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Abstract
A basis for a locally compact space is a family of pairs of subspaces, one open and the

other compact, where containment of the compact subspace indicates whether the open one

contributes to the union expressing a general open subspace. This is captured abstractly by

saying which unions sets of basic opens contain (or cover) a basic compact subspace. This

“way-below” relation was previously axiomatised for systems that are closed under unions

and intersections: in this paper we do so without this assumption, so that balls in a metric

space provide an example. We show how to reconstruct a space from an abstract basis in

Point–Set Topology, Locale Theory, Formal Topology and Abstract Stone Duality. These four

constructions respectively rely on the different logical foundations in which these approaches

are usually presented. We also characterise continuous functions by means of relations called

matrices that generalise the way-below relation. Hence our category defined using relations

is weakly equivalent to that of locally compact spaces in each of these four formulations

of topology, according to its appropriate logical foundations. Subsequent work will develop

abstract bases towards computation.

Note (to referees) regarding the length of this paper:
The principal objective is to establish definitively the axioms for an abstract basis so that

future work can build on them. Everything up to Section 7 is needed to show that they are sound
and complete in Point–Set Topology, since it turns out to be necessary to go via Locale Theory
and Formal Topology. Sections 8–11 are about my own subject (ASD) and for me Section 11
contains the core result. For technical reasons, the next paper, which will show that bases and
matrices provide a model of ASD, must restrict to overt spaces (Section 13) with bases using
compact subspaces (Section 12). Finally, we sum up the complicated argument as equivalences of
categories (Section 14).

Arguably, however, I tend to include too much detail in my proofs, so I am open to opinions
that particular results are obvious.

Introduction

I find it extremely difficult to write introductions and it is likely that this one will be re-written
several times yet. I would appreciate help with citations for the milestones in the history of the
ideas that I am using in this paper.

When a mathematical notion has several different axiomatic formulations that are equivalent
as a theorem, we may argue that this is a discovery of nature rather than a human invention. We
feel that the textbook definition of a topological space is merely a human convention, whilst the
notion of a locally compact space is part of nature. Reformulating general topology solely in terms
of open subspaces rather than points (Locale Theory) has freed the subject from the ubiquitous
reliance on the Axiom of Choice and Excluded Middle, allowing it to be interpreted in the logic
of an elementary topos. However, the general definitions of topological space in these two settings
do not exactly match, whereas (distributive) continuous lattices do provide exactly the localic
account of locally compact spaces.

Dana Scott used continuous lattices to build on the analogy that had long been known be-
tween topology and recursion theory, thereby founding the disciplines of domain theory and the
denotational semantics of programming languages. Subsequent work in this tradition has allowed
topology to be developed on even weaker logical foundations, turning this analogy into a formal
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equivalence. Abstract Stone Duality is a computable axiomatisation of topology as a λ-calculus
that gives yet another characterisation of local compactness.

Any presentation of pure mathematics in a computable form necessarily involves coding, so
it is important to develop this in such a form that the manipulations that we want to make for
mathematical reasons may be performed in a straightforward way within the chosen formalism,
without going back to the semantic setting.

A locally compact space is one that has enough compact subspaces for them to determine which
basic open subspaces contribute to the expression for a general open subspace. This is similar to
the way that a dual basis for a vector space says how much each basic vector contributes towards
the expression of a general one. For vector spaces the number of basis vectors is an invariant
and completely characterises the space, but for other forms of algebra and topology we need more
information about the relations amongst the generators.

In our case, this information is provided by saying which (finite collections of) basic open
subspaces cover the basic compact subspaces.

Achim Jung and Philipp Sünderhauf [JS96] gave a complete axiomatisation of this cover rela-
tion on the assumption that finite unions and intersections of basic open subspaces are also basic.
They exploited this lattice structure to illustrate Lawson duality between the open subspaces of
one space and the compact ones of another. However, to use bases of this kind for real-valued
computation would require the manipulation of lists of open intervals.

The innovation in the present work is to use “individual” basis elements, such as single intervals
in the real case, so that the basis does not have these lattice operations. The outcome of this is
that working with abstract bases for general locally compact spaces shows features that are similar
to computation with real intervals. In particular, the notion of roundedness that was prominent
in earlier work with continuous lattices bifurcates, the second form being called locatedness.

In this paper we axiomatise this cover relation without lattice structure, not just showing that
it satisfies certain conditions but also recovering the locally compact space given only the abstract
data.

When we set out to recover a traditional topological space by first defining its points, we find
that we can only do so if the basis is countable. In order to overcome the obstacle we need first to
construct the continuous lattice of open subspaces and then derive the points. In fact, we find that
our abstract bases are most naturally related to Formal Topology, an approach that is founded on
Martin-Löf Type Theory, and the continuous lattice or localic account is best obtained from that.

On the other hand, there is still some debate about the most appropriate way in which to
define local compactness in Formal Topology. We argue, with reference to what has been said in
this debate, that our notion of abstract basis should be adopted as the definition in this discipline.

Meanwhile, in Abstract Stone Duality, the technology for defining particular spaces has under-
gone several stages in its evolution from the initial categorical idea and it has hitherto been quite
laborious to construct individual objects in it. We argue here too that the abstract bases of this
paper should be taken as the practical definition.

There are yet other settings in which one might define local compactness, but our thesis is that
abstract bases as we define them here provide a common definition that is applicable across all
foundational systems and therefore serve as a way of translating data from one to another.

Necessity and sufficiency does not, however, entirely determine how a system of axioms is best
formulated, especially when we subsequently intend to work with the axioms alone, instead of
with their motivating examples.

It is usual when introducing the axioms for some mathematical notion to state them in the
form that is most natural and convenient for the subsequent development and applications of
the theory. Sometimes, however, one of the axioms is derivable from the others, such as one of
the distributive laws for a ring or lattice. In other cases, there may be some more parsimonious
scheme that is less convenient for applications but for which it is easier to build models or prove
the fundamental result of the subject, whilst models of the standard system may be obtained in
a straightforward way. (Such a method is called bootstrapping in software development.)

Nevertheless, in these cases, the richer system of axioms (in our case consisting of both the
primary and secondary ones) is the one that we export from the introductory account, the simpler
(primary) system being solely for internal use. We hope that the system that we export will turn
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out to be the definitive one for abstract bases for locally compact spaces across many foundational
settings.

Such a distinction arises in this investigation because (contrary to what may be suggested by
real intervals), the identification of which open subspaces are to be treated as “individual” (rather
than unions) need not be determined by an intrinsic property such as connectedness, but is a
matter for our choice. Beyond the initial goal of justifying some complete axiomatisation (which
we call the primary axioms), we would also like to design one that facilitates computation with
the abstract basis alone and without reverting to the space. We find that any given concrete or
abstract basis can be modified to yield another that also satisfies convenient secondary axioms.

As well as justifying primary and secondary axioms for bases for spaces, we also have to
consider continuous functions between them. Continuing the loose analogy with linear algebra, we
call the corresponding structures matrices. In this case we only satisfy the primary goal, leaving
the consideration of more computationally convenient formulations of the axioms for matrices to
later work.

The numerous equivalences amongst formulations of local compactness that we consider in this
paper are summed up by the following diagram:

abstract basis
� 7.3

7.10
- locally compact formal cover�

7.18 - continuous frame

2
6

5.12, 7.13

?
locally compact sober space

6 -
�

7.12
locally compact locale

7.2

?

6
7.15

?

6

ASD space

10.15

6

11

?
� 10.14-

9.1

?

6

Σ-split subspace of Filt(A,v)

9.4

?

6

�9.6- ASD nucleus on ΣA

9.5

?

9.10

6

From the point of view of the information content of these equivalences, it will be convenient
in this paper to regard a locally compact space as being one that is equipped with a specified
concrete basis (the family (Ka) in Definition 1.3 or its equivalents). On the other hand, the notion
of continuous lattice (Proposition 7.15) depends only on the lattice of all open subspaces, not
a choice of compact ones, so it contains less information. This is like the distinction between a
vector space on its own and one that is equipped with a particular basis.

The next section summarises the primary and secondary axioms for concrete and abstract bases.
Section 2 shows that these are satisfied in Point–Set Topology and introduces a weaker notion of
concrete basis that corresponds more closely to those that are used in the three constructive
disciplines. Section 3 shows how bases obeying the primary axioms may be “improved” to satisfy
the secondary ones too. Section 4 characterises continuous functions between spaces with given
bases using relations that we call matrices.

Section 5 begins the reconstruction of spaces from abstract bases with the classical (point–set)
setting, but only manages this in the countable case. Section 6 introduces Locale Theory and
begins the construction of the distributive continuous lattice of open subspaces from the abstract
basis. These tasks are completed in Section 7 by introducing Formal Topology, where we recall the
different ways in which local compactness has been defined and argue for the use of our abstract
bases.

Section 8 shows that there are exponentials (function-spaces) of the form ΣX , where Σ is the
Sierpiński space. Using these, Section 9 shows how bases correspond to inclusions i : X ↪→ ΣA for

which there is a map I : ΣX ↪→ ΣΣA

with Σi · I = id.
Section 10 introduces a symbolic calculus (Abstract Stone Duality) that exploits this intrinsic

structure and Section 11 demonstrates the equivalence between abstract bases and the nuclei that
were used in previous work on ASD.

Most of the formal work in this paper uses the weaker notion of basis, with Scott-open filters
of open subspaces. However, in subsequent applications it will be much more convenient to adopt
a secondary axiom that amounts to using compact subspaces. The justification of this, which is
not as trivial as for the other secondary axioms, is given in Section 12.

It will also be very useful in further work to restrict attention to those spaces in which no basic
compact subspace is covered by the empty collection of basic opens. Such spaces are called overt.
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This property is a computationally natural one, whilst it holds vacuously in the classical setting.
This is studied in Section 13.

In the concluding Section 14 we summarise how the results of this paper provide equivalences
of categories, where that for each of the four formulations of topology relies on the corresponding
logical foundation:
(a) traditional Point–Set Topology in set theory with the Axiom of Choice,

(b) Locale Theory in the logic of an elementary topos,

(c) Formal Topology in Martin-Löf Type Theory and

(d) abstract Stone duality over an arithmetic universe.

Abstract bases therefore provide a unifying framework across these four formulations of topol-
ogy and we can say logically that a space or continuous function exists in each subject iff it is
definable in the appropriate logic.

1 Concrete and abstract bases

We begin with a summary of the axioms and notation for bases that we shall consider in the rest
of the paper.

Definition 1.1 In a (not necessarily locally compact) topological space X, a concrete basis
using open subspaces indexed by a preorder (A,v) consists of
(a) for each element a ∈ A, an open subspace Ua ⊂ X; such that

(b) if a v b then Ua ⊂ Ub;

(c) if x ∈ Ua and x ∈ Ub then x ∈ Uc for some c ∈ A with a w c v b; and

(d) if x ∈ U ⊂ X with U open then x ∈ Ua ⊂ U for some a ∈ A.
The last part may alternatively be written as U =

⋃
{Ua | Ua ⊂ U} and is called the basis

expansion of U . We say “using open subspaces” in this paper to distinguish this widely used
notion that is usually just called a basis from our main subject, so please do not use this phrase
elsewhere without clear necessity and explanation.

Definition 1.2 A space X is locally compact if it has the interpolation property that, given
x ∈ V ⊂ X with V open, there are x ∈ U ⊂ K ⊂ V ⊂ X with U open and K compact. This
definition is suitable for non-Hausdorff (but sober) spaces and was given by Karl Hofmann and
Michael Mislove [HM81]. The interpolation property may easily be extended, replacing the point
x by a compact subspace L with L ⊂ V , obtaining L ⊂ U ⊂ K ⊂ V ⊂ X.

Definition 1.3 A concrete basis using compact subspaces for a locally compact space X is
a family of pairs (Ua,Ka) of subspaces of X indexed by a preorder (A,v) such that
(a) each Ua is open and Ka is compact;

(b) if a v b then Ua ⊂ Ub, whilst Kb ⊂ U =⇒ Ka ⊂ U for any open U ⊂ X;

(c) if x ∈ Ua and x ∈ Ub then ∃c. x ∈ Uc ∧ (a w c v b) and

(d) x ∈ V ⇐⇒ ∃a. x ∈ Ua ∧ Ka ⊂ V , or V =
⋃
{Ua | Ka ⊂ V }.

Part (d) is the basis expansion, in which the compact subspaces Ka are playing a role like that of
a dual basis in linear algebra: they specify which basic open subspaces Ua should contribute to
the union in the last axiom above.

Proposition 5.14 shows why it is convenient not to require Ua ⊂ Ka or Ka ⊂ Kb. However, if
Ka ⊂ U with U open then Ua ⊂ U because it contributes to the basis expansion. We shall call
these the primary axioms for a basis because there are other (secondary) ones that it will also be
convenient to impose (Definition 1.10).

Remark 1.4 Accounts differ on which way round to write the order relation v. We choose the
topological direction (as above and in Section 7) rather than the domain-theoretic one (cf. Propo-
sition 5.14), but exponentiation reverses it (Proposition 8.15). Note, however, that we do not
require Ua ⊂ Ub =⇒ a v b. Also, we may have both a v b and b v a without requiring a = b.

In fact, the preorder can be eliminated altogether (Lemma 3.7), but we feel that it is preferably
conceptually to retain it. Theorems 6.12 and 9.1 characterise bases of the two kinds above in terms
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of subspaces of Filt(A,v) ∼= Idl (A,vop). Also, keeping the preorder suggests how it could be
generalised to a category that would encode a locally compact topos, cf. [?].

Notation 1.5 Because of the nature of compactness, we shall need to use unions of finite sets or
lists ` of basic open–compact pairs. Everything that we do will be consistent with interpreting such
` either as a list or as a finite subset of A and there are computational advantages in maintaining
this ambiguity.

The appropriate notion of finiteness here is that introduced by Kazimierz Kuratowski [Kur20],
generated from the empty set ◦ by adding singletons. We write Fin (A) for either the set of lists
or of finite subsets of A, k t ` for the union of two lists and

⊔
L for the union of a list of lists.

Constructively, it is decidable whether any given ` ∈ Fin (A) has ` = ◦ or ∃a. a ∈ `. Also, a
general subset of a finite set need not be finite, though it is iff it is decidable.

We adopt the convention that the early letters (a, . . . , e) of the alphabet denote individual
members of the indexing set A, those (h, k, `) in the middle are lists or finite subsets of A and the
later ones (p, . . . , w) are possibly infinite subsets.

Notation 1.6 Then we define the way-below relation

a ≺≺ ` as Ka ⊂ U` ≡
⋃
b∈`

Ub.

The principal goal of this paper is to give the complete axiomatisation of this relation, so that
the set A, the preorder v and the way-below relation ≺≺ will together be enough to describe the
locally compact sober space up to isomorphism.

Even though we will not require the basis to have a lattice structure, it is useful to have some
notation for it. The operations u and t act on indices and then we define

Uatb ≡ Ua ∪ Ub Katb ≡ Ka ∪Kb

Uaub ≡ Ua ∩ Ub and (NB) Kaub ⊂ Ka ∩Kb,

along with U◦ ≡ K◦ ≡ ∅, U• ≡ X and (if X is compact) K• ≡ X.

Notation 1.7 We extend v and ≺≺ to lists or finite subsets by writing

a v ` ≡ ∃b ∈ `. a v b
a v `1 u `2 ≡ a v `1 ∧ a v `2

≡ ∃b1 ∈ `1. ∃b2 ∈ `2. b1 w a v b2
k v ` ≡ ∀a ∈ k. a v ` ≡ ∀a ∈ k. ∃b ∈ `. a v b
a ≺≺ b ≡ a ≺≺ {b}
k ≺≺ ` ≡ ∀a ∈ k. a ≺≺ `
a ≺≺ `1 u `2 ≡ ∃k. a ≺≺ k ∧ ∀b ∈ k. b v `1 u `2

≡ ∃k. a ≺≺ k ∧ ∀b ∈ k. ∃c1 ∈ `1. ∃c2 ∈ `2. c1 w b v c2
a ≺≺1 ` ≡ ∃b ∈ `. a ≺≺ b
k ≺≺1 ` ≡ ∀a ∈ k. a ≺≺1 ` ≡ ∀a ∈ k. ∃b ∈ `. a ≺≺ b.

This structure makes Fin (A) with k v ` into the free join semilattice on (A,v).
We are now ready to state our primary axioms.

Definition 1.8 An abstract basis is a structure (A,v,≺≺) such that

a v a reflexivity

a v b v c =⇒ a v c transitivity

a v b ≺≺ k v ` =⇒ a ≺≺ ` co- & contravariance

(a ≺≺ k ≺≺ `1) ∧ (k ≺≺ `2) =⇒ a ≺≺ `1 u `2 weak intersection

a ≺≺ ` =⇒ ∃k. a ≺≺ k ≺≺1 `. Wilker
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The final condition honours Peter Wilker’s [Wil70] identification of a property like this as a key
part of his study of topological function-spaces (cf. Section 8). He also anticipated many of the
ideas of Locale Theory and continuous lattices that we will use in Section 6. The frequency with
which similar properties appear in print without attribution indicates its importance. It allows
interpolation of some k between given a ≺≺ `, but it is stronger than this because it says that
each b ∈ k is covered by a single c with b ≺≺ c ∈ `, whereas interpolation only says that the list `
covers collectively, b ≺≺ `.

Conversely, the special case of the weak intersection rule with `1 ≡ `2 is transitivity :

(a ≺≺ k ≺≺ `) ≡ (a ≺≺ k) ∧ (∀b ∈ k. b ≺≺ `) =⇒ (a ≺≺ `).

In the next section we show that concrete bases in Point–Set Topology obey these primary
axioms. Later we shall prove that any abstract basis presents a locally compact space, i.e. it
arises from some basis on some such space. We do this in four different formulations of topology,
for which respectively different foundational settings are appropriate.

The elements of the set A are intended to be codes that we can use for computation:

Example 1.9 The real line R has a familiar basis of intervals with endpoints. These are indexed
by the set A ≡ {〈d, u〉 | d < u} with 〈d, u〉 v 〈e, t〉 ≡ (e ≤ d < u ≤ t), where we may perhaps
choose d and u to be dyadic rationals. Then

U〈d,u〉 ≡ (d, u) and K〈d,u〉 ≡ [d, u].

A typical instance of a ≺≺ ` in this basis is

[d, u] ⊂ (e1, t1) ∪ · · · ∪ (en, tn).

We can characterise this arithmetically, without considering the intervals as sets or quantifying
over the real numbers inside them: up to permutation of the indices and elimination of redundancy,
the condition is

e1 < d ∧ e2 < t1 ∧ e3 < t2 ∧ · · · ∧ en < tn−1 ∧ u < tn.

In this example, the Wilker property says that we may shrink each of the (ei, ti) slightly but
maintain the “way-below” property amongst them. On the other hand, the single interpolation
rule below says that we may also enlarge [d, u].

This formula for a ≺≺ ` is clearly very awkward and its analogue for balls in Rn would be
quite unwieldy. However, this is not in practice a difficulty for computation, because we get to
choose how to divide up a region. There needs to be further investigation of how to specify how
≺≺ is generated by such divisions, particularly for product spaces (Remark 8.10), taking account
of geometry as well as certain esoteric logical issues (Proposition 7.22). However, for the purposes
of this paper we shall stick with the canonical relation that arises directly from topology.

We will nevertheless go beyond the fundamental soundness and completeness result for the
axioms to represent continuous functions, which will be used for applications such as computation
in future work.

Definition 1.10 Even in the present study we often find ourselves wanting to assume that there
are enough individual basis elements for certain purposes, instead of using unions of them. The
following secondary or roundedness conditions on concrete bases allow us to interpolate single
basis elements such that

(Ka ⊂ U`) =⇒ ∃b. (Ka ⊂ Ub) ∧ (Kb ⊂ U`)

(Kb1 ⊂ Ua) ∧ (Kb2 ⊂ Ua) =⇒ ∃b. (Kb1 ⊂ Ub) ∧ (Kb2 ⊂ Ub) ∧ (Kb ⊂ Ua)

∃b. Ka ⊂ Ub and ∃b. Kb ⊂ Ua.

These are called single interpolation , rounded union and boundedness above and below .
The equivalent axioms for abstract bases are

a ≺≺ ` =⇒ ∃b. a ≺≺ b ≺≺ `
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(b1 ≺≺ a) ∧ (b2 ≺≺ a) =⇒ ∃b. (b1 ≺≺ b ≺≺ a) ∧ (b2 ≺≺ b)

∃b. a ≺≺ b and ∃b. b ≺≺ a.

It seems to be very difficult to make progress beyond the basic results in this subject — and very
easy to make errors — without the single interpolation rule. For example, with it, the list k in
the Wilker rule may be taken to be bijective with `, but otherwise k may have to be longer. Even
in the simple case of a ≺≺ b, we would need to interpolate a list in a ≺≺ k ≺≺ b, rather than a single
member of the basis.

In Section 3 we will show that, given a concrete basis satisfying the primary axioms, there is
another basis for the same space that also satisfies the secondary ones. Similarly, any abstract
basis has an equivalent one that also obeys the secondary axioms. We may therefore “assume
without loss of generality” that our bases have all of these properties.

Definition 1.11 Any basis that uses compact subspaces (Definition 1.3) actually satisfies the
strong intersection rule,

(a ≺≺ `1) ∧ (a ≺≺ `2) =⇒ a ≺≺ `1 u `2,

which is equivalent to the weak rule above together with rounded intersection ,

(Ka ⊂ Ub1) ∧ (Ka ⊂ Ub2) =⇒ ∃b. (Ka ⊂ Ub) ∧ (Kb ⊂ Ub1) ∧ (Kb ⊂ Ub2)

or (a ≺≺ b1) ∧ (a ≺≺ b2) =⇒ ∃b. (a ≺≺ b ≺≺ b1) ∧ (b ≺≺ b2).

Note that, although the weak intersection rule implies transitivity, the latter must be stated
explicitly alongside the strong intersection rule.

It is likely that any natural choice of basis will obey all of the rules:

Examples 1.12 Various subsets of the basis of intervals for R in Example 1.9 illustrate the
secondary axioms or their failure:
(a) the basis with all bounded intervals obeys all of the secondary axioms with strong intersection

and is closed under binary unions and intersections;

(b) the basis with intervals of length < 1 obeys the secondary axioms but does not admit binary
unions;

(c) the basis with intervals of length ≤ 1 fails single interpolation and boundedness above;

(d) if the intervals are required to have length 2n with n ∈ Z, the single interpolation and rounded
union properties fail, e.g. for [1, 3] ∪ [5, 7] ⊂ (0, 8); whilst

(e) adding a basis element ∗ with U∗ ≡ ∅ but K∗ ≡ {0} destroys boundedness below.
The lesson for computation with intervals represented by their centres and radii is that the latter
should have arbitrary, not fixed, precision (mantissa). �

Lemmas 4.3 and 8.13 and the following syntactic result show why the roundedness axioms are
convenient for working with abstract bases:

Proposition 1.13 Let (A,v,≺≺) be an abstract basis that satisfies the primary, secondary
and rounded intersection rules. Let φ(a) be a formula built from variables of type A, Fin (A),
Fin (Fin (A)), . . . , ≺≺, ∧, ∨, ∃, membership of finite sets and universal quantification over them
(e.g. ∀a ∈ `). Suppose that φ(a) holds for a particular value of a ∈ A. Then there are values
a−, a+ ∈ A with a− ≺≺ a ≺≺ a+ such that ∀a′ ∈ A. a− ≺≺ a′ ≺≺ a+ =⇒ φ(a′).

Proof The base cases a ≺≺ ` and b ≺≺ a follow from the single interpolation rule and transitivity.
For conjunction and universal quantification we use the rounded union and intersection rules. The
other logical connectives require a straightforward structural recursion. �

Remark 1.14 We shall need the secondary axioms in Definition 1.10 almost from the outset, but
we shall not assume the strong or rounded intersection rules in most of this paper. One reason
for this is that we fully embrace non-Hausdorff spaces. In a Hausdorff space, the intersection of
two compact spaces is closed in either of them and therefore compact. This need no longer be the
case in a non-Hausdorff space, so the space is called stably locally compact if it is (and stably
compact if the whole space is compact too).
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Another is that, in the passage from Point–Set Topology to the formulations in weaker logics
that we shall consider, it will be easier to make the analogy amongst them by considering the
neighbourhood filter Ka ≡ {U | Ka ⊂ U} instead of the compact subspace Ka. We then find that
the filter requirement is not really necessary.

We will explain these issues in the next section.
Finally, whilst it is possible to turn a basis with the weak intersection property into one obeying

the strong rule, the construction in Section 12 requires the Axiom of Dependent Choice, which
may be undesirable in certain foundational settings.

This completes our introduction to the axiomatisation of bases for locally compact spaces, so
we do the same for continuous functions.

Definition 1.15 Let f : X → Y be a continuous function between locally compact sober spaces
X and Y with concrete bases {(Ua,Ka) | a ∈ A} and {(Vb, Lb) | b ∈ B} respectively that obey the
primary and secondary rules. We define a binary relation between the indices of the bases,〈

a
∣∣ f ∣∣ b 〉 by Ka ⊂ f−1Vb or equivalently fKa ⊂ Vb.

In particular,
〈
a
∣∣ id ∣∣ a′ 〉 ⇐⇒ (a ≺≺ a′).

We call
〈
a
∣∣ f ∣∣ b 〉 the concrete matrix of f , following the loose analogy between bases in topology

and in linear algebra that we have already made in Definition 1.3. (The notation was inspired

by that of Paul Dirac in Quantum Mechanics, whereas [G] used the notation Ĥb
a from Albert

Einstein’s General Relativity.)
The matrix represents f in the sense that

fx ∈ Vb ⇐⇒ ∃a. (x ∈ Ua) ∧
〈
a
∣∣ f ∣∣ b 〉,

using the basis expansion of f−1Vb. Such matrices are characterised as follows:

Definition 1.16 An abstract matrix between bases (A,v,≺≺) and (B,v,≺≺), is a binary relation〈
a
∣∣ f ∣∣ b 〉 between the sets A and B that is contravariant and rounded in a,

(a v a′) ∧
〈
a′
∣∣ f ∣∣ b 〉 =⇒

〈
a
∣∣ f ∣∣ b 〉 ⇐⇒ ∃a′. (a ≺≺ a′) ∧

〈
a′
∣∣ f ∣∣ b 〉,

and covariant and rounded in b,〈
a
∣∣ f ∣∣ b′ 〉 ∧ (b′ v b) =⇒

〈
a
∣∣ f ∣∣ b 〉 ⇐⇒ ∃b′.

〈
a
∣∣ f ∣∣ b′ 〉 ∧ (b′ ≺≺ b),

it has the partition property ,〈
a
∣∣ f ∣∣ b 〉 ∧ (b ≺≺ `) =⇒ ∃k. (a ≺≺ k) ∧ ∀a′ ∈ k. ∃b′ ∈ `.

〈
a′
∣∣ f ∣∣ b′ 〉,

it is bounded , ∃k. (a ≺≺ k) ∧ ∀a′ ∈ k. ∃b.
〈
a′
∣∣ f ∣∣ b 〉,

and weakly filtered , (a ≺≺ a′) ∧
〈
a′
∣∣ f ∣∣ b1 〉 ∧ 〈 a′ ∣∣ f ∣∣ b2 〉 =⇒

∃k`. (a ≺≺ k) ∧
(
∀a′ ∈ k. ∃b ∈ `.

〈
a′
∣∣ f ∣∣ b 〉) ∧ (∀b ∈ `. b1 w b v b2),

or strongly so if the same holds without (a ≺≺ a′), and it is saturated ,

(a ≺≺ k) ∧ ∀a′ ∈ k.
〈
a′
∣∣ f ∣∣ b 〉 =⇒

〈
a
∣∣ f ∣∣ b 〉.

Beware, however, that we also use the word saturated in an unrelated sense in Definition 3.16.
The saturated composite of two such matrices is given by〈

a
∣∣ f ; g

∣∣ c 〉 ≡ ∃k. (a ≺≺ k) ∧ ∀a′ ∈ k. ∃b.
〈
a′
∣∣ f ∣∣ b 〉 ∧ 〈 b ∣∣ g ∣∣ c 〉.

The partition axiom is a combinatorial form of a very familiar property from real analysis:

Example 1.17 For f : R → R with the interval basis, the partition property expresses uniform
ε–δ continuity à la Weierstrass: If ` is a list of intervals each of width ε that together cover the
range of a function, there is a list k of intervals of width δ covering its argument. Then these have
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the property that, if x1 and x2 belong to the same δ-interval, then fx1 and fx2 will belong to the
same ε-interval. �

Remark 1.18 In conclusion, the definition of an abstract basis that we intend to be used in future
work includes all of the primary, secondary and strong intersection axioms. You may therefore
ask why we did not give them all in Definitions 1.3 and 1.8. This is because
(a) the correspondences between concrete and abstract bases in all of the accounts of topology

(Sections 6, 7 and 11) use only the primary axioms; although

(b) the direct construction in Point–Set Topology in Section 5 assumes that the abstract basis is
countable and has single intersection; whereas

(c) the correspondence between continuous functions and matrices requires the secondary axioms
too (cf. Lemma 4.3); and

(d) including exponentials (function-spaces) in this also needs the strong intersection rule (cf. Lemma 8.13).

We will show that the category of locally compact sober spaces and continuous functions is
equivalent to the category of bases and matrices that have all of the above properties.

2 Point–Set Topology

We show in this section that any concrete basis using compact subspaces for a locally compact
space in traditional Point–Set Topology gives rise to an abstract basis that satisfies the primary
axioms. We also introduce a more general form of concrete basis, using Scott-open families, that
identifies more precisely the criterion whereby a basic open subspace should contribute to the basis
expansion.

We begin with the issues concerning intersections that give rise to the need for the weaker
definition:

Lemma 2.1 Any basis using compact subspaces (Definition 1.3) satisfies the boundedness and
strong intersection rules (Definition 1.11),

∃`. a ≺≺ ` and a ≺≺ `1 ∧ a ≺≺ `2 =⇒ a ≺≺ `1 u `2,

where a ≺≺ `1 u `2 means ∃h. a ≺≺ h ∧ ∀b ∈ h. ∃c1 ∈ `1. ∃c2 ∈ `2. c1 w b v c2.

Proof For boundedness, consider the basis expansion of the whole space quâ open subspace.
This covers the given basic compact subspace Ka, but some finite subset ` of this cover suffices.

The hypotheses a ≺≺ `1 and a ≺≺ `2 of the intersection rule say that

Ka ⊂ U`1 ∩ U`2 ≡
⋃
{Ub1 | b1 ∈ `1} ∩

⋃
{Ub1 | b1 ∈ `1}.

Using distributivity and part (c) of Definition 1.3, this union is⋃
{Ub1 ∩ Ub2 | b1 ∈ `1, b2 ∈ `2} =

⋃
{Uc | ∃b1 ∈ `1. ∃b2 ∈ `2. b1 w c v b2}.

Since Ka is compact, a finite set h of such c suffices to cover it, so

Ka ⊂ Uh ≡ a ≺≺ h and ∀c ∈ h. ∃b1 ∈ `1. ∃b2 ∈ `2. b1 w c v b2,

which is the definition of a ≺≺ `1 u `2. �

Definition 2.2 Definition 1.3 and this lemma would have been simpler if the preorder v had had
a formal intersection operation, u, satisfying

a w a u b v b and a w c v b =⇒ c v a u b,

whilst the basic subspaces would satisfy

Uaub = Ua ∩ Ub but Kaub ⊂ Ka ∩ Kb,
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where the containment of compact subspaces need not be an equality. A stable abstract basis is
one that has such a u operation and also satisfies the boundedness and strong intersection rules.

Examples 2.3 Many important examples do have such an operation:
(a) intervals in R and cuboids in Rn, with geometric intersection for u; and

(b) lists of constraints on data, with conjunction or concatenation for u.

On the other hand,
(c) it is more common to use balls as bases for Rn and other metric spaces, but they need not

intersect in balls; but

(d) more fundamentally, the intersection of two compact subspaces in a non-Hausdorff space need
not be compact. Consider, for example, an interval [0, 1] together with an extra 1′, or more
formally the cokernel of [0, 1) ↪→ [0, 1].

Besides this, the subspaces need not overlap at all, so we would need a name (◦) for the empty
subspace. Keeping track of empty subspaces creates some quite absurd difficulties. For example,
in the Tychonov basis for the product of two spaces,

(a, b) ≺≺ (a′, b′) ⇐⇒ (a ≺≺ a′) ∧ (b ≺≺ b′) ∨ (a ≺≺ ◦) ∨ (b ≺≺ ◦)

since K × L ⊂ U × ∅ for any compact K and L and open U . In order to avoid this complication
when we construct the Tychonov product of two abstract bases, in [work in progress] we shall
restrict to the case where a ≺≺ ◦ is forbidden, cf. Section 13.

Remark 2.4 There are two ways of proceeding without assuming stable local compactness:
(a) in applications we generally prefer to use compact subspaces for the dual basis, but not

intersections of them; whilst

(b) in proving the equivalence of various notions in this paper, we replace compact subspaces by
something weaker, which does allow us to use intersections of basis elements.

We may easily pass from the first method to the second. The other direction is rather more
difficult, so we defer it to Section 12.

Lemma 2.5 For any compact space K, the family K ≡ {V | K ⊂ V } is a Scott-open filter :
(a) if K 3 V ⊂W then K 3W ;

(b) if K 3
⋃

i∈I Vi then there is some finite subset ` ⊂ I for which K 3
⋃

i∈` Vi;

(c) K 3 X; and

(d) K 3 V,W =⇒ K 3 V ∩W . �

In fact, so long as the space is sober, every Scott-open filter of open subspaces arises in this
way (Lemma 3.15). The difficulty in the non-stable case is that there is a conflict between the two
uses of intersections: in Definition 2.2 involving compact subspaces and of the open ones in this
Lemma.

However, for many purposes, it is unnecessary to use filters. So we can sacrifice the subspaces
but retain the essence of compactness. Scott-open families satisfy parts (a) and (b). We adopt
the habit of writing K 3 U rather than U ∈ K, so, if you are not familiar with using Scott-open
families, you may pretend that this says K ⊂ U instead.

We then rewrite Definition 1.3:

Definition 2.6 A concrete basis using Scott-open families consists of
(a) for each a ∈ A, an open subspace Ua and a Scott-open family Ka of open subspaces;

(b) if a v b then Ua ⊂ Ub and Ka ⊃ Kb;

(c) Ua ∩ Ub =
⋃
{Uc | a w c v b}; and

(d) V =
⋃
{Ua | Ka 3 V }.

We amend Notation 1.6 by writing

a ≺≺ ` for Ka 3 U` and K` ≡
⋂
{Kb | b ∈ `}.
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Having such a basis provides an alternative definition of local compactness, in fact the one that
we shall use throughout this paper. This is â priori weaker, but we show in Section 12 that they
are equivalent.

Remark 2.7 It is easy to add intersections (u) to a basis, but at the cost of using Scott-open
families instead of compact subspaces. If (Ua,Ka) is a basis of either kind then, using lists to serve
as the formal intersections,

U(a,b) ≡ Ua ∩ Ub and K(a,b) ≡ Ka ∪ Kb,

but this union is unlikely to be a filter even if Ka and Kb were. In general

U(`) ≡
⋂
{Ua | a ∈ `} and K(`) ≡

⋃
{Ka | a ∈ `}

define another basis for the same space such that u is given by union of lists. Take care not to
confuse this construction with the preceding notation; we use parentheses on the subscripts to
distinguish them. There seems to be no easy formula for ≺≺.

Lemma 2.8 Any basis using Scott-open families obeys the weak intersection rule ,

a ≺≺ k ∧ k ≺≺ `1 ∧ k ≺≺ `2 =⇒ a ≺≺ `1 u `2.

Proof The hypothesis k ≺≺ `1 says that, for each b ∈ k,

Kb 3 U`1 ≡
⋃
{Uc | c ∈ `1},

so Ub contributes to the basis expansion of U` and Ub ⊂ U`1 . Since a ≺≺ k, it follows that

Ka 3 Uk ≡
⋃
{Ub | b ∈ k} ⊂ U`1 ∩ U`2 ,

but a Scott-open family Ka must be closed upwards, so Ka 3 U`1 ∩U`2 too. By a similar argument
as in Lemma 2.1, but using Scott-openness of Ka in place of compactness of Ka, there is some
finite set h with

(Ka 3 Uh) ≡ (a ≺≺ h) and ∀c ∈ h. ∃b1 ∈ `1. ∃b2 ∈ `2. (b1 w c v b2),

which is the definition of a ≺≺ `1 u `2. �

We also need a rule to govern unions, which comes from the following observation:

Lemma 2.9 If a compact subspace is covered by two open ones, K ⊂ U1 ∪ U2, then there are
compact L1 and L2 and open V1, V2 with K ⊂ V1 ∪ V2, V1 ⊂ L1 ⊂ U1 and V2 ⊂ L2 ⊂ U2. �

Lemma 2.10 A basis of either kind also obeys the Wilker rule that

a ≺≺ ` =⇒ ∃k. a ≺≺ k ∧ ∀b ∈ k. ∃c ∈ `. b ≺≺ c.

Proof Given Ka 3 U` ≡
⋃
{Ub | b ∈ `}, the basis expansion of Ub for each b ∈ ` yields

Ka 3 U` =
⋃
b∈`

Ub =
⋃
b∈`

⋃
c

{Uc | Kc 3 Ub} =
⋃
c

{Uc | ∃b ∈ `.Kc 3 Ub}.

Since Ka is a Scott-open family, there is some finite set k of such c for which we still have

Ka 3
⋃
{Uc | c ∈ k} ≡ Uk and ∀c ∈ k. ∃b ∈ `. (Kc 3 Ub),

which is what the conclusion says. �

In the rest of the paper we will make heavy use of Scott-open families and it will not surprise
you to learn that they are part of a bigger picture:

Proposition 2.11 The Scott-open subsets of any complete lattice form a topology, called the
Scott topology . A function M∗ : Ω2 → Ω1 between complete lattices is Scott-continuous,
i.e. with respect to this topology, iff it preserves directed joins, written

∨
� or

⋃
6. These are joins

of families {Ui | i ∈ I} for which

∃i. i ∈ I and i1, i2 ∈ I =⇒ ∃i ∈ I. Ui1 6 Ui > Ui1 . �

In fact, we shall see in Proposition 8.15 that this is the topology on the topology on a locally
compact space X that defines the exponential (function-space) ΣX .
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3 Manipulating bases

In this section we show how to “upgrade” a concrete basis satisfying the primary axioms to one
that obeys the secondary ones too. As corollaries, we obtain bases for open or closed subspaces
and show how to eliminate the preorder v from an abstract basis. We also show how “formal”
points and compact subspaces may be derived from the lattice of open subspaces.

Although these constructions also upgrade abstract bases, it is difficult to define how the new
bases are equivalent to the given ones, cf. Remark 4.22. It seems to be necessary to go via the
spaces and concrete bases that we will construct, which fortunately rely only on the primary
axioms for abstract bases.

Although it is a major goal of this paper to develop bases that do not have be closed under
unions or intersections, some of the issues that we shall discuss do need the former. In the following
results, let {(Ua,Ka) | a ∈ A} be any basis using Scott-open families for a locally compact space X.

Proposition 3.1 The directed basis consists of

U` ≡
⋃
{Ua | a ∈ `} and K` ≡

⋂
{Ka | a ∈ `}.

Proof For the filtered condition on basic opens (Definition 1.3(c)),

x ∈ Uk ∧ x ∈ U` ≡ ∃a ∈ k. ∃b ∈ `. x ∈ Ua ∧ x ∈ Ub

⇒ ∃abc. x ∈ Uc ∧ k 3 a w c v b ∈ `
⇒ ∃h. x ∈ Uh ∧ k w h v `,

where h ≡ {c}. The basis expansion (Definition 1.3(d)) is

x ∈ V ⇔ ∃a. x ∈ Ua ∧ Ka 3 V =⇒ ∃`. x ∈ U` ∧ K` 3 V
≡ ∃`a. a ∈ ` ∧ x ∈ Ua ∧ ∀b ∈ `.Kb 3 V =⇒ ∃a. x ∈ Ua ∧ Ka 3 V.

Using Notation 1.5, the way-below relation is

k ≺≺dir L ≡ Kk 3
⋃
{Ua | ∃`. a ∈ ` ∈ L}

⇔ ∀b ∈ k.Kb 3 U⊔
L ≡ k ≺≺A

⊔
L.

This inherits co- and contravariance, the Wilker and intersection rules, essentially as they stand.�

Lemma 3.2 The directed basis obeys the single interpolation and rounded union rules.

Proof The interpolation property for (Ua,Ka) gives single interpolation for (U`,K`),

k ≺≺dir L ≡ k ≺≺A

⊔
L =⇒ ∃h. k ≺≺A h ≺≺A

⊔
L ≡ ∃h. k ≺≺dir {h} ≺≺dir L.

For rounded binary unions,

{`1, `2} ≺≺dir k ≡ `1 t `2 ≺≺A k

⇒ `1 t `2 ≺≺A h ≺≺A k

≡ {`1, `2} ≺≺dir h ≺≺dir k

using the interpolation property that we already have. �

It follows that, for any locally compact space with a basis satisfying the primary axioms, there
exists another that also obeys single interpolation and rounded union. It is a little unsatisfying
that the only way that we know how to construct a basis having these useful extra properties
is to sacrifice the one that is the main purpose of the paper, but, as Examples 1.12 illustrated,
“naturally occurring” bases probably already come with these properties anyway and only with
perverse choices do they fail.

The boundedness properties, on the other hand, are easy to achieve, in a canonical way, just
by discarding the redundant members.

Lemma 3.3 Let A ≡ {b | ∃a. a ≺≺ b}. Then {(Ua,Ka) | a ∈ A} is a basis for the same space and
is bounded below.
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Proof Only A contributes to the concrete basis expansion, because

x ∈ Ub ⇐⇒ ∃a ∈ A. x ∈ Ua ∧ Ka ⊂ Ub =⇒ ∃a ∈ A. a ≺≺ b ≡ b ∈ A,

so A still satisfies parts (c,d) of Definition 1.3. Then A is bounded below using either the same
argument again or single interpolation. Alternatively, we have a ≺≺ d =⇒ ∃bc. b ≺≺ c ≺≺ d because
the Wilker property gives a ≺≺ k ≺≺1 ` ≺≺ d and then
• either k = ◦, in which case a ≺≺ ◦ v a ≺≺ d, so we take b ≡ c ≡ a, or

• there are b ∈ k and c ∈ ` with b ≺≺ c ≺≺ d. �

Lemma 3.4 Let A ≡ {a | ∃`. a ≺≺ `}. Then {(Ua,Ka) | a ∈ A} is a basis for the same space and
is bounded above.

Proof First observe that

Ka 3 U =
⋃
6{U` | U` ⊂ U} =⇒ ∃`.Ka 3 U` ⊂ U =⇒ ∃`. a ≺≺ ` ≡ a ∈ A,

since the family (U`) provides a directed basis and Ka is Scott-open. Hence the basis expansion is

x ∈ U ⇔ ∃a. (x ∈ Ua) ∧ (Ka 3 U)

⇔ ∃a. (x ∈ Ua) ∧ (Ka 3 U) ∧ (∃`. a ≺≺ `)
≡ ∃a ∈ A. (x ∈ Ua) ∧ (Ka 3 U).

The subset A is downwards-closed with respect to v and ≺≺ because of contravariance and tran-
sitivity of ≺≺. Hence the concrete basis still has the filtered property and the abstract one still
obeys the Wilker and intersection rules:

a ≺≺ ` ⊂ A =⇒ ∃k. a ≺≺ k ≺≺1 ` ∧ k ⊂ A

a ≺≺ k ≺≺ `1 ⊂ A ∧ k ≺≺ `2 ⊂ A =⇒ ∃`′. a ≺≺ `′ v `1 ∧ `′ v `2 ∧ `′ ⊂ A. �

Boundedness above is related to open subspaces:

Lemma 3.5 A concrete basis for an open subspace V ⊂ X is given by

UV
a ≡ Ua ∩ V and KV

a ≡ Ka ∩ ↓V.

If the given basis for X uses compact subspaces then that for V has

a ≺≺V ` ⇐⇒ a ≺≺X ` ∧ (Ka ⊂ V )

and then A ≡ {a | Ka ⊂ V } provides a basis for V that is bounded above.

Proof The basis expansion of x ∈ U ⊂ V is

x ∈ U ⇔ ∃a. x ∈ Ua ∧ Ka 3 U
⇔ ∃a. x ∈ (Ua ∩ V ) ∧ (Ka 3 U ⊂ V ).

The filter property is

x ∈ UV
a ∧ x ∈ UV

b ⇔ x ∈ Ua ∧ x ∈ Ub ∧ x ∈ V
⇔ ∃c. x ∈ (Uc ∩ V ) ∧ (a w c v b). �

Roughly speaking, the basis for the complementary closed subspace consists of the members of
the basis that we discarded to obtain the open subspace. Unfortunately, this is not constructive
and in Section 13 we investigate when it is possible to eliminate empty covers.

Lemma 3.6 A basis for a closed subspace C ⊂ X is given by

UC
a ≡ Ua ∪ V and KC

a ≡ Ka,
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where V is the complementary open subspace to C (cf. Proposition 8.2). Hence

a ≺≺C ` ⇐⇒ ∃k. (a ≺≺ k t `) ∧ (Kk 3 V ).

Proof If x ∈ C, so x /∈ V , then

x ∈ (Ua ∪ V ) ∧ x ∈ (Ub ∪ V ) ⇐⇒ ∃c. x ∈ (Uc ∪ V ) ∧ (a w c v b)

and x ∈W ⇐⇒ ∃a. x ∈ (Ua ∪ V ) ∧ Ka 3W.

Notice in particular that (a ≺≺C ◦) if Ka 3 V . �

Next we have some applications of single interpolation. The first eliminates the preorder v,
more or less just by replacing it with ≺≺:

Lemma 3.7 Any abstract basis (A,v,≺≺) with single interpolation satisfies

a ≺≺ k ≺≺ ` =⇒ a ≺≺ ` =⇒ ∃b. a ≺≺ b ≺≺ `

and a ≺≺ k ≺≺ `1, `2 =⇒ ∃k′. a ≺≺ k′ ≺≺1 `1, `2.

If a ≺≺ b then Ua ⊂ Ub and Ka ⊃ Kb in the concrete basis, where the filter property is

x ∈ Ua ∧ x ∈ Ub =⇒ ∃d. x ∈ Ud ∧ (a �� d ≺≺ b).

Conversely, any relation ≺≺ with these properties defines an abstract basis (A,v,≺≺) by

a v b ≡ a ≺≺ b ∨ a = b.

Proof We deduce the second property from the weak intersection, Wilker and covariance rules:

a ≺≺ k ≺≺ `1, `2 =⇒ ∃k′`. a ≺≺ k′ ≺≺1 ` v `1, `2 =⇒ ∃k′. a ≺≺ k′ ≺≺1 `1, `2.

In a concrete basis, a ≺≺ b ≡ Ka 3 Ub =⇒ Ua ⊂ Ub since Ua contributes to the basis expansion
of Ub. Similarly, a ≺≺ b ∧ Kb 3 U =⇒ Ka 3 Ub ⊂ U =⇒ Ka 3 U since Ka is upper.

If x ∈ Ua and x ∈ Ub then x ∈ Uc for some c ∈ A with a w c v b, then the basis expansion of
Uc gives some d ∈ A with x ∈ Ud and Kd 3 Uc, so d ≺≺ c and a �� d ≺≺ b.

For the converse, we prove transitivity of v by an easy case analysis, the extension of which
to (Kuratowski) finite sets or lists gives covariance of ≺≺ with respect to v:

b ≺≺ k v ` ⇒ ∃k1k2k
′. (b ≺≺ k′ ≺≺1 k = k1 t k2) ∧ (k1 ≺≺1 `) ∧ (k2 ⊂ `)

⇒ ∃k′. (b ≺≺ k′ ≺≺1 `). �

The following technical result sharpens the Wilker and weak intersection rules.

Lemma 3.8 If (a ≺≺ b ≺≺ `) then ∃k. (a ≺≺ k ≺≺ b) ∧ (k ≺≺1 `).

Proof By the Wilker and single interpolation rules (twice), there are a′, b′ and `′ with

a ≺≺ a′ ≺≺ b′ ≺≺ b ≺≺ `′ ≺≺1 `, so a′ ≺≺ `′.

Then a ≺≺ b′ u `′ by the weak intersection rule, i.e. there is k such that

a ≺≺ k v b′ ≺≺ b and k v `′ ≺≺1 `′.

Then k ≺≺ b and k ≺≺1 ` as required. �

Turning to the rules for binary intersections, first we observe that the strong and rounded rules
are equivalent:

Lemma 3.9 Suppose that (A,v,≺≺) satisfies the covariance, transitivity and single interpolation
rules. Then it obeys the strong intersection rule,

(a ≺≺ `1) ∧ (a ≺≺ `2) =⇒ a ≺≺ `1 u `2
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iff it obeys both the weak intersection rule

(a ≺≺ b ≺≺ `1) ∧ (b ≺≺ `2) =⇒ a ≺≺ `1 u `2

(with a singleton b instead of a set k) and the rounded intersection rule

(a ≺≺ c1) ∧ (a ≺≺ c2) =⇒ ∃b. (a ≺≺ b ≺≺ c1) ∧ (b ≺≺ c2).

Proof The weak rule follows from the strong one by transitivity. The strong rule, single inter-
polation and covariance give

(a ≺≺ c1) ∧ (a ≺≺ c2) =⇒ ∃kb. (a ≺≺ b ≺≺ k v c1 u c2) =⇒ ∃b. (a ≺≺ b ≺≺ c1) ∧ (b ≺≺ c2).

Conversely, single interpolation, rounded intersection, transitivity and weak intersection give

(a ≺≺ `1) ∧ (a ≺≺ `2) ⇒ ∃c1c2. (a ≺≺ c1 ≺≺ `1) ∧ (a ≺≺ c2 ≺≺ `2)

⇒ ∃bc1c2. (a ≺≺ b ≺≺ c1 ≺≺ `1) ∧ (b ≺≺ c2 ≺≺ `2)

⇒ a ≺≺ `1 u `2. �

We need to check that Proposition 3.1 preserves these rules:

Lemma 3.10 If the given basis has the strong intersection property then so does the directed
basis.

Proof The rounded intersection property for the directed basis,

h ≺≺ `1 ∧ h ≺≺ `2 =⇒ ∃k. h ≺≺ k ∧ k v `1 u `2,

is the same as the strong intersection property for the given one and we deduce strong intersection
for the directed basis using Lemma 3.9. �

The key idea for converting a concrete basis that uses Scott-open families into one that uses
compact subspaces and for imposing the strong intersection rule on an abstract basis is due to
Jimmie Lawson [GHK+80, §I 3.3] and depends on the axiom of Dependent Choice. We present
the argument for abstract bases because shall want to adapt it. Where the following results use
abstract bases, they only rely on the primary axioms, not single interpolation.

Lemma 3.11 Let a ∈ r ⊂ A where r is rounded ,

r 3 b ⇐⇒ ∃c. r 3 c ≺≺ b.

Then there is a ≺≺-filter s with a ∈ s ⊂ r, i.e.

∃a. a ∈ s, a ∈ s 3 b ⇐⇒ ∃c ∈ s. a �� c ≺≺ b.

Proof By repeated use of roundedness of r and Dependent Choice, there is a sequence

· · · ≺≺ a3 ≺≺ a2 ≺≺ a1 ≺≺ a0 ≡ a

all of whose members belong to r. Then let s ≡ {b | ∃i. ai ≺≺ b}.
Then a ∈ s because a1 ≺≺ a0 ≡ a.
Also s is upper because if b ∈ s with b ≺≺ b′ or b v b′ then ∃i. ai ≺≺ b ≺≺ b′ and b′ ∈ s.
Also s is a ≺≺-filter because if ai1 ≺≺ b1 and ai2 ≺≺ b2 then with i = max(i1, i2)+1, ai ≺≺ ai1 ≺≺ b1

and ai ≺≺ ai2 ≺≺ b2. �

Now recall from Lemma 2.5 that any compact subspace K ⊂ X gives rise to a Scott-open filter
K ≡ {U | K ⊂ U}. Filters in the abstract basis with respect to ≺≺ also give rise to Scott-open
filter of open subspaces; Corollary 8.16 will prove the converse, if the basis is directed.

Lemma 3.12 Let (Ua,Ka) be a basis using Scott-open families and let s ⊂ A a ≺≺-filter as in the
previous result. Then K ≡ {U | ∃a ∈ s.Ka 3 U} is a Scott-open filter of open subspaces.
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Proof It is Scott-open since the Ka are and we have K 3 X because s is inhabited. If K ⊃ Ka 3
V and K ⊃ Kb 3 V then there are d ≺≺ c ≺≺ a, b in s and so by the weak intersection rule there is
some k with d ≺≺ k v a, b, so

Kd 3 Uk ⊂ Ua ∩ Ub ⊂ U ∩ V

and K ⊃ Kd 3 U ∩ V since it’s upper. �

Before we can show that every Scott-open filter arises from a compact subspace, we need to
know how to express points in terms of open subspaces. Of course, any singleton is a compact
subspace, so we have to add a condition to Scott-open filters.

Definition 3.13 A completely co-prime filter or formal point for the topology on X is a
family P of open subspaces of X such that

P 3 X, P 3 U, V ⇐⇒ P 3 U ∩ V and P 3
⋃
Ui ⇐⇒ ∃i. P 3 Ui.

In particular, for every ordinary point x ∈ X, the neighbourhood filter Px ≡ {U | x ∈ U} is a
formal point. Hence we say that a formal point P lies in an open subspace U if P 3 U , inverting
the traditional membership relation.

Then a space X is sober if every formal point is of this form for some unique ordinary
point x ∈ X. Sobriety is often stated as requiring that every irreducible closed subspace C is the
closure of a unique point p. This is equivalent to our definition, with

P ≡ {U | U ∩ C = ∅} and C ≡ X \
⋃
{U | P 63 U},

so that U ∩ C = ∅ ⇐⇒ P 3 U ⇐⇒ x ∈ U .
Containment, P1 ⊂ P2, of one formal point in another is called the specialisation order , as

is the corresponding relation between ordinary points.

We are now ready to give the characterisation of compact subspaces, due to Karl Hofmann and
Michael Mislove [HM81]. Beware that it requires the space to be sober, though not necessarily
locally compact.

Lemma 3.14 Let K ⊂ Ω be a Scott-open filter with K 63 U . Then there is a maximal Scott-open
filter P with K ⊂ P ⊂ Ω but P 63 U , and then P is completely coprime.

Proof This is based on a well known argument for commutative rings, using Zorn’s Lemma, but
see [Joh82, Lemma VII 4.3] for an explicit proof for lattices of open subspaces. �

Proposition 3.15 Any Scott-open filter K of open subspaces of a sober space satisfies

K 3 U ⇐⇒ K ⊂ U where K ≡
⋂
K is compact.

Proof If K 3 U then K ⊂ U by definition of
⋂
K. Conversely, by Lemma 3.14, if K 63 U then

there is a formal point P with K ⊂ P 63 U , so by sobriety (Definition 3.13) there is a (concrete)
point p with p ∈ V ⇐⇒ P 3 V . Hence p ∈ K but p /∈ U , as required. The subspace K is
compact because its neighbourhood filter K is Scott-open. �

Definition 3.16 We therefore call any Scott-open filter K a formal compact subspace . How-
ever, Proposition 5.14 illustrates that not every (concrete) compact subspace is the intersection of
its neighbourhoods like this; one that does so is called saturated , although this use of the word
is unrelated to that in Definition 1.16. We say that a formal point P lies in a (saturated) formal
compact subspace K if P ⊃ K, whilst an open subspace U covers K if K 3 U .

Proposition 3.17 If the abstract basis satisfies the boundedness and strong intersection rules
then each Scott-open family Ka is a filter and Ka ≡

⋂
Ka is a compact subspace with Ka ⊂

U ⇐⇒ Ka 3 U . Then the basis expansion is

x ∈ U ⇐⇒ ∃a. x ∈ Ua ∧ Ka ⊂ U or U =
⋃
{Ua | Ka ⊂ U}.
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We will describe Ka more explicitly in terms of the abstract basis in Theorem 5.12.

Proof Each a ∈ A has some a ≺≺ b by boundedness and Ub ⊂ X, so Ka 3 X.
If Ka 3 U, V then Uk ⊂ U and U` ⊂ V with a ≺≺ k, `, so a ≺≺ h v k, ` for some h by the

strong intersection rule, but then Uh ⊂ Uk ⊂ U and similarly Uh ⊂ V and Uh ⊂ U ∩ V , making
Ka 3 U ∩ V . So Ka 3 U ⇐⇒ Ka ⊂ U by Proposition 3.15 and the basis expansion follows. �

For most of the rest of this paper it will be more convenient to define a locally compact space
to be one that has a basis using Scott-open families. In fact, we have just given most of the proof
that such a space also has a basis using compact subspaces, but we defer the rest of the argument
to Section 12, where we formulate it in terms of the abstract basis instead.

4 Continuous maps

In this section (alone) it would be possible throughout to use either compact subspaces (K ⊂)
or Scott-open families (K 3) and the LATEX source has a switch to allow both of them. I would
appreciate the views of readers on which would be clearer. It is currently set to use Scott-open
families.

Having described concrete and abstract bases for locally compact spaces, we shall now do the
same for continuous functions, which we shall characterise using binary relations that we call
matrices. The results in this section make essential use of the secondary axioms.

Notation 4.1 Let f : X → Y be a continuous function between locally compact sober spaces that
have bases (Ua,Ka) and (Vb, Lb) respectively using compact subspaces. The concrete matrix
for f is the binary relation

〈 ∣∣ f ∣∣ 〉 that is defined by〈
a
∣∣ f ∣∣ b 〉 ≡ (fKa ⊂ Vb) ≡ (Ka ⊂ f−1Vb) ≡ (Ka 3 f−1Vb),

where the last form is the one that we use for Scott-open families. In particular,〈
a
∣∣ id ∣∣ b 〉 ≡ (a ≺≺ b).

We will characterise matrices for continuous functions by the axioms in Definition 1.15. In fact,
we can replace f−1 in this notation by any Scott-continuous operator M∗ : ΩY → ΩX (Proposi-
tion 2.11): 〈

a
∣∣M ∣∣ b 〉 ≡ (Ka 3M∗Vb),

although the correspondence only works properly when either the bases are directed or M∗ pre-
serves all unions.

Lemma 4.2 For any Scott-continuous operator M∗, the concrete matrix
〈
a
∣∣M ∣∣ b 〉 is contravari-

ant and saturated in a and covariant in b. It also satisfies

M∗Vb =
⋃
a

{Ua |
〈
a
∣∣M ∣∣ b 〉} =

⋃
6

k

{Uk | ∀a ∈ k.
〈
a
∣∣M ∣∣ b 〉}.

Proof The variance properties follow from those of Ka and Vb (Definition 1.3(b)) and mono-
tonicity of M∗. The last part is the basis expansion of M∗Vb, from which we deduce

Ka 3M∗Vb ⇐⇒ ∃k.Ka 3 Uk ∧ ∀a′ ∈ k.Ka′ 3M∗Vb

since Ka is Scott-open. Hence the matrix is saturated in a:〈
a
∣∣M ∣∣ b 〉 ⇐⇒ ∃k. (a ≺≺ k) ∧ ∀a′ ∈ k.

〈
a′
∣∣M ∣∣ b 〉. �

We can improve on this using the ideas of the previous section:

Lemma 4.3 If the bases obey the single interpolation, rounded union and boundedness below
properties (Definition 1.10) then the concrete matrix is rounded on both sides.
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Proof By single interpolation for a within the saturation property of the previous result,〈
a
∣∣M ∣∣ b 〉 ⇔ ∃k. (a ≺≺ k) ∧ ∀a′′ ∈ k.

〈
a′′
∣∣M ∣∣ b 〉

⇔ ∃a′k. (a ≺≺ a′ ≺≺ k) ∧ ∀a′′ ∈ k.
〈
a′′
∣∣M ∣∣ b 〉

⇔ ∃a′. (a ≺≺ a′) ∧
〈
a′
∣∣M ∣∣ b 〉,

we deduce roundedness in a.
The expansion of Vb with respect to the directed basis (Proposition 3.1) is

Vb =
⋃
6

`

{V` | ∀b′ ∈ `. Lb′ 3 Vb} ≡
⋃
6

`

{V` | ` ≺≺ b},

so, since M∗ is Scott-continuous and Ka is Scott-open,〈
a
∣∣M ∣∣ b 〉 ≡ Ka 3M∗Vb =

⋃
6

`

{M∗V` | ` ≺≺ b}

⇔ ∃`.Ka 3M∗V` ∧ (` ≺≺ b)
⇔ ∃`b′.Ka 3M∗V` ∧ (` ≺≺ b′ ≺≺ b)
≡ ∃b′.

〈
a
∣∣M ∣∣ b′ 〉 ∧ (b′ ≺≺ b),

where b′ comes from the rounded union and boundedness below properties for b. Hence the matrix
is rounded in b. �

It is tempting to try to enforce roundedness by redefining〈
a
∣∣M ∣∣ b 〉 as ∃a′b′. (a ≺≺ a′) ∧ Ka′ 3M∗Vb′ ∧ (b′ ≺≺ b),

but to prove that this is rounded still needs single interpolation, whilst saturation requires rounded
unions.

Here is the converse transformation:

Lemma 4.4 For any abstract matrix
〈
a
∣∣M ∣∣ b 〉 that is rounded in b, the operator M† defined by

M†V ≡
⋃
a

{Ua | ∃b.
〈
a
∣∣M ∣∣ b 〉 ∧ Lb 3 V }

=
⋃
6

k

{Uk | ∀a ∈ k. ∃b.
〈
a
∣∣M ∣∣ b 〉 ∧ Lb 3 V }

is Scott-continuous in V and

M†Vb =
⋃
a

{Ua |
〈
a
∣∣M ∣∣ b 〉} =

⋃
6

k

{Uk | ∀a ∈ k.
〈
a
∣∣M ∣∣ b 〉}.

Hence if the matrix
〈
a
∣∣M ∣∣ b 〉 had been a concrete one defined from an operator M∗ then

M†V ⊂ M∗V and M†Vb = M∗Vb.

We say that M∗ is representable if M† = M∗.

Proof Scott continuity is immediate from Scott-openness of Lb, whilst roundedness gives

M†Vb ≡
⋃
a

{Ua | ∃b′.
〈
a
∣∣M ∣∣ b′ 〉 ∧ Lb′ 3 Vb}

≡
⋃
a

{Ua | ∃b′.
〈
a
∣∣M ∣∣ b′ 〉 ∧ (b′ ≺≺ b)}

⇔
⋃
a

{Ua |
〈
a
∣∣M ∣∣ b 〉}.

To show that M†V ⊂M∗V it suffices to observe that〈
a
∣∣M ∣∣ b 〉 ∧ Lb 3 V =⇒ Ka 3M∗Vb ∧ Lb 3 V =⇒ Ua ⊂M∗Vb,
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by the basis expansion of M∗Vb. Equality in the case V ≡ Vb follows from Lemma 4.2. �

Lemma 4.5 If the abstract matrix
〈 ∣∣M ∣∣ 〉 is co- and contravariant, rounded on both sides and

saturated in its input then it is recovered from the operator M†.

Proof By the previous lemma, the derived matrix is

Ka 3M†Vb ⇐⇒ ∃k.Ka 3 Uk ∧ ∀a′ ∈ k.
〈
a′
∣∣M ∣∣ b 〉,

but the right hand side of this is just
〈
a
∣∣M ∣∣ b 〉 because this is saturated by hypothesis. �

Notation 4.6 Given abstract matrices
〈 ∣∣M ∣∣ 〉 and

〈 ∣∣N ∣∣ 〉,
M†(N†W ) =

⋃
6{Uk | ∀a ∈ k. ∃b.

〈
a
∣∣M ∣∣ b 〉 ∧ Lb 3 N†W},

so
〈
a
∣∣M ;N

∣∣ c 〉 ≡ Ka 3M†(N†Wc)

= ∃k. (a ≺≺ k) ∧ ∀a′ ∈ k. ∃b.
〈
a′
∣∣M ∣∣ b 〉 ∧ 〈 b ∣∣N ∣∣ c 〉,

which we call the saturated composite . However, this definition is not yet safe to use:

Example 4.7 Even when Scott-continuous operators M∗ and N∗ are representable in the sense
of Lemma 4.4, their composite P ∗ ≡M∗ ·N∗ not not be.

Proof Let X ≡ 1 ≡ {•} with prime basis A ≡ {•}, Y ≡ 2 ≡ {0, 1} with directed basis
B ≡ {0, 1, •} and Z ≡ 2× 2 with prime basis C ≡ {(0, 0), (0, 1), (1, 0), (1, 1)}.

Let M∗ : ΣY → ΣX be conjunction, so its only true matrix element is
〈
•
∣∣M ∣∣ • 〉.

Let N∗ : ΣZ → ΣY be disjunction on the second component, its true matrix elements being〈
0
∣∣N ∣∣ (0, 0)

〉
,
〈

0
∣∣N ∣∣ (0, 1)

〉
,
〈

1
∣∣N ∣∣ (1, 0)

〉
and

〈
1
∣∣N ∣∣ (1, 1)

〉
.

Then M∗N∗{(0, 1), (1, 0)} = {•} but M∗N∗{(z1, z2)} = ∅ for any of the four singletons.
Therefore, since these singletons provide the basis for Z, the matrix

〈
•
∣∣P ∣∣ c 〉 for P ∗ ≡M∗ ·N∗

is everywhere false and P †V = ∅. The relational and saturated composite matrices are also
everywhere false. �

It is not this failure that should surprise you but that we ever suggested that we could define
matrices using singletons instead of lists, when we needed to use lists in bases to capture the
way-below relation for locally compact spaces other than domains. It can in fact be done, so long
as we have some control over finite unions. It is sufficient to do this either by using directed bases
or by restricting our attention to operators M∗ that preserve all joins.

Lemma 4.8 If the basis (Vb,Lb) is directed then every Scott-continuous operator is represented
by its concrete matrix.

Proof The hypothesis means that the basis expansion V =
⋃
{Vb | Lb 3 V } is a directed union,

so M∗ preserves it. By Lemma 4.4, the operator M† that is derived from the matrix
〈
a
∣∣M ∣∣ b 〉

that was obtained from M∗ also preserves this union, whilst M†Vb = M∗Vb. Hence M†V = M∗V
for any V . �

In this case, Lemmas 4.2–4.4 define a bijection between these operators and matrices that are
co- and contravariant, rounded and saturated. It follows that the category of locally compact
spaces and Scott-continuous operators is equivalent to one of bases and matrices with saturated
composition. Given this equivalence, such composition must be associative, although this is far
from obvious from the formula.

It is, however, the express purpose of this paper not to use directed bases. Then rounded
saturated matrices just correspond to some of the Scott-continuous operators between open-set
lattices, but unfortunately not even to a subcategory of them.

We therefore retreat regarding the generality that we are trying to capture, by one step towards
the inverse images of continuous functions:

Lemma 4.9 If M∗ preserves all joins then it is represented by its concrete matrix.
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Proof We have M†V ⊂ M∗V and M†Vb = M∗Vb from Lemma 4.4 and the basis expansion
gives

M†V = M†
⋃
{Vb | Kb 3 V } ⊃

⋃
{M†Vb | Kb 3 V }

=
⋃
{M∗Vb | Kb 3 V }

= M∗
⋃
{Vb | Kb 3 V } = M∗V. �

We want to identify the property of the matrix that characterises when M∗ preserves all joins.
First we extend the definition of the concrete matrix to unions in the output:

Lemma 4.10 If M∗ preserves all unions then

Ka 3M∗V` ⇐⇒ ∃k. (a ≺≺ k) ∧ ∀a′ ∈ k. ∃b ∈ `.
〈
a′
∣∣M ∣∣ b 〉.

Proof Using the directed basis expansion of M∗Vb,

M∗V` ≡ M∗
⋃
b∈`

Vb =
⋃
b∈`

M∗Vb =
⋃
b∈`

⋃
a′

{Ua′ | Ka′ 3M∗Vb}

=
⋃
a′

{Ua′ | ∃b ∈ `.Ka′ 3M∗Vb}

=
⋃
6

k

{Uk | ∀a′ ∈ k. ∃b ∈ `.Ka′ 3M∗Vb}.

Then, since Ka is Scott-open,

Ka 3M∗V` ⇐⇒ ∃k.Ka 3 Uk ∧ ∀a′ ∈ k. ∃b ∈ `.Ka′ 3M∗Vb,

whence the result follows by the definitions of (a ≺≺ k) and
〈
a′
∣∣M ∣∣ b 〉. �

This brings us to the matrix characterisation of operators that preserve arbitrary unions:

Lemma 4.11 If M∗ preserves unions then the concrete matrix
〈 ∣∣M ∣∣ 〉 has the partition prop-

erty , 〈
a
∣∣M ∣∣ b 〉 ∧ (b ≺≺ `) =⇒ ∃k. (a ≺≺ k) ∧ ∀a′ ∈ k. ∃b ∈ `.

〈
a′
∣∣M ∣∣ b 〉.

Proof Since (b ≺≺ `) ≡ (Lb 3 V`)⇒ (Vb ⊂ V`)⇒ (M∗Vb ⊂M∗V`), the previous result gives〈
a
∣∣M ∣∣ b 〉 ∧ (b ≺≺ `) ⇒ Ka 3M∗Vb ⊂M∗V`

⇒ ∃k. (a ≺≺ k) ∧ ∀a′ ∈ k. ∃b′ ∈ `.
〈
a′
∣∣M ∣∣ b′ 〉. �

Lemma 4.12 For any predicate φ on the indexing set of the basis,⋃
{Ua | ∃k. (a ≺≺ k) ∧ ∀a′ ∈ k. φa′} ⊂

⋃
{Ua′ | φa′}.

Proof If a ≺≺ k then Ka 3 Uk, so Ua ⊂ Uk ≡
⋃
{Ua′ | a′ ∈ k}. Hence if also ∀a′ ∈ k. φa′ then

Ua ⊂ {Ua′ | φa′} and the result follows. �

Lemma 4.13 If the abstract matrix
〈 ∣∣M ∣∣ 〉 has the partition property then M† preserves unions.

Proof If b ∈ ` then Vb ⊂ V` and M†Vb ⊂M†V`, so
⋃
{M†Vb | b ∈ `} ⊂ M†V`.

For the reverse inclusion, by the partition property and Lemma 4.12,

M†V` =
⋃
{Ua | ∃b′.

〈
a
∣∣M ∣∣ b′ 〉 ∧ (b′ ≺≺ `)}

⊂
⋃
{Ua | ∃k. (a ≺≺ k) ∧ ∀a′ ∈ k. ∃b ∈ `.

〈
a′
∣∣M ∣∣ b 〉}

⊂
⋃
{Ua′ | ∃b ∈ `.

〈
a′
∣∣M ∣∣ b 〉}

=
⋃
{M†Vb | b ∈ `}.
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Then, since M† also preserves directed unions, it preserves all of them. �

Proposition 4.14 If the bases obey the single interpolation, rounded union and boundedness
below properties then the correspondence above defines a bijection between union-preserving op-
erators and matrices that are co- and contravariant, rounded and saturated and have the partition
property. �

It remains to find the properties of matrices that correspond to the fact that inverse image
maps preserve the whole space and intersections. We will say that a matrix is bounded and
filtered respectively if it has the relevant properties. As before, we cannot do this independently
of the unions: we must assume either that the bases are directed or that the matrices have the
partition property. Unfortunately, the resulting condition is rather complicated.

Remark 4.15 Suppose first that the bases are stable (Definition 2.2). More precisely, the concrete
basis for the source space X needs to use compact subspaces Ka, whilst that for the target Y has
a greatest element • and an intersection operation u with

V• = Y and Vb1ub2 = Vb1 ∩ Vb2 .

Then the matrix for a continuous function satisfies〈
a
∣∣ f ∣∣ • 〉 ≡ (fKa ⊂ Y ) ⇔ >

and (fKa ⊂ Vb1) ∧ (fKa ⊂ Vb2) ⇐⇒ (fKa ⊂ Vb1ub2),

which is
〈
a
∣∣ f ∣∣ b1 〉 ∧ 〈 a ∣∣ f ∣∣ b2 〉 ⇐⇒ 〈

a
∣∣ f ∣∣ b1 u b2 〉.

However, as we discussed in Examples 2.3, we do not want to assume that our bases carry this
semilattice structure. In some cases we may replace the actual top element or intersection above
with an existentially quantified variable b:

Definition 4.16 A matrix is uniformly bounded and filtered respectively if

∃b.
〈
a
∣∣ f ∣∣ b 〉

and
〈
a
∣∣ f ∣∣ b1 〉 ∧ 〈 a ∣∣ f ∣∣ b2 〉 =⇒ ∃b.

〈
a
∣∣ f ∣∣ b 〉 ∧ (b ≺≺ b1) ∧ (b ≺≺ b2).

However, matrices generally only have these properties if the bases are closed under finite
unions, which we do not want to assume any more than we did intersections. We really need〈
a
∣∣ f ∣∣ ` 〉 ≡ (Ka 3 f−1V`), but this was not defined in Notation 1.15. However, Lemma 4.10 gave

a formula for it that is related to saturation. So, instead of requiring uniform boundedness and
filteredness as above, we ask that these properties hold after they have been saturated.

Lemma 4.17 If the bases obey the secondary rules including boundedness, M∗ preserves unions
and M∗Y = X then the concrete matrix

〈 ∣∣M ∣∣ 〉 is bounded in the sense that

∃k. (a ≺≺ k) ∧ ∀a′ ∈ k. ∃b.
〈
a′
∣∣M ∣∣ b 〉.

Conversely, if
〈 ∣∣M ∣∣ 〉 is bounded in this sense then M†Y = X.

Proof Boundedness of the basis means that each a has some k with a ≺≺ k, so Ka 3 Uk ⊂ X and
Ka 3 X. Then Ka 3 X = M∗Y = M∗

⋃
6V` =

⋃
6M∗V`, so ∃`.Ka 3 M∗V`. Using Lemma 4.10,

this amounts to the given formula for boundedness of the matrix.
Conversely, by Lemmas 4.4, and 4.12 and a similar observation about Lb 3 Y ,

M†Y =
⋃
{Ua′ | ∃b.

〈
a′
∣∣M ∣∣ b 〉 ∧ Lb 3 Y }

⊃
⋃
{Ua | ∃k. (a ≺≺ k) ∧ ∀a′ ∈ k. ∃b.

〈
a′
∣∣M ∣∣ b 〉}

⊃
⋃
{Ua | >} = X. �
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This complicated property reduces to the simpler ones if we have the relevant structure:

Lemma 4.18 Let the abstract matrix
〈 ∣∣M ∣∣ 〉 be covariant, rounded, bounded and saturated.

Then
(a) if the basis B has a top element • with respect to v then

〈
a
∣∣M ∣∣ • 〉⇔ >;

(b) if B is directed then ∃b.
〈
a
∣∣M ∣∣ b 〉; and

(c) if A is prime (Proposition 5.14) then ∃b.
〈
a
∣∣M ∣∣ b 〉.

On the other hand, if we drop the requirement that the bases be bounded above but keep the
other secondary axioms, the formula becomes

a ≺≺ a′′ =⇒ ∃k. (a ≺≺ k) ∧ ∀a′ ∈ k. ∃b`.
〈
a′
∣∣M ∣∣ b 〉. �

Turning to binary intersections, we have different results for bases that use compact subspaces
or Scott-open families:

Lemma 4.19 Let M∗ : ΩY → ΩX be an operator that preserves all unions and binary intersec-
tions. If the basis for X uses compact subspaces then the concrete matrix

〈 ∣∣M ∣∣ 〉 is strongly
filtered : 〈

a
∣∣M ∣∣ b1 〉 ∧ 〈 a ∣∣M ∣∣ b2 〉 =⇒

∃k`. (a ≺≺ k) ∧
(
∀a′ ∈ k. ∃b ∈ `.

〈
a′
∣∣M ∣∣ b 〉) ∧ (∀b ∈ `. b1 w b v b2).

If instead it uses Scott-open families then
〈 ∣∣M ∣∣ 〉 is weakly filtered :

(a ≺≺ a′) ∧
〈
a′
∣∣M ∣∣ b1 〉 ∧ 〈 a′ ∣∣M ∣∣ b2 〉 =⇒

∃k`. (a ≺≺ k) ∧
(
∀a′ ∈ k. ∃b ∈ `.

〈
a′
∣∣M ∣∣ b 〉) ∧ (∀b ∈ `. b1 w b v b2).

Proof The hypotheses for the strong rule are Ka ⊂M∗Vb1 and Ka ⊂M∗Vb1 . Then

Ka ⊂M∗Vb1 ∩M∗Vb2 = M∗(Vb1 ∩ Vb2) and so Ka ⊂M∗V`

for some ` with ` v b1 and ` v b2. By Lemma 4.10, this is the stated conclusion.
In the weak case, we are given Ka 3 Ua′ , Ka′ 3 M∗Vb1 and Ka′ 3 M∗Vb1 . Then we deduce

Ka 3M∗Vb1 ∩M∗Vb2 as in Lemma 2.8 and the rest of the argument is the same as in the strong
case. �

Lemma 4.20 If the abstract matrix
〈 ∣∣M ∣∣ 〉 is weakly or strongly filtered and has the partition

property then M† preserves binary intersections.

Proof By Lemma 4.4, the filter property of a concrete basis, contravariance, the basis expansion
of Ua (for roundedness), the weak intersection rule and Lemma 4.12,

M†Vb1 ∩M†Vb2
⊂

⋃
{Ua | ∃a1a2. (a1 w a v a2) ∧

〈
a1

∣∣M ∣∣ b1 〉 ∧ 〈 a2

∣∣M ∣∣ b2 〉}
⊂

⋃
{Ua |

〈
a
∣∣M ∣∣ b1 〉 ∧ 〈 a ∣∣M ∣∣ b2 〉}

⊂
⋃
{Ua′ | ∃a. (a′ ≺≺ a) ∧

〈
a
∣∣M ∣∣ b1 〉 ∧ 〈 a ∣∣M ∣∣ b2 〉}

⊂
⋃
{Ua′ | ∃k. (a′ ≺≺ k) ∧ ∀a′′ ∈ k. ∃b.

〈
a′′
∣∣M ∣∣ b 〉 ∧ (b1 w b v b2)}

⊂
⋃
{Ua′′ | ∃b.

〈
a′′
∣∣M ∣∣ b 〉 ∧ (Vb1 ⊃ Vb ⊂ Vb2)}

⊂ M†(Vb1 ∩ Vb2),

where the fourth line is not needed if
〈 ∣∣M ∣∣ 〉 is strongly filtered. Then M†V1∩M†V2 = M†(V1∩

V2) since M† also preserves arbitrary unions by Lemma 4.13. �
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We use sobriety (Definition 3.13) to complete the characterisation of matrices for continuous
functions:

Theorem 4.21 Let X and Y be locally compact sober spaces with concrete bases (Ua,Ka) and
(Vb,Lb) that obey the primary and secondary axioms. Then the formulae〈

a
∣∣ f ∣∣ b 〉 ≡ Ka 3 f−1Vb and fx ∈ Vb ⇐⇒ ∃a. x ∈ Ua ∧

〈
a
∣∣ f ∣∣ b 〉

define bijections amongst
(a) a continuous function f : X → Y ;

(b) an operator f∗ : ΩY → ΩX that preserves finite intersections and arbitrary unions; and

(c) a matrix
〈
a
∣∣ f ∣∣ b 〉 that is co- and contravariant, rounded, saturated, bounded and filtered

and has the partition property.

Proof The correspondence between (a) and (b) is Definition 3.13 of sobriety and that between
(b) and (c) was the subject of this section. Lemmas 4.5 and 4.9 gave the bijection between
operators and matrices, relying on preservation of joins and roundedness and therefore on the
secondary axioms for the bases. The subsequent results matched the other properties. Then, for
each ordinary point x ∈ X,

Px ≡ {V ∈ ΩY | x ∈ f∗V } ≡ {V | ∃ab. x ∈ Ua ∧
〈
a
∣∣ f ∣∣ b 〉 ∧ Lb 3 V }

is a formal point of Y , because f∗ preserves finite intersections and arbitrary unions. Hence by
sobriety Px 3 V ⇐⇒ y ∈ V for some unique y ∈ Y and we put fx ≡ y. This defines a continuous
function because f−1V = f∗V ⊂ X and this is open by construction, for any open V ⊂ Y . �

This result provides us with the definition of the category of abstract bases and matrices, but
the full details of the abstract construction of this category and its structure will take another
whole paper.

In order to check that you understand the axioms for bases and matrices and how to use them,
you should verify that

〈
a
∣∣ id ∣∣ b 〉 ≡ (a ≺≺ b) has all of the properties of a matrix and is a unit

for saturated composition. Single interpolation is needed for roundedness and boundedness of the
basis for that of the matrix.

Remark 4.22 Isomorphisms in the abstract category should also define what it means for abstract
bases to be equivalent. In particular, we use the way-below relation a ≺≺ b for the matrices in
both directions to show that the “upgraded” bases in Lemmas 3.3, 3.4 and 3.7 are equivalent to
the given ones, whilst a ≺≺ ` and ` ≺≺ a do so for the directed basis in Proposition 3.1.

Unfortunately, however, we run into the reason for upgrading the bases, namely that the
secondary properties of bases were needed in Lemma 4.3 to prove the fundamental properties of
matrices. What we would like to be an equivalence of categories becomes an adjunction between
2-categories, so we leave the interested reader to investigate this.

Equivalence of the directed basis also illustrates another point about the way in which the
properties of matrices have been defined: the matrix a ≺≺ ` is uniformly bounded but its inverse
` ≺≺ a is not, cf. Lemma 4.18(b). �

We may sum up what we have achieved so far in categorical language by saying that there is a
full and faithful functor from the category of locally compact sober spaces with given concrete bases
and continuous functions to the category of abstract bases and matrices satisfying the conditions
that we have identified. In order to make these categories equivalent we therefore have to show
that this functor is essentially surjective.

5 Classical completeness

We now embark on the recovery of a space from any given abstract basis. We start, in the
traditional way, with the points. These are continuous functions from the singleton, which has
just one basis element •, with • ≺≺ •, so points correspond to matrices of the form

〈
•
∣∣ f ∣∣ b 〉.

Hence, in the axioms in the previous section, contravariance, saturation and roundedness in the
argument are trivial, whilst by Lemma 4.18(c) boundedness and filteredness are uniform. The
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partition property is also simplified, to one that we call locatedness by analogy with the Dedekind
real line below. Writing p ≡ {b |

〈
•
∣∣ f ∣∣ b 〉} ⊂ A, we have

Definition 5.1 A formal point for an abstract basis (A,v,≺≺) is a (typically infinite) subset
p ⊂ A such that

a w b ∈ p ⇒ a ∈ p upper

a ∈ p ⇔ ∃b. (b ≺≺ a) ∧ b ∈ p rounded

∃a. a ∈ p bounded

(a ∈ p) ∧ (b ∈ p) ⇒ ∃c. (a w c v b) ∧ c ∈ p filtered

(a ∈ p) ∧ (a ≺≺ k) ⇒ k G p ≡ ∃b. (b ∈ k) ∧ (b ∈ p). located

We write X for the set of formal points and Spec (A,v,≺≺) for the space that we shall construct.
Beware that this notion of formal point is related to the abstract basis, whereas the one in Defi-
nition 3.13 is defined by the topology, which we now describe. We will show that the two notions
are isomorphic in Lemma 5.11. The specialisation order is given by inclusion.

In the simplest case of a discrete space we already see that sobriety corresponds to a logical
principle:

Example 5.2 Any set N (maybe, but not necessarily, N) provides a concrete basis for itself,
considered as a discrete locally compact space, where Un ≡ Kn ≡ {n}. The abstract basis is
(N,=,∈). A formal point p ⊂ N is a description , satisfying

∃n. n ∈ p and n ∈ p 3 m =⇒ n = m.

Then N is sober iff every description is a singleton, {n}. This principle of Definition by Description
was first correctly identified by Giuseppe Peano [Pea97, §22]; for the connection with sobriety see
[A]. �

The term located is derived from our running example:

Example 5.3 A formal point p for the basis of intervals on R (Example 1.9) corresponds to a
Dedekind cut (δ, υ) by

δ ≡ {d | ∃u. 〈d, u〉 ∈ p}, υ ≡ {u | ∃d. 〈d, u〉 ∈ p} and p ≡ {〈d, u〉 | d ∈ δ ∧ u ∈ υ},

where δ and υ are characterised by

u ∈ υ ⇐⇒ ∃t. t ∈ υ ∧ (t < u) d ∈ δ ⇐⇒ ∃e. (d < e) ∧ e ∈ δ
∃u. u ∈ υ ∃d. d ∈ δ

d ∈ δ ∧ u ∈ υ =⇒ (d < u) (d < u) =⇒ d ∈ δ ∨ u ∈ υ.

Proof The bijection, roundedness and boundedness properties are easy. The filter property of
p amounts to 〈d, u〉 ∈ p 3 〈e, t〉 =⇒ (d < t), so it is equivalent to the fifth axiom (disjointness) for
(δ, υ).

Let p be located in the sense of the Definition and e < t. Then the other properties provide
c < d < e < t < u < v with 〈d, u〉 ∈ p. Since [d, u] ⊂ (e, v) ∪ (c, t), locatedness of p gives
〈e, v〉 ∈ p ∨ 〈c, t〉 ∈ p, whence e ∈ δ ∨ t ∈ υ. The converse is more complicated since it involves
arbitrarily many intervals, but is essentially Lemma 6.16 of [I].

Hence sobriety for R is Dedekind completeness. �

Now we return to the general situation and define its basis.

Definition 5.4 For each a ∈ A and u ⊂ A, the basic and general open subsets of X are

Ua ≡ {p | a ∈ p} and Uu ≡ {p | p G u ≡ ∃a. a ∈ p ∧ a ∈ u}.

Lemma 5.5 If a v b or a ≺≺ b then Ua ⊂ Ub. The whole set X of formal points is open, i.e. it is
expressible as a union of basic open subsets, as is the intersection of any two subsets that are so
expressible.
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Proof The first three parts follow from the requirements that formal points be upper, rounded
and bounded respectively, whilst the filteredness property of formal points says that

Ua ∩ Ub =
⋃
{Uc | a w c v b}

and the property for intersections of general unions follows from this. �

Lemma 5.6 The family of open subspaces given by

Ka ≡ {U | ∃k. (a ≺≺ k) ∧ Uk ⊂ U}

is Scott-open. If a ≺≺ k then Ka 3 Uk and if a v b then Ka ⊃ Kb.

Proof The second part is immediate and the third follows directly from contravariance of ≺≺.
We then deduce Scott-openness:

Ka 3 U ≡ ∃k. (a ≺≺ k) ∧ Uk ⊂ U =⇒ ∃k.Ka 3 Uk ⊂ U. �

Lemma 5.7 The system (Ua,Ka) satisfies the basis expansion

p ∈ U ⇐⇒ ∃a. p ∈ Ua ∧ Ka 3 U or U =
⋃
{Ua | Ka 3 U}

and is therefore a concrete basis for X using Scott-open families.

Proof [⇒] Since general open subsets are unions of basic ones, p ∈ Ub ⊂ U for some b. Then
b ∈ p and by roundedness of p there is some a ∈ p with a ≺≺ b. Hence p ∈ Ua and Ka 3 Ub ⊂ U ,
so Ka 3 U too.

[⇐] For some a and k, we have a ∈ p and a ≺≺ k with Uk ⊂ U , so by locatedness of p there is
some b ∈ k ∩ p and p ∈ Ub ⊂ Uk ⊂ U . �

This is all very well, but the problem was to find a space with a concrete basis that induces
the given abstract basis, i.e. such that Ka 3 Uk if and only if a ≺≺ k. Proving such things in
point–set topology involves finding points with specific properties. In particular, if Ka is of the
form {U | Ka ⊂ U} but a 6≺≺ k then we need to find a point that is in Ka but not in Uk.

For us, a “point” is a certain kind of subset of A (Definition 5.1) and we need one that includes
some elements of A but excludes others. Lawson’s Lemma 3.11 provides a ≺≺-filter, so we need a
way of obtaining rounded located subsets of the basis. The following arguments require it to be
countable and satisfy single interpolation and assume Excluded Middle and Dependent Choice.

Lemma 5.8 For any subset r ⊂ A, we obtain a rounded located subset r ⊂ r by

r ≡ {a ∈ A | ∃a′. (a′ ≺≺ a) ∧ a′ • r}

where a′ • r ≡ (∀k. a′ ≺≺ k =⇒ k G r).

Indeed, r 7→ r is coclosure operation for which r = r iff r is rounded and located.

Proof The operation is decreasing (r ⊂ r), by putting k ≡ {a}, so a ∈ k ∩ r.
It also preserves order: if r ⊂ r′ then a′ • r ⇒ a′ • r′ and so r ⊂ r′.
If r is already rounded and located then r = r: given a ∈ r, by roundedness there is some

a′ ∈ r with a′ ≺≺ a and if a′ ≺≺ k then k G r by locatedness.
For general r, the subset r is rounded: if a ∈ r then by the definition of r and single interpolation

there are a′′ ≺≺ a′ ≺≺ a with a′′ • r, so a′ ∈ r.
The difficult part is locatedness of r. Let a ∈ r with a ≺≺ `, so there are a′ and k with

a′ ≺≺ k ≺≺ a and k ≺≺1 ` by Lemma 3.8. We need to find b ∈ k with b • r, from which we obtain c
with b ≺≺ c ∈ ` since k ≺≺1 ` and then c ∈ ` ∩ r.

Suppose that there is no such b ∈ k, so

∀b ∈ k. ¬(b • r) ≡ ∀b ∈ k. ∃hb. (b ≺≺ hb) ∧ (hb ∩ r = ∅).

Then a ≺≺ k ≺≺ h ≡
⋃
{hb | b ∈ k} with h ∩ r = ∅,
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which contradicts a • r. Hence there is some b ∈ k with b • r as required. �

Now we want to find a point p such that s ⊂ p ⊂ r ⊂ A, where s is a ≺≺-filter and r a rounded
located subset. One way of making a formal point from a filter is to incorporate instances of
locatedness into the proof of (Lawson’s) Lemma 3.11, which we can do if the basis is countable:

Lemma 5.9 Let (A,v,≺≺) be a countable abstract basis and a ∈ r ⊂ A, where r is rounded and
located. Then there is a point p with a ∈ p ⊂ r.
Proof Let ki be an enumeration of Fin (A) such each finite set k occurs infinitely often, so for
any k ∈ Fin (A) and i ∈ N there is some j > i with k = kj .

As in Lemma 3.11, we put a0 ≡ a and define a descending sequence with ai+1 ≺≺ ai, but we
use locatedness to modify the choice of the terms.

As before, at each stage i ∈ N, we first let a′ ≺≺ ai with a′ ∈ r since r is rounded. If ai 6≺≺ ki
then just let ai+1 ≡ a′.

If a′ ≺≺ ai ≺≺ ki then by Lemma 3.8 there is some k′ with a′ ≺≺ k′ ≺≺1 ai, ki. Since a′ ∈ r and
r is located, there is some a′′ ∈ r ∩ k′, so a′′ ≺≺ ai and a′′ ≺≺ b ∈ ki, so b ∈ r since r is upper. We
put ai+1 ≡ a′′.

Again as before, the subset p ≡ {b | ∃i. ai ≺≺ b} is a ≺≺-filter with a ∈ p ⊂ r.
But p is also located. If ai ≺≺ a′ ≺≺ k then, by assumption on the enumeration of Fin (A),

k ≡ kj for some j with i < j. By construction, aj ≺≺ ai ≺≺ a′ ≺≺ k ≡ kj and then aj+1 ≺≺ b ∈ kj ,
so b ∈ k ∩ p as required.

Then p is a filter with respect to v as well as ≺≺: If a ∈ p 3 b then there is d ∈ p with
a �� d ≺≺ b and a further e ∈ p with e ≺≺ d. Then by the weak intersection rule there is some k
with e ≺≺ k v a, b. Since p is located, there is some c ∈ k ∩ p, so a w c v b.

Hence p has all the properties of a formal point. �

The statement of this result is very similar to Lemma 3.14, so with some ingenuity you may
be able to adapt that to the uncountable case. In fact, we will see how to do this in the next two
sections, with the benefit of the point-free view of topology. But for the moment we accept the
countability restriction and use the result that we possess to recover a ≺≺ k:

Lemma 5.10 If the basis is countable and Ka 3 Uk then a ≺≺ k.

Proof We claim first that

(b ≺≺ c) ∧ (Uc ⊂ Uk) ≡ (b ≺≺ c) ∧ (∀p. c ∈ p⇒ p G k) =⇒ (b ≺≺ k).

Otherwise, by Lemma 5.8, there is a rounded located subset r ⊂ A with c ∈ r ⊂ A \ k. Then by
Lemma 5.9 there is a point p with c ∈ p ⊂ r. This means that p ∈ Uc ⊂ Uk, so p G k, contradicting
p ∩ k = ∅ from the construction.

We generalise this to covers by lists using the Wilker and transitivity properties for ≺≺:

Ka 3 Uk ⇒ ∃``′. (a ≺≺ `′ ≺≺1 `) ∧ ∀c ∈ `. (Uc ⊂ Uk)

⇒ ∃`′. (a ≺≺ `′) ∧ ∀b ∈ `′. ∃c. (b ≺≺ c) ∧ (∀p. c ∈ p⇒ p G k)

⇒ ∃`′. (a ≺≺ `′) ∧ ∀b ∈ `′. (b ≺≺ k) =⇒ a ≺≺ k. �

Now we can at last return to the topological ideas.

Lemma 5.11 If the basis is countable then the space X is sober.

Proof Let P be a formal point in the sense of Definition 3.13, i.e. a family of open subspaces
of X such that

P 3 X, P 3 U, V ⇐⇒ P 3 U ∩ V and P 3
⋃
Ui ⇐⇒ ∃i. P 3 Ui.

We claim that p ≡ {a | P 3 Ua} is a formal point in the sense of Definition 5.1 and satisfies
P = {U | p ∈ U}. Indeed, p ∈ Ua ⇐⇒ a ∈ p ⇐⇒ P 3 Ua and this extends to p ∈ U ≡ Uu ⇐⇒
P 3 Uu by the third property of P.

We leave it to the reader to show that P is a filter, i.e. bounded, filtered and upper.
It is located: if a ∈ p and a ≺≺ ` then P 3 Ua and Ka 3 U`, so P 3 U` ⊃ Ua from the basis

expansion, but then P 3 Ub by the third property of P, for some b ∈ `, for which b ∈ p.
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Finally, using Lemma 5.10, the basis expansion Ua =
⋃
{Ub | Kb 3 Ua} gives the roundedness

property a ∈ p ⇐⇒ ∃b. b ∈ p ∧ b ≺≺ a.
Alternatively, q ≡ {a | ∃b. P 3 Ub ∧ b ≺≺ a} is easily seen to be rounded and upper, whilst the

proof that p is filtered and located can be adapted to q, but then showing that q ∈ U ⇐⇒ P 3 U
depends on Lemma 5.10. �

Theorem 5.12 Every countable abstract basis (A,v,≺≺) with single interpolation presents a
concrete basis using Scott-open families for some locally compact sober topological space X ≡
Spec (A,v,≺≺), assuming Excluded Middle and Dependent Choice. If the abstract basis satisfies
the boundedness and strong intersection rules then the concrete basis uses compact subspaces,
where

Ka ≡
⋂
Ka ≡ {p | ∀k. (a ≺≺ k) =⇒ p G k}.

Proof We have already completed the proof for Scott-open families, so it only remains to identify
the points of the compact subspace in the strong case, using Proposition 3.17:

p ∈
⋂
Ka ≡ ∀U ∈ Ka. p ∈ U

≡ ∀k. ∀U. (a ≺≺ k) ∧ Uk ⊂ U ⇒ p ∈ U
⇔ ∀k. (a ≺≺ k) ⇒ p ∈ Uk

≡ ∀k. (a ≺≺ k) ⇒ (p G k). �

Remark 5.13 If a ≺≺ c but a 6≺≺ k then Ka ⊂ Uc but Ka 6⊂ Uk, so there is a point p with
p ∈ Ka ⊂ Uc but p /∈ Uk, so c ∈ p but p∩k = ∅. However, this begs the question, because we used
this property to prove sobriety and so to characterise compact subspaces.

Examining the place where we needed the partial result (Lemma 5.9), we notice first that the
topology on X is not actually being used: the arguments just concern the relationship between the
abstract basis and its formal points. In fact the difficulty was in translating the containment of
subspaces Uc ⊂ Uk in Lemma 5.10 and the basis expansion Ua =

⋃
{Ub | Kb 3 Ua} in Lemma 5.11

from their definition in terms of points in Definition 5.4 back into the properties of ≺≺. Indeed it
was the Uk ⊂ U in Lemma 5.6 (which was needed to make Ka upper) that obliged us to do this.

In the next two sections we shall define the open subspaces directly from the abstract basis
without this diversion via formal points, and thereby solve the problem.

Before doing that, however, we show how to use a preorder with a trivial way-below relation
to present spaces that are important in theoretical computer science and will provide the starting
point for our general construction. There is no countability restriction. The discrete case of this
was Example 5.2.

Proposition 5.14 For any preorder (A,v), the relation

a ≺≺0 ` ≡ ∃b. a v b ∈ `

defines a prime abstract basis that satisfies the secondary axioms and strong intersection. It presents
a locally compact space with a basis using compact subspaces.

Proof The formal points are (upper, bounded) filters p ⊂ A, so

b w a ∈ p =⇒ b ∈ p, ∃a. a ∈ p and a ∈ p 3 b =⇒ ∃c. c ∈ p ∧ a w c v b.

In particular, each a ∈ A defines a so-called compact point p ≡ ↑ a ≡ {b | a v b}, for which
the specialisation order is the reverse of the usual one in domain theory: if a v b then ↑ a ⊃ ↑ b.

This space carries the Scott topology (Proposition 2.11) on all of the points or the Alexan-
drov topology on the compact ones, in which the basic open and compact subspaces are

Ua ≡ {p | a ∈ p} and Ka ≡ {↑ a} or Ka ≡ ↑↑ a ≡ {p | a ∈ p};

and the basis expansion is

p ∈ U ⇐⇒ ∃a. p ∈ Ua ∧ Ka ⊂ U ⇐⇒ ∃a. a ∈ p ∧ ↑ a ∈ U,
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so the way-below relation is, as required,

Ka ⊂ U` ⇐⇒ ↑ a ∈ {p | p G `} ⇐⇒ ∃b. a v b ∈ ` ≡ b ≺≺0 `. �

This space is called Filt(A,v) or Idl (A,vop) and is (the typical example of) an algebraic
dcpo (directed-complete partial order) or (pre)domain . Notice that we have a choice for
the basic compact subspaces between singletons and their saturations, cf. the ambiguity in Defi-
nitions 1.3 and 3.16.

6 Point-free general topology

The applications of topology to other disciplines are often called spectra , in which the “points”
are structures such as prime ideals that have fairly complicated definitions (cf. Definitions 3.13
and 5.1) and can be difficult to find (cf. Lemma 5.9). On the other hand, the “open subspaces”
typically correspond directly to much simpler features of the mathematical system under study.

Peter Johnstone’s book [Joh82] explores many examples of this phenomenon. This book is the
standard text for Locale Theory, except that another approach, called Formal Topology, offers
more efficient technology for constructing locales from bases.

Foundationally, one advantage of Locale Theory is that it largely avoids the Axiom of Choice
and (if we are exceptionally careful) even Excluded Middle, so it is valid in the logic of an ele-
mentary topos. We consider a further tightening of our foundational belt, called predicativity, in
Section 7.14.

This section summarises the techniques that we require from Locale Theory and Formal Topol-
ogy for general topology. In the next section we show how local compactness is formulated in these
settings and solve the problem of reconstructing a locally compact space (in any of the formula-
tions) from an abstract basis in the sense of this paper.

Definition 6.1 A frame Ω is a lattice with arbitrary joins (
∨

) over which meets (∧) distribute,

U ∧
∨
Vi =

∨
(U ∧ Vi),

so the lattice ΩX of open subspaces of any topological space X is an example. Accordingly, a
frame homomorphism f∗ : Ω2 → Ω1 is a function that preserves

∨
, > and ∧, just as the

inverse image operator f−1 : ΩY → ΩX does for any continuous function f : X → Y . Frames and
homomorphisms form a category, but when we want to use them to discuss topological ideas we
use the names locale and continuous map instead, when referring to the objects and morphisms
of the opposite category.

For compatibility with Point–Set Topology, we shall (sometimes) continue to use capital letters
for elements of a frame. However, we write U ≤ V instead of U ⊂ V for the order, because it is
abstract and not necessarily represented by an inclusion (cf. Warning 6.17). As we have already
done, we also use ∧ and

∨
instead of ∩ and

⋃
for the operations.

There are no points or sets of them in the definition of a locale, but Definitions 3.13 and 3.16
provide substitutes for these features:

Definition 6.2 In the locale defined by a frame Ω,
(a) a formal point is a completely coprime filter P ⊂ Ω;

(b) a formal open subspace is an element U ∈ Ω of the frame;

(c) a formal point P lies in a formal open subspace U if P 3 U ;

(d) a formal Scott-open family is a Scott-open subset K ⊂ Ω of the frame;

(e) a formal compact subspace is a Scott-open filter K ⊂ Ω;

(f) a formal open subspace U covers a formal compact subspace K if K 3 U ; and

(g) a formal point P lies in a formal compact subspace K if P ⊃ K.

Note that these “compact” subspaces are also saturated in the sense of Definition 3.16.
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Some aspects of Locale Theory owe more to its algebraic formulation than to topology, the
following being an important example:

Definition 6.3 Following standard categorical usage, a sublocale is one that arises as the equaliser
of some pair of continuous maps between locales, which means that the frame is the coequaliser
of some pair of frame homomorphisms. In universal algebra, a coequaliser is calculated as the
quotient by a congruence, but in particular algebraic theories there are sometimes more concise
ways of describing congruences, such as a normal subgroup or an ideal of a ring.

In our case, any continuous function i : X → Y has direct and inverse image operations, i∗
and i∗ ≡ i−1 respectively, which both preserve finite meets and also satisfy idΩY 6 i∗ · i∗ and
i∗ · i∗ 6 idΩX . These arise from a monomorphism iff i∗ · i∗ = idΩX . The situation therefore is
captured by the composite j ≡ i∗ · i∗, which is called a nucleus on ΩY (a pun on kernel) and
satisfies

id 6 j = j2 and j(U ∧ V ) = jU ∧ jV.

Beware that there are rather more sublocales than there are subspaces in Point–Set Topology, but
the familiar cases of the open and closed sublocales named by the element U ∈ Ω are given by the
nuclei

U ⇒ (−) and U ∨ (−)

respectively [Joh82, Exercise II 2.4].

Granted, there are conceptual differences like this, whilst there are hard problems like the one
that blocked our progress in the last section that really do depend on finding points. On the other
hand, there are a great many arguments in general topology where the only role of the points is
to say how one formula involving finite unions and intersections of open subspaces compares with
another. It is a straightforward exercise to rewrite these in Locale Theory.

In particular, we can translate Definition 1.1 for bases:

Definition 6.4 A concrete basis using open subspaces indexed by a preorder (A,v) for a
frame or locale Ω has
(a) for each a ∈ A, an element Ua ∈ Ω of the frame, such that

(b) if a v b then Ua ≤ Ub;

(c) Ua ∧ Ub =
∨
{Uc | a w c v b}; and

(d) U =
∨
{Ua | Ua ≤ U} for any U ∈ Ω.

Remark 6.5 Since frames are algebras, we present them by means of generators and equations.
A set of generators for a frame is a basis using open subspaces, whilst quotients are captured
by nuclei. We therefore need a convenient way of constructing nuclei from equations between
generators of frames.

Such equations relate expressions using finite meets and arbitrary joins, but these can be
simplified using distributivity. The following technique, called Formal Topology, seems to be the
most efficient way of expressing them.

In this notation the elements of the frame are written as lower case letters. Whilst these stand
for (possibly infinite) subsets, beware that they are subsets of the basis A (cf. the first line of
Definition 5.4) and not of the set of points (cf. the displayed equations there) as in Point–Set
Topology. We shall give the connection between these two subsets at the end of this section.

Definition 6.6 A formal cover (A,v, /) consists of a preorder v on a set A together with a
relation a / u between elements and (possibly infinite) subsets of A such that

a ∈ u =⇒ a / u, b v c / u v v =⇒ b / v,

a / u / v =⇒ a / v and c / u ∧ c / v ⇐⇒ c / u u v,

where u / v ≡ ∀b ∈ u. b / v, u v v ≡ ∀b ∈ u. ∃c ∈ v. b v c

and u u v ≡ {b | u w b v v} ≡ {b | (∃c ∈ u. b v c) ∧ (∃d ∈ v. b v d)}.

Therefore u and not ∩ is the meet operation corresponding to the preorder v. In particular,
u u v itself is meaningful as a (possibly infinite) subset of A, whereas Notation 1.7 only defined
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the whole phrase a ≺≺ k u `. However, we shall see that these usages agree where we need it in
Proposition 7.3 and Lemma 7.7.

Warning 6.7 You will be relieved to learn that there are no secondary axioms for formal covers.
However, in the literature on Formal Topology, it is commonly assumed that the preorder (A,v)
is a t-semilattice, but often without saying so. Also, formal topologists write a capital U where
we have lower case u ⊂ A.

We leave the soundness of these axioms to the assiduous student:

Lemma 6.8 For any A-indexed concrete basis using open subspaces for a topological space or
frame, the relation

a / u defined by Ua ≤ Uu, where Uu ≡
∨
{Ub | b ∈ u}

is a formal cover with the same v. �

Lemma 6.9 Given any formal cover (A,v, /), the map j on subsets of A that takes

u ⊂ A to ju ≡ {a | a / u} ⊂ A

is a nucleus on D(A,v), since

ja ⊂ ju ⇐⇒ a / u and ju ∩ jv = j(u u v).

Conversely, any nucleus defines a cover by a / u ⇐⇒ a ∈ ju and these processes are inverse.

Proof If u ⊂ v then ∀a. a / u =⇒ a / v so ju ⊂ jv.
If a ∈ u then a / u, so u ⊂ ju.
Therefore a / u ⇐⇒ a ∈ ju ⇐⇒ ja ⊂ ju and u / v ⇐⇒ u ⊂ jv ⇐⇒ ju ⊂ jv.
If a ∈ ju then a / u so ju / u and j(ju) = ju.
For the intersection, ju ∩ jv = j(u u v) because a / u ∧ a / v ⇐⇒ a / u u v.
The arguments for the converse and bijection are similar, noting that j acts on lower and not
arbitrary subsets of A. �

Theorem 6.10 Every formal cover (A,v, /) presents a frame or locale

Ω ≡ {u ⊂ A | u = ju ≡ {a | a / u}}

where (u ≤ v) ≡ (u ⊂ v) ⇐⇒ (u / v), and Ua ≡ {b | b / a} ∈ Ω.

provides a concrete basis using open subspaces.
Conversely, any locale with a concrete basis using open subspaces is recovered up to isomor-

phism from the formal cover that it defines, where

u 7→
∨
{Ub | b / u} and U 7→ {a | Ua ≤ U}

and the basic open subspaces are Ua and ja = {b | b / a} = {b | Ub ≤ Ua}.
Note that we have put no countability restriction on this result as we did in Lemmas 5.9ff and

Theorem 5.12: it holds for any formal cover.

Proof The lattice operations are

> ≡ A ∈ Ω u ∧ v ≡ j(u u v) and
∨
ui ≡ j

(⋃
ui
)

are in Ω whenever u, v, ui ∈ Ω. We have
∨

(u ∧ vi) ≤ u ∧
∨
vi trivially. Conversely, writing

v ≡
⋃
vi,

u u v ≡ u u
⋃
vi = {d | ∃a ∈ u. ∃i. ∃b ∈ vi. a w d v b}

=
⋃

(u u vi) /
⋃
j(u u vi) ≡

⋃
(u ∧ vi).

and so c ∈ u ∧
∨
vi ⇒ c / u u

∨
vi =⇒ c / u ∧ c /

∨
vi

⇒ c / u ∧ c / v =⇒ c / u u v /
⋃

(u u vi)

⇒ c ∈
∨

(u ∧ vi).
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Hence Ω is a frame. The concrete basis using open subspaces is Ua ≡ ja. This is covariant in a,
filtered:

Ua ∧ Ub ≡ {d | a . d / b} / {c | a w c v b} /
∨
{Uc | a w c v b},

and has the basis expansion U =
∨
{Ua | Ua ≤ U} because u / {a | ja / u} ≡ ju.

We recover the formal / relation because

ja ≤
∨
ui ≡ ja ⊂ j

(⋃
ui
)
⇐⇒ a /

⋃
ui

by the Lemma. �

Whilst we have introduced Ω here as a subset of the powerset P(A), in fact it is a retract and
really it should be seen as a quotient of the lattice D(A,v) of v-lower subsets of A. That is, we
are using a general subset u ⊂ A to denote an element ju ∈ Ω of the frame.

We can sum all of this up by saying that the various structures that we have considered all
express a general locale as a sublocale of one of a particular simple kind. We constructed this as
a topological space in Proposition 5.14:

Lemma 6.11 For any preorder (A,v), the relation

a /0 u ≡ ∃b. a v b ⊂ u

makes (A,v, /) a formal cover that presents the frame D(A,v) of lower subsets of the preorder,
which is the topology on Filt(A,v) ∼= Idl (A,vop). �

Theorem 6.12 For any preorder (A,v), there is a bijective correspondence up to isomorphism
amongst
(a) a locale Ω with basis using open subspaces (Ua) indexed by (A,v);

(b) a formal cover (A,v, /);
(c) a nucleus j on the frame D(A,v);

(d) a quotient frame of D(A,v); and

(e) a sublocale of Filt(A,v) ∼= Idl (A,vop).

Containment X
i
↪→ Y ↪→ Filt(A,v) is expressed by i∗ : ΩY � ΩX, i∗ : ΩX ↪→ ΩY , a /Y u =⇒

a /X u and jY 6 jX . �

Using arguments analogous to those in Section 4, we can go on to express frame homomorphisms
or continuous functions between locales in terms of a basis and therefore a formal cover:

Proposition 6.13 There is a bijective correspondence between continuous maps between locales
and matrices, defined by[

a
∣∣ f ∣∣ b ] ≡ (

a ∈ f∗(jb)
)

and f∗v ≡ {a | ∃b.
[
a
∣∣ f ∣∣ b ] ∧ b / v},

where the matrices satisfy

a v a′ ∧
[
a′
∣∣ f ∣∣ b′ ] ∧ b′ v b

⇒
[
a
∣∣ f ∣∣ b ] co- & contravariance[

a
∣∣ f ∣∣ b ] ∧ b / v ⇒ ∃u. a / u ∧ ∀a′ ∈ u. ∃b′ ∈ v.

[
a′
∣∣ f ∣∣ b′ ] partition

a / u ∧ ∀a′ ∈ u.
[
a′
∣∣ f ∣∣ b ]
⇒

[
a
∣∣ f ∣∣ b ] saturation[

a
∣∣ f ∣∣ b1 ] ∧ [ a ∣∣ f ∣∣ b2 ] filteredness

⇒ ∃u. a / u ∧ ∀a′ ∈ u. ∃b.
[
a′
∣∣ f ∣∣ b ] ∧ b1 w b v b2

∃u. a / u ∧ ∀a′ ∈ u. ∃b.
[
a′
∣∣ f ∣∣ b ]. boundedness �

Saturation is required on the right of the boundedness and filteredness rules for the same reason
as in Remark 4.15ff. For example, let f : X → Y be id : R → R, but where the whole line is a
basic open in X but not in Y .
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We can deduce the characterisation of formal points from this as we did in Definition 5.1.

Definition 6.14 A formal point for a formal cover is a subset p ⊂ A such that

∃a. a ∈ p bounded

a w b ∈ p ⇒ a ∈ p upper

(a ∈ p) ∧ (b ∈ p) ⇒ ∃c. (a w c v b) ∧ c ∈ p filtered

(a ∈ p) ∧ (a / u) ⇒ u G p ≡ ∃b. (b ∈ u) ∧ (b ∈ p). positive

Proposition 6.15 The correspondence with Definition 3.13 is

p ≡ {a | P 3 ja} ⊂ A and P ≡ {u | p G u = ju} ⊂ Ω,

so that p lies in u iff p G u.

Proof We prove this in detail because we intend to use it as part of our construction in Point–
Set Topology. Given a completely coprime filter P ⊂ Ω, the set p is upper because P is and
j preserves inclusions. Also p is bounded because P 3 A =

∨
{ja | a ∈ A} so ∃a. P 3 ja since it

is completely coprime. For the filter property of p,

a ∈ p 3 b ≡ ja ∈ P 3 jb
⇒ P 3 ja ∩ jb = j(a u p) =

∨
{jc | c ∈ a u b}

⇒ ∃c. P 3 jc ∧ (a w c v b) =⇒ ∃c. p 3 c ∈ a u b.

For positivity,
p 3 a / u ⇒ P 3 ja ⊂ ja =

∨
{jb | b ∈ u}

⇒ ∃b. P 3 jb ∧ b ∈ u =⇒ ∃b. p 3 b ∈ u.

Conversely, given p, the family P is upper since p G u ⊂ v ⇒ p G v and bounded since p is and so
∃a. a ∈ p ∧ P 3 ja. For the filter property of P,

u ∈ P 3 v ⇒ u G p G v =⇒ ∃ab. u 3 a ∈ p 3 b ∈ v
⇒ ∃c. u u v 3 c ∈ p =⇒ P 3 u ∩ v.

We recover P from p because P is completely coprime and

{u | p G u = ju} = {u | ∃a. P 3 ja ∧ a ∈ u = ju}
= {u | u =

∨
{ja | P 3 ja ∧ a ∈ u}} = P.

We recover p from P because it is positive and

{a | P 3 ja} = {a | p G ja} = {a | ∃b. p 3 b / a} = p.

Finally, recall that P lies in U iff P 3 U . �

When we make the connection between / and ≺≺ in the next section, we will see that the
notions of formal point for these two relations also agree (Lemma 7.11), with positivity playing
the same role as locatedness and roundedness together.

Proposition 6.16 The function u 7→ Uu ≡ {p | p G u}, which is called the extent of u, is a frame
homomorphism.

Proof From the first three axioms, > G p and u G p G v =⇒ p G (uu v), so extent preserves finite
meets. By the last, p G ju ⇐⇒ p G u, so p G

∨
ui ⇐⇒ p G

⋃
ui ⇐⇒ ∃i. p G ui and extent

preserves joins. �

Warning 6.17 Although the formal opens u ∈ Ω in Theorem 6.10 are sets, they are sets of basis
elements and not sets of (formal) points as they were in Section 5. Indeed, the formal opens of a
locale need not in general be faithfully representable as sets of points at all, since the extent need
not be an isomorphism [Joh82]. A frame, locale or formal cover for which this is an isomorphism
is called spatial or is said to have enough points.

Since we just need Ua ≤ Uu =⇒ a / u, the characterisation in terms of / is this:

Proposition 6.18 A formal cover / has enough points iff(
∀p. a ∈ p⇒ p G u

)
=⇒ a / u. �
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7 Local compactness without points

We now give our definitions of local compactness for Locale Theory and Formal Topology. We
use these and the methods of the previous section to re-construct locally compact spaces from
abstract bases in these formulations and also in Point–Set Topology. This solves the problem that
we left open in Section 5.

We will show that an abstract basis ≺≺ presents a locally compact space in a very similar
manner to that in which a formal cover / presented a locale in the previous section. The difference
is simply that a / u means Ua ⊂ Uu whilst a ≺≺ ` means Ka ⊂ U`, so we expect a ≺≺ ` =⇒ a / `
but not the converse. This section gives the precise correspondence between these relations, using
only the primary axioms for ≺≺.

Our presentation is heavily influenced by that of Sara Negri [Neg02, Definition 4.10], although
she used the term locally Stone and wrote i(a) for our {` | a ≺≺ `}.

We begin by translating Definition 2.6, with the aid of Definitions 6.1 and 6.2.

Definition 7.1 A concrete basis using Scott-open families indexed by a preorder (A,v) for
a locale or frame Ω has
(a) for each a ∈ A, an element Ua ∈ Ω and a Scott-open subset Ka ⊂ Ω; such that

(b) if a v b then Ua ≤ Ub and Ka ⊃ Kb;

(c) Ua ∧ Ub =
∨
{Uc | a w c v b}; and

(d) the basis expansion, U =
∨
{Ua | Ka 3 U} for any U ∈ Ω.

We define a locally compact locale to be one that has a basis of this kind, where the Scott-open
families are arbitrary. This is not, however, the definition that is standardly found in the literature
on Locale Theory, which uses a canonical Scott-open family, namely the largest one. We discuss
this and the candidate definitions in Formal Topology in the next section.

We first rewrite this definition using the cover and way-below relations:

Lemma 7.2 Any such basis (Ua,Ka) gives rise to a formal cover (A,v, /) and a relation

a ≺≺ ` ≡ Ka 3 U`

that satisfy a v b ≺≺ ` =⇒ a ≺≺ `, a / ↓↓ a ≡ {b | b ≺≺ a},

a ≺≺ ` =⇒ a / ` and a ≺≺ ` / u ⇐⇒ ∃k. a ≺≺ k ⊂ u.

Proof The basis â fortiori also uses open subspaces (Definition 6.4) and so defines an abstract
formal cover (A,v, /). Note that this uses the filter condition (c) for the concrete basis, which we
do not otherwise mention.

The first property is contravariance of K(−) (part (b) of the Definition), whilst the second and
third follow from the basis expansion (d):

Ua ≤
⋃
{Ub | Kb 3 Ua} and Ka 3 U` =⇒ Ua ≤ U`.

The last uses the fact that Ka is Scott open:

a ≺≺ ` / u ≡ Ka 3 U` ≤ Uu =⇒ ∃k.Ka 3 Uk ∧ k ⊂ u ≡ ∃k. a ≺≺ k ⊂ u.

The converse of this last property is easy because k ⊂ u⇒ k / u. �

Proposition 7.3 For any locale with a basis using Scott-open families, (A,v,≺≺) satisfies the
primary axioms for an abstract basis and

b / v ⇐⇒ (∀a. a ≺≺ b⇒ ∃`. a ≺≺ ` ⊂ v).

Proof The fourth property in the Lemma and covariance of / give that of ≺≺:

a ≺≺ k v ` =⇒ a ≺≺ k / ` =⇒ a ≺≺ `.
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The (weak) intersection property of ≺≺ follows from that of / using the third and fourth parts of
the Lemma:

a ≺≺ k ≺≺ `1, `2 =⇒ a ≺≺ k / `1, `2
=⇒ a ≺≺ k / (`1 u `2) ≡ {b | `1 w b v `2}
=⇒ (∃`. a ≺≺ ` ⊂ `1 u `2) ≡ (a ≺≺ `1 u `2).

The Wilker rule comes from the second and fourth parts:

a ≺≺ ` =⇒ a ≺≺ ` / {b | ∃c. b ≺≺ c ∈ `}
=⇒ ∃k. a ≺≺ k ⊂ {b | ∃c. b ≺≺ c ∈ `} ≡ ∃k. a ≺≺ k ≺≺1 `.

The forward direction of the formula for / is the fourth part of the Lemma. Conversely, let
u ≡ {a | a ≺≺ b}, so u / v because a ≺≺ ` ⊂ v =⇒ a / v, and then b / u / v. �

Such bases may be upgraded to satisfy the secondary axioms, including the strong intersection
rule. Continuous functions between locales also correspond bijectively to matrices. We leave the
assiduous student to show these things by translating the arguments in Sections 3, 12 and 4.

Now we turn to the construction of concrete locally compact spaces and bases from abstract
ones, starting with the formal cover relation /.

Definition 7.4 A locally compact formal cover (A,v, /) is one that arises from some abstract
basis (A,v,≺≺) by

(b / u) ≡ (∀a. a ≺≺ b⇒ ∃`. a ≺≺ ` ⊂ u),

although we still have to justify its properties.

Lemma 7.5 This cover relation satisfies

b ∈ u =⇒ b / u, b v c / u v v =⇒ b / v,

b / ↓↓ b ≡ {a | a ≺≺ b} a ≺≺ ` =⇒ a / `

and a ≺≺ ` / u ⇐⇒ ∃k. a ≺≺ k ⊂ u.

Proof
b / u ≡ ∀a. a ≺≺ b⇒ ∃`. a ≺≺ ` ⊂ u

⇐ ∀a. (a ≺≺ b⇒ a ≺≺ b ∈ u)

⇐ b ∈ u
b v c / u ≡ b v c ∧ ∀a. a ≺≺ c⇒ ∃`. a ≺≺ ` ⊂ u

⇒ ∀a. a ≺≺ b⇒ ∃`. a ≺≺ ` ⊂ u
≡ b / u contravariance of ≺≺

c / u v v ≡ ∀a. a ≺≺ b⇒ ∃k. a ≺≺ k ⊂ u v v
⇒ ∀a. a ≺≺ b⇒ ∃k`. a ≺≺ k v ` ⊂ v
≡ c / v

b / ` ≡ ∀a. a ≺≺ b⇒ ∃k. a ≺≺ k ⊂ `
⇐ ∀a. a ≺≺ b⇒ a ≺≺ `
⇐ b ≺≺ ` transitivity of ≺≺

c / ↓↓ c ≡ ∀a. a ≺≺ c⇒ ∃`. a ≺≺ ` ⊂ {b | b ≺≺ c}
⇐ ∀a. a ≺≺ c⇒ ∃`. a ≺≺ ` ≺≺ c. Wilker

a ≺≺ ` / u ⇒ ∃h. a ≺≺ h ≺≺1 ` ∧ (∀b. ∀c ∈ `. b ≺≺ c⇒ ∃k. b ≺≺ k ⊂ u) Wilker

⇒ ∃h. a ≺≺ h ∧ (∀b ∈ h. ∃k. b ≺≺ k ⊂ u)

⇒ ∃hk. a ≺≺ h ≺≺ k ⊂ u
⇒ ∃k. a ≺≺ k ⊂ u. transitivity �
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The proof of the other two properties of / of course depends on the Wilker and weak intersection
rules for ≺≺.

Lemma 7.6 If c / u / v then c / v.

Proof Suppose that a ≺≺ c / u / v. Since c / u means

∀a. (a ≺≺ c)⇒ ∃`. (a ≺≺ ` ⊂ u),

there is some finite set ` with a ≺≺ ` ⊂ u. Then by the Wilker rule there is another finite set k
with

a ≺≺ k ≺≺1 ` ⊂ u ≡ (a ≺≺ k) ∧ ∀b ∈ k. ∃c ∈ `. (b ≺≺ c ∈ u).

We combine this with u / v ≡ ∀bc. (b ≺≺ c ∈ u⇒ ∃h. b ≺≺ h ⊂ v) to give

a ≺≺ k ∧ ∀b ∈ k. ∃hb. b ≺≺ hb ⊂ v.

Taking h ≡
⋃
{hb | b ∈ k} ⊂ v, we obtain a ≺≺ k ≺≺ h ⊂ v, from which a ≺≺ h ⊂ v follows by

transitivity of ≺≺. Hence c / v. �

Lemma 7.7 If c / u and c / v then c / u u v.

Proof Given a ≺≺ c, we first interpolate a ≺≺ ` ≺≺ c, so a ≺≺ ` ∧ ∀b ∈ `. b ≺≺ c.
Combining this with c / u and c / v gives

a ≺≺ ` ∧ (∀b ∈ `. ∃hb. b ≺≺ hb ⊂ u) ∧ (∀b ∈ `. ∃kb. b ≺≺ kb ⊂ v).

Taking h ≡
⋃
{hb | b ∈ `} ⊂ u and k ≡

⋃
{kb | b ∈ `} ⊂ v, we obtain

a ≺≺ ` ≺≺ h ⊂ u ∧ ` ≺≺ k ⊂ v.

Then the weak intersection rule gives a ≺≺ h u k, which means

∃`′. a ≺≺ `′ ∧ ∀b ∈ `′. (∃c. b v c ∈ h ⊂ u) ∧ (∃d. b v d ∈ k ⊂ v),

but this is a ≺≺ `′ ⊂ u u v. Hence c / u u v. �

Theorem 7.8 Any abstract basis satisfying the primary axioms presents a (locally compact)
formal cover. �

That was easy because formal covers and abstract bases are so similar. Even so, we have at
last solved the completeness problem for some version of topology, so now we can re-trace our
steps via Locale Theory back to Point–Set Topology.

Lemma 7.9 The frame Ω constructed in Theorem 6.10 from a locally compact formal cover has
as elements those subsets u ⊂ A such that

b ≺≺ ` ⊂ u =⇒ b ∈ u and ↓↓ b ≡ {a | a ≺≺ b} ⊂ u =⇒ b ∈ u. �

Proof By construction, u ∈ Ω iff u = ju ≡ {b | b / u}, iff b ∈ u ⇐⇒ b / u. If this holds then

a ≺≺ ` ⊂ u =⇒ a / ` / u =⇒ a / u =⇒ a ∈ u

and ↓↓ b ⊂ u =⇒ b / ↓↓ b / u =⇒ b / u =⇒ b ∈ u.

Conversely, if u ⊂ A has these two closure properties then

b / u =⇒ (∀a. a ≺≺ b⇒ ∃`. a ≺≺ ` ⊂ u) =⇒ (∀a. a ≺≺ b⇒ a ∈ u) =⇒ b ∈ u. �

Theorem 7.10 Any abstract basis (A,v,≺≺) obeying the primary axioms presents a locally
compact locale, in which

Ua ≡ ja ≡ {b | b / a} ∈ Ω and Ka = {u | ∃`. a ≺≺ ` ⊂ u} ⊂ Ω
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provide a concrete basis using Scott-open families and a ≺≺ ` ⇐⇒ Ka 3 U`.

Proof (Ua) is already a concrete basis using open subspaces. The first three parts of Defini-
tion 7.1 follow easily from the properties of ≺≺ and /. Using the two closure properties in the
previous Lemma,

if b / u then b / ↓↓ b ≡ {a | a ≺≺ b} ⊂ {a | ∃`. a ≺≺ ` ⊂ u},

so u / {a | ∃`. a ≺≺ ` ⊂ u}.

Rewriting this using the definition of the basis gives

u ≡ ju = j{a | ∃`. a ≺≺ ` ⊂ u} =
∨
{ja | Ka 3 U},

which is the required basis expansion of u = ju ∈ Ω using Scott-open families. Finally,

Ka 3 U` ≡ ∃k. a ≺≺ k ⊂ j` ≡ ∃k. a ≺≺ k / ` ⇐⇒ ∃k′. a ≺≺ k′ ⊂ ` ⇐⇒ a ≺≺ `

by the final part of Lemma 7.5. �

Again, this analogue of Lemma 5.10 is valid for locales in complete generality, not just countably
based ones, and we have not used the Axiom of Choice, Excluded Middle or the secondary axioms.
This is because we avoided using points, even formal ones.

On the other hand, we can re-introduce the points to prove the classical version of the theorem,
but now without either the countability restriction or single interpolation.

Lemma 7.11 Definitions 3.13, 5.1 and 6.14 for formal points in terms of completely prime filters
or the relations ≺≺ and / agree.

Proof Proposition 6.15 showed that the definitions in terms of completely prime filters and /
are equivalent.

The relations / and ≺≺ share the properties of being upper, bounded and filtered. We therefore
just have to show that a subset p is rounded and located (with respect to ≺≺) iff it is positive (with
respect to /).

Substituting the definition of / from ≺≺, p ⊂ A is positive iff, for all b ∈ A ⊃ u,

b ∈ p ∧ b / u ≡ b ∈ p ∧ (∀a. a ≺≺ b ⇒ ∃`. a ≺≺ ` ⊂ u) =⇒ p G u.

If p is positive and b ∈ p, put u ≡ ↓↓ b ≡ {a | a ≺≺ b}. Then b / u (the bracketed clause holds)
because if a ≺≺ b then a ∈ u and we may interpolate a ≺≺ ` ≺≺ b by Wilker, so a ≺≺ ` ⊂ u. Then by
positivity there is some d ∈ p ∩ u, so p 3 d ≺≺ b. Hence p is rounded.

If further p 3 b ≺≺ ` then b / u ≡ ` because a ≺≺ b =⇒ a ≺≺ `. So by positivity p G u ≡ ` and p
is located.

Conversely, suppose that p is rounded and located and b ∈ p, so we have p 3 a ≺≺ b by
roundedness. Then if b / u we have a ≺≺ ` ⊂ u by the bracketed clause and so p G ` ⊂ u by
locatedness. Hence p is positive. �

Although locales and formal covers in general need not have enough points (Warning 6.17),
locally compact ones do. The underlying idea here is actually the one that we were unable to
use in Remark 5.13, which we expressed there using compact subspaces. Here we exploit the
way-below relation ≺≺ instead, but we use that on the formal cover, whereas the same proof in
[Joh82, Theorem VII 4.3] used the frame.

Proposition 7.12 Any locally compact locale or formal cover has enough points, assuming the
axioms of choice and Excluded Middle.

Proof Recall from Proposition 6.18 that we need to show that(
∀p. c ∈ p⇒ p G u

)
=⇒ c / u,

so suppose that c 6/ u. Then c ∈ r ≡ A \ ju by Lemma 6.9 and we require c ∈ p ⊂ r.
By Theorem 7.10, r is rounded, so by Lemma 3.11 there is a ≺≺-filter s ≡ {a | ∃i. ci ≺≺ a} with

s ⊂ r, where · · · ≺≺ c2 ≺≺ c1 ≺≺ c0 ≡ c and ci ∈ r. Then by Lemma 3.12, K ≡ {v | ∃a ∈ s.Ka 3 v} =
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{v | ∃i`. ci ≺≺ ` ⊂ v} ⊂ Ω is a Scott-open filter. If K 3 ju then ∃i`. ci ≺≺ ` ⊂ ju, so ci ∈ ju by
Theorem 7.10, but by construction this is not the case, so K 63 ju.

Now, by Lemma 3.14, which relies on the Axiom of Choice and applies to locales as well as
traditional topology, there is a completely coprime filter P with K ⊂ P 63 ju.

By Proposition 6.15, p ≡ {d | P 3 jd} is a formal point in the sense of /, which is the same as
that of ≺≺ by Lemma 7.11, and P = {v | p G v}.

If d ∈ p then P 3 jd whilst P 63 ju and P is upper, so jd 6⊂ ju and d /∈ ju by Lemma 6.9,
which means d ∈ r.

Also, c1 ≺≺ c0 ≡ c ∈ jc ∈ K ⊂ P, so c ∈ p ⊂ r ≡ A \ ju as required. �

Theorem 7.13 Every abstract basis satisfying the primary axioms presents a concrete basis
using Scott-open families on some locally compact sober topological space, assuming the Axiom
of Choice and Excluded Middle. In particular,

(b ≺≺ c) ∧ (∀p. c ∈ p⇒ p G k) =⇒ (b ≺≺ k).

Proof Combine the Proposition with Definition 7.4 and the results of Section 5. �

This completes the proof of the equivalence of categories between locally compact sober spaces
or locales and continuous functions on the one hand and abstract bases and matrices on the other,
although we defer the summary of this to the Conclusion.

The morphisms in the two settings are related like this:

Proposition 7.14 The correspondence between matrices with respect to / and ≺≺ is:[
a
∣∣ f ∣∣ b ] ⇔

(
∀a′. a′ ≺≺ a =⇒

〈
a′
∣∣ f ∣∣ b 〉)〈

a
∣∣ f ∣∣ b 〉 ⇔ ∃k. a ≺≺ k ∧ ∀a′ ∈ k.

[
a′
∣∣ f ∣∣ b ].

Proof Using the basis expansions of both kinds,[
a
∣∣ f ∣∣ b ] ⇔ Ua =

⋃
{Ua′ | Ka′ 3 Ua} ⊂ f−1Vb =

⋃
{Ua′ | Ka′ 3 f−1Vb}

⇔ ∀a′.Ka′ 3 Ua ⇒ Ka′ 3 f−1Vb

⇔ ∀a′. a′ ≺≺ a ⇒
〈
a′
∣∣ f ∣∣ b 〉〈

a
∣∣ f ∣∣ b 〉 ⇔ Ka 3 f−1Vb =

⋃
{Ua′ | Ua′ ⊂ f−1Vb}

⇔ ∃`.Ka 3 U` ∧ ∀a′ ∈ `. Ua′ ⊂ f−1Vb

⇔ ∃`. a ≺≺ ` ∧ ∀a′ ∈ `.
[
a′
∣∣ f ∣∣ b ]. �

Continuous lattices and (im)predicativity

This section contains material that was removed from the previous one and needs to be developed.
In order to preserve the numbering of later sections, this one has not been numbered.

We have already made one detour via Locale Theory and Formal Topology to prove correctness
of the re-construction of a locally compact space from its abstract basis. This section takes the
scenic route through continuous lattices and the foundational issue of predicativity.

This is important from a historical point of view in the development of both Locale Theory
and Formal Topology.

If you are working in a complete lattice (such as a frame of open subspaces) and some property
is preserved by joins, it is natural to consider the join of all instances, i.e. the greatest one.
However, it is exactly that step that is objectionable, according to those who choose to work in
Per Martin-Löf’s Type Theory.

In the definition of locally compact locales that we chose in the previous section, the Scott-open
families are arbitrary. However, it has been customary to make a canonical choice for them, in
fact the largest one, where Ka ≡ ↑↑Ua is determined order-theoretically by Ua:

Proposition 7.15 If a frame Ω has a basis (Ua,Ka) using Scott-open families then

Ka 3 V =⇒ Ua � V and so a ≺≺ ` ≡ Ka 3 U` =⇒ Ua � U`,
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where we say that U is way below V in Ω, written

U �W, if ∀(Wi). V ≤
∨
i∈I

Wi =⇒ ∃` ⊂ I. U ≤
∨
i∈`

Wi.

In such a frame, the subset ↑↑U ≡ {V | U � V } ⊂ Ω is itself Scott-open. Hence a locale is
locally compact iff the frame is continuous,

V =
∨
� {U | U � V }.

Proof If Ka 3 V ≤
∨
Wi then, since Ka is Scott-open, a finite subset ` ⊂ I will do, so

Ka 3 W ≡
∨
{Wi | i ∈ `}. The latter means that Ua contributes to the expansion of W , so

Ua ≤W , as required for the definition of Ua � V . �

The whole of the previous section remains valid with � in place of ≺≺, simply because it is a
special case.

Remark 7.16 The notion of a continuous lattice arose during the 1970s in theoretical computer
science, topological lattice theory and spectral theory, leading to the six-author Compendium
[GHK+80]: see in particular the historical notes at the end of its Section I 1. In the case Ka ≡ ↑↑Ua,
we have (a ≺≺ `) ≡ (Ka 3 U`) ≡ (Ua � U`). The axioms that we are using for abstract way-below
relations, especially the interpolation property, were motivated by results that were first discovered
for the one on a continuous lattice.

Remark 7.17 Some of the results about Σ-splittings for locales could maybe be moved here,
although they need / and nuclei.

Give the construction using Eu ≡ {a | ∃`. a ≺≺ ` ⊂ u}.
This gives a retract of a continuous lattice.
ΩE
∼= Ωj ; they’re the same quotient but different subsets.

Turning to Formal Topology, Inger Sigstam was the first person to consider local compactness
in that setting, before Sara Negri. She translated this (canonical) way-below relation � into a
formal cover [Sig95, Definition 4.1]:

Proposition 7.18 The frame presented by the formal cover (A,v, /) is continuous iff

a / ↓↓ a ≡ {b | b� a} where (u� v) ≡ (∀w. v / w ⇒ ∃`. u / ` ⊂ w).

We then say that A is a continuous formal cover .

Proof By Lemma 6.9, this u� v relation on subsets of the basis A is equivalent to

∀w. jv ⊂ jw =⇒ ∃`. ju ⊂ j` ∧ ` ⊂ w,

which is the lattice-theoretic way-below relation ju� jv in Ω. However, we are claiming that it is
enough to use single elements of the basis to test continuity of the frame. The set-wise continuity
condition (Proposition 7.15), for v ≡ {a}, implies

a /
⋃
{u | u� a} = {b | ∃u. b ∈ u� a} = {b | b� a},

as follows from the fact that b ∈ u� a⇒ b� a. Conversely, the singleton condition gives

∀a ∈ u. a / {b | b� a} ⊂
⋃
{v | v � u}, so u /

⋃
{v | v � u},

since b� a ∈ u =⇒ v ≡ {b} � u. �

Remark 7.19 If we construct a formal cover / and locale from an abstract basis (A,v,≺≺) then
this way-below relation � satisfies

a ≺≺ ` =⇒ a� `.
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They are not equivalent, because ≺≺ encodes more information, namely a basis using arbitrary
Scott-open families, whereas � corresponds to the largest one, ↑↑Ua.

Remark 7.20 Negri’s treatment and ours (up to Theorem 7.8) are predicative, although we
defer further discussion of this issue to the end of this section. Our position in this debate is
that Definition 7.4 should be taken as the definition of local compactness in Formal Topology, on
grounds of topology, foundations and simplicity. Indeed, the examples that are usually given, in
particular R, are already of this form.

Remark 7.21 Discuss with the formal topologists. Rewrite. Invite readers to skip it.
Introduce inductively generated covers.
Show that the definition in the previous section is inductively generated.
Give the arguments from Peter Aczel, Giovanni Curi and Milly Maietti.
Foundationally, Formal Topology as a discipline goes a step further than Locale Theory by

avoiding impredicative definitions and arguments, as well as the Axiom of Choice and Excluded
Middle, so that it is valid in Martin-Löf Type Theory.

However, the ∀w in Sigstam’s formula for � in terms of / makes it impredicative. This is
something that often happens when we take the largest instance of something, in this case ↑↑Ua

is the largest Scott-open family Ka that can be used with Ua in a basis. Giovanni Curi [Cur07,
Section 7.3] gave a predicative formula that is equivalent to the one above, based on an observation
of Peter Aczel [Acz06, Section 4.3].

The remaining remarks in this section are addressed to Formal Topologists and concern the
definition and foundations of local compactness. There is an extensive discussion of the relevant
proof-theoretic issues in [CSSV03], and abstract bases provide a very simple example of this:

Proposition 7.22 For any abstract basis (A,v,≺≺), the families

I(a) ≡ {k | a ≺≺ k}+
{
↓↓
}
, C(a, k) ≡ k and C(a, ↓↓) ≡ ↓↓ a ≡ {b | b ≺≺ a}

inductively generate the cover / in the sense that a / u holds iff it is provable using just the
axioms

a ∈ u =⇒ a / u and C(a, i) / u =⇒ a / u,

which are called reflexivity and infinity. The purpose of this is to eliminate transitivity.

Proof Any such proof is sound by transitivity, because a / C(a, i). Conversely, these axioms
are complete because we have the following deduction, using reflexivity and infinity but not tran-
sitivity:

· · · ` ∀a ∈ ↓↓ b. ∃k. a ≺≺ k ⊂ u
· · · , a ∈ ↓↓ b ` ∃k ∈ I(a). k ⊂ u
· · · , a ∈ ↓↓ b ` ∃k ∈ I(a). C(a, k) ≡ k / u reflexivity

· · · , a ∈ ↓↓ b ` a / u infinity

· · · ` ∀a ∈ ↓↓ b. a / u
· · · ` C(b, ↓↓) ≡ ↓↓ b / u

· · · ` b / u. infinity �

For the same issue in what we have just done, we leave the interested reader to use Lemmas
3.7 and 3.8 to show that if instead

C(a, k) ≡
⋃
{k′ | ∃a′. a′ ≺≺ k′ ≺≺ a ∧ k′ ≺≺1 k}

then we obtain a localised inductive cover in the sense of [CSSV03, Definition 3.4].

Remark 7.23 Even for those who specifically wish to study / using Martin-Löf Type Theory, our
account and those of Negri, Aczel and Curi make a compelling case for presenting / in terms of
≺≺ whenever the space happens to be locally compact.

If a specific formal cover is inductively generated in some more complicated way and is locally
compact in the sense of Curi [Cur07] then by our Propositions 7.3 and 7.22 it has an abstract
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basis and hence a simple inductive generation. In particular, the proof of the Curi property for
the cover also serves to show that it satisfies our definition. On the other hand, if we wish to
work with locally compact formal covers in general, is it more convenient to assume that they are
presented in our simpler way.

The one situation where it is necessary to start in a more general setting is in order to show
that local compactness is necessary for exponentiability [Mai05]. However, the real difficulty lies
with the products (Remark 8.10) and this result can be deduced from a categorical observation
(Theorem 9.9). Defining local compactness in terms of abstract bases also gives a much simpler
formula than Maietti’s for the cover on the exponential (Remark ??).

The presentation of local compactness in Formal Topology that we have just given will also
make a much clearer connection between that subject and the one that we introduce in Section 10,

Remark 7.24 Similar methods could be used to say how some more manageable sparser system
might generate ≺≺ in the way that we wanted in Rn (Example 1.9). We would need to consider
how intersections are managed.

8 Products and exponentials

This section requires a lot more work.

First we need to study a fundamental object that often has a derisory treatment in point-set
topology; it is an example of Proposition 5.14.

Definition 8.1 The Sierpiński space is the locally compact space, locale or formal cover Σ ≡
Filt(� v •), for which the way-below a ≺≺ ` and cover a / ` relations are both a ∈ ` ∨ • ∈ `.
Classically, Σ has an open point > and a closed one ⊥, which are

> ≡ {�, •} and ⊥ ≡ {•}

as formal points (Definition 5.1), and three open subspaces,

U◦ ≡ ∅, U� ≡ {>} and U• ≡ Σ.

The basic compact subspaces are K� ≡ {>} and either K• ≡ Σ or {⊥}.

Proposition 8.2 In both point-set topology and intuitionistic Locale Theory, the Sierpiński
space has the (double) universal property that, for any space X, there is a three-way bijective
correspondence amongst
(a) an open subspace U ⊂ X,

(b) a continuous function φ : X → Σ and

(c) a closed subspace C ⊂ X,
where we say that φ classifies U = φ−1(>) and co-classifies C = φ−1(⊥).

It is a topological distributive lattice, with respect to which

(σ ∈ U) ⇐⇒ (⊥ ∈ U) ∨ σ ∧ (> ∈ U)

for any point σ ∈ Σ and open subspace U ⊂ Σ.

Proof The classical version is easy. The locale (or topology on) Σ is the lattice of lower subsets
of (� v •), which is also the free frame on one generator (�), so frame homomorphisms ΩΣ→ ΩX
correspond to elements of ΩX. This means that in Locale Theory continuous maps X → Σ are
given by elements U ∈ ΩX of the frame corresponding to X.

Definition 6.3 explained how open and closed sublocales are defined by the nuclei U ⇒ (−)
and U ∨ (−) respectively, so the question is uniqueness of U .

If V ∈ Ω gives rise to an isomorphic sublocale of either kind then the corresponding nuclei
are equal as endofunctions, but by applying them both to ∅, U and V , we deduce that U = V .
Hence the Sierpiński locale enjoys the same universal property as its classical analogue for both
open and closed sublocales. �
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The characterisation of products is unfortunately rather complicated in all formulations of
topology, so we shall concentrate on the traditional version.

Proposition 8.3 Let X and Y be sober topological spaces with bases (Ua) and (Vb) respectively
using open subspaces. Then, in the category of sober topological spaces and continuous functions,
the product X × Y has as points the pairs (x, y) and as basis (Ua × Vb) using open subspaces.
Hence W ⊂ X × Y is open iff it satisfies

(x, y) ∈W ⇐⇒ ∃ab. x ∈ Ua ∧ y ∈ Vb ∧ Ua × Vb ⊂W. �

We are going to characterise open subspaces of the product of two locally compact sober spaces
in the same way that we did continuous functions in Section 4.

Remark 8.4 We will assume that the bases (Ua,Ka) and (Vb, Lb) use non-empty compact sub-
spaces with single interpolation.
(a) They need to be non-empty because from

Ka × ∅ ⊂ Uk × V`

we can deduce nothing at all about a.

(b) If we used Scott-open families in the concrete bases and the weak intersection rule in the
abstract ones, we would not be able to treat a and b separately in the roundedness and
saturation properties below.

These features are essential to proving the simple form for λ-abstraction (the universal property
of the exponential) in Theorem 8.14 below.

Definition 8.5 Given abstract bases (A,vA,≺≺A) and (B,vB ,≺≺B), a subset w ⊂ A×B is called
(a) lower in a if

(a′ vA a) ∧ (a, b) ∈ w =⇒ (a′, b) ∈ w,

(b) rounded in a if
(a, b) ∈ w =⇒ ∃a′. (a ≺≺A a′) ∧ (a′, b) ∈ w

(c) and saturated in a if

(a ≺≺A `) ∧ ∀a′ ∈ `. (a′, b) ∈ w =⇒ (a, b) ∈ w.

Properties for b are defined in the same way, cf. Definition 1.16.

Lemma 8.6 If Ka × Lb ⊂W then Ua × Lb, Ka × Vb, Ua × Vb ⊂W .

Proof This would be trivial if the basic compact subspaces Ka and Lb had been chosen to be
saturated (in the sense of Definition 3.16, not the one that we have just given), so that Ua ⊂ Ka

and Vb ⊂ Lb.
For any y ∈ Y , the subspace y∗W ≡ {x | (x, y) ∈W} ⊂ X is open, so by its basis expansion,

Ka ⊂ y∗W =⇒ Ua ⊂ y∗W . Therefore, quantifying over y ∈ Lb and x ∈ Ua,

Ka × {y} ⊂W =⇒ Ua × {y} ⊂W
Ka × Lb ⊂W =⇒ Ua × Lb ⊂W
{x} × Lb ⊂W =⇒ {x} × Vb ⊂W
Ua × Lb ⊂W =⇒ Ua × Vb ⊂W. �

Lemma 8.7 If the subset w ⊂ A×B is lower and saturated in a and b and

Ka × Lb ⊂
⋃
{Ua′ × Vb′ | (a′, b′) ∈ w}

then (a, b) ∈ w. There are also a ≺≺A a′ and b ≺≺B b′ with (a′, b), (a, b′), (a′, b′) ∈ w.

Proof For each x ∈ Ka, the compact slice of the rectangle Ka × Lb is covered,

Lb
∼= {x} × Lb ⊂ Ka × Lb ⊂

⋃
{Ua′ × Vb′ | (a′, b′) ∈ w)}.
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The inverse image of this under the inclusion Y ∼= {x} × Y ⊂ X × Y is

Lb ⊂
⋃
{Vb′ | ∃a′. (a′, b′) ∈ w ∧ x ∈ Ua′},

so there is some non-empty finite subset h ⊂ w with

Lb ⊂ V` ≡
⋃
{Vb′ | b ∈ `} where b ≺≺ ` ≡ {b′ | ∃a′. (a′, b′) ∈ h}

and ∀(a′, b′) ∈ h. x ∈ Ua′ .

The filter property of the basis for X gives some lower bound a′′ ∈ A around x:

x ∈ Ua′′ and ∀(a′. b′) ∈ h. (a′′ v a′).

Since w is lower in a we may trim the open rectangles down to width a′′. Hence

{a′′} × ` ⊂ w, whilst b ≺≺ `,

but then (a′′, b) ∈ w since it is saturated in b.
We have shown that, for each x ∈ Ka, there is some a′′ ∈ A such that x ∈ Ua′′ and (a′′, b) ∈ w.

Thus
Ka ⊂

⋃
{Ua′′ | (a′′, b) ∈ w},

so there is some finite k ⊂ A with

Ka ⊂ Uk ≡
⋃
{Ua′′ | a′′ ∈ k}, so a ≺≺ k where k × {b} ⊂ w,

but then (a, b) ∈ w since it is saturated.
Just before the final step we could have used single interpolation of a ≺≺ a′ ≺≺ k to deduce

(a′, b) ∈ w. We cannot introduce b ≺≺ b′ ≺≺ ` at the earlier stage of the argument, because it
would depend on x. However, we could of course consider X and Y the other way round to obtain
(a, b′) ∈ w and then (a′, b′) ∈ w by using both ways. �

Lemma 8.8 There is a bijection defined by

w ≡ {(a, b) | Kb × La ⊂W} and W ≡
⋃
{Ua × Vb | (a, b) ∈ w}

between an open subspace W ⊂ X × Y and a subset w ⊂ A × B that is lower, rounded and
saturated in each argument.

Proof The subspace W is open for any w, whilst w is lower for any W .
Given open W ⊂ X × Y , suppose that a ≺≺ k and ∀a′ ∈ k. (a′, b) ∈ w. Then for each a′ ∈ k,

we have Ka′ × Lb ⊂W , so Ua′ × Lb ⊂W by Lemma 8.6. Since a ≺≺ k we have

Ka × Lb ⊂
⋃
{Ua′ × Lb | a′ ∈ k} ⊂ W,

so (a, b) ∈ w, Thus w is saturated in a and similarly in b.
Hence Lemma 8.7 is applicable for any (a, b) ∈ w, so by its final part there are a ≺≺A a′ and

b ≺≺B b′ with (a′, b), (a, b′) ∈ w too. So w is rounded in both arguments.

Now, from W ⊂ X × Y we derive w ⊂ A×B and thence W ′ ⊂ X × Y , where

W ′ ≡
⋃
{Ua × Vb | Ka × Lb ⊂W}.

Then W ′ ⊂W by Lemma 8.6. Conversely, by Proposition 8.3 and the basis expansions of Ua and
Vb, we have

(x, y) ∈W ⇒ ∃ab. x ∈ Ua ∧ y ∈ Vb ∧ Ua × Vb ⊂W
⇒ ∃aa′bb′. x ∈ Ua′ ∧ Ka′ ⊂ Ua

∧ y ∈ Vb′ ∧ Lb′ ⊂ Vb ∧ Ua × Vb ⊂W
⇒ ∃a′b′. (x, y) ∈ Ua′ × Vb′ ∧ Ka′ × Lb′ ⊂W
⇒ (x, y) ∈W ′.
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Given w ⊂ A×B we derive W ⊂ X × Y and thence w′ ⊂ A×B, where

w′ ≡ {(a, b) | Kb × La ⊂
⋃
{Ua′ × Vb′ | (a′, b′) ∈ w}}.

Lemma 8.7 says that (a, b) ∈ w′ =⇒ (a, b) ∈ w. Conversely, by roundedness of w, we have

(a, b) ∈ w ⇒ ∃a′b′. (a ≺≺ a′) ∧ (b ≺≺ b′) ∧ (a′, b′) ∈ w
≡ ∃a′b′. (Ka ⊂ Ua′) ∧ (Lb ⊂ Vb′) ∧ (a′, b′) ∈ w
⇒ ∃a′b′. (Ka × Lb ⊂ Ua′ × Vb′) ∧ (a′, b′) ∈ w
⇒ Ka × Lb ⊂

⋃
{Ua′ × Vb′ | (a′, b′) ∈ w}

≡ (a, b) ∈ w′. �

Theorem 8.9 Let X and Y be locally compact sober topological spaces that have bases (Ua,Ka)
and (Vb,Kb) using non-empty compact subspaces with single interpolation. Then the product
X × Y has a basis (Ua × Vb,Ka × Vb) of the same kind, indexed by the product preorder. �

Remark 8.10 The way-below relation for X × Y is given by

(a, b) ≺≺ h ≡ ∃k`. (a ≺≺ k) ∧ (b ≺≺ `) ∧ (k × ` ≺≺′ h)

where h′ ≺≺′ h ≡ ∀(a′, b′) ∈ h′. ∃(a, b) ∈ h. (a′ ≺≺ a) ∧ (b′ ≺≺ b).

However, as you might imagine given the difficulty of the foregoing proof in Point–Set Topology,
showing directly that this satisfies the axioms for an abstract basis and that it provides the product
in the category of abstract bases and matrices is well beyond the scope of this paper, see [work in
progress].

These formulae say that any cover h ⊂ A × B has a refinement k × ` consisting of a regular
array of rectangles. Allowing more general patterns of covers than these adds to the complexity
of the proofs but not to the generality of locally compact spaces that we can consider.

Really, we would like a new axiomatisation of a relation that generates the full way-below
relation.

Naturally, the same issue arises in Formal Topology, although it is worse because the covering
sets are infinite.

However, we should not allow this residual complication distract us from the achievement of
obtaining a basis for the product that is simply the product of the bases. If we had required bases
to have finite meets and joins we would have had to generate lattices.

Remark 8.11 The natural analogue of Proposition 8.3 in Locale Theory is a tensor product of
complete join-semilattices [Joh82, §§II 2.12–14]. In general, however, this differs from the product
in Point–Set Topology, but they do agree for locally compact spaces.

Defining products of formal covers predicatively apparently requires them to be inductively
generated in the sense of Proposition 7.22.

In contrast to these difficulties with the product, it is easy to describe the abstract basis for the
exponential ΣX . We therefore take this as our starting point and define a space ΣX in a similar
way to Proposition 5.14. Then we justify the superscript by proving that it has the universal
property of the exponential, using matrices.

Afterwards we take advantage of our earlier work in this paper to characterise ΣX as the lattice
of open subspaces of X, equipped with the Scott topology (Proposition 2.11). This approach gives
the result uniformly across all of the formulations of topology, whereas the numerous accounts in
domain theory are only valid in the setting of Point–Set Topology.

Note carefully that the following definitions reverse the order relations.

Lemma 8.12 Let (A,vX ,≺≺X) be an abstract basis satisfying the primary rules. For k, ` ∈ Fin (A)
and L ∈ Fin (Fin (A)), define

(k ≺≺ΣX L) ≡ ∃` ∈ L. (k ≺≺ΣX `) ≡ ∃` ∈ L. (` ≺≺X k) ≡ ∃` ∈ L. ∀a ∈ `. (a ≺≺X k),
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(k vΣX `) ≡ (` vX k) ≡ ∀a ∈ `. ∃b ∈ k. (a vX b),

•ΣX ≡ ◦X and k uΣX ` ≡ k tX `.

Then (Fin (A),vΣX ,≺≺ΣX) is a prime stable basis with single interpolation, boundedness above
and strong intersection.

Proof Prime means that L is essentially redundant and stable that it has finite meets with
respect to vΣX , given by unions of finite subsets or concatenations of lists, as shown. These meets
satisfy the strong intersection rule:

(k ≺≺ΣX L1) ∧ (k ≺≺ΣX L2) ≡ ∃`1 ∈ L1. ∃`2 ∈ L2. (`1 ≺≺X k) ∧ (`2 ≺≺X k)

⇔ k ≺≺ΣX (L1 uΣX L2),

where (L1 uΣX L2) ≡ {`1 tX `2 | `1 ∈ L1, `2 ∈ L2}.

Transitivity of ≺≺ΣX is that of ≺≺X and single interpolation is

(k ≺≺ΣX L) ≡ ∃` ∈ L. (` ≺≺X k)

⇒ ∃h. ∃` ∈ L. (` ≺≺X h ≺≺1
X k)

⇒ ∃h. (k ≺≺ΣX h ≺≺ΣX L),

by the Wilker rule for X. We deduce the one for ΣX, using H ≡ {h} ≺≺1
ΣX {`} ⊂ L. �

What about the rounded union property, which is needed in Lemma 4.3 and so in Theorem 8.14?

Lemma 8.13 Let X have abstract basis (A,v,≺≺) satisfying single interpolation. Then the basis
for ΣX is bounded below and satisfies the rounded union rule iff that for X is bounded above and
satisfies the strong intersection rule.

Proof For the boundedness properties this is just k ≺≺ΣX ` ⇐⇒ ` ≺≺X k.
Similarly, the rounded union rule for ΣX,

k1 ≺≺ΣX ` ��ΣX k2 =⇒ ∃k. k ≺≺ΣX ` ∧ k1 ≺≺ΣX k ��ΣX k2,

is k1 ��X ` ≺≺X k2 =⇒ ∃k. k ��X ` ∧ k1 ��X k ≺≺X k2.

This is the rounded intersection rule, but generalised from a single element to a list `: if each b ∈ `
requires kb, the list needs the union k ≡

⋃
{kb | b ∈ `}. Lemma 3.9 showed that the strong and

rounded intersection rules are equivalent, using single interpolation. �

Continuing with the abstract approach, here is the universal property. The simplicity of this
result is our reward for the messy argument in Lemma 8.8.

Theorem 8.14 The object ΣX is the exponential ΣX because there is a bijection between con-
tinuous maps

σ : Γ×X → Σ and φ : Γ→ ΣX

that is natural with respect to pre-composition with f : ∆→ Γ.

Proof Let Γ and X have bases using non-empty compact subspaces indexed by A and B respec-
tively. By Proposition 8.2 and Lemma 8.8, the map σ corresponds to an open subspace W ⊂ Γ×X
and hence to a subset w ⊂ A×B that is lower, rounded and saturated in each component.

By Theorem 4.21, the map φ : Γ → ΣX corresponds to a matrix
〈
a
∣∣φ ∣∣ ` 〉 with ` ∈ Fin (B)

that
(a) has the partition property;

(b) is covariant, uniformly bounded and filtered in `;

(c) is contravariant (lower), rounded and saturated in a; and

(d) is rounded in ` with respect to ≺≺ΣX .

The first of these is redundant because ≺≺ΣX is prime. The second says that〈
a
∣∣φ ∣∣ ` 〉 ⇐⇒ ∀b ∈ `.

〈
a
∣∣φ ∣∣ b 〉,

so we have a bijection if we define (a, b) ∈ w ⇐⇒
〈
a
∣∣φ ∣∣ b 〉.
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The third condition on the matrix is half of that on the subset w, whilst the fourth is the other
half because

(a, b) ∈ w ≡
〈
a
∣∣φ ∣∣ b 〉 ⇔ ∃`.

〈
a
∣∣φ ∣∣ ` 〉 ∧ (` ≺≺ΣX b)

≡ ∃`. ∀b′ ∈ `. (a, b′) ∈ w ∧ (b ≺≺X `).

For naturality, by Theorem 4.21, the composite of f : ∆ → Γ with either σ or φ corresponds to
the saturated pre-composition with the matrix for f . �

Now we link this back to more familiar presentations by identifying the basis for ΣX . The
parentheses are a mnemonic for the fact that we are using the reverse order on Fin (A), cf. Re-
mark 2.7.

Proposition 8.15 Let X have concrete basis (Ua,Ka) using compact subspaces. Then the expo-
nential ΣX is (isomorphic to) the lattice of open subspaces of X with the Scott topology (Propo-
sition 2.11). This has a concrete basis using compact subspaces given by

V(`) ≡ K` and L(`) ≡ {U`} or {V | U` ⊂ V },

where U` ≡
⋃
{Ua | a ∈ `} and K` ≡ {U | ∀a ∈ `. Ka ⊂ U}.

Proof The universal property in the case Γ ≡ 1 puts the points of ΣX in bijection with the
open subspaces of X. Then a formal point p ⊂ Fin (A) in the sense of Definition 5.1 corresponds
to an open subspace U ⊂ X by

U =
∨
� {U` | ` ∈ p} ≡ Up and p ≡ {` | K` 3 U},

which is the directed basis expansion. This join is preserved by membership in any Scott-open
family V ⊂ ΣX :

V 3 U ⇐⇒ V 3
∨
� {U` | K` 3 U}

⇐⇒ ∃`.V 3 U` ∧ K` 3 U ≡ ∃`. U ∈ K` ∧ {U`} ⊂ V.

Hence we have a concrete basis expansion for V ⊂ ΣX if we take V(`) ≡ K` and either L(`) ≡ {U`}
or its saturation {U | U` ⊂ U}. The way-below relation is

{Uk} ≡ L(k) ⊂ V(L) ≡
⋃
{K` | ` ∈ L},

which is, as required,

∃` ∈ L. (Uk ∈ K`) ⇐⇒ ∃` ∈ L. (` ≺≺X k) ≡ (k ≺≺ΣX L).

The filter property is
V(k) 3 U ∈ V(`) ⇐⇒ U ∈ V(ktX`).

We would like to compare this choice of basis with the formulae in Section 5. Relative to the
isomorphism above, Definition 5.4 gave

V(`) ≡ {p | ` ∈ p} ∼= {U | K` 3 U} ≡ K`,

and we have shown that every Scott-open family V is a union of these. Similarly, the formula for
the basic compact subspace in Theorem 5.12 was

L(`) ≡ {p | ∀L. ` ≺≺ΣX L⇒ L G p}
= {p | ∀k. k ≺≺X `⇒ k ∈ p}
= {p | ` /X p} ∼= {U | U` ⊂ U},

using roundedness of p, Definition 7.4 and Lemma 6.8. �

Corollary 8.16 Every Scott-open filter is expressible in the manner of Lemma 3.12, as

K =
⋃
{K` | ` ∈ s} ⊂ Ω, where s ≡ {` | K 3 U`} ⊂ Fin (A)
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is a ≺≺-filter in the directed basis (Proposition 3.1).

Proof The correspondence is the basis expansion of K ⊂ ΣX . Since K is inhabited, so is s. For
roundedness, we use the directed basis expansion of U` ⊂ X:

` ∈ s ≡ K 3 U` =
∨
� {Uh | h ≺≺X `} =⇒ ∃h.K 3 Uh ∧ h ≺≺X `.

It is a v-filter because

k ∈ s 3 ` ≡ Uk ∈ K 3 U` ⇐⇒ K 3 Ukt` ≡ k tX ` ∈ s

and then roundedness makes it a ≺≺-filter. �

The basis expansion for the simplest exponentials provides two of the axioms in the abstract
description of the category in Section 10. We consider any set N (maybe, but not necessarily, N)
as the discrete locally compact space Filt(N,=). Its exponential ΣN is Filt(Fin (N),⊃), which
is classically the powerset P(N) with the Scott topology (Proposition 5.14). This topology is the
free frame on N .

Proposition 8.17 For ξ ∈ ΣN and F ∈ ΣΣN

,

Fξ ⇐⇒ ∃` ∈ Fin (N). (∀n ∈ `. ξn) ∧ F {n ∈ N | n ∈ `},

which we call the Scott principle . For N ≡ 1, this is the Phoa principle1

Fσ ⇐⇒ F⊥ ∨ σ ∧ F>.

Proof From the universal property of the exponentials and the Sierpiński space (Theorem 8.14

and Proposition 8.2), the elements ξ ∈ ΣN and F ∈ ΣΣN

correspond to continuous functions
ξ : N → Σ and F : ΣN → Σ and so to open subspaces U ⊂ N and V ⊂ ΣN .

Example 5.2 gave the singleton basis for N and Proposition 3.1 the directed one, with

U` ≡ K` ≡ ` ⊂ N and so K` ≡ {ξ ∈ ΣN | ∀n ∈ `. ξn}.

Then, by Proposition 8.15, the basis for the X ≡ ΣN has

(ξ ∈ V(`)) ≡ (ξ ∈ K`) ≡ (∀n ∈ `. ξn)

and (L(`) ⊂ V) ≡ (U` ∈ V) ≡ F {n ∈ N | n ∈ `}.

Therefore the basis expansion,

ξ ∈ V ⇐⇒ ∃`. (ξ ∈ V(`)) ∧ (L(`) ⊂ V),

is the same as the Scott principle.
For N ≡ 1, any ` ∈ Fin (N) is either ` ≡ ◦ or ` ≡ •, so the existential quantification reduces to

a binary disjunction, in the cases of which the universal quantifier ranges over the empty set and
the singleton. �

9 Σ-split subspaces

This section needs to be re-considered to make a smoother transition from the other subjects to
ASD. Probably the nucleus E and the class M could be integrated into the earlier development.

We take advantage of exponentials to provide a fourth way of seeing bases using Scott-open
families.

We follow the analogy of Theorem 6.12. Parts (a) and (b) were about concrete and abstract
bases, which we have already shown to be equivalent. In (e), a space with a basis indexed by
(A,v) is a subspace of Filt(A,v), so we begin by modifying the notion of subspace to obtain a

1After Wesley Phoa [Pho90, Hyl91], whose name is of southeast Asian origin and is pronounced a little like
French poire.
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corresponding result for bases using Scott-open filters. From this we will derive a notion of nucleus
corresponding to part (c) and then how to split it to obtain the subspace. Finally, we sketch how
this provides an “algebraic theory” analogous to that of frames for part (d).

Whilst it may be questionable to use the same name (nucleus) for two things (j and E) that
satisfy different equations, we will see that they play the same role in their respective subjects,
namely to define subspaces.

By a simple categorical argument using this presentation, we also deduce that local compactness
is necessary for exponentiability. For the long history of the investigation of function-spaces in
topology, see [Isb86].

Recall that, for an inclusion i : X ↪→ Y of topological spaces, Y has the subspace topology
if each open subspace U ⊂ X is the restriction V ∩ X of some open V ⊂ Y . We consider the
situation when there is an operation U 7→ V that provides this and is Scott-continuous:

Theorem 9.1 For any locally compact sober space X with a basis (Ua,Ka) using Scott-open
families indexed by (A,v) there are continuous maps

i : X −→ Y ≡ Filt(A,v) and I : ΣX −→ ΣY such that ix ∈ IU ⇐⇒ x ∈ U

that are defined by

ix ≡ {a | x ∈ Ua} and IU ≡
⋃
{Va | Ka 3 U} ≡ {p | ∃a. (Ka 3 U) ∧ (a ∈ p)}.

Conversely, any such pair (i, I) defines a basis on X by

Ua ≡ i−1Va ≡ {x : X | a ∈ ix} and Ka ≡ {U | {b | a v b} ∈ IU}.

Moreover, these translations are inverse.

Proof The filteredness conditions for a concrete basis using Scott-open families (Definition 2.6(b,c))
give those for ix in Proposition, so this is a point of Filt(A,v). The subspace IU is a union of
basic open subspaces. Then

ix ∈ IU ≡ ∃a. x ∈ Ua ∧ Ka 3 U ⇐⇒ x ∈ U

by the basis expansion for X.
Conversely, Ua is an inverse image of an open subspace, whilst Ka is Scott-open because I is

Scott-continuous. The basis expansion for X follows from that for Y and the equation for (i, I)
because

x ∈ U ⇔ ix ∈ IU ⇐⇒ ∃a. ix ∈ Va ∧ La ⊂ IU
⇔ ∃a. a ∈ ix ∧ {b | a v b} ∈ IU
⇔ ∃a. x ∈ Ua ∧ ∃c.Kc 3 U ∧ c ∈ {b | a v b}
⇔ ∃a. x ∈ Ua ∧ Ka 3 U.

Finally, the definitions are inverse because

ix 3 a ⇐⇒ x ∈ Ua and ↑ a ∈ IU ⇐⇒ Ka 3 U. �

Example 9.2 Any set N with the singleton basis (Example 5.2) is a Σ-split subspace of ΣN by

in ≡ λm. (n = m) and Iφ ≡ λψ. ∃m. φm ∧ ψm. �

This version for locally compact locales and formal covers could go in Section 7:

Lemma 9.3 Let ≺≺ and / be related as in Lemma 7.2 and define

ju ≡ {a | a / u} and Eu ≡ {a | ∃`. a ≺≺ ` ⊂ u}.

47



Then there are isomorphic quotients of frames

P(A)

{u | u = ju}
E -
∼=�
j

��

{u | u = Eu}

--

Proof The axioms for a nucleus and the translations of three of the conditions in Lemma 7.2
using j and E are

u ⊂ ju = j(ju), u ⊂ j(Eu),

Eu ⊂ ju and E(ju) ⊂ Eu.

From these we deduce j(Eu) = ju and E(ju) = Eu. These are the equations for an
isomorphic between the splittings of the idempotents j and E on P(A). Note that j(Eu) is the
basis expansion of u and cf. the remarks following Theorem 6.10. �

Theorem 9.4 Let Ω be a frame with concrete basis using Scott-open families (Ua,Ka) indexed
by (A,v). Then there are maps i∗ : D(A,v) � Ω and i∗, I : Ω � D(A,v), where i∗ is a
frame homomorphism, i∗ preserves arbitrary meets and I is Scott continuous. These satisfy the
equations

i∗ · i∗ = i∗ · I = idΩ and i∗ · i∗ = j

where j and E ≡ I · i∗ are given by

ju ≡ {a | a / u} and Eu ≡ {a | ∃`. a ≺≺ ` ⊂ u}.

Proof We already know all of this structure apart from I and E . In particular, i∗ is the inverse
image operation for the inclusion i : X → Filt(A,v) in Theorem 9.1, which also defined, for u ∈ Ω
(so u = ju),

Iu ≡ {a | Ka 3 u} ≡ {a | ∃k. a ≺≺ k ⊂ u},

by Lemma 7.2. By the first part of Theorem 7.10, if u = ju then Iu ⊂ u, so i∗Iu ⊂ i∗u = ju = u.
Conversely, if a ∈ u = ju then, using Lemma 7.2,

a / {b | b ≺≺ a} ≡ Ij{a} ⊂ Iju ≡ Iu,

so u / Iu and then i∗ · I = idΩ. The maps I and E ≡ I · i∗ are Scott-continuous because of their
definition using the Scott-open families Ka. �

Corollary 9.5 Any continuous frame Ω is related in the same way to D(Ω) by

i∗u ≡
∨
u, i∗a ≡ ↓ a ≡ {b | b ≤ a} and Ia ≡ ↓↓ a ≡ {b | b� a}. �

We now describe this categorical structure more formally, because it offers a way of constructing
a general locally compact space from data on Filt(A,v).

Definition 9.6 For locally compact sober spaces X and Y , a Σ-split inclusion is a continuous
map i : X � Y together with a Scott-continuous map I : ΣX → ΣY such that

ix ∈ IU ⇐⇒ x ∈ U or Σi · I = idΣX .

The other composite, E ≡ I · Σi : ΣY → ΣY , is called a nucleus and satisfies

E(U ∧ V ) = E(EU ∧ EV ) and E(U ∨ V ) = E(EU ∨ EV ).
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If nuclei E1 and E2 satisfy E1 · E2 = E2 = E2 · E1 then the subspace defined by E2 is a Σ-split
subspace of that defined by E1 and then we write E2 ⊂ E1.

Lemma 9.7 The following diagram is an equaliser in the category of locally compact sober spaces:

X-
i - Y

y 7→ {V | y ∈ EV }-

y 7→ {V | y ∈ V }
- ΣΣY

so the points of X are those y : Y that are admissible , ∀V ∈ ΣY . y ∈ EV ⇐⇒ y ∈ V .

Proof For any y ∈ Y that satisfies y ∈ V ⇐⇒ y ∈ EV ≡ IΣiV for all open V ⊂ Y , let
P ≡ {U ⊂ X | y ∈ IU}. Then
(a) y ∈ IX ≡ IX ≡ I(ΣiY ) ≡ EY ⇐⇒ y ∈ Y , which is true;

(b) dually y /∈ I∅ since y /∈ ∅ ⊂ Y ;

(c) y ∈ IU ∧ y ∈ IV ⇐⇒ y ∈ IU ∩ IV ⇐⇒ y ∈ IΣi(IU ∩ IV ) ≡ I(ΣiIU ∩ ΣiIV ) ≡ I(U ∩ V );

(d) dually y ∈ IU ∨ y ∈ IV ⇐⇒ y ∈ IU ∪ IV ⇐⇒ y ∈ I(U ∪ V ); and

(e) the family P ≡ {U | y ∈ IU} ⊂ ΣX is Scott-open because I is Scott-continuous.
Hence P is a formal point (Definition 3.13) of X, so by sobriety of X there is a unique point x ∈ X
with x ∈ U ⇐⇒ y ∈ IU , but x ∈ U ⇐⇒ ix ∈ IU so y = ix. Then ix ∈ V ⇐⇒ x ∈ U ≡
i∗V ⇐⇒ u ∈ IU ≡ I(i∗V ) ≡ EV ⇐⇒ y ∈ V , so y = ix by sobriety of Y . �

The notion of a Σ-splitting can be used to prove a famous result about locally compact spaces
in a uniform way across all three settings. We showed in the previous section that they admit
exponentials, but in fact they are the only spaces that do so. The following argument was inspired
by Peter Johnstone’s observation that (−)

X
, if it exists, preserves injectivity [Joh82, Lemma VII

4.10], and Dana Scott’s characterisation of injective spaces as continuous lattices with his topology
[?].

Lemma 9.8 Let C be a category with finite products, Σ an object of C andM⊂ C a subcategory
(i.e. it is closed under composition) that is closed under product with objects of C. Also let
i : X → Y be a map in M such that the exponentials ΣX and ΣY exist. Then i is Σ-split, so
maps Σi and I exist with Σi · I = idΣX .

ΣY × Y �
ΣY × i�ΣY ×X ΣY ΣY × Y

evY - Σ

Σ

evY

?
� evX

ΣX ×X

Σi ×X

?

................

ΣX

Σi

?

I

6
................

ΣX × Y

Σi × Y

?

I × Y
6
................
�
ΣX × i

�

Ĩ

.....
.....

.....
.....

.....
.....

.....
.-

ΣX ×X

evX

6

Proof We spell out the universal properties of evX and evY to make it clear that we are not
using any other exponentials besides these. By that of evX there is a unique map Σi that makes
the square on the left commute:

evX · (Σi ×X) = evY · (ΣY × i).

By injectivity of Σ with respect to ΣX × i, there is some map Ĩ making the lower right triangle
commute and then by the universal property of evY there is a unique map I making the upper
triangle commute:

evX = Ĩ · (ΣX × i) and Ĩ = evY · (I × Y ).

Then
evX · (Σi ×X) · (I ×X) = evY · (ΣY × i) · (I ×X) = evY · (I × i)

= evY · (I × Y ) · (ΣX × i)
= Ĩ · (ΣX × i) = evX ,
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whence Σi · I = idΣX by uniqueness in the universal property of evX . �

Theorem 9.9 Let X be any topological space, locale or inductively presented formal cover for
which the exponential ΣX exists in that category. Then X is locally compact.

The class M needs more careful consideration.

Proof These three categories have products by Remark ??. Since the space Y ≡ ΣA is locally
compact, it has an exponential ΣY . For the class M we take
(a) inclusions with the subspace topology in Point–Set Topology, so M is closed under products

with other spaces by the construction of the Tychonov product topology;

(b) sublocale inclusions in Locale Theory, which are the regular monomorphisms, so M is closed
under products by simple category theory;

(c) cover extensions in Formal Topology, i.e. (A,v, /X) ↪→ (A,v, /Y ) where a /Y u =⇒ a /X u,
so M is closed under products because ...

Then by the Lemma, i : X ↪→ Y is Σ-split, so by Theorem 9.1 and its analogues, X has a basis
using Scott-open families indexed by (A,v), making it locally compact. �

Theorem 9.10 Let E be a Scott-continuous endofunction of a continuous frame Ω (for a locally
compact locale Y ) such that

E(U ∧ V ) = E(EU ∧ EV ) and E(U ∨ V ) = E(EU ∨ EV ).

Then there is a Σ-split sublocale i : X � Y with X locally compact and E = I · Σi. If Y ≡
Filt(A,v) then X is given by the formal cover defined by

a / u ≡ EBa 6 EBu

and has a concrete basis. These are unique up to unique isomorphism.

It would be better to do this by defining ≺≺ from E and taking advantage of the constructions
earlier in this paper, instead of invoking external results about continuous lattices. Also deduce the
result for locally compact sober spaces using choice.

Proof From either equation, E is an idempotent on Ω. Splitting it, we write i∗ for the epi part
because the equations make this a frame homomorphism, with a right adjoint i∗ a i∗. Then i∗ · i∗
is also the identity on the smaller lattice, whilst the composite j ≡ i∗ · i∗ is a localic nucleus, so the
splitting is a frame that defines a sublocale i : X � Y . Neither i∗ nor j need be Scott continuous,
but E and hence I are, so the smaller frame is a continuous lattice and X is locally compact. The
cover relation is

a / u ≡ a ∈ ju ≡ {a} ⊂ i∗(i∗u)

⇔ i∗{a} ⊂ i∗u ⇐⇒ I(i∗{a}) ⊂ I(i∗u)

≡ EBa 6 EBu. �

Notice in this proof that we pass irreversibly from using I to i∗. This is where we lose the
track of the chosen Scott-open family Ka and are just left with ↑↑Ua defined by the order on the
frame, cf. Proposition 7.15.

The one remaining part of Theorem 6.12 is (d), that bases correspond to quotients, reflecting
the way in which frames are algebras. The analogue of this for local compactness requires us to
generalise what we understand by Algebra. The structure that we have discussed in this is section
is intrinsic because the topologies are now algebras whose carriers are themselves spaces instead
of sets.

We can discuss algebras over general categories using the notion of a monad, along with its
Eilenberg–Moore category, which was characterised by Jon Beck. Although Beck himself never

50



published his eponymous result, several category theory textbooks have accounts of this topic,
such as [Tay99, Section 7.5].

Theorem 9.11 The contravariant self-adjunction Σ(−) a Σ(−) on the category of locally compact
locales is monadic. The same holds for locally compact sober spaces, assuming the Axiom of
Choice.

Proof Adapting Beck’s theorem to our situation, Σ(−) must reflect invertibility and create Σ(−)-
split equalisers. The former is sobriety and the latter is essentially our notion of Σ-split subspace.
The equation for a nucleus was first expressed using the λ-calculus [B], but [G] showed using bases
that this is equivalent to our lattice-theoretic form. In Section 11 we will show that nuclei are
interdefinable with abstract bases. �

Monadicity offers a notion of “completeness” for a categorical situation. The idea of Abstract
Stone Duality that gave it its name was to consider monadicity of this adjunction in any category
for which it is meaningful as a defining axiom and develop a symbolic calculus from that.

On this completeness principle, we are keen to accept all of the spaces that it offers as “locally
compact”. However, the abstract bases that we obtain in this way only satisfy the primary
axioms. On the other hand, we needed the secondary ones to put the category of abstract bases
and matrices into a manageable form. The distinction in terminology arises from this mis-match,
so whichever choice we make, it would be necessary to employ arguments like those in Section 3
so show that this abstract category (is equivalent to one that) satisfies the monadicity property.

10 Abstract Stone Duality

The first three accounts of general topology that we considered relied on either the set of points
or the algebra of open subspaces of a space. Our final approach is a formal language that is
tailored to the intrinsic structure of the category of locally compact spaces as we set it out in the
previous two sections. There are more extensive introductions to this calculus elsewhere: the one
in Section 4 of [I] is the closest to the setting here, whilst the related paper [J] applies this to real
analysis; for mathematical foundations and an overview of the motivations of ASD see [O].

Those who are attuned to the strength of the logic that a mathematical argument is using will
already have noticed how little is needed to manipulate abstract bases. Formal Topologists shun
impredicative universal quantification (e.g. in Lemma 7.18), but they still need it over infinite
subsets, whereas it is finitary for abstract bases. In place of possibly nested implications, we just
use coherent sequents, which are entailments between existentially quantified conjunctions.

The cost of working in a very weak system is that the proofs are much more laborious, so the
construction of a model of our axioms using abstract bases and matrices alone will occupy an entire
paper, but the reward is that we will be a step closer towards a link with interval computation.
Here, therefore, we are just describing a notation for the structure that we have considered, which
is valid in Point–Set Topology and Locale Theory because of the previous parts of this paper.

The specific objective of this paper for the development of Abstract Stone Duality is actually
to show that the nuclei (Definition 9.6) that had been used in previous work to define (sub)types
may be replaced by abstract bases. The results of the next section will therefore be valid in the
calculus that we set out in this one.

This calculus speaks directly about points and functions, unlike Locale Theory and Formal
Topology, whilst being much more concise than the set-theoretic notation that is used in Point–
Set Topology.

Presenting syntax and its equivalence with other mathematical structures takes a lot of space,
so we do this rather tersely, which unfortunately leaves us with just a lot of bullet points. If
you have never seen such a calculus (in particular the λ-notation for functions) before, you should
study one of the numerous treatments of the simply typed λ-calculus and its denotational semantics
that now exist for masters’ students in theoretical computer science. Beware, however, that our
λ-calculus is restricted in that only exponentials of the form ΣX are allowed.

We only introduce sets such as N to seed the generation of types, not as the ontology of their
points or open subspaces. Here is all that we require of them:

Axiom 10.1 Sets form an arithmetic universe , which is a category with
(a) finite limits (1, A×B and equalisers);
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(b) stable disjoint coproducts (disjoint unions);

(c) stable effective quotients of equivalence relations; and

(d) stable free monoids Fin (A).

We do not actually need quotients to define abstract bases, but if we use the properties in
Axiom 10.8 to identify the sets from amongst all types, quotients turn out to be definable anyway
[C]; for free monoids see [E].

Axiom 10.2 The types of ASD are formed as follows:
(a) any set (as just defined) is a type;

(b) if X and Y are types then so is their product X × Y ;

(c) if X is a type then so is its exponential ΣX ; and

(d) any Σ-split subtype (Axiom 10.11 or Remark 10.16) of a type is another type.
The interpretation , denotation or semantics of a type is a locally compact sober topological
space, locale or Formal Topology.

Axiom 10.3 As is customary, we write

x1 : X1, . . . , xn : Xk ` t : Y

for a term t of type Y , possibly containing (at most) free variables x1, . . . , xn of types X1, . . . , Xn

respectively. The interpretation of t is a continuous function

[[ t ]] : [[X1]]× · · · × [[Xk]] −→ [[Y ]],

where [[X1]], . . . , [[Xk]], [[Y ]] are locally compact spaces that have been chosen as the denotations of
the types X1, . . . , Xn, Y . We shall not use the brackets because we do not really need to distinguish
between (syntactic) terms and their (topological) denotations in this paper.

The steps of a proof are equations between terms,

x1 : X1, . . . , xn : Xk ` t1 = t2 : Y,

except that if Y ≡ Σ we write⇔ instead of =, whilst since Σ and ΣX are lattices we can define⇒
or 6 in terms of ⇔ or = and ∧ or ∨. These equations between terms are interpreted as equations
between continuous functions. Since equations arise as the results of deductions, we must allow
them to occur as hypotheses, especially in Axiom 10.11 and for induction.

The list of type variables and equational hypotheses is called the context and is usually
(partially) abbreviated to the letter Γ,

Γ ` t : Y or Γ ` t1 = t2 : Y,

or even omitted altogether if it is clear.

Axiom 10.4 There are terms 〈s, t〉, π0p, π1p, λx. φ and φt that are associated with the product
and exponential types in the usual way:

Γ ` s ≡ π0p : X Γ ` t ≡ π0p : Y
==============================

Γ ` p ≡ 〈s, t〉 : X × Y
Γ, x : X ` σ ≡ φx : Σ
==================

Γ ` φ ≡ λx. σ : ΣX

Topologically, we are using Proposition 8.2 and Theorems 8.9 and 8.14 to write λ-terms of type
ΣX instead of open subspaces of X. However, there are some additional conditions below to make
this work correctly.

Axiom 10.5 The types Σ ≡ Σ1 and ΣX are distributive lattices and we may use >, ⊥, ∧ and ∨
(but not ¬ or ⇒) on their terms, because of Proposition 8.2.

Combining these operations with recursion over a list or (Kuratowski-) finite subset of a set A,
we have membership and both forms of quantification,

a ∈ `, ∀a ∈ `. φa and ∃a ∈ `. φa
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as terms of type Σ, if φ : ΣA.

Remark 10.6 To give the topology on X we need more than that ΣX be a lattice. The key to
classifying open and closed subspaces is the Phoa principle (Proposition 8.17),

Fσ ⇐⇒ F⊥ ∨ σ ∧ F>.

This is rather more important than its simple form suggests. We deduce that
(a) if σ ⇒ τ then Fσ ⇒ Fτ ;

(b) more generally, any F : ΣY → ΣX preserves the lattice order, which we therefore call intrinsic
and write as 6;

(c) the symbols ¬, ⇒ and ⇔ are therefore not allowed within terms of type Σ, but we use ⇒ and
⇔ instead of 6 and = for the order and equality between such terms;

(d) if F> ⇒ G> then σ ∧ Fσ ⇔ σ ∧ (F⊥ ∨ F>)⇒ σ ∧ F> ⇒ σ ∧G> ⇒ Gσ; and

(e) similarly if F⊥ ⇒ G⊥ then Fσ ⇒ Gσ ∨ σ.

The last two observations may be formulated as the following two fundamental rules for topo-
logical reasoning:

Axiom 10.7 Let α, β : Σ be terms that may depend on σ : Σ (so α ≡ Fσ and β ≡ Gσ) and the
variables in Γ. Then

Γ, σ ⇔ > ` α =⇒ β
===================

Γ ` σ ∧ α =⇒ β
and

Γ, σ ⇔ ⊥ ` α =⇒ β
===================

Γ ` α =⇒ β ∨ σ
The top lines say that α ⇒ β holds in the subspace U or C of Γ on which σ ⇔ > or ⊥. Then
the rules allow us to deduce the more complex implications in the whole space. We call these
principles after Gerhard Gentzen because of the loose resemblance to his rules for implication
and negation in the sequent calculus [Gen35, Section III]. The (positive) rule on the left is used
very commonly and is easily overlooked, so for illustration we spell out its use in the proof of
Lemma 11.1.

The (negative) one on the right, on the other hand, may be surprising to an intuitionistic set
theorist, but it is a theorem of intuitionistic locale theory. For example, Japie Vermeulen [Ver94]
stated it in the form of the dual Frobenius law for proper maps, cf. Definition 10.12(f) below.

Axiom 10.8 Any set N (Axiom 10.1) has
(a) equality n,m : N ` (n = m) : Σ, as a term in itself, not just an equation between terms,

Γ ` n = m : N
==================
Γ ` (n = m)⇔ > : Σ

making the set discrete;

(b) existential quantification, φ : ΣN ` ∃n. φn : Σ, cf. Section 13;

Γ, n : N ` φn =⇒ σ
=================

Γ ` ∃n. φn =⇒ σ

(c) and definition by description (Example 5.2),

Γ ` ∃n. φn⇔ > Γ, n,m : N ` φn ∧ φm =⇒ (n = m)
===================================================

Γ, m : N ` φm ⇐⇒ (m = the n. φn)

making it sober.

In fact these are the three conditions that make i : X ↪→ ΣX a Σ-split inclusion, (Example 9.2)
since (n = m)⇔ inm and (∃n. φn)⇔ I>φ.

We further require that any function f : M → N between sets give rise to a term m : M `
fm : N whose denotation is f and that semantic equality between such functions be stated as an
equation in the syntax.

Axiom 10.9 The Scott principle (Proposition 8.17) is that, for any set N ,

F : ΣΣN

, ξ : ΣN ` Fξ ⇐⇒ ∃`. (∀n ∈ `. ξn) ∧ F (λn.n ∈ `).
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This fully captures the infinitary aspects of general topology; in particular, we deduce that all
terms preserve directed joins in the following sense:

Lemma 10.10 Let G : ΣΣX

, φ` : ΣX and α` : Σ for ` ∈ Fin (N) be such that

φk =⇒ φkt` ⇐= φ`, α◦ ⇐⇒ > and αkt` ⇐⇒ αk ∧ α`.

Then G
(
∃`. φ` ∧ α`

)
⇐⇒ ∃`. (Gφ`) ∧ α`.

Proof Let ξ ≡ λn. α{n}, so α` ⇐⇒ ∀n ∈ `. ξn, and

F ≡ λζ. G
(
∃`. φ` ∧ ∀n ∈ `. ζn

)
.

Then F (λn. n ∈ k) ⇐⇒ G
(
∃`. φ` ∧ (` ⊂ k)

)
⇐⇒ Gφk,

so ∃`. (∀n ∈ `. ξn) ∧ F (λn. n ∈ `) ⇐⇒ ∃`. α` ∧ Gφ`,

which is equal by Axiom 10.9 to Fξ ⇐⇒ G
(
∃`. φ` ∧ α`

)
, as required. �

Finally we come to the characteristic feature of Abstract Stone Duality that encapsulates the
study of locally compact spaces in this paper:

Axiom 10.11 Let E be a nucleus on a type Y (Definition 9.6). Then
(a) we form the subtype X ≡ {Y | E} ↪→ Y ;

(b) if Γ ` t : Y is a term of type Y that is admissible with respect to E in the sense of Lemma 9.7,

Γ, ψ : ΣY ` ψt ⇐⇒ Eψt,

then we introduce the term Γ ` admit t : X of type X;

(c) we eliminate Γ ` s : X to give Γ ` is : Y ;

(d) if Γ ` ψ : ΣY then we introduce Γ ` Σiψ ≡ λx. ψ(ix) : ΣX ;

(e) we eliminate Γ ` φ : ΣX to give Γ ` Iφ : ΣY ; and

(f) the β- and η-rules (for admissible t) are

admit(is) = s, i(admit t) = t,

φs = (Iφ)(is), and I(Σiψ) = Eψ.

The motivation and details of this calculus were given in [B].
However, it has been very difficult to define nuclei for topologically interesting spaces, for

example two sections of [I] were devoted to introducing the nucleus for the Dedekind reals (Ex-
ample 5.3). In the following section we will show how abstract bases can be used instead.

Having stated the syntax and axioms, we turn to their topological meaning, which was inspired
by that of Locale Theory (Definition 6.2).

Definition 10.12
(a) Terms t : X are formal points of the type X;

(b) terms φ : ΣX are formal open subspaces of X;

(c) a term t : X lies in the open subspace classified by φ if φt ⇔ > and in the corresponding
closed subspace if φt⇔ ⊥;

(d) terms of type ΣΣX

are interpreted as Scott-open families of open subspaces;

(e) in particular, a formal compact subspace of X is a term

K : ΣΣX

such that K> ⇐⇒ > and K(φ ∧ ψ) ⇐⇒ Kφ ∧Kψ,

where φ and ψ are terms of type ΣX that denote open subspaces U, V ⊂ X;

(f) because of the negative Gentzen rule (Axiom 10.7), any formal compact subspace also satisfies
the so-called dual Frobenius law ,

K (λx. σ ∨ φx) ⇐⇒ σ ∨ Kφ,
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so long as σ does not depend on x;

(g) the formal compact subspace K : ΣΣX

covers the open subspace φ : ΣX if Kφ⇔ >; and

(h) a term t : X lies in (the saturation of) the compact subspace K : ΣΣX

if K 6 λφ. φt, so
whenever φ : ΣX satisfies Kφ it also has φt: see Section 9 of [J].

A lot more general topology and real analysis may be expressed in this calculus, as [J] describes.
For example, just as a space with a Σ-valued equality is discrete (Axiom 10.8(a)), so an inequality
or apartness makes it Hausdorff. The term K serves as a universal quantifier over a formal
compact subspace, although such subspaces are not necessarily representable as spaces or types in
our calculus, because not all compact subspaces of a locally compact space are locally compact.

This paper, on the other hand, is concerned with how Abstract Stone Duality expresses local
compactness. Accordingly, we rewrite our fundamental definition using the new notation, just as
Definition 7.1 did in terms of locales. The λ-terms φ, βa : Σ correspond to open subspaces and
Scott-open families.

Definition 10.13 A concrete basis using λ-terms consists of

(a) for each a : A, terms βa : ΣX and Ka : ΣΣX

;

(b) if a v b then βa 6 βb and Ka > Kb, so βax =⇒ βbx and Kbφ =⇒ Kaφ;

(c) βax ∧ βbx ⇐⇒ ∃c. βcx ∧ (a v c w b); and

(d) φx ⇐⇒ ∃a. βax ∧ Kaφ.

As we have already seen in the other settings, from concrete bases we may derive abstract ones,
Σ-split subspaces and nuclei:

Lemma 10.14 Any concrete basis (βa,Ka) for X using λ-terms indexed by A defines a Σ-split
inclusion i : X → ΣA by

ix ≡ λa. βax and Iφ ≡ λξ. ∃a. Kaφ ∧ ξa.

Conversely, given such an inclusion, the basis is

βa ≡ λx. ixa and Ka ≡ λφ. Iφ(λb. a v b)

and these translations are inverse.

Proof The basis gives a Σ-splitting because

(Iφ)(ix) ≡ ∃a. Kaφ ∧ βax ⇐⇒ φx.

Conversely, the Σ-splitting yields a basis because

φx ⇔ Iφ(ix) ≡ ∃a. Ba(ix) ∧ La(Iφ)

≡ ∃a. ixa ∧ Iφ(λb. a v b) ≡ ∃a. βax ∧ Kaφ.

These translations are inverse because ixa ⇐⇒ βax and Kaφ ⇐⇒ Iφ(λb. a v b) and we
can recover Iφξ from the latter. �

Lemma 10.15 Any concrete basis (βa,Ka) using λ-terms gives rise to an abstract basis (A,v,≺≺),
where

(a ≺≺ `) ≡ Kaβ` ≡ Ka (λx. ∃b ∈ `. βbx).

If the Ka preserve meets, so they are formal compact subspaces, then ≺≺ obeys the strong inter-
section rule.

Proof It would be instructive to examine how he following arguments correspond to those in
Section 2. Co- and contravariance of ≺≺ follow from that of β` and Aa respectively. For the Wilker
rule we use the basis expansion of βc, switch to a directed basis and then apply Ka:

βk ≡ ∃c ∈ k. βc = ∃c ∈ k. ∃b. βb ∧ Abβc

= ∃b. βb ∧ ∃c ∈ k. Abβc

= ∃`. β` ∧ ∀b ∈ `. ∃c ∈ k. Abβc.

Hence a ≺≺ k ≡ Aaβk ⇔ ∃`. Aaβ` ∧ ∀b ∈ `. ∃c ∈ k. Abβc

≡ ∃`. a ≺≺ ` ≺≺1 k
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by Lemma 10.10. For the weak intersection rule, the directed basis expansion of β` gives

β` = ∃b. βb ∧ Abβ` = ∃k. βk ∧ ∀b ∈ k. Abβ` > βk ∧ (k ≺≺ `).

Hence, using βc ∧ βd = ∃e. βe ∧ (c w e v d) in the equality,

βk ∧ (k ≺≺ `1) ∧ (k ≺≺ `2) 6 β`1 ∧ β`2 = ∃h. βh ∧ h v `1 u `2

and therefore, by Lemma 10.10 again,

Kaβk ∧ (k ≺≺ `1) ∧ (k ≺≺ `2) =⇒ ∃h. Kaβh ∧ h v `1 u `2.

The strong case is similar but simpler. �

Remark 10.16 In the next section we will show conversely that any abstract basis (A,v,≺≺) for
which A is a set in the sense of Axiom 10.1 defines a nucleus E . From this we obtain a Σ-split
subtype X ↪→ ΣA equipped with a concrete basis (βa,Ka) using λ-terms. Moreover any term
ξ : ΣA that is a formal point (rounded bounded located filter) for the abstract basis is admissible
for E and therefore provides a term of X.

Hence we may replace Axiom 10.11 with the following rules:
(a) formation of the type X ≡ Spec (A,v,≺≺);

(b) introduction of a term Γ ` admit(ξ) : X whenever Γ ` ξ : ΣA is a formal point;

(c) elimination of x : X to get βax : Σ for each element a : A of the basis;

(d) introduction of λx.Ψ(λa. βax) : ΣX given Ψ : ΣΣA

; and

(e) elimination of φ : ΣX to get Kaφ : Σ for each a : A; where

(f) the β- and η-rules are the main themes of the paper,

admit(λa. βax) = x, βa(admit ξ) ⇐⇒ ξa,

φx ⇐⇒ ∃a. βax ∧Kaφ and Kaφ` ⇐⇒ (a ≺≺ `).

Then Lemma 10.14 provides the maps i and I that we need to recover Axiom 10.11. �

We may also translate the results of Sections 3 and 4 to upgrade bases using λ-terms to obey
the secondary axioms and to use matrices defined by〈

a
∣∣ f ∣∣ b 〉 ≡ Ka

(
λx. γb(fx)

)
,

to characterise continuous functions (terms, morphisms) fX → Y where X and Y have bases
(β,Ka) and (γb, Lb) respectively.

11 Abstract bases and nuclei

This section was the core calculation on which the paper was built. The plan and details of the
proofs need to be checked.

In this section we prove the correspondence between an abstract basis (A,v,≺≺) satisfying the
primary axioms and an ASD nucleus E (Definition 9.6), entirely within the calculus that we set
out in the previous section. This justifies the replacing the subtype-formation rule in Axiom 10.11
with that in Remark 10.16. The following account is a much simplified version of the one in [G].

Theorem 9.1 gave the plan for the construction. We must first introduce Filt(A,v) as an object
in ASD, as we did in Point–Set Topology in Proposition 5.14 and Locale Theory in Lemma 6.11.
We do this by defining a nucleus E0 on ΣA and identifying the admissible terms.

Lemma 11.1 The term E0 defined by E0Φξ ≡ ∃a. ξa ∧ Φ(λb. a v b) is a nucleus.
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Proof We spell out this simple argument in detail because it illustrates the (positive) Gentzen
rule (Axiom 10.7), whilst any Φ : ΣA → Σ preserves the intrinsic order (Remark 10.6(b)).

a v b, b v c ` a v c transitivity

a v b ` b v c =⇒ a v c Gentzen

a v b ` λc. b v c 6 λc. a v c λ-abstraction

a v b ` Φ(λc. b v c) =⇒ Φ(λc. a v c) intrinsic monotonicity

. . . ` (a v b) ∧ Φ(λc. b v c) =⇒ Φ(λc. a v c) Gentzen

. . . ` ∃b. (λb. a v b)b ∧ Φ(λc. b v c) =⇒ Φ(λc. a v c), ∃

where the last line is in fact ⇔ because we may put b ≡ a. Hence E0Φ(λb. a v b)⇔ Φ(λb. a v b).
Then, with either ∧ or ∨,

E0(E0Φ
∨

∧
E0Ψ)ξ ≡ ∃a. ξa ∧ (E0Φ

∨

∧
E0Ψ)(λb. a v b)

⇔ ∃a. ξa ∧ (Φ
∨

∧
Ψ)(λb. a v b) ≡ E0(Φ

∨

∧
Ψ)ξ. �

Next we verify that E0 defines the object that we want by proving that a term ξ : ΣA is a filter
iff it is admissible for E0 in the sense of Lemma 9.7, satisfying E0Φξ = Φξ for all Φ. Note that
such a term ξ may have parameters, so these points are “generalised” ones in the sense of sheaf
theory; they are test maps to an equaliser from a general object.

Lemma 11.2 If ξ : ΣA is admissible for E0 then it is covariant, bounded and filtered.

Proof We use admissibility with respect to various Φ. For covariance, let Φ ≡ λζ. ζa, so

ξa ≡ Φξ ⇐⇒ E0Φξ ≡ ∃b. ξb ∧ (b v a).

Then, for filteredness, let Φ ≡ λζ. ζb ∧ ζc, so

ξb ∧ ξc ≡ Φξ ⇐⇒ E0Φξ ⇐⇒ ∃a. ξa ∧ (b w a v c).

Finally, Φ ≡ λζ.> gives boundedness: > ≡ Φξ ⇔ E0Φξ ⇔ ∃a. ξa. �

Lemma 11.3 If ξ is covariant then E0Φξ =⇒ Φξ.

Proof As in Lemma 11.1, we may write covariance as ξb ` (λc. b v c) 6 ξ.
Since any Φ preserves the intrinsic order 6, we have ξb ` Φ(λc. b v c) =⇒ Φξ.
Using the Gentzen rule we deduce that ξb ∧ Φ(λc. b v c) =⇒ Φξ. �

Lemma 11.4 If ξ is bounded and filtered then Φξ =⇒ E0Φξ.

Proof By the Scott principle (Axiom 10.9), Φξ ⇐⇒ ∃`. (∀b ∈ `. ξb) ∧ Φ(λb. b ∈ `).
By induction on `, we claim that ξ satisfies

∃c. ξc ∧ ∀b ∈ `. (c v b).

In the base case ` ≡ ◦, this is boundedness of ξ, whilst filteredness of ξ gives the induction step.
Then (λb. b ∈ `) 6 (λb. c v b), so Φ(λb. b ∈ `) =⇒ Φ(λb. c v b) since Φ preserves the intrinsic
order. Hence ∃c. ξc ∧ Φ(λb. c v b), which is E0Φξ. �

Lemma 11.5 The object Filt(A,v) that is defined by the nucleus E0 on ΣA has a basis using
λ-terms with

Ba ≡ λξ. ξa and La ≡ λΦ. Φ(λb. a v b),

where the general open subspaces are those Φ : ΣΣA

such that Φ = E0Φ and the basis expansion
is

Φξ ⇐⇒ E0Φξ ≡ ∃a. Baξ ∧ LaΦ ≡ ∃a. ξa ∧ Φ(λb. a v b). �
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Lemma 10.14 actually embeds a space with a basis indexed by the preorder (A,v) into
Filt(A,v) rather than ΣA.

Lemma 11.6 Any concrete basis using λ-terms gives rise to a nucleus on Filt(A,v) with

EΦξ ≡ ∃a`. ξa ∧ (a ≺≺ `) ∧ ∀b ∈ `. Φ(λc. b v c).

Proof Let Φ be an open subspace of Filt(A,v), so Φ = E0Φ, then

ΣiΦ ≡ λx. Φ(ix) ≡ λx. Φ(λb. βbx)

= λx. E0Φ(λb. βbx)

≡ λx. ∃b. (λb′. βb′x)b ∧ Φ(λc. b v c) Lemma 11.1

= ∃b. βb ∧ Φ(λc. b v c)
= ∃`. β` ∧ ∀b ∈ `. Φ(λc. b v c)

Ka(ΣiΦ) ⇔ ∃`. Kaβ` ∧ ∀b ∈ `. Φ(λc. b v c) Lemma 10.10

EΦξ ≡ I(ΣiΦ)ξ ≡ ∃a. ξa ∧ Ka(ΣiΦ) Lemma 10.14

⇔ ∃a`. ξa ∧ a ≺≺ ` ∧ ∀b ∈ `. Φ(λc. b v c).

The equations for a nucleus follow from the fact that E = I · Σi. �

Now we show that any abstract basis defines a nucleus too.

Lemma 11.7 Given any co- and contravariant relation ≺≺, let

KaΦ ≡ ∃`. (a ≺≺ `) ∧ ∀b ∈ `. Φ(λc. b v c)

and EΦξ ≡ ∃a. Baξ ∧ KaΦ ≡ ∃a`. ξa ∧ (a ≺≺ `) ∧ ∀b ∈ `. Φ(λc. b v c).

Then we recover

KaΦ ⇐⇒ EΦ(λb. a v b) and (a ≺≺ `) ⇐⇒ KaB` ⇐⇒ EB`(λb. a v b).

Also, E satisfies E = E0 · E = E · E0 and is recovered from ≺≺.

Proof By covariance of a ≺≺ ` in `,

KaB` ≡ ∃k. (a ≺≺ k) ∧ ∀b ∈ k. ∃c ∈ `. b v c ⇐⇒ (a ≺≺ `).

Contravariance of a ≺≺ ` in a transfers to Ka; using this, Ka is recovered from E . We leave the last
part to the reader since we will not use it. �

Now we must use the properties of an abstract basis to prove that E satisfies the two equations
in Definition 9.6. However, since any term preserves the intrinsic order, we already have

E(Φ ∧Ψ) 6 (EΦ) ∧ (EΨ) and (EΦ) ∨ (EΨ) 6 E(Φ ∨Ψ),

so we only need to prove the reverse inequalities. The weak intersection rule gives the first and
the Wilker rule the second.

Lemma 11.8 If ≺≺ satisfies the weak intersection rule

(a ≺≺ `) ∧ ∀b ∈ `. (b ≺≺ k1 ∧ b ≺≺ k2) =⇒ a ≺≺ k1 u k2,

then Ka(EΦ ∧ EΨ) =⇒ Ka(Φ ∧Ψ) and so E(EΦ ∧ EΨ) 6 E(Φ ∧Ψ).

Proof Using the formulae for Ka in Lemma 11.7 three times,

Ka(EΦ ∧ EΨ)

⇔ ∃`. (a ≺≺ `) ∧ ∀b ∈ `. EΦ(λc. b v c) ∧ EΨ(λc. b v c)

⇔ ∃`. (a ≺≺ `) ∧ ∀b ∈ `.
{

∃k1. (b ≺≺ k1) ∧ ∀c1 ∈ k1. Φ(λd. c1 v d)

∧ ∃k2. (b ≺≺ k2) ∧ ∀c2 ∈ k2.Ψ(λd. c2 v d).
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Taking the unions of the k-lists for all b ∈ ` and using covariance of ≺≺ with respect to k, this
implies

∃k1k2.

 ∃`. (a ≺≺ `) ∧ (∀b ∈ `. b ≺≺ k1 ∧ b ≺≺ k2)
∧ ∀c1 ∈ k1. Φ(λd. c1 v d)
∧ ∀c2 ∈ k2.Ψ(λd. c2 v d).

By the weak intersection rule, the top line implies a ≺≺ k1 u k2, which is

∃`′. (a ≺≺ `′) ∧ ∀b ∈ `′. (∃c1 ∈ k1. b v c1) ∧ (∃c2 ∈ k2. b v c2),

possibly with a different list `′. Then we match ∃c with ∀c and use

(b v c) ∧ Φ(λd. c v d) =⇒ Φ(λd. b v d)

from Lemma 11.1, the fact that Φ preserves the intrinsic order, the Gentzen rule (Axiom 10.7)
and Lemma 11.7 to obtain

∃`′. (a ≺≺ `′) ∧ ∀b ∈ `′. Φ(λd. b v d) ∧ Ψ(λd. b v d) ≡ Ka(Φ ∧Ψ).

Hence we have shown that Ka(EΦ ∧ EΨ) =⇒ Ka(Φ ∧Ψ). Then by Lemma 11.7,

E(Φ ∧Ψ)ξ ≡ ∃a. ξa ∧ Ka(Φ ∧Ψ)

⇒ ∃a. ξa ∧ Ka(EΦ ∧ EΨ) ≡ E(EΦ ∧ EΨ). �

In the Wilker rule it is convenient to consider existential quantification instead of binary
disjunction:

Lemma 11.9 If ≺≺ satisfies the Wilker rule

a ≺≺ k =⇒ ∃`. (a ≺≺ `) ∧ ∀b ∈ `. ∃c ∈ k. (b ≺≺ c),

then Ka(∃i. Φi) =⇒ Ka(∃i. EΦi) and so E(∃i. Φi) 6 E(∃i. EΦi)

and in particular E 6 E · E .

Proof Using Lemma 11.7 several times, the Wilker rule in the second line and h ≡ {c} half-way
down,

Ka(∃i. Φi) ≡ ∃k. (a ≺≺ k) ∧ ∀c ∈ k. ∃i. Φi(λd. c v d)

⇒ ∃k`. (a ≺≺ `) ∧
(
∀b ∈ `. ∃c ∈ k. b ≺≺ c

)
∧
(
∀c ∈ k. ∃i. Φi(λd. c v d)

)
⇒ ∃`. (a ≺≺ `) ∧ ∀b ∈ `. ∃ci. (b ≺≺ c) ∧ Φi(λd. c v d)

⇒ ∃`. (a ≺≺ `) ∧ ∀b ∈ `. ∃i.
∃h. (b ≺≺ h) ∧ ∀c ∈ h. Φi(λd. c v d)

⇒ ∃`. (a ≺≺ `) ∧ ∀b ∈ `. ∃i. EΦi(λc. b v c)
≡ Ka(∃i. EΦi).

Then E(∃i. Φi)ξ ≡ ∃a. ξa ∧ Ka(∃i. Φi) =⇒ ∃a. ξa ∧ Ka(∃i. EΦi) ≡ E(∃i. EΦi)ξ. �

We leave the following similar but simpler results to the reader:

Lemma 11.10
(a) If E satisfies E(EΦ ∧ EΨ) 6 E(Φ ∧Ψ) then ≺≺ obeys the weak intersection rule;

(b) if E satisfies E(∃i. Φi) 6 E(∃i. EΦi) then ≺≺ obeys the Wilker rule;

(c) E · E 6 E iff ≺≺ is transitive;

(d) E> = > iff ≺≺ is bounded above;

(e) E⊥ = ⊥ iff no a ∈ A has a ≺≺ ◦ (Section 13);

(f) E preserves binary meets iff ≺≺ satisfies the strong intersection rule;

(g) E 6 E1 · E iff ≺≺ satisfies single interpolation, where E1 is defined from ≺≺1 in the same way
that E was defined from ≺≺:

E1Φξ ≡ ∃ab. ξa ∧ (a ≺≺ b) ∧ Φ(λc. b v c). �
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This completes the proof that E is a nucleus, so we can use it in Axiom 10.11 to form a type:

Theorem 11.11 Every abstract basis obeying the primary rules presents a locally compact object
in Abstract Stone Duality. Hence the new subtype formation rule in Remark 10.16 is justified. �

Now that we have established the equivalence between abstract bases and nuclei we turn to
that between their respective notions of formal point, in Definition 5.1 and Lemma 9.7.

Lemma 11.12 If ξ is admissible then it is covariant , ξa ∧ (a v b) =⇒ ξb.

Proof We need to be careful because the verbatim proof of Lemma 11.2 gave roundedness
instead. For a ∈ A, let Φa ≡ λζ. ζa, so by Lemma 11.7,

EΦaξ ⇐⇒ ∃c`. ξc ∧ (c ≺≺ `) ∧ ∀d ∈ `. d v a.

Then, for admissible ξ, since v is transitive we have

a v b ` ξa ⇐⇒ Φaξ ⇐⇒ EΦaξ =⇒ EΦbξ ⇐⇒ Φbξ ⇐⇒ ξb

and the stated result follows from the Gentzen rule. �

Lemma 11.13 If ξ is admissible then it is rounded , ξc ⇐⇒ ∃a. ξa ∧ (a ≺≺ c).
Conversely, if ξ is rounded then E0Φξ =⇒ EΦξ for any Φ.

Proof Consider Φ ≡ λζ. ζc and use covariance for ` v {c}.

ξc ≡ Φξ ⇐⇒ EΦξ def Φ

≡ ∃a`. ξa ∧ (a ≺≺ `) ∧ ∀b ∈ `. (λc′. b v c′)c Lemma 11.7

⇔ ∃a. ξa ∧ ∃`. a ≺≺ ` v c Notation 1.7

⇔ ∃a. ξa ∧ (a ≺≺ c). covariance for ` v {c}
E0Φξ ≡ ∃b. ξb ∧ Φ(λc. b v c) Lemma 11.1

⇔ ∃ab. ξa ∧ (a ≺≺ b) ∧ Φ(λc. b v c) rounded

≡ E1Φξ =⇒ EΦξ,

where E1Φξ ≡ ∃ab. ξa ∧ (a ≺≺ b) ∧ Φ(λc. b v c). �

Lemma 11.14 If ξ is admissible then it is located ,

ξa ∧ (a ≺≺ `) =⇒ ∃b. ξb ∧ (b ∈ `).

Conversely, if ξ is located then EΦξ =⇒ E0Φξ for any Φ.
In particular, if a is empty (a ≺≺ ◦) then ξa⇔ ⊥.

Proof Consider Φ ≡ λζ. ∃b ∈ `. ζb. Then with k ≡ ` and b ≡ d,

ξa ∧ (a ≺≺ `) ⇒ ∃ak. ξa ∧ (a ≺≺ k) ∧ ∀d ∈ k. ∃b ∈ `. d v b
≡ EΦξ ⇐⇒ Φξ ≡ ∃b ∈ `. ξb. def E , Φ

EΦξ ≡ ∃a`. ξa ∧ (a ≺≺ `) ∧ ∀b ∈ `. Φ(λc. b v c) def E
⇒ ∃b`. ξb ∧ (b ∈ `) ∧ ∀b′ ∈ `. Φ(λc. b′ v c) located

⇒ ∃b. ξb ∧ Φ(λc. b v c) ≡ E0Φξ. Lemma 11.1 �

Lemma 11.15 If ξ is admissible then it is bounded and filtered ,

∃a. ξa and ξb ∧ ξc =⇒ ∃a. ξa ∧ (b w a v c).

Proof The proof of boundedness is the same as in Lemma 11.2, but that for filteredness uses
the roundedness property above. With Φ ≡ λζ. ζb ∧ ζc as before,

ξb ∧ ξc ≡ Φξ ⇐⇒ EΦξ

⇒ E0Φξ ≡ ∃a. ξa ∧ Φ(λd. a v d) ≡ ∃a. ξa ∧ (b w a v c). �
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Proposition 11.16 A term ξ : ΣA is admissible for E iff it is rounded, bounded, covariant,
filtered and located for ≺≺. Hence the introduction and elimination rules for terms of type X and
the introduction rule for ΣX in Remark 10.16 are justified.

Φξ
bounded & filtered-
�

covariant
E0Φξ

EΦξ

admissible

?

6

� always

located

-

E1Φξ

rounded

?

Proof The preceding lemmas deduce the other properties from admissibility. Conversely, if ξ
is rounded and located then E0Φξ ⇔ EΦξ by Lemmas 11.13 and 11.14, whilst if it is bounded,
covariant and filtered then E0Φξ ⇔ Φξ by Lemmas 11.3 and 11.4. �

This completes the proof of the soundness and completeness of the axioms for a abstract basis
as an account of concrete bases for locally compact sober spaces, locales, formal topologies and
objects of ASD.

12 Bases using compact subspaces

We began with a natural definition of basis that uses compact subspaces, but in most of our
discussion we have used Scott-open families instead, at the cost of the weak rule for intersections.
We would nevertheless like to restore the strong intersection rule because of Proposition 1.13 and
Lemma 8.13. In this section we use Lawson’s Lemma 3.11 and so the axiom of Dependent Choice
to convert the weaker forms to the stronger ones. We consider the result for abstract bases in
detail first and the concrete one afterwards.

Notation 12.1 Let (A,v,≺≺) be an abstract basis that satisfies the single interpolation rule.
A Lawson sequence ~a is one of the form

a∞ ≺≺ · · · ≺≺ a2 ≺≺ a1 ≺≺ a0, that is, ∀i <∞. a∞ ≺≺ ai+1 ≺≺ ai,

and we let ~A be the set of such sequences. We write ~̀ for a list or finite subset of ~A (not a sequence

of unrelated lists) and `∞ for the list {b∞ | ~b ∈ ~̀}. Then we define

a ≺≺ ~̀ ≡ a ≺≺ `∞ ~b ≺≺ k ≡ ∃i <∞. bi ≺≺ k

and ~a ≺≺ ~̀ ≡ ∃i <∞. ai ≺≺ `∞ ≡ ∃i <∞. ai ≺≺ ~̀ ≡ ~a ≺≺ `∞.

As in Lemma 3.7, ~a v ~b is defined by (~a ≺≺ ~b) ∨ (~a = ~b).

Lemma 12.2 Using Dependent Choice, Lawson sequences may be interpolated between individual
basis elements and between lists of them:

a ≺≺ k =⇒ ∃~b. a ≺≺ ~b ≺≺ k and k ≺≺1 ` =⇒ ∃~h. k ≺≺1 ~h ≺≺1 `.

Proof By repeated single interpolation, as in Lemma 3.11, given a ≺≺ k there are

a ≺≺ b∞ ≺≺ · · · ≺≺ b2 ≺≺ b1 ≺≺ b0 ≺≺ k,

so a ≺≺ b∞ and ∃i <∞. bi ≺≺ k. Conversely, if these hold then a ≺≺ k. Since (k ≺≺1 `) ≡
∀b ∈ k. ∃c ∈ `. b ≺≺ c, the second part iterates the first over the list k. �

Lemma 12.3 Transitivity, single interpolation and boundedness above hold:

~a ≺≺ ~k ≺≺ ~̀ =⇒ ~a ≺≺ ~̀ =⇒ ∃~b. ~a ≺≺ ~b ≺≺ ~̀ and ∃~b. ~a ≺≺ ~b.

61



Proof By interpolation, using the previous result,

~a ≺≺ ~k ≺≺ ~̀ ≡ ∃i. ai ≺≺ k∞ ∧ ∀~b ∈ ~̀. ∃j. b∞ ≺≺ bj ≺≺ `∞
⇒ ∃i. ai ≺≺ k∞ ≺≺ `∞ =⇒ ~a ≺≺ ~̀

~a ≺≺ ~̀ ≡ ∃i. ai+1 ≺≺ ai ≺≺ `∞
⇒ ∃~bi. ai+1 ≺≺ ~b ≺≺ ai ≺≺ `∞ =⇒ ∃~b. ~a ≺≺ ~b ≺≺ ~̀

and for any ~a, interpolate a2 ≺≺ a1 ≺≺ ~b ≺≺ a0, so that ~a ≺≺ ~b. �

Lemma 12.4 The Wilker and strong intersection rules hold in the form

(~a ≺≺ ~k) ∧ (~a ≺≺ ~̀) =⇒ ∃~h. (~a ≺≺ ~h ≺≺1 ~k) ∧ (~h ≺≺1 ~̀).

Proof We use the greater of i and j, the weak intersection and Wilker rules in A (cf. Lemma 3.7)
and the list form of Lawson interpolation:

(~a ≺≺ ~k) ∧ (~a ≺≺ ~̀) ≡ (∃i <∞. ai ≺≺ k∞) ∧ (∃j <∞. aj ≺≺ `∞)

⇒ ∃i <∞. ai+1 ≺≺ ai ≺≺ k∞, `∞
⇒ ∃i <∞. ∃h′h′′. ai+1 ≺≺ h′′ ≺≺1 h′ v k∞, `∞
⇒ ∃h′h′′~h. ~a ≺≺ h′′ ≺≺1 ~h ≺≺1 h′ v k∞, `∞
⇒ ∃~h. ~a ≺≺ ~h ≺≺1 ~k ∧ ~h ≺≺1 ~̀. �

Lemma 12.5 If the given basis (A,v,≺≺) is bounded below, has rounded unions, is positive or

prime then ~A has the same property.

Proof Given ~a, we have c ≺≺ a∞ since A is bounded below and then c ≺≺ ~b ≺≺ a∞, so ~b ≺≺ ~a.
Similarly, if ~b,~c ≺≺ ~a then bi ≺≺ a∞ and cj ≺≺ a∞, so there are d and ~e with bi ≺≺ d ≺≺ ~e ≺≺ a∞

and cj ≺≺ b. Hence ~b,~c ≺≺ ~e ≺≺ ~a.
For positivity, ~a ≺≺ ~◦ ⇐⇒ ∃i. ai ≺≺ ◦.
For primality, ~a ≺≺ ~̀ ≡ ∃i. ai ≺≺ `∞ =⇒ ∃ib. ai ≺≺ b ∈ `∞ =⇒ ∃~b. ~a ≺≺ ~b ∈ ~̀,

where ~b ∈ ~̀ is the member for which b∞ = b ∈ `∞. �

Theorem 12.6 Any abstract basis that satisfies the single interpolation rule is isomorphic (in
the sense of Remark 4.22) to one that also satisfies boundedness above and the strong intersection
rule, by the matrices 〈

a
∣∣ f ∣∣~b 〉 ≡ a ≺≺ ~b and

〈
~b
∣∣ g ∣∣ a 〉 ≡ ~b ≺≺ a.

Proof We have verified all of the hypotheses of Lemma 3.7, so it providesv for the new basis. We
may show that these matrices have the required properties and are inverse by similar methods. In
particular, they are both uniformly bounded,

〈
a
∣∣ f ∣∣~b 〉 is uniformly weakly filtered and

〈
~b
∣∣ g ∣∣ a 〉

is strongly but non-uniformly filtered. �

Notation 12.7 Now let (Ua,Ka) be a concrete basis for a space X using Scott-open families that

is indexed by (A,v,≺≺). We define an ~A-indexed basis for the same space by

U~a ≡ Ua∞ and K~a ≡
⋃
6{Kai

| i <∞}

or K~aφ ≡ ∃i.Kaiφ in ASD notation.

Lemma 12.8 These have the variance properties and agree with the way-below relation.

Proof By Lemma 3.7, if ~a ≺≺ ~b ≡ ∃i. a∞ ≺≺ ai ≺≺ b∞ then U~a = Ua∞⊂ Ub∞ = U~b and

~a ≺≺ ~b =⇒ ∃i. ∀j. ai ≺≺ b∞ ≺≺ bj =⇒ ∀j <∞. ∃i <∞.Kai ⊃ Kbj

so K~a ≡
⋃
{Kai

| i <∞} ⊃
⋃
{Kbj | j <∞} ≡ K~b .

Also K~a 3 U~̀ ⇐⇒ ∃i <∞.Kai 3 U`∞ ⇐⇒ ∃i <∞. ai ≺≺ `∞ ≡ ~a ≺≺ ~̀. �
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Lemma 12.9 The filter property for concrete bases is satisfied.

Proof If x ∈ U~a ≡ Ua∞ and x ∈ U~b ≡ Ub∞ then there is some c with x ∈ Uc and a∞ w c v b∞.

By the basis expansion of Uc and Lemma 12.2 there are e ≺≺ ~d ≺≺ c with x ∈ Ue ⊂ Ud∞ = U~d ⊂ Uc,

so ~a w ~d v ~b. �

Lemma 12.10 The basis expansion is satisfied.

Proof We use the basis expansion in A twice and then interpolate b ≺≺ ~a ≺≺ c:

x ∈ U ⇒ ∃b. x ∈ Ub ∧ Kb 3 U
⇒ ∃bc. x ∈ Ub ∧ Kb 3 Uc ∧ Kc 3 U
⇒ ∃~a. x ∈ Ua∞ ∧ Ka∞ ⊃ K~a ≡

⋃
i<∞
Kai ⊃ Ka0 3 U

⇒ ∃~a. x ∈ U~a ∧ K~a 3 U
⇒ ∃~a. x ∈ Ua∞ ∧ Ka∞ 3 U
⇒ ∃b. x ∈ Ub ∧ Kb 3 U =⇒ x ∈ U. �

Theorem 12.11 Every sober topological space that has a basis using Scott-open families (Defi-
nition 2.6) also has one using compact subspaces.

Proof We have constructed an abstract basis that satisfies the strong intersection rule and a
concrete one whose Scott-open families are filters by Lemma 3.12. Hence these are the neighbour-
hood filters of compact subspaces by Proposition 3.15. �

Remark 12.12 Is there a counterexample in a locale in a topos without Dependent Choice?

Remark 12.13 Presumably this is also valid in Martin-Löf Type Theory .

Remark 12.14 The other parts of the theory of abstract bases per se can be carried out in an
arithmetic universe (Axiom 10.1). This has no notion of sequence, so how can we accommodate
Lawson’s lemma into this view?

In fact, we do not need sequences in general, just the ability to interpolate something that can
generate a sequence given its endpoints 〈a∞ ≺≺ a0〉, as in Lemma 12.2.

In a foundational setting that can encode infinite objects (functions N → A), we can use the
interpolation property and Dependent Choice once to pick a sequence and then “remember” it for
further use. If, however, we cannot represent the whole sequence, we can achieve the same thing,
so long as whenever we repeat the process of selecting its terms, we are guaranteed to obtain the
same result as before. In other words, the choice needs to be made deterministically.

In the free arithmetic universe, the subobjects are recursively enumerable. Therefore, by
imposing a fixed way of scheduling parallel computations, we have a deterministic way of selecting
an element of any inhabited subobject. In traditional recursion theory this is based on Stephen
Kleene’s theorem [Kle43], but unfortunately the literature in arithmetic universes has not yet been
developed adequately to provide an idiomatic analogue.

Thus, instead of working with a actually infinite sequence, we encode it by its endpoints
〈a∞ ≺≺ a0〉 and use an interpolation operator µ that takes 〈a∞ ≺≺ ai〉 to 〈a∞ ≺≺ ai+1〉, so that the
potentially infinite sequence consists of as many iterates as we actually require. Then we define

a ≺≺ 〈b∞ ≺≺ b0〉 ≡ a ≺≺ b∞ and 〈b∞ ≺≺ b0〉 ≺≺ a ≡ ∃i. µi〈b∞ ≺≺ b0〉 ≺≺ a,

the latter being understood as c ≺≺ a where µi〈b∞ ≺≺ b0〉 = 〈b∞ ≺≺ c〉. After Lemma 12.2 above,
the sequence ~a can be replaced throughout by 〈a∞ ≺≺ a0〉 because we need no further analysis of
it.

Therefore Theorem 12.6 is valid in any arithmetic universe that has such a deterministic choice
operation on inhabited subobjects, in particular in the free one. �

The reason for using the formulation of abstract bases without v (Lemma 3.7) is that we
cannot expect µ to respect another v. Ideally, given a∞ ≺≺ ai and b∞ ≺≺ bj with a∞ v b∞ and
ai ≺≺ bj , we would like to chose interpolants such that ai+1 ≺≺ bj+1 too, but this does not seem to
be possible.

This completes the proof, which we began in Section 3, that abstract bases may be taken to
satisfy all of the additional “convenient” properties in Definitions 1.10 and 1.11 as well as the
primary ones in Definition 1.8.
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13 Overt spaces

The notion of overtness has arisen independently under various names in several constructive
disciplines: located subspaces in Constructive Analysis, open locales, positivity in Formal Topology
and liveness in Process Algebra. It is often said to be invisible classically, but deeper investigation
makes new use of some old ideas: The arguments that we employed in Section 5 when we tried
to construct a traditional topological space directly from an abstract basis will turn up again
here, whilst the properties of overt subspaces of metric spaces look very like the Newton–Raphson
method for solving equations.

It is easiest to give the initial definition of this concept using Abstract Stone Duality, but we
then characterise it using abstract bases and formal covers and work with these. Finally we prove
a Theorem that links Topology to Computability.

Topologically, overtness is the lattice dual of compactness, the latter being related to the
universal quantifier. For example, whereas a compact subspace of a Hausdorff space is closed, so
an overt subspace of a discrete space is open. Similarly, an open subspace or direct image of an
overt subspace is again overt. These ideas are explored in the context of real analysis in [J].

The word “overt” was introduced in [C], but in English it means “open”, not in the simple
sense, but that of being explicit. We shall see that this is appropriate because the concept is
related to having computational evidence.

Definition 13.1 A locally compact space X is overt if it has a term ∃X : ΣX → Σ that obeys
the rules for existential quantification :

. . . , x : X ` φx =⇒ σ
=====================
. . . ` ∃x. φx =⇒ σ

By our Axiom 10.8(b), any set (Axiom 10.1) is an overt space.
In classical topology, where the Sierpiński space Σ just has the two points > and ⊥, we just

have ∃XU ≡ (U 6= ∅) in any space. However, it is actually the points rather than Excluded
Middle that make overtness trivial (Remark 13.5).

Overt locales were first studied by André Joyal, Miles Tierney [JT84] and Peter Johnstone
[Joh84], who called them open because for such locales !X : X → 1 is an open map, i.e. there is a
left adjoint ∃X a !∗X satisfying the Frobenius law below. The name needed to be changed because
overt subspaces are often closed [J].

A formal cover is overt if it has an additional structure called a positivity (Theorem 13.10).

Lemma 13.2 A space X is overt iff there is a term ♦ : ΣX → Σ that satisfies

♦⊥ ⇐⇒ ⊥ and x : X, φ : ΣX ` φx =⇒ ♦φ.

Then ♦ ≡ ∃X and this also preserves joins and satisfies the Frobenius law

σ : Σ, φ : ΣX ` ♦ (σ ∧ φ) ⇐⇒ σ ∧ ♦φ,

cf. Definition 10.12(f).

Proof These are consequences of the adjunction ∃X a !∗X and respectively the negative and
positive Gentzen rules (Axiom 10.7). See [J] for further discussion. �

Definition 13.3 More generally,
(a) we define an overt subspace of a (not necessarily overt) space X to be any operator ♦ :

ΣX → Σ that preserves joins;

(b) it is inhabited if ♦> ⇔ >; and

(c) a point x : X is an accumulation point of ♦ if (λφ. φx) 6 ♦, so φx =⇒ ♦φ for all φ : ΣX .
The last is the dual of the condition K ⊂ P for a (formal) point to lie in a (saturated) formal
compact subspace (Definitions 3.16, 6.2(g) and 10.12(h)).

Therefore ♦ ≡ ∃X makes any overt space X into an overt subspace of itself for which every
x : X is an accumulation point.
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For subspaces, we may regard the accumulation points as providing the extent of ♦. However,
we can only understand overtness if we regard these points as just by-products of the operator
(or of its equivalent positivity). Sometimes there is an open or closed subspace that has the same
points, as explained in [J], but in general the extent of an overt subspace need not be locally
compact.

Beware that being inhabited does not mean ā priori that the subspace has an accumulation
point: we have a Theorem to prove about this.

Example 13.4 For any sequence f : N → X, the operator ♦U ≡ ∃n. fn ∈ U defines an overt
subspace. In this, the limit of any convergent subsequence is an accumulation point (hence the
name). �

Remark 13.5 In fact, we may replace N here with anything that we consider to be a “set” in
whichever logical foundations we are using. Hence any space that has enough points (cf. Warn-
ing 6.17) is overt. However, this also means that overtness depends on the strength of our chosen
foundations.

Indeed, for any ♦ operator in Point–Set Topology with Excluded Middle,

V ≡ {x | ∃U. x ∈ U ∧ ¬♦U} =
⋃
{U | ¬♦U}

and C ≡ {x | ∀U. x ∈ U ⇒ ♦U}

are complementary open and closed subspaces such that ♦U ⇐⇒ U G C. �

Leaving the uninteresting classical case behind, the preservation of joins invites characterisation
in terms of the basis:

Proposition 13.6 Overt subspaces correspond bijectively to positivities. These are subsets
r ⊂ A of the basis that are rounded and located, or equivalently upper and positive (cf. Lemma 5.8
and Definition 6.14),

r 3 b =⇒ ∃a. r 3 a ≺≺ b and r 3 a ≺≺ ` =⇒ r G ` ≡ ∃b. r 3 b ∈ `

or r 3 a v b =⇒ r 3 b and r 3 a / u =⇒ r G u ≡ ∃b. r 3 b ∈ u,

where r ≡ {a | ♦Ua} and ♦U ⇐⇒ ∃a. (a ∈ r) ∧ Ka 3 U.

Then a formal point p ⊂ A is an accumulation point of ♦ iff p ⊂ r ⊂ A.

Proof Proposition 4.14 and (the proof of) Lemma 7.11 characterised the subset r. We recover
♦ from r by the basis expansion and r from ♦ by roundedness. The containment p ⊂ r is the
restriction of the definition of an accumulation point to the basis and this is recovered for the
same reason. �

Now we turn to the characterisation of overt spaces using / and ≺≺.

Lemma 13.7 If a space has a positive basis (with no a ≺≺ ◦) then it is overt.

Proof Let ♦U ≡ ∃a. (Ka 3 U), so by hypothesis

♦⊥ ≡ ♦U◦ ≡ ∃a. (Ka 3 U◦) ≡ ∃a. (a ≺≺ ◦) ⇐⇒ ⊥.

Then ♦ is ∃X by Lemma 13.2 because, by the basis expansion,

x ∈ U ⇐⇒ ∃a. (x ∈ Ua) ∧ (Ka 3 U) =⇒ ∃a. (Ka 3 U) ≡ ♦U.

By the same argument as in Lemma 3.3, the positivity is r ≡ A ≡ {b | ∃a. a ≺≺ b}. �

However, we cannot obtain a positive basis for an overt space “negatively” by just omitting
the a with a ≺≺ ◦, cf. Lemma 3.6.

Notation 13.8 For any overt space X with concrete basis using Scott-open families (Ua,Ka)
indexed by (A,v,≺≺), let

A+ ≡ {a | ∃x. x ∈ Ua} ⊂ A.
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This is the positivity that corresponds to ♦ ≡ ∃X by Proposition 13.6. Since it is located, we
never have A+ 3 a ≺≺ ◦.

The key result is (our version of) a lemma2 from Peter Johnstone’s investigation of Locale
Theory without Excluded Middle [Joh84, Lemma 2.5]. He stated it as a � (b + c) =⇒ (a �
b) ∨ (c ∈ A+), which in our notation is a ≺≺ ` t {c} =⇒ (a ≺≺ `) ∨ (c ∈ A+).

Whilst it may appear that we are simply cutting ` down to its intersection with A+, doing that
need not yield a constructively finite subset [Kur20]. However, Scott openness of Ka does provide
some suitable finite k ⊂ ` ∩A+.

Lemma 13.9 a ≺≺ ` ⇐⇒ ∃k. a ≺≺ k v ` ∧ k ⊂ A+.

Proof Ka 3 U` ⇐⇒ Ka 3
⋃
{Ub | b ∈ ` ∩A+} ⇐⇒ ∃k.Ka 3 Uk ∧ k ⊂ ` ∩A+. �

In particular, a ≺≺ c =⇒ (a ≺≺ ◦) ∨ (c ∈ A+). We use the form above to eliminate empty basic
subspaces from the interpolants that are provided by the Wilker and intersection rules for the
given basis:

Theorem 13.10 A space is overt iff it has a positive abstract basis.

Proof We already have the reverse direction. Forwards, we may restrict the basis expansion to
A+ because

x ∈ U ⇐⇒ ∃a. x ∈ Ua ∧ Ka 3 U ⇐⇒ ∃a. x ∈ Ua ∧ a ∈ A+ ∧ Ka 3 U.

It still obeys the filter property because in the statement

x ∈ Ua ∧ x ∈ Ub =⇒ ∃c. x ∈ Uc ∧ (a w c v b),

we have a, b, c ∈ A+. Hence the concrete basis (Ua,Ka) may be cut down to A+.
Now we prove the Wilker and weak intersection rules that make (A+,v,≺≺) an abstract basis.

First we apply them for the given basis A and then we use Johnstone’s lemma to reduce the
interpolant:

a ≺≺ ` ⇒ ∃k. a ≺≺ k ≺≺1 ` Wilker

⇒ ∃kh. a ≺≺ h v k ≺≺1 ` ∧ (h ⊂ A+) Lemma 13.9

⇒ ∃h ⊂ A+. a ≺≺ h ≺≺1 `

a ≺≺ k ≺≺ `1 ∧ k ≺≺ `2 ⇒ ∃`′. a ≺≺ `′ v `1 u `2 intersection

⇒ ∃`′h. a ≺≺ h v `′ v `1 u `2 ∧ (h ⊂ A+) Lemma 13.9

⇒ ∃h ⊂ A+. a ≺≺ h v `1 u `2.

Finally, since A+ is located, A+ 3 a ≺≺ ` =⇒ ∃b. b ∈ ` ∩A+, so A+ is a positive basis. �

In Formal Topology, the usual definition of overtness is this:

Theorem 13.11 A space is overt iff there is a positivity r ⊂ A such that b / b+ ≡ {b} ∩ r.
Proof Suppose that there is such a positivity and let ♦ be the corresponding operator by
Proposition 13.6, so ♦U ≡ ∃a ∈ r.Ka 3 U . Then

♦⊥ ≡ ∃a ∈ r.Ka 3 U◦ ≡ ∃a ∈ r. a ≺≺ ◦ ⇐⇒ ⊥.

If x ∈ Ua then a ∈ r since a / {a} ∩ r, so

x ∈ U ⇔ ∃a. x ∈ Ua ∧ Ka 3 U
⇒ ∃a. a ∈ r ∧ Ka 3 U ≡ ♦U.

Hence ♦ is ∃X by Lemma 13.2.

2He discovered it on a ferry journey and named it after the operating company, but apparently did not receive
any payment for this celebrity endorsement.
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Conversely, if X is overt then A+ (Notation 13.8) is a positivity. Also, from Section 7,

b / b+ ≡ (∀a. a ≺≺ b =⇒ ∃`. a ≺≺ ` ⊂ b+)

⇔
(
∀a. a ≺≺ b =⇒ (a ≺≺ ◦) ∨ (b ∈ A+)

)
since any Kuratowski-finite ` ⊂ b+ must be ◦ or {b}. This property is true by Johnstone’s
Lemma 13.9. �

Finally we characterise overt subspaces by re-cycling our classical Lemma 5.9:

Definition 13.12 A space X with an abstract basis (A,v,≺≺) is called recursively enumerable
if there is some bijection A ∼= R ⊂ N where R and the image of (≺≺) ⊂ A× Fin (A) are recursively
enumerable.

Every object that is definable in Abstract Stone Duality is recursively enumerable, although
much further work is required to develop computability theory idiomatically in our setting.

We also call an overt subspace ♦ recursively enumerable if the corresponding positivity r ≡
{a | ♦Ua} ⊂ A ∼= R ⊂ N is recursively enumerable. Again this happens whenever ♦ is definable
in ASD or, we claim, naturally occurring. Although there is potentially some ambiguity in this
usage, it will be resolved by the Theorem that we aim to prove.

Lemma 13.13 An abstract basis is recursively enumerable iff there is an enumeration k(−) : N→
Fin (A) and a decidable predicate WB(j, a, k) such that, for all i ∈ N, a ∈ A and k ∈ Fin (A),

a ≺≺ k ⇐⇒ ∃j. i < j ∧ k = kj ∧ WB(j, a, k).

Proof Stephen Kleene’s Theorem [Kle43, Section 4]. �

Remark 13.14 Is there a similar result in Martin-Löf Type Theory, maybe where WB(j, a, k) says
that j encodes a proof that a ≺≺ kj?

Remark 13.15 What is the result in an elementary topos with N, so for Locale Theory?

Lemma 13.16 Let ♦ be a recursively enumerable overt subspace of a (not necessarily overt but)
recursively enumerable space and suppose that ♦U holds. Then ♦ has an accumulation point that
also lies in U .

Proof It suffices to consider U ≡ Ua, so a ∈ r. The result is essentially Lemma 5.9: we must
find a formal point p with a ∈ p ⊂ r, where r is rounded and located by Proposition 13.6. We use
Kleene’s Theorem to modify the enumeration assumption at the beginning of the proof and then
the construction proceeds in the same way from a0 ≡ a. That is, except that:

At the ith stage, if WB(i, ai, ki) is false (even though some later WB(j, ai, ki) and hence ai ≺≺ ki
may be true) then we just let ai+1 ≡ a′ for any r 3 a′ ≺≺ ai by roundedness of r.

If WB(i, ai, ki) is true then a′ ≺≺ ai ≺≺ ki and as before a′ ≺≺ k′ ≺≺1 ai, ki and there is some
ai+1 ∈ r ∩ k′ by locatedness of r.

Such choices can be made because the sets are recursively enumerable, as is the resulting
p ≡ {b | ∃i. ai ≺≺ b}. This is also a ≺≺-filter as before.

For locatedness, if ai ≺≺ a′ ≺≺ k then, by assumption on the enumeration of Fin (A), we have
k ≡ kj and WB(j, a, k) for some j with i < j. This means that aj ≺≺ ai ≺≺ a′ ≺≺ k ≡ kj and then
aj+1 ≺≺ b ∈ kj , so b ∈ k ∩ p.

Hence we have a ≡ a0 ∈ p ⊂ r as required. �

Theorem 13.17 Every recursively enumerable overt subspace is the image of some (non-unique)
sequence f : r → X, where r is the corresponding positivity, as in Example 13.4.

Proof We regard the proof of the previous result as defining a function that takes the starting
point a ∈ r and (deterministically) yields a formal point pa (this is justified in the same way as in
Remark 12.14 and Lemma 13.13). Then〈

a
∣∣ f ∣∣ b 〉 ≡ (b ∈ pa)
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defines a matrix for a ∈ r ⊂ A and b ∈ A because, by the Lemma,
(a) it is trivially contravariant, rounded and saturated in a because r ⊂ A is a set with the

singleton basis (Example 5.2);

(b) it has the partition property because pa is located with respect to ≺≺;

(c) it is rounded, bounded and strongly filtered in b because pa is a ≺≺-filter;

(d) a ∈ r =⇒
〈
a
∣∣ f ∣∣ a 〉 because a ∈ pa; and

(e) a ∈ r ∧
〈
a
∣∣ f ∣∣ b 〉 =⇒ b ∈ r because pa ⊂ r.

Then Theorem 4.21 defines a continuous function f : r → X and Example 13.4 gives an overt
subspace � where

�Ub ≡ ∃a ∈ r. fa ∈ Ub ≡ ∃a ∈ r.
〈
a
∣∣ f ∣∣ b 〉 ⇐⇒ b ∈ r,

so � agrees with the given operator ♦ by Proposition 13.6. �

Remark 13.18 We claim that this result makes overtness the gateway between topology and
computability. Any program that takes (necessarily discrete) input data and yields (approxima-
tions to) a point of a space X is of the form in Example 13.4. Conversely, by Lemma 13.16, every
definable inhabited overt subspace has a computable point. Whilst the former may be trite and
the latter spectacularly infeasible as they stand, they do at least establish a purely topological
characterisation of what can be done computationally.

This becomes a little less far-fetched when we restrict attention to Rn and its usual basis
with U〈x,r〉 ≡ B(x, r) ≡ {y | |x− y | < r}. It turns out that d(x) < r is a reasonable notation
for ♦B(x, r) because it says how far x is from the nearest accumulation point. This relates
overtness to locatedness in Constructive Analysis [Spi10], but familiar numeral algorithms such
as Newton–Raphson iteration are also very similar to this [work in progress].

Therefore we may think about problems such as solving equations mathematically by adding
this concept to our usual topological repertoire. Then we may hand over the resulting λ-term to
a computational proof-theorist, who may be able to discover the accumulation points in a more
efficient way.

14 Conclusion

This section needs to be rewritten.
We have proved several weak equivalences of categories.

Definition 14.1 In the category of weak abstract bases and matrices,
(a) an object is an abstract basis (A,v,≺≺) that satisfies the principal axioms of Definition 1.8

(co- and contravariance, Wilker and weak intersection) and the roundedness properties of
Definition 1.10 (single interpolation, rounded union and boundedness above and below);

(b) a morphism
〈 ∣∣ f ∣∣ 〉 : (A,v,≺≺) → (B,v,≺≺) is a matrix that satisfies Definition 1.15 (co-

and contravariance, roundedness on both sides, partition, boundedness, weak filteredness and
saturation);

(c) the identity map on (A,v,≺≺) is the way-below relation,
〈
a
∣∣ idX ∣∣ b 〉 ≡ (a ≺≺X b); and

(d) morphisms are composed using the saturated composition operation in Notation 4.6:〈
a
∣∣ f ; g

∣∣ c 〉 ≡ ∃k. (a ≺≺ k) ∧ ∀a′ ∈ k. ∃b.
〈
a′
∣∣ f ∣∣ b 〉 ∧ 〈 b ∣∣ g ∣∣ c 〉.

Definition 14.2 The category of strong abstract bases and matrices is the full subcategory
of the previous one consisting of bases that also obey the strong or rounded intersection rule. By
Lemma 3.9 or 4.19, the matrices are strongly filtered.

The concrete category of “locally compact spaces and continuous maps” is weakly equivalent
to one or both of these abstract categories. This is the case for each of the four formulations of
topology that we have considered, in the mathematical foundations that are appropriate to that
subject. We begin with Formal Topology because it is the most similar to our abstract bases.

Theorem 14.3 The category of locally compact formal covers and continuous functions is weakly
equivalent to the strong abstract category, in Martin-Löf type theory.
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Proof Definition 6.6 and Proposition 7.18 discussed how locally compact formal covers are de-
fined. Proposition 7.3 derived an abstract basis ≺≺ from a locally compact cover / and Lemmas 7.5
to 7.7 did the converse.

Proposition 7.14 translated between matrices for ≺≺ and /, the latter being the definition of
continuous functions between covers that the Formal Topologists use.

The results of Sections 3 and 12, regarded solely as operations on abstract bases, show how to
add the extra properties to them; we may assume Dependent Choice in doing this because it is a
feature of Martin-Löf Type Theory. �

Theorem 14.4 The category of locally compact locales and continuous functions is weakly equiv-
alent to the category of weak abstract bases and matrices, in the logic of an elementary topos.
If the topos satisfies the axiom of Dependent Choice then the category is also equivalent to the
strong one.

Proof Definitions 6.1 and 6.2, and Proposition 7.15 explained what locally compact locales and
continuous lattices are and Proposition ?? obtained an abstract basis from them.

The converse construction turns the formal cover in the previous result into a frame or locale
using Lemma 6.9 and Theorem 6.10; Theorem 7.10 characterised this using ≺≺. Then Lemma 7.2
provides the Scott-open family (Ka) such that Ka 3 U` ⇐⇒ a ≺≺ `.

Continuous functions, which are defined as reverse frame homomorphisms, correspond to ma-
trices by the arguments in Section 4, with

⋃
, ∩ and Ka⊂ replaced by

∨
, ∧ and Ka3. Bases may

be improved to obey the single interpolation and rounded union rules by a similar translation of
Proposition 3.1. If Dependent Choice is available, Section 12 showed how use it to impose the
strong intersection rule. �

Theorem 14.5 The category of locally compact sober topological spaces and continuous functions
is weakly equivalent to the strong category of abstract bases and matrices, in a set theory with
Excluded Middle and the Axiom of Choice.

Proof Sections 1, 2, 3 and 12 showed how concrete bases using compact subspaces or Scott-
open families yield abstract bases and can be improved to have all of the additional properties.
Conversely, Section 5 defined a locally compact sober space from any countable abstract basis.

For the general case, we turn the locale in the previous result into a sober topological space.
Lemma 7.11 showed that formal points for the abstract basis (Definition 5.1) agree with those for
the locale and formal cover (Proposition 6.15). By Proposition 7.12 there are enough of them to
make the extent (Proposition 6.16) an isomorphism between the abstract frame and the lattice of
open sets of formal points (Definition 5.4). Then the Scott-open families in Lemmas 5.6 and 7.2
agree and satisfy the basis expansion. We also obtain Ka ⊂ U` ⇐⇒ a ≺≺ ` from Lemma 7.2
instead of Lemma 5.10 and its preceding results. The space is sober by Lemma 5.11 without the
countability restriction and in the strong case Theorem 5.12 describes the basic compact subspaces.

Section 4 showed how matrices correspond bijectively to continuous functions between sober
spaces and deduced the saturated composition operation. �

Remark 14.6 Our development in Point–Set Topology in Section 5 was interrupted by the need
to find enough formal points to characterise the way-below relation. We eventually proved this in
Theorem 7.13, once we had the benefit of the concept, structure and properties of the / relation.
In particular, we now see that we needed to apply Lemma 3.14 about maximal filters, not in the
concrete frame of open sets of points (cf. Lemma 5.11), but in the abstract one that is defined
directly from the abstract basis (Proposition 7.12). Only after doing so can we deduce that these
two frames are isomorphic and hence prove the Theorem.

Remark 14.7 In Abstract Stone Duality, Lemma 10.15 showed that every concrete basis using
λ-terms defines an abstract one. Conversely, the results of Section 11 constructed a nucleus E
from any abstract basis.

Our introduction to ASD relied on the equivalence with the other formulations of topology,
whereas the appropriate notion of “set” for ASD is an object of an arithmetic universe (Ax-
iom 10.1). The construction of the strong abstract category really belongs in this much weaker
logic. However, the axioms of both the topology and the foundations are then so weak that we
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have a whole paper’s [work in progress] worth of work to do to construct the category, its products
and its exponentials, but the outcome of this is that it is a model of ASD.

Remark 14.8 The main outcome of this lengthy investigation is that the same structure, at least
as far as its topological description is concerned, is equivalent to the category of locally compact
spaces in all four formulations, whereas each of those accounts has its own ad hoc features.

This is possible because, in the four kinds of abstract basis, the words “set” and “relation” are
understood in different ways, since we are working in different logical foundations.

Consequently, the meaning of the notion of “continuous function” varies with logical strength.
Indeed, we have a precise way of saying this: a continuous function in Point–Set Topology is a
matrix (a certain kind of logical predicate on sets) that is definable in set theory with Excluded
Middle and Choice, whereas a continuous function in Formal Topology is a matrix that is definable
in Martin–Löf Type Theory, etc.

This is an observation that is already logically relevant for familiar spaces such as N and R
that have homes in all four worlds. There are, for example, faster growing continuous real-valued
functions in traditional topology than in the other subjects.

Remark 14.9 Cutting Section 4 down to just Proposition 4.14, we have a weak equivalence
between the categories of
(a) locally compact spaces and operators that preserve all joins (but not necessarily meets) and

(b) bases and matrices that are co- and contravariant, rounded, saturated and have the partition
property (but need not be bounded or filtered).

Again, there are results for each of the four kinds of topology. There are also further generalisations
to (not necessarily distributive) continuous lattices and to bases and covers without the intersection
rules.

Remark 14.10 In particular, by Proposition 13.6, overt subspace operators ♦ are in bijection with
positivities (certain subset of the basis) in each of the four forms of topology. It is in this application
that we see the most dramatic differences amongst the four logical settings, ranging from the
classical one, where overtness is useless, to ASD, where in principle it provides an algorithm for
solving a problem.

Remark 14.11 This range of different logics has a bearing on what constitutes “constructive”
mathematics. Unfortunately, there is a tendency amongst those mathematicians who work in one
camp to claim a monopoly on this word to the exclusion of the others. In this paper we have
seen three approaches to topology that live in “constructive” worlds, by which we mean not the
classical one.

If we are going to forbid Excluded Middle and the Axiom of Choice, why allow impredicativity?
But if you are going to adopt that position, how do you justify the infinite subsets that are

needed in Formal Topology?
Our ≺≺ has the advantage that its theory only uses finite subsets and coherent logic: entail-

ments between existentially quantified formulae. Further work will show that matrices or ASD
terms that are definable in our weakest logic are computable. According to the Church–Turing
thesis and much experience since then, there is only one notion of computability, whereas the
question of which axioms and arguments count as “constructive” is open to debate.

After that, we can try to do computation with matrices for continuous functions between locally
compact spaces.

Remark 14.12 In a different direction, we may see the axiomatisation of abstract bases as the
notion of local compactness stripped of the cultural baggage of the different approaches to topology.
We simply have relations between sets.

They’re not just sets. We have used lists or finite sets, whilst Fin (A) is the free algebra
(semilattice) for a functor on sets. The categorical mind will be able to ring many changes on this
idea. In fact, this is the reason for keeping the preorder v even though Lemma 3.7 showed that
it is redundant: it is a clue to possibly more general structure, such as a category.

Maybe the notion of locally compact space will be even more of a discovery than our already
diverse opening diagram suggests.
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