrow located (in TTE) also r.e. closed
- Total boundedness and locatedness are metrical concepts.
- Compactness and overtness are topological.

The real interval is connected (usual proof)

Any closed subspace of a compact space is compact. Any open subspace of an overt space is overt.

Any clopen subspace of an overt compact space is overt compact, so it's either empty or has a maximum.

Since the clopen subspace is open, its elements are interior, so the maximum can only be the right endpoint of the interval.

Any clopen subspace has a clopen complement.

- They can't both be empty, but
- in the interval they can't both have maxima (the right endpoint).

Hence one is empty and the other is the whole interval.

Connectedness in modal notation

We have just proved

$$
\diamond(\phi \wedge \psi) \Leftrightarrow \perp, \square(\phi \vee \psi) \Leftrightarrow \top \vdash \square \phi \vee \square \psi \Leftrightarrow \top
$$

where $\square \theta \equiv \forall x:[0,1] . \theta x$ and $\diamond \theta \equiv \exists x:[0,1] . \theta x$.
Using the mixed modal law $\diamond \phi \wedge \square \psi \Rightarrow \diamond(\phi \wedge \psi)$ and the Gentzen-style rules

$$
\frac{\sigma \Leftrightarrow \top \vdash \alpha \Rightarrow \beta}{\vdash \sigma \wedge \alpha \Rightarrow \beta} \quad \frac{\sigma \Leftrightarrow \perp \vdash \alpha \Rightarrow \beta}{\vdash \alpha \Rightarrow \beta \vee \sigma}
$$

connectedness may be expressed in other ways:

$$
\begin{array}{lll}
\diamond(\phi \wedge \psi) \Leftrightarrow \perp & \square(\phi \vee \psi) \Rightarrow \square \phi \vee \square \psi \\
\diamond(\phi \wedge \psi) \Leftrightarrow \perp & \vdash & \square(\phi \vee \psi) \wedge \diamond \phi \wedge \diamond \psi \Rightarrow \perp \\
\square(\phi \vee \psi) & \Rightarrow & \square \phi \vee \square \psi \vee \diamond(\phi \vee \psi) \\
\square(\phi \vee \psi) \wedge \diamond \phi \wedge \diamond \psi & \Rightarrow \diamond(\phi \wedge \psi)
\end{array}
$$

Weak intermediate value theorems

Let $f:[0,1] \rightarrow \mathbb{R}$, and use two of these forms of connectedness.
Put $\phi x \equiv(0<f x)$ and $\psi x \equiv(f x<0)$.
Use $\diamond(\phi \wedge \psi)=\perp \vdash \square(\phi \vee \psi) \wedge \diamond \phi \wedge \diamond \psi \Rightarrow \perp$. $\diamond(\phi \wedge \psi) \Leftrightarrow \perp$ by disjointness.
Then $(f 0<0<f 1) \wedge(\forall x:[0,1] . f x \neq 0) \Leftrightarrow \perp$.
So the closed, compact subspace $Z \equiv\{x: \mathbb{I} \mid f x=0\}$ is not empty.
Put $\phi x \equiv(e<f x)$ and $\psi x \equiv(f x<t)$.
Use $\square(\phi \vee \psi) \wedge \diamond \phi \wedge \diamond \psi \Rightarrow \diamond(\phi \wedge \psi)$.
$\square(\phi \vee \psi)$ by locatedness.
Then $(f 0<e<t<f 1) \Rightarrow(\exists x:[0,1] . e<f x<t)$.
or $\epsilon>0 \vdash \exists x .|f x|<\epsilon$.
So the open, overt subspace $\{x \mid e<f x<t\}$ is inhabited.

Straddling intervals in ASD

Let $f:[0,1] \rightarrow \mathbb{R}$ be a function that doesn't hover.
Proposition: \diamond preserves joins, $\diamond\left(\exists n . \theta_{n}\right) \Leftrightarrow \exists n . \diamond \theta_{n}$.
Proof: Consider
$\phi^{ \pm} x \equiv \exists n$. $\exists y .(x<y<u) \wedge(f y>0) \wedge \forall z:[x, y] . \theta_{n} z$.
Then $\exists x . \phi^{+} x \wedge \phi^{-} x$ by connectness.
Lemma: $0<a<1$ is a stable zero of f iff it is an accumulation point of \diamond, i.e. $\phi a \Rightarrow \diamond \phi$.

Theorem: \diamond and \square obey $\square \phi \wedge \diamond \psi \Rightarrow \diamond(\phi \wedge \psi)$.
They also obey $\square(\phi \vee \psi) \Rightarrow \square \phi \vee \diamond \phi$ iff f doesn't touch the axis without crossing it.

When f is a polynomial, this is the non-singular case, where f has no zeroes of even multiplicity.

Solving equations in ASD

In the non-singular case, all zeroes are stable, \diamond and \square define a non-empty overt compact subspace, which has a maximum.
So the classical textbook proof of IVT,

$$
a \equiv \sup \{x:[0,1] \mid f x \leq 0\}
$$

is computationally meaningful!
The set of zeroes varies discontinuously at singularities in the parameters.
The modal operators \square and \diamond are Scott-continuous throughout the parameter space.
The interval trisection algorithm for \diamond finds some zero, even in the singular case, but it behaves non-deterministically and catastrophically.

Differentiation

Define $\left(f x, f^{\prime} x\right)$ together by a Dedekind cross-hair.
Characterise $\left(e_{0}<f x<t_{0}\right) \wedge\left(e_{1}<f^{\prime} x<t_{1}\right)$ by

$$
\begin{aligned}
& \exists \delta . \forall h:[0, \delta] . e_{1}+e_{1} h<f(x+h)<t_{0}+t_{1} h \\
& \wedge \\
& e_{1}-t_{1} h<f(x-h)<t_{0}-e_{1} h
\end{aligned}
$$

This is a Dedekind cut in $\left(e_{0}, t_{0}\right)$ since $f: \mathbb{R} \rightarrow \mathbb{R}$ is a function.
It is bounded in $\left(e_{1}, t_{1}\right)$ if f is Lipschitz at x.
It is a Dedekind cut in $\left(e_{1}, t_{1}\right)$ if f is differentiable at x.

I need help!

I'm a categorist, not an analyst.
I last did real analysis as a second year undergraduate.
I need a real analyst to set an agenda for me.
I also need a job from September 2006.

