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1 Introduction

1.1 Overtness has been introduced in a number of accounts as a dual to compactness that is invisible
in classical topology. Here we shall try to be more helpful to general mathematicians by relating
this unfamiliar idea to others that they have actually known for a long time.

We shall prove some simple theorems that characterise overt subspaces in locally compact
metric spaces such as Rn. These characterisations turn out to be very similar to (but not the
same as) the well known Newton–Raphson algorithm for solving equations.

When it is required to find a solution to an equation, it is of absolutely no help to postulate
the set of all solutions. The theme of our investigation is that an overt “subspace” is a problem
that is amenable to solution rather than a subset of points.

This concept has arisen in several different constructive formulations of topology and analysis,
with definitions that dissolve into nothing when read verbatim in classical point–set topology. The
significance comes from the unification of these disciplines with the theory of computation.

We want to convey the importance of overtness across classical, numerical, constructive and
computable mathematics, so we shall write our technical development in traditional notation,
instead of that of the various constructive disciplines. We begin with a brief survey of the many
different roots of this idea, but it will not be necessary to understand all or any of the heterodox
systems or their notation. We shall require no more knowledge of topology, metric spaces and
computability than is to be found in any elementary text.

The prerequisite will instead be a willingness to take mathematical ideas au naturel and not try
to shoe-horn them into a classical setting. It is the explanation of this notion on the boundaries of
topology and computation, rather than the proof of theorems, that is the objective of this paper.

1.2 We start from topology by thinking of an overt subspace A ⊂ X as one that arises as a fibre of
some open map. Recall that an open map is a continuous function f : X → Y for which the
direct image f!U ≡ {f(x) | x ∈ U} of any open subspace U ⊂ X is open in Y , whilst a fibre is
simply the inverse image f−1(y) ≡ {x | f(x) = y} ⊂ X of a point y ∈ Y .

If your next step is to characterise such fibres classically then you will find yourself in a
conceptual dead end. The following argument is constructed to get us around that obstacle by
using continuous functions, maybe even classical ones.

We will show in Theorem 5.10 that a function f : X → Y between locally compact metric
spaces is an open map iff the expression

dy(x) ≡ d
(
x, f−1(y)

)
≡ inf {d(x, a) | f(a) = y}

defines a continuous function d(−)(−) : X × Y → R. In this case, f(x) = y ⇐⇒ dy(x) = 0.

This is best illustrated by a non-example. For the squaring map f : R→ R,

f(x) = x2 and dy(x) =

{ ∣∣ |x | − √y ∣∣ if y ≥ 0
∞ if y < 0,
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but dy(x) is not continuous in y near 0. For an example where dy(x) has jumps but no infinities,
you may like to work this out with f(x) ≡ x3 − x.

1.3 Any function dy(x) that arises from an open map in this way has the convergence property
that

dy(x) < r =⇒ ∃x′r′. dy(x′) < r′ < 1
2r ∧ d(x, x′) < r − r′,

which invites iteration towards some a with f(a) = y.
The famous Newton–Raphson algorithm is (almost) an example of this situation. If f : R→ R

is differentiable with ḟ(x) 6= 0 for all x then f is an open map. In favourable circumstances
(which we set out in Notation 6.3), x′ ≡ x+ g(x) gives an improved approximation, where g(x) ≡
(y − f(x))/ḟ(x), and 2| g(x) | is an (over)estimate of dy(x).

1.4 Abstractly, dy(x) says how far any given point x ∈ X is from the nearest solution a ∈ X of the
equation f(a) = y. The Newton–Raphson method, when it works, does this too, approximately.

We may also regard dy(x) as the distance between x and the set f−1(y) of solutions, or ∞
if there are none. When the function dy(x) is continuous in (x and) y, we may think of this
parametric set f−1(y) as varying continuously in y too. Theorem 5.10 says that this happens
exactly when f is an open map. However, considering f−1(y) in terms of set theory gets us
nowhere, if our aim is to find a solution of a numerical problem.

For the squaring function, f−1(y) has two elements ±√y when y > 0. These get closer together
as y decreases, becoming the singleton {0} when y ≡ 0, and they vanish when y < 0. Because
of the last transition, f−1(y) fails to be a “continuously varying set” in the sense that interests
us. In the cubic case f−1(y) may have 1, 2 or 3 elements, from which the distance function dy(x)
“chooses” one, in a necessarily discontinuous way.

On the other hand, for a differentiable function f with ḟ 6= 0, the solutions are isolated and
(individually) define a continuous inverse (partial) function f−1.

1.5 Continuity or otherwise in a parameter is the way in which the issues that we want to discuss
manifest themselves when we work in classical point–set topology. This is because excluded middle
and choice prevent them from appearing in the non-parametric case. However, they appear in
different forms in other disciplines.

The reason why you have never seen this definition of an overt subspace before is that, in
classical point–set topology, any closed subspace A ⊂ X can be expressed as a fibre of some open
map. There are other definitions of overtness, but they all trivialise in the classical setting. So
the idea, or at least the word, is useless there.

It was therefore in constructive and computable topology and analysis that this concept arose.
There are several different approaches to these subjects, each with its own name and definition
for the idea, but, as these separate disciplines have interacted more with one another, the word
overt has begun to gain acceptance amongst them. Note that in everyday English this word is
not a synonym of open derived from French, but means explicit. We shall find that the name is
apt because overtness is associated with having evidence or even an algorithm for something, in
particular for solving an equation.

As a matter of elementary general topology, overtness also fills a conceptual gap as the coun-
terpart of compactness in the lattice duality that matches open with closed subspaces.

Since these disciplines also have different logical strengths, our parallel treatment of them has
to be ambiguous about certain foundational issues, to which we will return in the Conclusion.
However, it is better to understand the topological and computational issues before worrying
about this. The corollary of this is that our characterisation of overtness is in fact a different
theorem for each system, one extreme of which is that overtness trivialises in the classical case.

Let’s survey these disciplines.
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1.6 The study of mathematical constructions containing a parameter y that varies over a topological
space Y is called Sheaf Theory. In this subject, we may either
(a) always retain the explicit parameter y and therefore have to consider different behaviours at

different points y ∈ Y of the space, or

(b) develop a way of describing the mathematical situation “simultaneously” throughout the space,
so that the “truth value” of a statement is the subspace of Y on which it is valid.

The second view shifts the parameter from the mathematical formulae to the logical ones. So,
if we want to eliminate it altogether, we have to be willing to modify our logical operations to
accommodate subspaces as truth values. This is most easily done by restricting attention to open
subspaces and those operations that take and return open subspaces.

However, the open subspaces of a space such as Rn do not form a Boolean algebra, so these
truth values do not obey the principles of classical mathematics such as excluded middle (P ∨¬P ).
Therefore, although the mathematicians who developed sheaf theory had a classical education, they
found themselves forced to use the logic of the Intuitionism of L.E.J. Brouwer [Hey56, McL90].

1.7 The evolution of sheaf theory led to the notions of topos and locale. Locale theory studies
topology entirely in terms of the lattice of open subspaces, eschewing points altogether. Its classic
text [Joh82] demonstrates that the apparently ubiquitous use of the Axiom of Choice in topology
actually occurs at the stage where points need to be found to translate Choice-free theorems of
locale theory into those of point–set topology.

It was Marshall Stone who first stressed the importance of the duality between algebra and
topology. Traditionally, the spectrum of an algebra consisted of “points” that were identified
using prime ideals or similar notions, and had a topology re-imposed on it. But often there are
not enough abstract points to recover the original algebraic structure.

However, one can often define a lattice like that of open subspaces simply and directly from
an algebraic structure, without needing to identify the points. For example, the Zariski topology
for a commutative ring is (isomorphic to the opposite of) the lattice of its radical ideals, i.e. those
I for which r2 ∈ I ⇒ r ∈ I. Johnstone’s book surveys examples like this and shows how general
topology can be developed without using points, working just with the lattices.

1.8 Open maps f : X → Y and overt subspaces of X can be defined quite easily in terms of open
subspaces U ⊂ X and V ⊂ Y instead of points. The direct and inverse image operations, f! and
f−1 respectively, are related by

U ⊂ f−1(f!U), f!(f
−1V ) ⊂ V and f!U ∩ V = f!(U ∩ f−1V ),

of which the first two state the adjunction f! a f−1. The third is known in categorical logic as
the Frobenius law , although its connection with Ferdinand Georg Frobenius and the similarly
named property in Algebra is tenuous; the containment ⊃ follows from the adjunction.

Notation 1.9 For a given open map f : X → Y and point y ∈ Y , we shall write

♦U ≡ (y ∈ f!U) and M≡ {U ⊂ X | y ∈ f!U}.

These both convey the same information; whilst the second (“family of open subsets”) may be
more familiar to many mathematicians, the modal operator ♦ is less cumbersome. We will
ignore the dependency on y (and f) until it becomes relevant.

We may see from the adjunction or directly that f! preserves unions, so these satisfy

♦
⋃
i

Ui ⇐⇒ ∃i. ♦Ui and
⋃
i

Ui ∈M ⇐⇒ ∃i. Ui ∈M.

The so-called Frobenius law becomes

♦U ∧ y ∈ V =⇒ ♦(U ∩ f−1V ) and U ∈M ∧ y ∈ V =⇒ (U ∩ f−1V ) ∈M.

However, we shall take just the join-preserving property as our working definition of an overt
subspace in terms of open subspaces. That is, we ignore the Frobenius law for the time being, but
we shall find in Corollary 7.11 that it is not needed.
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1.10 Overt locales were first studied by André Joyal and Miles Tierney [JT84] and by Peter Johnstone
[Joh84a, Joh84b].

The category of locales defined in the topos of sheaves on a base locale B is equivalent to
the category whose objects are continuous maps X → B and whose morphisms are commutative
triangles. It is therefore natural to match properties of locales with those of maps, which is a
similar question to ours of looking at fibres [Joh91, page 101].

In particular, a locale X is overt iff the map X → 1 is open, so these authors called X an
open locale . However, their name needs to be changed when we start talking about subspaces
because any fibre of a map between Hausdorff spaces is closed (in the usual sense).

Function-spaces of the form Y X (for both point–set topology and locales) obey the appropriate
universal property iff X is locally compact, but to form such exponentials over a base space B we
need to use separation properties such as Hausdorffness. These in turn depend on closed inclusions,
which are preserved by (−)

X
exactly when X is overt [Joh84a].

1.11 The study of overt locales involves a particularly delicate grasp of intuitionistic lattice theory,
but we shall see that it is possible to appreciate overtness more easily in other formulations of
topology. In particular, it is not really necessary to use the full lattice of all open subspaces. For
example, the open ball

Br(x) ≡ {y ∈ X | d(x, y) < r}

is ubiquitous in elementary analysis, where general open subspaces are hardly needed, and this
paper will use them in a similar way.

Formal Topology, which was introduced by Giovanni Sambin [Sam87] based on an idea of
Per Martin-Löf, works with systems of basic open subspaces such as balls. For such a system to
determine a space, we must specify its cover relation

a / U, meaning Oa ⊂
⋃
{Ob | b ∈ U},

where Oa is the basic open subspace named by the symbol a and U is a set of such symbols. (This
use of a and U is typical in Formal Topology but conflicts with our custom in this paper.)

A general open subspace is a union of basic ones, but formal topologists prefer to avoid dis-
cussing arbitrary unions. In particular, since the operator ♦ must preserve unions, we only need to
define it on basic open subspaces: Adapting a notation that had been used in locale theory, Sambin
writes Pos (a) for ♦Oa and calls this a positivity predicate . It has to satisfy the condition that

Pos (a) =⇒ ∃b ∈ U. Pos (b) whenever a / U.

1.12 Cantor Space provides a good example of the use of Formal Topology and the computational mean-
ing of overt subspaces. Mathematicians know this space through the middle-third construction
but computer scientists use infinite streams of binary digits instead.

A basic open subspace is named by a finite sequence of digits or a nested third of a particular
resolution; such a subspace is also compact. Each one is covered by the two smaller basic opens
that are named by adding a single extra digit or repeating the middle-third operation once. For
example,

011 / { 0110, 0111 }.

An overt subspace of Cantor space is then defined by declaring certain of the finite sequences
to be “positive”, with the requirement that some sequence is positive if and only if at least one of
its single-digit extensions is too:

Pos (011) ⇐⇒ Pos (0110) ∨ Pos (0111).

We say that such a predicate defines an inhabited overt subspace if the empty sequence
(encoding the whole space) is positive. In that case, Dependent Choice allows us to select an
infinite sequence all of whose finite initial segments are positive. We regard the subspace of
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Cantor Space consisting of sequences that arise from such a process as the extent of the overt
subspace that is defined abstractly by the ♦ operator.

Section 3 generalises this to the extent of any ♦ operator on a locally compact metric space
and our Tangency Theorem will find points in a similar way.

1.13 Cantor Space is a very simple example of a Formal Topology because the covers are disjoint, but
when we present the real line in this way we need to say, for example,

(1, 3) / {(0, 2), (1, 4)},

where now tbe basic open subspaces are the open intervals.
Errett Bishop developed Brouwer’s Intuitionistic ideas into an account of elementary real

analysis [BB85]. As a rule, it is as challenging a piece of mathematical research to strip excluded
middle from traditional proofs as it was to find the original classical versions. Nevertheless,
Bishop’s skilful account is both easy to follow and gets on with the business of analysis without
dwelling on counterexamples. The reader needs to learn little more than to stop assuming that
equality of real numbers is decidable (x = y ∨ x 6= y), rather as many classical mathematicians
have learned not to use the Axiom of Choice. Indeed, the Bishop school is sometimes criticised by
logicians for not setting out its formal system.

1.14 Bishop’s followers have extended his work to functional analysis. In so doing, they have often found
themselves making use of the same notion of distance of a subspace A ⊂ X from a point x ∈ X,

d(x,A) ≡ inf {d(x, a) | a ∈ A},

that we used in our theorem about open maps between metric spaces. (Formulae for the distance
between a point and a subspace go back to Felix Hausdorff [Hau14] and have been exploited by
numerous authors since then.)

In order to make the classical form of many theorems valid constructively, d(x,A) must be a
Euclidean real number, rather than just a lower one (paragraph 2.5). When this is the case for
all x, the subspace A is called located .

For example, it is well known in classical functional analysis that any surjective continuous
linear map f : X → Y between Banach spaces is an open map. The kernel K ≡ f−1(0) ⊂ X is a
closed linear subspace, and this is enough classically, i.e. we may define f : X � X/K and recover
K as its kernel. Constructively, however, K has to be located. This agrees with our theorem
above: the kernel is the fibre of an open map over 0 and must therefore be overt.

1.15 Unfortunately, whilst we make several links in this paper with the ideas of the Bishop school, it
is not one of the disciplines in which our results can be given a direct formal interpretaion. This
is because we shall use the “finite open sub-cover” definition of compactness, which Bishop does
not accept [BR87], whereas it is valid in Locale Theory and Formal Topology.

Specifically, we shall need local compactness of X in order to make dy(x) lower semicontinuous
in y and upper semicontinuous jointly in x and y when f is open. Without this assumption, our
characterisation of open maps using continuous distance functions becomes this less interesting
statement:

Theorem A continuous function f : X → Y is an open map with respect to the metric topology
on X iff dy(x) is upper semicontinuous in y.

Proof Both of these properties say that f!Br(x) ⊂ Y is open. �

Another dissonance with Bishop is that some of his definitions are conjunctions of properties
that we prefer to consider separately. For example, he uses the word compact for a subspace
that is closed and totally bounded, making it overt as well as compact in our terminology, total
boundedness being one of the manifestations of overtness (Definition 7.9).

For examples of compact subspaces of R that are not overt, see Section J 11.
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1.17 The disciplines that we have mentioned so far were motivated primarily by mathematical ques-
tions. However, consideration of the underlying logic is not just a matter of piety but has practical
mathematical consequences in itself.

One powerful result in Logic is Gerhard Gentzen’s existence property [Gen35]. It says that,
if we have a proof of an existentially quantified predicate ∃x. φ(x) then we may extract from
this proof a term (value) a and a proof of φ(a). This metatheorem (theorem about theorems) is
only valid for intuitionistic logic and not for classical logic — giving another reason to develop
mathematics constructively.

This subject, Proof Theory, treats proofs as mathematical objects in themselves, understanding
each logical connective as a mathematical one. For example, a proof of an implication A⇒ B is a
function that turns a proof of A into one of B. Along with the interpretations of the other symbols,
this analogy is known as the Curry–Howard correspondence . One of the formal systems that
exploits it is the Type Theory of Per Martin-Löf [ML84] that is used in Formal Topology.

In general, the computation that is involved in this “extraction” process can be spectacularly
infeasible — when it is applied to a logic that is as general as mathematicians commonly use.
However, there are weaker systems of logic and practical applications of them for which these
ideas actually make Logic Programming a reasonable way of solving problems.

1.18 The significance of such methods to us is that overtness is the topological embodiment of the
existential quantifier, whilst an open subspace U is a predicate φ(x) in a suitable weak logic.

Therefore, our notation ♦U may alternatively be written as ∃x ∈ A. φ(x) (Corollary 3.6). From
any proof of this, Gentzen’s theorem obtains a point a ∈ A satisfying φ(a), that is, a ∈ A ∩ U .
Intuitively, ♦U says that the open subspace U contains a solution to the problem that is encoded
in the operator ♦ corresponding to an overt subspace. However, to define ♦ in this way would be
to beg the question.

We saw with Cantor space that an overt subspace is inhabited if it satisfies the simple condition
that the whole space is designated as a positive open subspace, Pos (X). In numerical analysis,
some “boundary condition” typically provides this property. In either case, some computation
needs to be done to find the solution. The intuition behind ♦ is therefore captured in a version of
the Existence Theorem that we call the Tangency Theorem.

Our proof of this result is ostensibly topological, but it relies on a Choice Principle. Someone
who thinks in purely mathematical terms may just take this principle as an article of faith, i.e. as
an axiom. However, for a proof theorist or a logic programmer, it is a consequence of the syntactic
analysis of the formal language in which the mathematical ideas are expressed and proved.

1.19 In order to make the Existence or Tangency Theorem a natural part of general topology and tame
the infeasibility of the computation, we need to cut the classical logic of point–set topology down
to one that only deals in open subspaces and operations on them. The calculus of Abstract Stone
Duality does this [J].

Even then, the Tangency Theorem is by no means a magic bullet, or even an explicitly given
algorithm. We claim that the solution of problems can be embodied in the search for a point of
an inhabited overt subspace. However, the other side of this coin is that the process of finding
such a point potentially involves the solution of arbitrarily difficult numerical problems.

1.20 The significance of the concept of overtness is therefore that
(a) pure mathematicians can use it as a notion in general topology, just as they would compactness,

whilst

(b) to logicians and programmers it is the specification for a computation.

We will characterise overtness in metric spaces using ideas from the ancient history of analysis
and show how to use it in the same idiom of other ideas in general topology. This requires slightly
better logical hygiene but no major change to our habits of presenting mathematics. The reward
is that mathematicians from the newer, more syntactic, disciplines that are nowadays found in
Computer Science departments can take the proofs that we have found and turn them directly
into algorithms for finding solutions to mathematical problems.
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1.21 The technical content of this paper is a characterisation of an overt subspace of a locally compact
metric space in terms of
(a) an operator ♦ that says whether any open subspace U touches A, so ♦U means that U ∩ A

is inhabited, which makes overtness a property of general topology like compactness;

(b) a distance function d(x,A) ≡ inf {d(x, a) | a ∈ A};
(c) an existential quantifier ∃a:A. a ∈ U ; or

(d) a dense net (“computably representable” set of points), which is useful for combinatorics and
computation.

Such connections have been identified before, in particular in [Spi10], but assuming that the
subspace is closed, which we shall not do.

2 Overtness in metric spaces

In this section we show that any join-preserving operator ♦ on the open subspaces of a locally
compact metric space, such as arises from each fibre of an open map, can be characterised in terms
of a distance-like function.

Remark 2.1 We shall work in a locally compact complete metric space (X, d) such as Rn or
Cantor space. However, our objective is to explain overtness in metric spaces, rather than to give
the most general result. We shall therefore occasionally make other assumptions that hold in Rn

but not in general metric spaces.
By convention, the variables w, x, y, z will range over the space X, whilst r, s, t, ε, δ denote

strictly positive rational numbers.
We write Br(x) ≡ {y | d(x, y) < r} for the open ball with centre x ∈ X and radius r > 0. We

also write Br(x) for is its closure, and assume that this is compact and that any open subspace
U ⊂ X has a basis expansion

U =
⋃
x,r

{Br(x) | Br(x) ⊂ U}.

Beware that this is stronger than just asking that the topology induced by the metric be locally
compact. We also assume that

q < r =⇒ Bq(x) ⊂ Br(x).

Notation 2.2 Given any predicate ♦ on open sets such that ♦(
⋃
Ui) ⇐⇒ ∃i. ♦Ui, or a family

M of open sets such that (
⋃
Ui) ∈M ⇐⇒ ∃i. (Ui ∈M), we write

d(x) < r ≡ ♦Br(x) ≡ Br(x) ∈M.

We need to justify using a strict inequality and the same letter as the metric:

Lemma 2.3 This notation satisfies

d(x) < r′ < r =⇒ d(x) < r monotonicity

d(x) < r =⇒ ∃r′. d(x) < r′ < r roundedness

d(x) < r ∧ d(x, y) < s =⇒ d(y) < r + s triangle law

d(x) < r =⇒ ∀ε. ∃y. d(x, y) < r ∧ d(y) < ε convergence

and the operator ♦ is recovered as

♦U ⇐⇒ ∃xr. d(x) < r ∧ Br(x) ⊂ U.
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Proof Replacing d(−) by d(−, z), all four properties hold for the metric: roundedness because
< on R satisfies it and convergence by putting y ≡ z.

Re-writing these statements about the metric using balls, we have

Br(x) =
⋃

0<r′<r

Br′(x),

d(x, y) < s =⇒ Br(x) ⊂ Br+s(y)

and Br(x) ⊂
⋃
{Bε(y) | y ∈ Br(x)},

whilst any open subspace U satisfies the basis expansion

U =
⋃
x,r

{Br(x) | Br(x) ⊂ U}.

Applying ♦ to each of these expressions gives the stated results. �

Proposition 2.4 The function d defined by

d(x) ≡ inf {r | d(x) < r}

satisfies inf < r ⇐⇒ ∃r′. d(x) < r′ < r ⇐⇒ d(x) < r

and is upper semicontinuous.

Proof The (simplest) definition of upper semicontinuity is that {x | d(x) < r} ⊂ X is open for
each r > 0. Indeed, by roundedness and the triangle law,

d(x) < r =⇒ ∃ε. d(x) < r − ε
=⇒ ∃ε. ∀x′.

(
d(x, x′) < ε⇒ d(x′) < r

)
,

=⇒ ∃ε. Bε(x) ⊂ {x′ | d(x′) < r}.

Beware that this way of defining d(x) only says which positive rational numbers r are upper bounds
for it. �

Remark 2.5 There are plenty of classical functions that are upper semicontinuous but not con-
tinuous, such as the step function defined by f(x) ≡ 0 if x < 0 and +1 if x ≥ 0. However, as will
become apparent, these examples do not satisfy the other properties of our d. We have to take a
more explicitly constructive view to see why we only have semicontinuity in general.

Beware that semicontinuity of a function d has nothing to do with continuity from the left
or right in a real argument x, but is about its values d(x). Constructively, the issue is that
these values need not be Euclidean real numbers (in R), but are weaker things called upper or
descending reals, the space of which is called R.

Example 2.6 To find upper reals that are not Euclidean, we need to think in terms of com-
putability. Consider a program whose termination is undecidable, such as a search for a proof
that 0 = 1 in the ambient logic. Let gn ≡ 0 if the program has halted by time n and gn ≡ 1 if is
still running. Then put

g ≡ 1−
∞∑
n=1

2−ngn,

so g > 0 if the program ever terminates or 0 otherwise, but we cannot know this. However, it is
easy to test whether g < r, by considering a finite sum whose length is easily determined by r.

The issue here is that we only know about g or d(x) from above. More complicated forms of
the same situation often arise in analysis, as domains of definition that are obtained by a process
of “continuation”, such as when solving a differential equation. Such a problem tells us about
the domain from the inside. Many papers have been written to say that the boundary of some
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domain of this nature is “not computable” — but this is to be expected, since we usually have no
knowledge of it from the outside. The remarkable thing is when we have some other information
saying that the region does have a computable boundary.

Remark 2.7 Topologically, the space R of upper reals may be unfamiliar, because it is not
Hausdorff. In particular, singletons such as {0} are not closed in it. Classically, one may view
R as R + {−∞,+∞} with a topology whose open subsets are downwards-closed open intervals
[−∞, r), together with ∅ and R.

However, this is clumsy and wrecks the point that we have just made about computability. It
is much better to represent the points U ∈ R as rounded upper sets of rationals,

U ⊂ Q such that r ∈ U ⇐⇒ ∃r′. r > r′ ∈ U,

which was the roundedness property for d(x) < r. Spaces such as R that are determined by
an order relation have been used in theoretical computer science since the 1970s to study the
semantics of programming languages, but pure mathematicians have resisted incorporating them
into their own curriculum.

Definition 2.8 Ordinary (“Euclidean”) real numbers are defined by giving both their upper and
lower rational bounds. These sets are respectively an upper real U and a lower real D (the latter
being defined in the same way but with the opposite order) that are disjoint sets of rationals also
satisfying the condition

q < r =⇒ q ∈ D ∨ r ∈ U,
which (somewhat confusingly) is called locatedness. Such a pair is called a Dedekind cut .

Note that, according to the definition that we adopt, if the real number that D and U define
happens to be a rational number q ∈ Q then q belongs to neither D nor U , so our notion of cut is
a slight modification of Richard Dedekind’s original one [Ded72]. But the treatment of rationals
is not the important issue, which is instead that the preceding example defines an upper real U
that has no partner to form a Dedekind cut.

Lemma 2.9 For both the upper and Euclidean reals,

inf {d(x, a) | a ∈ A} < r ⇐⇒ ∃a ∈ A. d(x, a) < r.

Proof Since an upper real is a upwards-closed set of rational numbers, infima are computed as
unions. If the numbers are Euclidean then they have lower cuts that respect this, but testing the
equalities in this statement only requires the upper cut. �

Lemma 2.10 If a function d : X → R is both upper and lower semicontinuous then it is continuous.

Proof Any open subspace is a union of open intervals, whilst any open interval is an intersection
(a, b) = (−∞, b) ∩ (a,+∞), so it suffices that inverse images of lower and upper rounded subsets
be open. �

However, it is better to think of this situation as a pair of functions, one lower and the other
upper semicontinuous, that co-operate to define a Dedekind cut for each point of X. Given that
analysts already use semicontinuous functions, they should be willing to consider upper and lower
reals. This is because many phenomena that are often regarded as pathological are simply cases
where the upper and lower cuts come adrift, i.e. where the locatedness condition above fails.

Where it does exist, the lower partner of the upper d that we have just defined will be described
in Section 4.

If you are skeptical of treating the existential quantifier as a topological notion, or of dealing
with logical operators on open subspaces, then maybe you will feel more comfortable with this
metric-like function. However, we still have to check that, if we define ♦ from an arbitrary upper
semicontinuous function d satisfying the properties in Lemma 2.3, then it preserves unions and we
may recover d. We shall do that in the next section, where we investigate from what it measures
a distance. Section 4 provides the lower cut for d(x).
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3 Accumulation points

Now we will show that the two structures ♦ and d give rise to a notion of accumulation point, for
which we need Dependent Choice and Cauchy Completeness.

Lemma 3.1 For any point x0 with d(x0) < r0, there are sequences (xn) and (rn) such that

d(xn, xn+k), d(xn) < rn < 2−nr0,

so (xn) is a Cauchy sequence.

Proof From roundedness and converegence of d (Lemma 2.3),

d(x) < r =⇒ ∃r′. d(x) < r − r′ < r ∧ 0 < r′ < 1
2r

=⇒ ∃r′x′. d(x, x′) < r − r′ ∧ d(x′) < r′ < 1
2r.

Hence by iteration and Dependent Choice, there are sequences (xn) and (rn) such that

d(xn, xn+1) < rn − rn+1 and d(xn) < rn < 2−nr0,

so Br0(x0) ⊃ · · · ⊃ Brn(xn) ⊃ Brn+1
(xn+1) ⊃ · · ·

By the triangle law for the metric and induction, we also have d(xn, xn+k) < rn, so (xn) is a
Cauchy sequence. �

For simplicity, we now assume that the metric space X in which we are working is complete,
i.e. that any Cauchy sequence has a unique limit. However, we shall return to this assumption at
the end of this section, where we will see that techniques similar to the one that we are developing
can be used to construct the Cauchy completion.

Corollary 3.2 Any ball Br(x) that satisfies ♦Br(x) has some a ∈ Br(x) with d(a) = 0.
This means ∀ε > 0. d(a) < ε and is equivalent to ∀V. a ∈ V =⇒ ♦V .
We call such an a an accumulation point of d or ♦.

Proof For the last part: [⇒] If a ∈ V then a ∈ Br(a) ⊂ V for some r, but d(a) < r so ♦Br(a)
and ♦V hold, by Lemma 2.3. [⇐] Consider V ≡ Br(a) for each r > 0. �

Theorem 3.3 (“Tangency”) If an overt subspace defined by ♦ or d touches an open subspace U ,
i.e.

♦U, or equivalently ∃xr. d(x) < r ∧ Br(x) ⊂ U,

holds, then U contains an accumulation point of ♦ or d. �

Definition 3.4 The extent of ♦ or d is the subspace of all accumulation points,

A ≡ {a | d(a) = 0} ≡
⋂
r

{a ∈ X | d(a) < r} ⊂ X.

This is a Gδ-set , i.e. the intersection of a countable family of open subspaces.

Remark 3.5 Constructively, the subspace A need not be closed in the sense of being the comple-
ment of an open subspace (note that 0 ≡ {r ∈ Q | 0 < r} is not a closed point of R: Remark 2.7).
We shall return to this in the next section.

However, it is closed in various weaker senses.
It is sequentially closed : any convergent sequence an → x with an ∈ A also has x ∈ A.
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It is rest-closed [Vic07, Vic06] it contains all of its closure points. We call x ∈ X a closure
point of A if every neighbourhood of x intersects A, which is dA(x) = 0 in our notation. This is
because it suffices to consider open balls, so x is a closure point iff ∀r > 0. ∃a ∈ A. d(x, a) < r.

Corollary 3.6 We may express the Tangency Theorem above as

d(x) < r ⇐⇒ ∃a ∈ A. d(x, a) < r ⇐⇒ d(x,A) ≡ inf {d(x, a) | a ∈ A} < r. �

This explains why we have re-used the letter d: it says how far away the nearest member of A
is from x.

Corollary 3.7 In terms of ♦, the Tangency Theorem is

♦U ⇐⇒ ∃a ∈ A. a ∈ U,

so ♦ expresses existential quantification over A. �

When we need to give a name to ♦ or d, we sometimes call it after its extent A and write 〈A〉
for ♦ and d(x,A) for d. However, we shall see that ♦ and d are much more important than the
subset A.

Definition 3.8 An overt subspace ♦ for which ♦X is true is called inhabited . Then by the basis
expansion, ∃xr. d(x) < r. However, by the rules for d,

d(x) < r′ < r =⇒ d(x) < r =⇒ ∃x′. d(x, x′) < r ∧ d(x′) < r′,

whence ∃x. d(x) < r ⇐⇒ ∃x′. d(x′) < r′ for any r and r′. That is, this statement is independent
of r, so we just write ∃x. d(x) < ∞ in this case. Then, by the Tangency Theorem, ♦ has an
accumulation point.

On the other hand, the empty subspace is also overt. Both 〈∅〉U and d(x, ∅) < r are every-
where false, so we write d(x, ∅) ≡ ∞.

Hence any overt subspace is inhabited iff it has an accumulation point. This is not a tautology
but a consequence of the Tangency Theorem.

Remark 3.9 The union of two (or more generally an overt family of) overt subspaces is overt,
with

♦U ≡ ∃i. 〈i〉U, d(x) ≡ inf di(x).

However, the intersection of two overt subspaces need not be overt; see Section J 16 for coun-
terexamples for this and other situations.

The whole of any metric space X is overt, with

〈X〉U ≡ ∃x. x ∈ U and d(x,X) ≡ 0,

but since X may have non-overt subspaces, not every space is overt.

In the previous section we showed how d is defined from ♦ and that ♦ is recovered from this.
We will now use the Tangency Theorem as a short cut to prove the bijection between d and ♦,
although ideally this should be done without invoking the extent. (Actually it’s valid in a locally
compact metric space.)

Lemma 3.10 Let d : X → R be an upper semicontinuous function that satifies the properties in
Lemma 2.3 and define

♦U ≡ ∃xr. d(x) < r ∧ Br(x) ⊂ U.

Then the operator ♦ preserves unions.
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Proof We use the Tangency Theorem for d to find a in the second line:

♦
⋃
Ui ≡ ∃xr. d(x) < r ∧ Br(x) ⊂

⋃
Ui

⇒ ∃xra. d(a) = 0 ∧ d(x, a) < r ∧ Br(x) ⊂
⋃
Ui

⇒ ∃a. d(a) = 0 ∧ a ∈
⋃
Ui

⇒ ∃aiε. d(a) < ε ∧ Bε(a) ⊂ Ui
≡ ∃i. ♦Ui.

The reverse implication follows from the fact that if U ⊂ V then ♦U =⇒ ♦V . �

Lemma 3.11 The function d is recovered from from ♦.

Proof We easily have

d(x) < r =⇒ ∃ys. d(y) < s ∧ Bs(y) ⊂ Br(x) ≡ ♦Br(x) ≡ d′(x) < r.

Conversely, since the ♦ derived from d preserves unions by the previous result, the d′ derived from
it satisfies Lemma 2.3. Hence

d′(x) < r ⇒ ∃r′. d′(x) < r′ < r ≡ ∃r′ys. d(y) < s ∧ Bs(y) ⊂ Br′(x) ∧ r′ < r

⇒ ∃r′ys. ∃z. d(y, z) < s ∧ d(z) < r − r′ ∧ d(x, z) < r′ < r

⇒ d(x) < r. �

Proposition 3.12 In a complete metric space X, the formulae

d(x) < r ≡ ♦Br(x) and ♦U ≡ ∃xr. d(x) < r ∧ Br(x) ⊂ U

define a bijective correspondence between
(a) an operator ♦ on open subspaces that satisfies ♦

⋃
Ui ⇐⇒ ∃i. ♦Ui and

(b) an upper semicontinuous function d : X → R satisfying the conditions in Lemma 2.3.
Moreover, either of these defines a subspace A. However, there may be many such subspaces that
correspond to a given d or ♦. �

Proposition 3.13 Any singleton {x0} ⊂ X is overt, by which we mean that it is the extent of

♦U ≡ 〈x0〉U ≡ (x0 ∈ U) or of d(x) ≡ d(x, {x0}) ≡ d(x, x0).

In this case, ♦ preserves finite meets as well as joins,

♦X ⇔ > and ♦U ∧ ♦V =⇒ ♦(U ∩ V ),

whilst the distance function has the property that

d(y, z) ≤ d(y) + d(z) < ∞,

in which ≤ means d(y, z) < r + s ⇐= d(y) < r ∧ d(z) < s.

Conversely, if ♦ or d satisfies these properties in a complete metric space then its extent is a
singleton.

Proof The statements about a given singleton are easy properties of topological and metric
spaces and we derive

d(x) < r ≡ ♦Br(x) ≡
(
x0 ∈ Br(x)

)
≡ d(x, x0) < r.
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Conversely, if ♦ has these properties then it is inhabited. So, by Tangency, there is some point in
its extent A. By the triangle law, tangency and symmetry,

d(x) < r ∧ d(y) < s ≡ ♦Br(x) ∧ ♦Bs(y) =⇒ ♦
(
Br(x) ∩Bs(y)

)
⇒ ∃a ∈ A. d(x, a) < r ∧ d(x, a) < s =⇒ d(x, y) < r + s.

The point is unique because if x, y ∈ A, so d(x) = d(y) = 0, then d(x, y) = 0 and x = y. �

Any operator ♦ that perserves finite meets as well as arbitrary joins defines a completely
prime filter F ≡ {U | ♦U} and the space is called sober if every such F corresponds to a
unique point [Joh82].

Starting with the singleton makes this look rather trivial, but that is an example of our more
general message that an overt subspace is defined by ♦ or d, from which the subspace A is derived.

The standard way of specifying a point in a metric space is as a limit of a Cauchy sequence:

Lemma 3.14 Any Cauchy sequence (xn) with d(xn, xn+k) < 2−n defines

d(x) < r ≡ ∃n. d(xn, x) + 2−n+1 < r

and hence a singleton, which is the limit.

Proof It is easy to show that the relation d(x) < r is rounded upper and satisfies the triangle
law. For convergence, first observe that the n in the definition of d may be increased arbitrarily,
because

d(xn+k, x) + 2−n−k+1 ≤ d(xn, xn+k) + d(xn, x) + 2−n−k+1

< 2−n + d(xn, x) + 2−n−k+1 < d(xn, x) + 2−n+1.

Then given d(x) < r and 0 < ε, if 2−n+1 < ε then y ≡ xn satisfies

d(xn, y) + 2−n+1 < ε and d(x, y) < d(x, xn) + 2−n+1 < r.

The overt subspace defined by d is inhabited because ∃xr. d(x) < r. To show that it is a singleton,
suppose that

d(x) < r ≡ ∃n. d(xn, x) + 2−n+1 < r and d(y) < s ≡ ∃m. d(xm, y) + 2−m+1 < s

with n ≤ m, so d(xn, xm) < rn. Then by symmetry and the transitive law,

d(x, y) ≤ d(xn, xm) + s(xn, x) + d(xm, y)

< rn + s(xn, x) + d(xm, y) < r + s− rm < r + s.

Finally, the unique accumulation point is the limit because

d(x) = 0 ⇐⇒ ∀ε. ∃n. d(xn, y) + rn < ε

⇐⇒ ∀ε. ∃n. d(xn, y), rn <
1
2ε,

where we have ∀ε. ∃n. rn < 1
2ε because we were given a Cauchy sequence, so this says that x is its

limit. �

Lemma 3.15 Let (yn) and (zn) be Cauchy sequences with yn → y and zn → z. If p(x) and q(x)
are the corresponding (upper semicontinuous) distance functions then

d(y, z) < t ⇐⇒ ∃x. p(x) < r ∧ q(x) < s ∧ r + s < t. �

Remark 3.16 In assuming Cauchy completeness in this section we have rather begged some
important questions. The alternative is to postulate formal balls (as in Formal Topology) with
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rational centres and radii, and construct the completion. Writing a(x) and b(x) instead of d(x)
for distance-like functions obtained as above from Cauchy sequences, one may show that

d(a, b) ≡ inf {r + s | ∃x. a(x) < r ∧ b(x) < s}

defines a metric. This has been studied for locale theory by Steven Vickers [Vic98, Vic05] and for
constructive analysis by Fred Richman [Ric00, Section 5].

Now, instead of assuming completion, we may incorporate the Vickers–Richman technique into
ours by defining or encoding an accumulation point a ∈ A in our sense as the distance-like function
a(x) of a Cauchy sequence that “leads into” the overt subspace in the manner of Lemma 3.1. Then,
with a more conventional use of ∃, we have

♦U ⇐⇒ ∃a ∈ A. 〈a〉U and d(x) < r ⇐⇒ ∃a ∈ A. a(x) < r,

where A is now a set of distance-like functions a(x) instead of points, and 〈a〉 is obtained as above.

This section is by no means verbatim the Bolzano–Weierstrass theorem that every bounded
sequence has a convergent subsequence, but it should be understood in the same spirit. Our theme
is that ♦ or d encapsulates a soluble problem and the Tangency Theorem is the fundamental one
that provides its solution.

4 Closed and compact overt subspaces

In our treatment so far, we have taken some trouble not to assume that d takes Euclidean real
values (Definition 2.8) or that the extent A is closed. We shall now see that these two natural
additional conditions are equivalent, and survey their consequences.

Although we have said that one should think of an overt subspace as defined by ♦ or d and
not A, let’s see what happens when we do that:

Definition 4.1 A subspace A ⊂ X of a metric space is called located if

d(x) ≡ inf {d(x, a) | a ∈ A}

is well defined as a (Euclidean) real number or Dedekind cut.
Locatedness is one of the notions that the Bishop school uses extensively but which we regard

as a composite. For them, it means that the infimum takes Euclidean values, but Bas Spitters
observed [Spi10] that it is just the upper cut that carries the constructive force. This is what we
too found in Section 2, but we shall now study both cuts and show that d is a continuous function.

Lemma 4.2 The locatedness function d obeys the same properties as in Lemma 2.3:

d(x) < r′ < r =⇒ d(x) < r monotonicity

d(x) < r =⇒ ∃r′. d(x) < r′ < r roundedness

d(x) < ε ∧ d(x, y) < r =⇒ d(y) < r + ε triangle law

d(x) < r =⇒ ∀ε. ∃y. d(x, y) < r ∧ d(y) < ε. convergence

In particular, {x | d(x) < r} ⊂ X is open for each r and d is upper semicontinuous. Finally, if
a ∈ A then d(a) = 0.

Proof
d(x) < r =⇒ ∃a ∈ A. d(x, a) < r

=⇒ ∃ar′. d(x, a) < r′ < r =⇒ ∃r′. d(x) < r′ < r

d(x) < r ∧ d(y, x) < s =⇒ ∃a ∈ A. d(x, a) < r ∧ d(y, x) < s

⇒ ∃a ∈ A. d(y, a) < r + s =⇒ d(y) < r + s,

d(x) < r ≡ ∃a. d(a) = 0 < ε ∧ d(x, a) < r.
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If a ∈ A then d(a) = 0 directly from the formula. �

By Proposition 3.12, any located subspace is therefore overt — by which we mean simply that
the function d defined by locatedness is of the kind that we discussed in the previous two sections.
The given subspace A is contained in the extent of d or ♦ as we defined it before, but it could be
a proper subspace. The obvious way to make them agree would be to require A to be closed.

Corollary 4.3 Any closed located subspace is overt, where these properties come from the same
distance function d, and this is upper semicontinuous. [Spi10]. �

For the converse we still need to show that if the extent of an overt subspace is closed then
the distance function has a lower cut and is lower semicontinuous. First we look at the situation
using topology instead of the metric.

Definition 4.4 A closed overt subspace is defined by a join-preserving operator ♦ together with
an open subspace W that satisfy

¬♦W and x ∈ U =⇒ ♦U ∨ x ∈W.

The second property is called the relative instantiation rule in Section J 11. In this case the extent
of ♦ is the complementary closed subspace to W , the idea being that, using Corollary 3.7,

♦U ⇐⇒ ∃a ∈ A. a ∈ U ⇐⇒ U 6⊂W.

Returning to the setting of a metric space, we have seen that the upper cut for the distance
function d is derived from the operator ♦ for overtness. What is the relationship between the
lower cut and the open complement W of the subspace? By the Tangency Theorem,

d(x) < r ⇐⇒ ∃a. a ∈ Br(x) ∧ a ∈ A,

so classically we would expect something like

r ≤ d(x) ⇐⇒ Br(x) ⊂ W.

However, this doesn’t yield a rounded lower cut, so we force the result to be rounded:

Notation 4.5 We may say that a point x lies in an arbitrary open subspace W (not necessarily
the complement of an overt one) to depth (more than) q if it satisfies

q < d(x), defined as ∃r. q < r ∧ Br(x) ⊂W.

Alternatively, x is bounded away from the complementary closed subspace by this amount.

Lemma 4.6 For any open subspace W ⊂ X of a metric space, the depth defines a lower semicon-
tinuous function d : X → R by

d(x) ≡ sup {q | q < d(x)}

that satisfies x ∈W ⇐⇒ 0 < d(x).
We need to put another condition on d in order to recover it from W , but there seems to be

no better way of stating this than that d arises as the depth function for some W .

Proof The notation with an inequality is justified because

q < d(x) ≡ ∃r. q < r ∧ Br(x) ⊂W
⇔ ∃q′r. q < q′ < r ∧ Br(x) ⊂W ≡ ∃q′. q < q′ < d(x).
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The subspace {x | q < d(x)} is open because

q < d(x) ≡ ∃ε. Bq+2ε(x) ⊂W
⇒ ∃ε. ∀yz. d(x, y) < ε ∧ d(y, z) < q + ε⇒ z ∈W
≡ ∃ε. ∀y ∈ Bε(x). Bq+ε(y) ⊂W
≡ ∃ε. Bε(x) ⊂ {y | q < d(y)},

using the triangle law, so the function d : X → R is lower semicontinuous. Since W was open, we
recover it from d because

x ∈W ⇐⇒ ∃ε. 0 < ε ∧ Bε(x) ⊂W ≡ 0 < d(x). �

Example 4.7 In order to find an example of a single open subspace W for which the depth d is
only lower semicontinuous and not continuous, we have to think in an explicitly constructive way.

However, we can find counterexamples in classical topology if we look for them parametrically.
For any continuous function f : X → Y between metric spaces, each Wy ≡ {x ∈ X | fx 6= y}
is open and we may define dy(x) as above. This is lower semicontinuous in x and y (jointly),
but only (upper semi)continuous when f is an open map, as we shall see in the next section. If
f : R→ R is instead the squaring function that we used in paragraph 1.2 then Wy = {x | x2 6= y}
and dy(x) is lower but not upper semicontinuous.

Whilst the fibre f−1(y) in this example is overt for each real number y, it is not overt when y
is a lower real for which it is not decidable whether y = 0 or y < 0. For some counterexamples,
see Section J 16.

Finally, we put the upper and lower cuts for d together.

Lemma 4.8 Let ♦ and W define an overt closed subspace of a locally compact metric space.
Then

q < d(x) ≡ ∃q′. q < q′ ∧ Bq′(x) ⊂W and d(x) < r ≡ ♦Br(x)

define a continuous function d : X → R.

Proof We know that the two cuts are rounded and respectively lower and upper. For disjoint-
ness,

r < d(x) < r ≡ ∃r′. r < r′ ∧ Br′(x) ⊂W ∧ ♦Br(x) =⇒ ♦W =⇒ ⊥.

For locatedness, if q < r then q < q′ < r for some q′. Then

d(x, y) < q′ =⇒ y ∈ U ≡ Br(x) =⇒ y ∈W ∨ ♦U

by relative instantiation, so
∀y ∈ Bq′(x). y ∈W ∨ ♦U.

The second disjunct is independent of the bound variable y, so classically we may move it outside
the quantifier: (

∀y ∈ Bq′(x). y ∈W
)
∨ ♦U,

whence

q < r =⇒ ∃q′. q < q′ < r ∧ Bq′(x) ⊂W ∨ ♦Br(x) ≡ q < d(x) ∨ d(x) < r.

When the metric space is locally compact, the closed ball Bq′(x) is compact and q′ < r =⇒
Bq′(x) ⊂ Br(x). Moving the constant disjunct outside the universal quantifier is a constructive
property of compact subspaces that is dual to the Frobenius law for open ones mentioned in
paragraph 1.9. Then the above argument becomes constructively valid if we replace the open ball
Bq′(x) by the compact one Bq′(x). Hence

♦Br(x) ∨ q < q′ ∧ Bq′(x) ⊂ Bq′(x) ⊂W, and so d(x) < r ∨ q < d(x).
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Therefore we have a Dedekind cut (Definition 2.8). Moreover, d : X → R is both upper and lower
semicontinuous, so it is continuous. �

Theorem 4.9 In a locally compact complete metric space, there is a bijective correspondence
amongst
(a) a join-preserving operator ♦ together with an open subspace W such that

¬♦W and x ∈ U =⇒ ♦U ∨ x ∈W ;

(b) a closed located subspace A; and

(c) a continuous function d : X → R satisfying the properties in Lemma 2.3,

where
q < d(x) ⇐⇒ ∃q′. q < q′ ∧Bq(x) ⊂W d(x) < r ⇐⇒ ♦Br(x)

d(x) = inf {d(x, a) | a ∈ A} ♦U ⇐⇒ ∃a ∈ A. a ∈ U
W = {w | 0 < d(w)} A = {a | 0 = d(a)}. �

Remark 4.10 There are further interesting results in the case where the extent of an overt
subspace is compact. Just as we may represent an overt subspace A by an operator ♦ so that
♦U ⇐⇒ ∃a ∈ A. a ∈ A or A touches U , it has long been recognised that, for a compact subspace
K, its open neighbourhoods (those open U for which K ⊂ U) are more important than its points,
so we may write

�U ≡ (K ⊂ U) ≡ ∀x ∈ K. x ∈ U.

If a subspace is both overt and compact, these operators are related by laws that are familiar
in modal logic,

♦U ∧ �V =⇒ ♦(U ∧ V ) and ♦U ∨ �V ⇐= �(U ∨ V ).

This situation is studied in the context of an ambient Hausdorff space in Section J 12.
The definition that Errett Bishop gives for a compact subspace in constructive analysis actually

requires it to be overt too. However, it is stated using a notion called totally bounded that we will
consider in Definition 7.9.

5 Open maps

Now we can prove the characterisation of open maps between locally compact metric spaces that
we stated in the Introduction.

Recall that an open map f : X → Y is one for which the direct image f!U ⊂ Y of any open
subspace U ⊂ X is again open. The operator f! then preserves unions. Hence, if � is a join-
preserving operator on the open subspaces of Y then ♦U ≡ � f!U defines one on those of X. In
particular, since any singleton {y} ⊂ Y is overt by Proposition 3.13, with 〈y〉V ≡ (y ∈ V ), we
expect its fibre or inverse image f−1(y) ⊂ X under an open map f : X → Y to be overt too.

Proposition 5.1 For any open map f : X → Y between metric spaces,〈
f−1(y)

〉
U ≡ (y ∈ f!U) and d

(
x, f−1(y)

)
< r ≡

(
y ∈ f!Br(x)

)
satisfy the properties in Lemma 2.3 for each y ∈ Y , whilst {y | d

(
x, f−1(y)

)
< r} ⊂ Y is open for

each x ∈ X, and d
(
x, f−1(y)

)
= 0 ⇐⇒ y = fx.

Proof We have just proved the first part. The subspace is open because it is f!Br(x):

d
(
x, f−1(y)

)
< r ≡

(
y ∈ f!Br(x)

)
⇐⇒ ∃ε. Bε(y) ⊂ f!Br(x)

≡ ∃ε. ∀y′.
(
e(y, y′) < ε ⇒ d

(
x, f−1(y′)

)
< r
)
.
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This statement is ∀δ∃ε since it is stating continuity of f−1 rather than of f . For the last part,

d
(
x, f−1(y)

)
= 0 ≡ ∀δ. d

(
x, f−1(y)

)
< δ

≡ ∀δ. y ∈ f!Bδ(x)

≡ ∀δ. ∃x′. fx′ = y ∧ d(x, x′) < δ,

so fx = y =⇒ d
(
x, f−1(y)

)
= 0. Conversely, we combine the last form with ε–δ-continuity for f

to get
∀ε. ∃δx′. fx′ = y ∧ e(fx, fx′) < ε,

which is fx = y. �

Definition 5.2 A parametric overt subspace of X dependent on y ∈ Y is given by a ternary
relation d

(
x,A(y)

)
< r that satisfies the properties in Lemma 2.3 for each y ∈ Y and has

{y | d
(
x,A(y)

)
< r} ⊂ Y open for each x ∈ X.

In this, the letter A is just a cipher, but we shall construct an open map g for which A(y) =
g−1(y). Indeed, from the first condition alone, we may write

A(y) ≡ {x ∈ X | d
(
x,A(y)

)
= 0}

for each y on its own, as in Definition 3.4 for the subspace of accumulation points.
We only put a very weak requirement for continuity on the expression because we can derive

everything else that we need:

Lemma 5.3 For any parametric overt subspace of a locally compact metric space, the expression
d(x,A(y)) is a function X × Y → R that is upper semicontinuous in x and y jointly.

Proof Proposition 2.4 gives semicontinuity in x for each y and we can derive the joint property,

d
(
x,A(y)

)
< r

⇒ ∃δ. ∀x′. d(x, x′) ≤ δ ⇒ d
(
x′, A(y)

)
< r upper semicontinuous in x

⇒ ∃δ. ∀x′. d(x, x′) ≤ δ ⇒ ∃ε. ∀y′.
(
e(y, y′) ≤ ε ⇒ d

(
x′, A(y′)

)
< r
)

ditto in y

⇒ ∃δε. ∀x′y′. d(x, x′) ≤ δ ∧ e(y, y′) ≤ ε ⇒ d
(
x′, A(y′)

)
< r,

from compactness of Bδ(x). �

Lemma 5.4 The following composite is an open map:

g : A ≡ {(x, y) | d
(
x′, A(y)

)
= 0}- - X × Y π1- Y.

Proof For each r > 0, we also write

Ar ≡ {(x, y) | d
(
x,A(y)

)
< r} ⊂ X × Y, so that A =

⋂
r

Ar.

By the remarks in Definition 3.8, its image

π1Ar ≡ {y ∈ Y | ∃x. d
(
x,A(y)

)
< r} ≡ {y ∈ Y | ∃x. d

(
x,A(y)

)
<∞} ⊂ Y

is independent of r and says which y name inhabited subspaces A(y). Moreover, this is an open
subspace of Y by upper semicontinuity of d

(
x,A(−)

)
in y.

Then, for a typical basic open subspace W ≡ A ∩
(
Bδ(x)×Bε(y)

)
of A,

g!W = {y′ | ∃x′. d
(
x′, A(y′)

)
= 0 ∧ d(x, x′) < δ ∧ e(y, y′) < ε}

= {y′ ∈ Bε(y) | d
(
x,A(y′)

)
< δ}
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by Corollary 3.6. This is an open subspace of Y , so g is an open map. �

Proposition 5.5 A continuous function f : X → Y between metric spaces is open iff there is a
parametric overt subspace such that d

(
x,A(y)

)
= 0 ⇐⇒ fx = y.

Proof In this case, π0 : X × Y → X and (id, f) : X → X × Y restrict to a homeomorphism
X ∼= A ⊂ X × Y with f = (id, f) ; g : X → Y in the previous construction. �

Lemma 5.6 The direct image of an open subspace U ⊂ X is

f!U ≡ {y | ∃xδ. d
(
x, f−1(y)

)
< δ ∧ Bδ(x) ⊂ U}.

Proof By similar arguments to those in Lemmas 3.10 and 3.11, f! preserves unions and

f!Bδ(x) = {y | d
(
x, f−1(y)

)
< δ}.

This and f!U ⊂ Y are open by upper semicontinuity of d
(
x, f−1(y)

)
in y.

Since the conditions for an open map respect unions, it suffices to consider U ≡ Bδ(x) and
V ≡ Bε(y) in them. Then, by the triangle law,

f−1f!Bδ(x) = {x′ | d
(
x′, f−1(fx)

)
< δ} ⊃ Bδ(x).

Since d
(
x,A(y)

)
< δ =⇒ e(fx, y) < ε when ε and δ are related by the continuity axiom,

f!f
−1Bε(y) = {y′ | ∃xδ. d

(
x′, f−1(y′)

)
< δ ∧ Bδ(x) ⊂ f−1Bε(y)} ⊂ Bε(y).

We only need to prove one direction of the Frobenius law, so let

y′ ∈ f!Bδ(x) ∩Bε(y) i.e. d
(
x, f−1(y′)

)
< δ ∧ e(y, y′) < ε.

By the Tangency Theorem there is some x′ ∈ X with

fx′ = y′ and d(x, x′) < δ

and by continuity of f there is some δ′ with

0 < δ′ < δ − d(x, x′) and ∀x′′. d(x′, x′′) ≤ δ′ =⇒ e(fx′, fx′′) < ε.

Then d
(
x′, f−1(y′)

)
= 0 < δ′ and Bδ′(x

′) ⊂ Bδ(x) ∩ f−1Bε(y).

Hence
y′ ∈ {y′ | ∃x′δ′. d

(
x′, f−1(y′)

)
< δ′ ∧ Bδ′(x

′) ⊂ Bδ(x) ∩ f−1Bε(y)}
≡ f!

(
Bδ(x) ∩ f−1Bε(y)

)
,

so f : X → Y is an open map with direct and inverse images f−1 and f! as claimed. �

Corollary 5.7 In terms of the distance functions, the inverse image of an overt subspace of Y
defined by e is

d(x) < δ ≡ ∃yε. e(y) < ε ∧
(
∀y′. e(y, y′) < ε⇒ d

(
x, f−1(y)

)
< δ
)
. �

We have only used upper semicontinuity, but when the target of an open map is a metric or
Hausdorff space, the subspaces {y} ⊂ Y and f−1(y) ⊂ X are closed.

Lemma 5.8 Let f : X → Y be an open map between locally compact metric spaces. Then the
distance d

(
−, f−1(−)

)
takes Euclidean real values.

Proof Consider the depth function for W ≡ f−1(Y \ {y}) from Notation 4.5,

q < d
(
x, f−1(y)

)
≡ ∃q′. q < q′ ∧ ∀x′.

(
d(x, x′) < q′ ⇒ f(x′) 6= y

)
.
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In Lemma 4.6, we showed that this is rounded in q, defines an open subspace of X (so it is lower
semicontinuous in x). Lemma 4.8 showed that its upper partner d

(
x, f−1(y)

)
< r is the function

that we have just been studying. �

Lemma 5.9 This distance function d
(
−, f−1(−)

)
: X × Y → R is jointly lower semicontinuous.

Proof Using compactness of Bq+δ(x):

q < d
(
x, f−1(y)

)
⇒ ∃δ. q + δ < d

(
x, f−1(y)

)
roundedness

≡ ∃δ. ∀x′′. d(x, x′′) ≤ q + δ ⇒ (fx′′ 6= y) definition

⇔ ∃δ. ∀x′′. d(x, x′′) ≤ q + δ ⇒ ∃ε. ε < e(fx′′, y) metric

⇒ ∃δε. ∀x′′. d(x, x′′) ≤ q + δ ⇒ ε < e(fx′′, y) compactness

⇒ ∃δε. ∀x′y′. d(x, x′) ≤ δ ∧ e(y, y′) ≤ ε ⇒ triangle laws(
∀x′′. d(x′, x′′) ≤ q ⇒ fx′′ 6= y′

)
for metrics

≡ ∃δε. ∀x′y′. d(x, x′) ≤ δ ∧ e(y, y′) ≤ ε ⇒ q < d
(
x′, f−1(y′)

)
. �

This lower function identifies solutions of the equation by the same condition as for the upper
one in Proposition 5.1. This is that d

(
x, f−1(y)

)
= 0, which happens iff q < d

(
x, f−1(y)

)
fails for

all q, which is equivalent to f(x) = y.

Theorem 5.10 The following are equivalent for any continuous function f : X → Y between
complete locally compact metric spaces:
(a) the map f is open, i.e. the direct image f!U is open in Y for any open subspace U ⊂ X;

(b) the expression

q < d
(
x, f−1(y)

)
≡ ∃q′. q < q′ ∧ ∀x′.

(
d(x, x′) < q ⇒ f(x′) 6= y

)
,

which always defines a lower semicontinuous function, actually gives a continuous one X×Y →
R; and

(c) there is a continuous function d
(
−, f−1(−))

)
: X × Y → R such that

d
(
x, f−1(y)

)
< r =⇒ ∃x′. d

(
x′, f−1(y)

)
< δ ∧ d(x, x′) < r =⇒ d

(
x, f−1(y)

)
< r + δ,

and d
(
x, f−1(y)

)
= 0 ⇐⇒ fx = y.

In fact, upper semicontinuity in each variable is enough. �

6 Algorithms

We claimed in the Introduction that algorithms for solving equations yield distance functions like
those that we have now defined. However, this is an idealisation.

Remark 6.1 In Corollary 3.6, we showed that our d(x) gives the actual distance to the nearest
solution (accumulation point). It was defined in that way so that it would satisfy the triangle law
d(x′) ≤ d(x) + d(x, x′) and correspond uniquely to the operator ♦.

The estimate ∆(x) of the proximity of a solution that underlies an algorithm such as Newton–
Raphson does not satisfy all of these properties. The local information that it provides at a
particular test point xn tells us roughly how far away some solution is, but the actual distance
may be different, because of changes (higher derivatives) along the way. Also, there may be some
other solution lurking nearby.

Therefore, we expect ∆ to satisfy convergence and roundedness but not necessarily the triangle
law.
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On the other hand, an algorithm gives a particular next approximant, xn+1, not just an
existential formula ∃x′. So the algorithm has a more definite convergence property like

∆(xn) < r =⇒ d(xn+1, xn) < 1
2r ∧ ∆(xn+1) < 1

2r.

In fact, the Newton–Raphson algorithm is known to converge much faster than this (after a certain
stage, it doubles the number of valid bits at each iteration), but it is the fact of convergence that
interests us here, not its rate.

Unfortunately, such an algorithm by no means does always converge. Sometimes it may behave
chaotically, wildly diverging from the test point, maybe even when there happens to be a solution
nearby. In this case, we let ∆(x) = ∞ instead. That is, we define ∆(x) to have a finite value,
not by blind application of a formula, but just in those cases were we can prove that it has the
required property. Hence ∆ must combine this logical property with the arithmetical information
that is provided by the derivative.

Remark 6.2 Recall that the derivative of a function f : Rn → Rn has matrices as values,

ḟ : Rn → Rn ⊗ Rn,

which we want to have inverse matrices
(
f(x)

)−1
at each point and be continuous. Then the

Newton–Raphson algorithm defines a sequence (xn) by

xn+1 ≡ xn + g(xn) where g(x) ≡
(
ḟ(x)

)−1 · (y − f(x)
)

and we are looking for conditions to ensure that xn → a with f(a) = y.

Notation 6.3 Let ∆(x) < r be the conjunction of the three conditions

ḟ(x) invertible, | g(x) | < 1
2r,

and ∀x′x′′ ∈ Br(x).
∣∣∣ ḟ(x)−1 ·

(
ḟ(x′)− ḟ(x′′)

) ∣∣∣ ≤ |x′ − x′′ |/r.
Comparing this predicate with Lemma 2.3, it is rounded (r may be reduced slightly), because of
the < 1

2r and /r in the second and third conditions, whilst it is semicontinous in y because g(x)
is continuous in it.

Lemma 6.4 ∆ satisfies the convergence property,

∆(x0) < r =⇒ |x1 − x0 | < 1
2r ∧ ∆(x1) < 1

2r.

Proof We adapt Theorem 5 of [CM12]. The second part of ∆(x0) is

|x1 − x0 | ≡
∣∣∣ ḟ(x0)−1 · (y − f(x0))

∣∣∣ < 1
2r,

so we may put x ≡ x′′ ≡ x0 and x′ ≡ x1 in the third part to give∣∣∣ ḟ(x0)−1 · ḟ(x1)− id
∣∣∣ =

∣∣∣ ḟ(x0)−1 ·
(
ḟ(x1)− ḟ(x0)

) ∣∣∣ ≤ |x1 − x0 |
r

< 1
2 .

This justifies finding the inverse of ḟ(x) as the power series (id−M)−1 = id+M +M2 +M3 + · · ·
(op. cit., §2.1) and then ∣∣∣ ḟ(x1)−1 · ḟ(x0)

∣∣∣ ≤ 1

1− |x1 − x0 |/r
< 2.

We use this to change the denominator from ḟ(x0) to ḟ(x1) in the third part of ∆,∣∣∣ ḟ(x1)−1 · (ḟ(x′)− ḟ(x′′))
∣∣∣ ≤ ∣∣∣ ḟ(x1)−1 · ḟ(x0)

∣∣∣ · ∣∣∣ ḟ(x0)−1 · (ḟ(x′)− ḟ(x′′))
∣∣∣ < 2|x′ − x′′ |

r
.
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Next, by the mean value theorem (op. cit., §2.4),∣∣∣ ḟ(x0)−1 ·
(
f(x′)− f(x′′)− ḟ(x′) · (x′ − x′′)

) ∣∣∣ ≤ |x′ − x′′ |2
2r

.

Using the definition of x1 and since |x1 − x0 | < 1
2r,∣∣∣ ḟ(x0)−1 ·

(
y − f(x1)

) ∣∣∣ =
∣∣∣ ḟ(x0)−1 ·

(
f(x1)− f(x0)− ḟ(x0) · (x1 − x0)

) ∣∣∣
≤ |x1 − x0 |2/2r < r/8.

Changing the denominator of this from ḟ(x0) to ḟ(x1) as before,∣∣∣ ḟ(x1)−1 ·
(
y − f(x1)

) ∣∣∣ < 1
4r

which is the second part of ∆(x1). �

Lemma 6.5 If ∆(x0) < r then the Newton–Raphson sequence converges to some a ∈ Br(x) with
f(a) = y. Moreover this is unique.

Proof We may find the limit either directly or using Lemma 3.1. For uniqueness, suppose that
b ∈ Br(x) also satisfies f(b) = y. Then

x1 − b = x0 − b+ ḟ(x0)−1 ·
(
y − f(x0)

)
= ḟ(x0)−1 ·

(
f(b)− f(x0)− ḟ(x0) · (b− x0)

)
so, by the mean value theorem again,

|x1 − b | ≤ |x0 − b |2/2r ≤ 1
2r.

Hence xn → b, so a = b since limits of Cauchy sequences are unique. �

Remark 6.6 The function ∆(x) has similar properties to the d(x) that is related to an overt
subspace, except that ∆(x) fails the triangle law. However, from an estimate ∆(x) with the “raw”
properties in Remark 6.1 we can define

d(x) < r ≡ ∃x′δ.∆(x′) < δ ∧ d(x, x′) < r − δ,

and this does obey the missing triangle law. We deduce the convergence property of d(x) by
iterating the analogous one for ∆ enough (m) times to make ε < 2−mr.

In general, d(x) ≤ ∆(x), that is, ∆(x) < r =⇒ d(x) < r. However, ∆(x) may over-estimate
the distance of x from the nearest zero, as we have explained, whilst d(x) says exactly how far
away it is (Corollary 3.6). The latter is the ideal, appropriate in a pure mathematical context,
but the former is what we expect in practical computation. In the Newton–Raphson case, ∆(x)
is given by local properties of the function near x, so it cannot know what will happen between
the current point x and a zero elsewhere.

Remark 6.7 In fact, we may use ∆(x) directly for many of the purposes of d(x). In particular,
they have the same zeroes (accumulation points).

Since d(x) ≤ ∆(x), if ∆(x) = 0 then x is a solution. More generally ∆(x) < r ensures that
there is one within r,

∆(x) < r =⇒ d(x) < r ⇐⇒ ∃x′. d(x, x′) < r ∧ d(x′) = 0.

Conversely, suppose that ∆(x) is uniformly semicontinuous in a suitable (compact) domain,

∆(x) < 2−k ⇐⇒ ∃εk. ∀x′′. d(x, x′) ≤ εk =⇒ ∆(x′′) < 2−k,
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whilst d(x) = 0, so
∀r > 0. ∃x′δ.∆(x′) < δ ∧ d(x, x′) < r − δ.

Let 0 < rk < min(2−k, εk), so since d(x) < rk, there are x′ and δ with

∆(x′) < δ < 2−k and d(x, x′) < rk − δ < εk,

so ∆(x) < 2−k. �

Remark 6.8 Some of the other properties in Section 3 also transfer from d to ∆.
The statement ∃x.∆(x) <∞ is enough to say that a solution exists somewhere, because

d(x) <∞ ⇐⇒ ∃x′.∆(x′) <∞ ∧ d(x, x′) <∞.

The condition for uniqueness (Proposition 3.13) is also the same, because

∀xy. d(x, y) ≤ d(x) + d(y) iff ∀x′y′. d(x′, y′) ≤ ∆(x′) + ∆(y′),

where⇒ is easy and⇒ follows from the formula in Remark 6.6 and the triangle law for the metric.
We can therefore use ∆ instead of d to characterise local homeomorphisms.

Theorem 6.9 (Open Mapping Theorem for Differentiable Functions) Any function f : Rn → Rn

that has a continuous invertible derivative is an open map and is locally invertible. Moreover this
inverse may be found using the Newton–Raphson algorithm.

Proof Re-introducing the parameter y ∈ Y to the definition of ∆,

d(x, f−1(y)) = 0 ⇐⇒ ∆(x, f−1(y)) = 0 ⇐⇒ fx = y,

so f is an open map by Proposition 5.5. Also, ∆ and d satisfy the condition to make the fibres
discrete, so f is a local homeomorphism. �

Remark 6.10 We have used an algorithm of venerable utility to prove that maps in a certain
class have an important abstract property, openness. This theorem is well known, so where is the
novelty?

Recall that the results of Sections 2 and 3 linked three aspects of overt subspaces (and therefore
also of open maps), namely the distance d(x), the union-preserving operator ♦ and the subspace
A of accumulation points.

In the result that we have just proved, the issues that are peculiar to differentiability are
confined to a short calculation with “old fashioned” analysis (Lemma 6.4) that yields our distance
function more or less directly.

After that, its use does not depend on the differential structure but is meaningful in any metric
space.

Conversely, if we have a function like this for some other problem in analysis, along with a proof
of its convergence property that is explicit enough to yield a value for the existential quantifier,
then that proof already contains an algorithm for finding solutions of the problem.

Remark 6.11 Notice that the set A of all solutions is pretty much irrelevant in this. That we can
even form this set is a conceit of twentieth century mathematics: Earlier mathematicians obtained
efficient numerical solutions for such problems without pretending that they could comprehend
their totality. Even if it is meaningful to form the set, this is of very little use: Neither traditional
methods nor the ones that are described in this paper can be applied to arbitrary subsets or to
all solutions of a problem, in particular to tangential roots of polynomials.

On the other hand, General Topology was a conceptual advance in mathematics that allows
us to discuss the existence and behaviour of solutions without getting lost in a jungle of εs and δs.
Whilst our distance function gets us away from manipulating derivatives, it still relies on having
a metric available, whereas the ♦ operator only depends on open subspaces.
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7 Direct images and nets

We have seen by way of an example that overtness is related to the existence of a practical algorithm
for solving a problem. In this section we start from a fundamentalist view of what a computation of
a solution has to be, and show that this must correspond to a join-preserving operator. Conversely,
any such operator arises in this way. Topologically, this argument is concerned with direct images
of overt subspaces under arbitrary continuous maps.

Definition 7.1 By a net in a space X we mean a function f : M → X from a set M , where we
require M to be “computationally representable” and we give it the discrete topology.

Any computation is a net, for the following seemingly trite reason: Whatever program we have,
if its output is to be understood as a point of the space X then it computes a function f : M → X.
Whatever its inputs M are (parameters to the problem or a seed approximation for the solution),
they have to be encoded in a discrete way. Whether this program correctly solves some problem
is a separate question that amounts to the relationship between nets and subspaces that we are
about to investigate.

Nets are also familiar in analysis. If M ≡ N then we have a sequence, and our notion of
accumulation point could be developed into one of a limit. Countable dense subsets are commonly
used in functional analysis, although unfortunately our setting is not that general.

However, the idea of a net rather loses its value in either computation or analysis if we allow
M to be an arbitrary set such as the “underlying set” of points in a classical topological space.
We shall therefore return later to the question of what we might mean by “computationally
representable”.

Notation 7.2 For any net f : M → X and open subspace U ⊂ X, we write

♦U ≡ ∃m ∈M. fm ∈ U,

which satisfies ♦
⋃
Ui ⇐⇒ ∃mi. fm ∈ Ui ⇐⇒ ∃i. ♦Ui.

Conversely, if the space X and operator ♦ are definable in some formal system then we will show
how to use these definitions to construct a net f : M → X such that ♦U ⇐⇒ ∃m ∈M. fm ∈ U .

Notation 7.3 We need to distinguish between points x ∈ X that have rational coordinates and
those coordinates themselves. We therefore write p : P for the latter and i : P → X for the map
that takes the coordinates to the point. (This is an example of a net that is dense in the whole
space, i.e. of which every point of X is an accumulation point.)

Notation 7.4 Now we define the set

M ≡ {(p, r) | p : P, r : Q, d(ip) < r > 0}

of names m ≡ (p, r) of open balls Br(ip) ⊂ X that ♦ touches.
We will turn M into a net by reformulating the Tangency Theorem.

Lemma 7.5 There is a net g : M → X such that, given the name of some ball (p, r) that the
overt subspace touches, g(p, r) is an accumulation point that lies inside that ball.

Proof In the construction of Lemma 3.1, we have

d(ip) < r =⇒ ∃p′r′. d(ip, ip′) < r − r′ ∧ d(ip′) < r′ < 1
2r,

so that there is a surjective binary relation (p, r) ↽⇀ (p′, r′) on M .
We need a function e : M → M such that each (p, r) ∈ M is linked in this relation to e(p, r).

The existence of such a function is called the Choice Principle . An algorithm like Newton–
Raphson provides it.
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More abstractly, if the relation is expressed in a suitable formal language then we obtain a func-
tion by some method such as Gentzen’s Existence Property (paragraph 1.17), Logic Programming
or some new technique that is specifically designed for this purpose.

As before, we may iterate this endofunction from a given starting point (p0, r0) to yield a
sequence (pn, rn) in M .

Then we either invoke Cauchy completeness as we did in Corollary 3.2 to obtain the limit, or
define it using a distance-like function as in the Vickers–Richman approach in Remark 3.16.

Finally, all of this is parametric in the given name m ≡ (p, r) ∈ M , so we have defined a
function f : M → X such that f(p, r) ∈ Br(ip) and d

(
f(p, r)

)
= 0. �

Corollary 7.6 ♦U ⇐⇒ ∃m. f(m) ∈ U .

Proof For basic U ≡ Br(ip),

♦U =⇒ (p, r) ∈M =⇒ f(p, r) ∈ U ∧ d(f(p, r)) = 0 =⇒ ♦U

by the definition of M and the construction of f : M → X. This extends to general open subspaces
because both sides preserve unions. �

This yields the Representation Theorem for overt subspaces as nets:

Theorem 7.7 For any definable locally compact complete metric space X there is a correspon-
dence amongst
(a) a definable operator ♦ such that ♦

⋃
Ui ⇐⇒ ∃i. ♦Ui;

(b) a definable upper semicontinuous function d : X → R with the properties in Lemma 2.3; and

(c) a net f : M → X,

defined by d(x) < r ⇐⇒ ♦Br(x) ⇐⇒ ∃m. d(x, fm) < r

and ♦U ⇐⇒ ∃xr. d(x) < r ∧ Br(x) ⊂ U ⇐⇒ ∃m. fm ∈ U.
The net M is not uniquely determined by ♦ or d, but may be obtained from their syntactic
definition in whatever axiomatisation of topology is being used. �

Remark 7.8 When the subspace A of accumulation points is compact, we can say more about
the net f : M → X. Since it is dense, its ε-balls cover A:

for any ε > 0, A ⊂
⋃
m∈M

Bε(fm),

but finitely many of these will do, by compactness.
Conversely, if f : M → X with M finite and ε > 0 such that

A ⊂
⋃
m∈M

Bε(fm) ⊂
⋃
m∈M

Bε(fm)

then A is compact so long as it is closed, by local compactness.

Definition 7.9 If there is a finite ε-net for every ε > 0 then the subspace is called totally
bounded .

This stronger version of the property is needed for metric spaces (such as Banach spaces) that
need not be locally compact. Bishop defines a subspace to be compact if it is closed and totally
bounded. So this is equivalent to being compact and overt in our usage.

For us, the interval [d, u] ⊂ R is compact for any bounded d and u, even when d is just an
upper and u a lower real. This interval is compact overt just when d and u are Euclidean real
numbers [J].

Remark 7.10 Behind the coding of spaces using nets in this section lies the topological notion
of the direct image . Recall that the direct image fK of a compact subspace K ⊂ Y along any
continuous map f : Y → X is again compact. We have the same result for overt subspaces.
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Let � be a join-preserving operator on Y and f : Y → X a continuous function. Then

♦U ≡ �(f−1U),

also preserves unions, since both f−1 and � do.
If y ∈ Y is an accumulation point of � then

fy ∈ U =⇒ y ∈ f−1U =⇒ �(f−1U) =⇒ ♦U

so fy ∈ X is an accumulation point of ♦.
For example, when we have a net f : M → X, the operator � is given by �V ≡ ∃m. m ∈ V

and then
♦U = ∃m ∈M.m ∈ f−1U = ∃m ∈M. fm ∈ U

as before. Also, any m ∈M satisfies fm ∈ U ⇒ ♦U .

Corollary 7.11 It is enough to define an overt subspace as a join-preserving operator, without
any Frobenius condition.

Proof Certainly we want N to be overt, along with any computationally representable object M .
The direct image of any net f : M → X is therefore overt too, but we have shown that any join-
preserving operator is of this form. �

Remark 7.12 The direct image is more interesting and familiar when expressed in terms of the
distance function, so let Y and X have metrics e and d respectively. Then

d(x) < δ ≡ ♦Bδ(x) ≡ � f−1Bδ(x)

≡ ∃yε. e(y) < ε ∧ Bε(y) ⊂ f−1Bδ(x)

≡ ∃yε. e(y) < ε ∧
(
∀y′. e(y, y′) ≤ ε =⇒ d(x, fy′) < δ

)
⇒ ∀ε′. ∃yy′ε. e(y′) < ε′ ∧ ∃y′. e(y, y′) < ε ∧

∧ ∀y′. e(y, y′) ≤ ε =⇒ d(x, fy′) < δ

⇒ ∀ε′. ∃y′. e(y′) < ε′ ∧ d(x, fy′) < δ

in which we see the metrical ε–δ definitions of continuity and density.
In the case of a net where M has decidable equality, M may be given a metric with e(m,m′) = 0

if m = m′ and 1 otherwise. Then the formula above reduces to

d(x) < δ ≡ ∃m ∈M. d(x, fm) < δ.

8 Conclusion: the meaning of overtness

We have left meaning of the phrase “computationally representable” open because different for-
mulations of topology have different logical strengths, whilst the results that we shall develop are
valid for each of them.

At one extreme, in classical topology M can simply be the underlying set (of points) of the
space X, but in this case everything is vacuous.

The set theory without excluded middle or the axiom of choice (topos logic), in which locale
theory is most naturally formulated, and Martin-Löf Type Theory (the usual setting for formal
topology) impose stricter restictions on M .

At the other extreme, we may insist that the set M actually have some computable encoding.
Abstract Stone Duality [J] is a reformulation of general topology in which any function that can
be defined is automatically both continuous and computable.

This means that we can reason mathematically in an (almost) familiar topological way but
then (in principle) extract a program from the proof.
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The formalisation of the theory allows existential quantification ∃m ∈M over sets of this kind.
So when we have proved that this net gives rise to ♦ we will settle our earlier doubt about whether
∃a ∈ A is meaningful.

In order to formulate this, the existential quantifiers ∃m ∈ M and ∃i must be meaningful
(and commute). Being equipped with such a quantifier is the one of the definitions of an overt
space. Indeed, in the kind of topology that we need to use, only families of open subsets that are
indexed by an overt set have unions, not arbitrary ones.

Such questions do not arise in traditional topology, where “all” unions and quantifiers exist.
However, it is a natural part of computation, where unions of recursively enumerable subsets, say
of N, may be formed only for recursively enumerable families.

What, then, is an overt subspace? From the discussion of accumulation points, we see that ♦
and d remain the same if we add limits of subsequences to a net, so many different subspaces or
nets may give rise to the same ♦ operator.

The message that we want to give in this paper is that ♦ and d capture a problem such as an
equation to be solved. It is they that define the overt “subspace”, rather than any of the many
nets that generate them, or even the (canonical) set of solutions as accumulation points. Overtness
is not about these solutions themselves but the way in which ♦ and d, as measurements of the
environment, give evidence of their existence and therefore a means of finding them.

The simplest example of this is the Intermediate Value Theorem, for which [J] made a detailed
study of the distinction between zeroes, where a function f : R → R happens to have f(x) = 0
(but maybe as a tangent), and stable zeroes, where it crosses the axis.

The phenomenon that larger or smaller sets of points may give rise to the same ♦ operator is the
dual of the situation for a compact subspace of a non-Hausdorff space. There [HM81]demonstrated
a correspondence between compact saturated subspaces and their Scott-open filters of open neigh-
bourhoods.
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