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Not Category Theory 2025 in Brno

This was intended to be my talk at the international category
theory annual conference in Brno (Czech Republic) in July.

Unfortunately, I completely missed the announcement
with the “Call for Abstracts” in April.

This work is part of my proposal for
completely expunging set theory from category theory,
starting with the alleged need for transfinite constructions.

This talk will not consider the Axiom-Scheme of Replacement,

but

I have a definite proposal for a Replacement for Replacement
that will be the subject of my talk at ItaCa on 18 November 2025.

Recursive constructions in Category Theory

This work was prompted by the 1980 paper

A unified treatment of transfinite constructions
for free algebras, free monoids, colimits, associated sheaves,
and so on

by some set theorist called Max Kelly.

It identified generating a monad by iterating a well pointed
endofunctor as a simple case of this kind of problem,
to which others could be reduced.

What would this paper have said
if it had been written by
the grandfather of Australian 2-category theory?

Reflective subcategories = idempotent monads

A subcategory is reflective if it is
▶ full (contains all morphisms),
▶ replete (closed under isomorphic copies) and
▶ the inclusion U : A ⊂ X has a left adjoint F : X → A.

The composite M ≡ U · F : X → X is an idempotent monad
with η : id→M and µ : M ·M→M satisfying

ηM ; µ = id = Mη ; µ and Mµ ; µ = µM ; µ.

but also µ is invertible and therefore ηM = Mη.

The following are equivalent for an object X ∈ X:
▶X is a fixed point: ηX : X �MX;
▶X carries a (unique) (M, η, µ)-algebra structure;
▶X is an image: X �MY for some Y.



Intersection of reflective subcategories

Let’s call objects of our reflective subcategory nice.

Suppose we have a second reflective subcategory,
whose objects are pretty.

Do nice pretty objects form a reflective subcategory too?

Not obviously. (Idempotent) monads don’t compose.

We have to make the given object nice, then pretty,
then nice again, then pretty again, ...

and when we’ve done this infinitely often,
we’re still not finished, ...

You can see where this is going, but
let’s do some honest category theory instead!

Forget the multiplication µ

Since µ is redundant for an idempotent monad, forget it!

A pointed endofunctor S : X → X comes with
a natural transformation σ : id→ S.

A well pointed endofunctor has Sσ = σS.

Any idempotent monad is a well pointed endofunctor.
(Characterised by invertibility of Sσ = σS.)

Unlike monads, well pointed endofunctors compose.

This is true but not quite obvious. Kelly doesn’t state it.
When I asked about this subject on MathOverflow,
a certain very smart categorist challenged me to prove it.
So here goes:

Composition of (well) pointed endofunctors
We compose (well) pointed endofunctors like this:

id
σ - S id

σ - S

λ κ
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ρ
?

σR
- SR

Sρ
?

id

ρ
?

Rσ
- RS

ρS
?

using naturality of σwith respect to ρ and vice versa.

This is strictly associative with unit id
id- id

because that’s true in the 2-category of categories.

If the functors are well pointed then

Sκ ≡ Sσ ; SρS = σS ; SρS ≡ λS.

and Rλ ≡ Rρ ; RσR = ρR ; RσR ≡ κR.

Finally, RSκ = RλS = κRS and SRλ = SκR = λSR.

Algebras for well pointed endofunctors
Just as for idempotent monads, these are just fixed points:

An object X ∈ X carries an algebra structure α : SX→ X for a
well pointed endofunctor iff σX and α are mutually inverse.

Suppose that X
σX- SX

α- X is idX.

Since σ is natural with respect to α,

SX
SσX
σSX

- SSX

X

α

? σX - SX

Sα
?

we have
α ; σX = σSX ; Sα = SσX ; Sα = SidX

so α and σX are inverse and α is unique.



Generating an idempotent monad

We’re looking for an idempotent monad (M, η, µ)
with the same fixed points as (S, σ).

We get it by “iterating” S.

(S, σ) is a small step, (M, η, µ) is the big step.

Whilst (M, η, µ) is the unique idempotent monad
(up to unique isomorphism, of course)
corresponding to its subcategory of algebras,

there are many well pointed endofunctors (S, σ)
fixing given objects, in particular
(S · S, σ · σ), (S · S · S, σ · σ · σ), . . . do the same.

We will see that iterating well pointed endofunctors
is a mild categorical generalisation of the ordered case,
which we review briefly.

Transfinite recursion in the ordered case
It is so seductive
to do something infinitely often ... and then some more.

How many times have you seen this?

f 0 = some base data
f (α+) = some operation applied to f (α)

f (λ) =
⋃
{f (α) | α < λ}

Then there is a fixed point, by appeal to your fairy godmother.
your fairy godmother
John von Neumann (1928) and Friedrich Hartogs (1917).

(Kelly doesn’t claim fixed points exist for free.
but plenty of other authors do.)

Kazimierz Kuratowski (1922) showed this was unnecessary,
using an argument due to Ernst Zermelo (1908) that eventually
became known as the Bourbaki–Witt theorem (1949–51).

Fixed points in dcpos — again?
Let X be a directed-complete poset and
S a family of inflationary monotone endofunctions of X:

∀x. x ≤ sx and ∀x, y. x ≤ y =⇒ sx ≤ sy.

Then there is a closure operator id ≤ m = mm : X → X
such that

Fix m = FixS ≡ {x ∈ X | ∀s ∈ S. sx = x}.

If X has a least element ⊥ then
m⊥ is the least common fixed point of S.
If further the s ∈ S satisfy my special condition,

(∀s ∈ S. x = sx) ∧ x ≤ y ∈ X =⇒ x = y

then m⊥ is the top element ⊤ of X, because then
Fix m ≡ FixS has only one element, which must be ⊤.

Prove it with a Galois connection

Just like in Galois theory (fields and groups), write

s ⊥ x for sx = x

and generalise this to subsets:

S
⊥
≡ {x ∈ X | ∀s ∈ S. s ⊥ x} ≡ FixS

⊥
A ≡ {id ≤ s : X → X | ∀x ∈ A. s ⊥ x}

so that A ⊂ S
⊥
⇐⇒ S ⊥ A ⇐⇒ S ⊂

⊥
A .

Then, since inflationary monotone endofunctions compose
(as domain theorists such as me should have noticed,
but Dito Pataraia had to point out to us),
⊥
A is directed, so has a greatest element.

The greatest element of ⊥(S⊥) is the required closure operator m.



Categorical version

For X ∈ X and id
σ- S : X → Xwith Sσ = σS, write

(S, σ) ⊥ X ≡ σX invertible

and extend this to a Galois connection as before.

Since well pointed endofunctors compose, ⊥A is directed.

On the outrageous assumption that X is directed-complete,
▶ ⊥A has a terminal object (M, η);
▶ (M, η) is an idempotent monad; and
▶ ifA ≡ FixS then Fix M = FixS; so
▶ FixS is a reflective subcategory.

There is no other way

IfA ⊂ X is reflective then
its monad must be the terminal object of ⊥A.

We deduce this from the equivalence amongst:
(a) there is a morphism ϕ : (S, σ)→ (M, η);
(b) σM : M→ SM is invertible;
(c) Mσ : M→MS is invertible;
(d) for all X ∈ X, MX is an S-algebra;
(e) Fix M ⊂ Fix (S, σ).
Moreover ϕ in part (a) is unique.

Proof: there is a bijection defined by

(σM)−1 = ϕM ; µ and ϕ = Sη ; (σM)−1.

(This result involves more interesting 2-category theory
in the case of general pointed endofunctors and monads.)

Calculating the colimits

All of the steps in the construction
of the category of well pointed endofunctors
lift colimits from the underlying category.

Except: co-slice only lifts connected colimits.

Kelly showed that colimits lift
from pointed to well pointed endofunctors.

But we’re only interested in directed colimits,
so that’s ok.

Why not filtered ones?

Because we’re using the monoidal structure
of composition of pointed endofunctors
(“proof-relevant directedness”),
whereas filteredness is related to finiteness.

That outrageous colimit

The colimit certainly doesn’t always exist,
e.g. the covariant powerset functor has no fixed points.

The classical way of handling this restricts to functors
that preserve κ-filtered colimits.

The idea is that, assuming the Axiom of Choice,
the endofunctor (−)K : Set→ Set
preserves colimits of diagrams d : I → Set for which,
for any function f : K→ I,
there is already a bound u ∈ Iwith ∀k ∈ K. ∃. fk→ u,
plus a similar condition on arrows.

Then instead of just a set K, people talk about regular cardinals.
These are just isomorphism classes of sets in which we don’t
care what the isomorphims are.

Can we do something with some algebraic meaning instead?



Before we discard the ordinals completely
André Joyal and Ieke Moerdijk in Algebraic Set Theory
(CUP, 1995) characterised sets (∈-structures) and
three kinds of ordinals in terms of the successor.

On the other hand, recall that ordinal addition
▶ is associative,
▶ is not commutative,
▶ preserves non-empty joins in the second argument.

Ordinal multiplication has similar properties.

Can we find similar natural algebraic structure
in other recursive situations?

Number theorists don’t just study 0, 1, 2, 3, . . .
but algebraic field extensions (and lots of other
things that I didn’t understand as a student).

Could logicians, e.g. proof theorists, do something like that?

Recall the properties

Just like addition of ordinals,

composition of (well) pointed endofunctors
▶ is associative,
▶ is not commutative, and
▶ preserves connected joins in the second argument.

In fact well pointed endofunctors satisfy another property
that does not seem appropriate for ordinal addition,
although the classical tradition gives no clear idea
what categories of ordinals should look like.

Maybe we need to repeat this for general pointed endofunctors.

Anyway, let’s turn to an example where the colimit does exist.

Polynomial endofunctors

Consider endofunctions of Set or a presheaf topos of the form

SX ≡ ΣN∈CAN × XN

or more generally

SX ≡ ΣN∈CAN × XN/GN

where GN is a group acting on the object N.

These have been studied by several generations of categorists
(including me) and variously called species, analytic functors,
stable functors, containers.

Composition and directed colimits

Polynomial functors form a bicategory.

Composition, substitution or tensor product
is clearly linear (preserves

∑
) in the second argument,

whilst the coefficients AN can be incorporated into C,
so we just need(

ΣN∈CXN
)M
� ΣΦ∈CMX

∐
{Φm|m∈M}

By comparison, the directed colimits are much simpler,
just acting on the indexing set C.

All of this can be done within a Π-pretopos
and therefore the free algebras (W-types) exist,
so long as the exponentials N are bounded.



Polynomial functors as spans
The polynomial functor S : Set→ Set

SX ≡
∑
a∈A

XB(a)

can be encoded by the function

f :
∑
a∈A

B(a) −→ A where B(a) ≡ f−1(a)

and more generally S : SetI
→ SetJ by a span

I � s
B

f
- A

t - J,

namely S � ∆s ;Πf ; Σt,

where ∆ is substitution and
Σ ⊣ ∆ ⊣ Π are dependent sum and product.

We need to know how to compose spans...

Composition of polynomial functors
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This glorious diagram is (I believe) due to Joachim Kock
in his unpublished draft book and subsequent joint paper
Polynomial functors and polynomial monads
with Nicola Gambino (2010). It is well explained there.

Cartesian (natural) transformations
(For a large number of reasons) the appropriate morphisms
between polynomial functors are natural transformations
for which the naturality square is a pullback:

S
ϕ

- S′

X SX
ϕX

- S′X

Y

f
?

SY

Sf
? ϕY

- S′Y

S′f
?

These are encoded as maps between spans like this:

I � s
B

f
- A

t - J

I

wwwwwwwwwwwwwwwwwwwwwwww
� s′

B′

β
? f ′

- A′

α
? t′ - J

wwwwwwwwwwwwwwwwwwwwww
(I’ve swapped the use of primes from Gambino–Kock.)

Well pointed polynomial endofunctors?
A pointed endofunctor σ : id→ S has this span:

I � id
I

id - I
id - I

I

wwwwwwwwwwwwwwwwwwwwwwww
� s

B

β
? f

- A′

α
? t - J

wwwwwwwwwwwwwwwwwwwwwwww
which in the case I ≡ J ≡ 1 amounts to

A ≡
{
α ≡ fβ

}
+ A′, B ≡

{
β
}
+ B′

so σX ≡ ν0 : X −→ X + S′X ≡ SX.

When is this well pointed?

Sorry, it was only last week when I thought of including
this example, so I haven’t worked it out yet.



Directed colimits

I � s
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...

...
...

...

We need directed colimits to play nicely with pullbacks,
which they do in a locally cartesian closed category.

Generalised ordinal arithmetic

From the preceding remarks,
the bicategory composed of polynomial functors
admits ordinal-like addition.

Treating addition itself as a functor of this kind,
addition of such functors gives
ordinal-like multiplication,
essentially following the idea of
arithmetic for the Church numerals.

To do this we need a cartesian closed bicategory,
which we obtain by allowing the group quotients
and some other structure related to these groups.

The technology to do this already exists in the literature,
but this interpretation as generalised ordinals is new.

Stratified models of type theories

Polynomial functors and W-types plainly model
free algebraic theories, i.e. without equations.

The equations can be modelled as
a dependent algebraic theory.

Exponentials (−)N sort of fit into this pattern.

The covariant powerset P is a polynomial functor
analogous to eX, where n! becomes the symmetric group Sn:

P(X) � ΣnXn/Sn.

Along with these (largely familiar) constructions
comes an intrinsic generalised ordinal structure.

Maybe this could be used for categorical proof theory.

What about cardinals?

Apparently set theorists use these as a measure of logical
strength rather than to classify sets up to isomorphism.

In the case of polynomial functors,
there are lots of parameters, including
▶ the “size” of the exponents, which amounts to
▶ how filtered the diagrams are whose colimits are preserved;

and
▶ the complexity of the quotienting groups.

Categorically, these say what Π-pretopos we’re using.

In other words, the strength of the logic, but
without the obscurantist language.



Several PhD projects

As you gather, there are lots of details here that I haven’t
worked out.

In particular, I worked on “polynomial functors” in the 1980s
and don’t want to return to it.

Much more structure of functors like this has been identified
since then, and there is plenty of literature by some very clever
people.

But my suggestion of generalised ordinal arithmetic
is new structure and could make a good thesis topic.

For example, you could search for induction in
Well founded trees in categories
by Ieke Moerdijk and Erik Palmgren (1999)
and re-formulate the arguments
using my abstract notion of well founded object.

What this technique doesn’t do

Returning to the iteration of general functors.

The “Galois connection” that we used to construct
initial fixed points assumes that some fixed points exist.

In that case, this technique agrees with
my work on well founded coalgebras.

When there are no fixed points, such as for the powerset,
the techniques do not agree.

But we have not addressed the question of
whether transfinite iterates exist.

In set theory this requires the
Axiom-Scheme of Replacement.

We need a categorical replacement for that!

I will talk about that at ItaCa on 18 November.

Food for thought

Set theory has had 150 years to put its case.

Not only did it fail itself to provide the simple intuitionistic
fixed point theorem in order theory,

it inhibited other mathematicians from finding it.

I will be pleased to respond to questions about category theory
but not set theory.

Thank you for your attention.


