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Mathematical induction over the nat-
ural numbers has been familiar since Eu-

clid, Fermat, Dedekind and Peano. It was uni-
fied with ∈-induction in Set Theory by general-
ing the successor n ≺ n+ 1 to a well founded
relation, i.e. one which satisfies the induction
scheme

∀a.
(
∀x. x ≺ a⇒ φ[x]

)
⇒ φ[a]

∀a. φ[a]

(the definitions using minimal counterexamples
or descending sequences cannot be used intu-
itionistically).

In proof theory, type theory and computer
science, structural induction on lists, trees,
etc. is more important, where ≺ is the immedi-
ate subexpression relation. However in both
theoretical computer science and software engi-
neering it is also necessary to be able to reason
in an inductive idiom for non-terminating pro-
cesses and ill founded recursion. One technique
for doing this, known as Scott induction after
the set theorist turned semanticist Dana Scott,
is formally the same as well founded induction,
except that the predicate φ[x] must be ā pri-
ori closed under joins of ascending chains in a
suitable order structure.

My aim is to unify these methods, apply
them to new circumstances and also to under-
stand the role of the axiom of replacement.
I would like to express this axiom-scheme, or at
least the existence of transfinite iterates of func-
tors, in an elementary way.

Category theory has shown that universal
properties or adjunctions provide an extremely
powerful unifying principle for constructions through-
out mathematics. As a doctoral student in the
early 1960s, Bill Lawvere’s avowed aim (in the
face of severe skepticism even from the foremost
categorists) was to do set theory without el-
ements. Amongst many other major contri-
butions, he identified the quantifiers as ad-
joints to substitution and the universal prop-

erty of the natural numbers:

N <
s

N

1

z >

Θ

p

∨

..............
<
sΘ

z
Θ >

Θ

p

∨

..............

He and Myles Tierney later found the axioms
for an elementary topos, which are essentially
equivalent to an intuitionistic form of Zermelo’s
original set theory. The first order properties of
the category of sets relevant to universal algebra
had also been identified as stable disjoint sums
and stable effective quotients of equivalence re-
lations. These axioms do not however capture
replacement at all.

The very general nature of universal prop-
erties — the fact that this mode of description
applies to so many other mathematical phenom-
ena, including the quantifiers — means that we
no longer have a “hands on” appreciation of the
parsing and induction properties of term alge-
bras. These two (characteristic) features drive
the unification algorithm used in logic program-
ming. Categorists, and also workers in the al-
gebraic methodology of programming, have also
almost invariably presupposed the existence of
initial algebras, and so have been unable to deal
with induction involving functors without rank,
such as the powerset.

Many treatments have been given of type-
theoretic internal languages in toposes, but Ger-
hard Osius came closest to a categorical ac-
count of set theory. He defined a transitive
set object as a carrier (object of the topos) A
together with a monomorphism parse : A ↪→
P(A), which you should think of as a 7→ {x : x ≺ a},
satisfying the
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Definition The recursion scheme.

P(A)
P(p)

> P(Θ)

A

parse

∧

p
> Θ

ev

∨

For any object Θ and morphism ev : P(Θ)→ Θ,
there is a unique function p : A→ Θ such that

p = parse ; P(p) ; ev

or, for each a ∈ A,

p(a) = ev
(
{p(x) : x ≺ a}

)
.

The present work develops Osius’s ideas, but
with any functor T (so long as it preserves monos
and inverse images) instead of the covariant pow-
erset functor P. Any morphism parse : A →
T (A) is called a T -coalgebra, so a P-coalgebra
exactly codes a binary relation on A, which is
extensional iff parse is mono.

Example Let T take any object X to the dis-
joint union 1 +X and the morphism p : X → Y
to id +p : 1 +X → 1 +Y , i.e. the same function
on these objects and the identity on the constant
extra component.

1 + N
id + p

> 1 + Θ

N

[z, s]
∨

parse

∧

p
> Θ

[zΘ, sΘ]
∨

N is a “fixed point” of this functor in the sense
of the isomorphism shown, where the notation
[z, s] says what to do on each component of the
sum, and Osius’s recursion scheme reduces to
Lawvere’s. �

Example Let T (X) = N+X and T (p) = id+p.

N+ (N× N)
id + p

> N+ N

N× N

parse

∧

p
> N

[id, id]
∨

This diagram codes the Euclidean algorithm,
where

parse(n,m) =
{
m ∈ N if n = 0
(mmodn, n) ∈ N× N otherwise

This is typical of tail recursion, but Osius’s
diagram expresses a general paradigm for recur-
sive functions: take the argument apart, call the
function for each sub-argument, and put the re-
sults back together. The functor T marshals
the sub-arguments (plural, using terms Xn) and
makes the recursive calls in parallel.

Using a “polynomial” functor T (X) =
∑
rX

ar(r),
results from set theory can be applied to struc-
tural recursion over (infinitary) term algebras.

Osius’s diagram expresses recursion, but what
about induction? In the diagram

P(U) ⊂
P(i)

> P(A)

H

∧

⊂ > U ⊂
i
> A,

parse

∧

where U = {a ∈ A : φ[a]}, the pullback is

H = {(a, V ) : a ∈ A, parse(a) = V ⊂ U ⊂ A}
∼= {a ∈ A : ∀x ∈ A. x ≺ a⇒ φ[x]} ,

so the inclusion H ⊂ U ⊂ A says that

∀a ∈ A.
(
∀x ∈ A. x ≺ a⇒ φ[x]

)
⇒ φ[a],

which is the premise of the induction scheme.

Definition (mine) For any functor T , we say
that parse : A→ T (A) is a well founded coal-
gebra if, in any such pullback diagram, in fact
i : U ∼= A.

Lemma (Osius) For transitive set objects U and
A, we have U ⊂ A in the set-theoretic sense iff
there is a function i : U → A making the square

P(U) ⊂
P(i)

> P(A)

U

parseU
∪

∧

⊂
i

> A

parseA
∪

∧

commute. Such a map is called a coalgebra ho-
momorphism in category theory and a simu-
lation in process algebra; here it is unique and
injective. �

Instead of “transitive set” I use the term
ensemble for an extensional well founded T -
coalgebra.

Proposition
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• ∅→ T (∅) is an ensemble;

• if parseA : A ↪→ T (A) is an ensemble then
so is T (parseA) : T (A) ↪→ T 2(A);

• if parseA : A ↪→ T (A) is an ensemble and
i : U ↪→ A is a coalgebra monomorphism
then
parseU : U ↪→ T (U) is also an ensemble,
and

• unions (with respect to coalgebra monomor-
phisms) of ensembles are again ensembles.

Moreover any subclass of ensembles with these
closure conditions consists of all of them. �

Theorem General recursion. Well-foundedness
suffices to solve the recursion equation uniquely.
(Conversely, with

⋂
: P2(1)→ P(1) for Θ, well-

foundedness is necessary for uniqueness.)
Proof The purpose of a generalisation such as
this is to allow the objects A and Θ and the asso-
ciated morphisms to belong to some other cate-
gory S besides the category of sets and functions
(or a topos) from which the ideas came. The
proof is the usual one, with attempts (partial
solutions), but we must identify what proper-
ties of S are needed. In particular it must have
a strict initial object (∅), and for any two sub-
objects U, V ⊂ X, the diagram

U ⊂ > U ∪X V

U ∩X V
∪

∧

⊂ > V
∪

∧

must be a pushout. That is, given functions
U → Θ and V → Θ agreeing on U ∩ V , there
must be a unique extension to U ∪ V → Θ. �

The test object ev : T (Θ)→ Θ is called a T -
algebra. If there is a well founded T -coalgebra
parse : I ∼= T (I), then parse−1 : T (I)→ I is the
initial T -algebra. In this case the ensembles are
exactly the sub-coalgebras of I. Classically this
happens if T has rank, but the notion of rank
depends on classical set theory. For the power-
set, the ensembles form the von Neumann hi-
erarchy, a top-less complete class lattice. Set-
theoretic intersection and union can be defined
for T -ensembles, and we recover most of set the-
ory (apart from the ordered pair formula, which
was obfuscation anyway).

Well-foundedness can be considered without
extensionality, which may be recovered by the
Mostowski collapse

p(a) = {p(x) : x ≺ a} .

This is a surjective coalgebra homomorphism,
and is the universal such. It can be constructed
as a quotient by a recursively defined equiva-
lence relation, without using the axiom of re-
placement [12].

The notion of “mono” used both in the in-
duction scheme and in defining extensionality
need not be the absolute one in category the-
ory (the cancellation property). Indeed it is al-
ready customary in proof theory to confine the
predicates φ[x] to which the induction scheme
applies to some specified class. One undesirable
predicate is (x 6≺ x), as induction for this says
that well founded relations are always irreflex-
ive. Fewer “monos” means that there are more
“epis” than surjective functions in the epi-mono
factorisation of morphisms, and then the gen-
eralised Mostowski theorem does need replace-
ment.

Example Let S = Pos, the category of posets
and monotone functions, and let L be the func-
tor which is like the powerset, except that each
U ∈ L(X,≤) is to be a lower set, i.e. ∀u ∈ U. ∀x ∈ X. x ≤
u⇒ x ∈ U . Now the function parse : A→ L(A)
is monotone iff

y ≤ x ≺ a ≤ b⇒ y ≺ b

where≺ is the binary relation associated to parse
as before. Interesting things happen if we mod-
ify the notion of “mono” and hence “extensional”:

• if A carries the restricted order induced
by parse : A ↪→ L(A) then ≺ is transi-
tive (in the order-theoretic sense), but the
converse does not hold;

• if also parse makes A a lower set of L(A)
then

C ⊂ parse(b)∧b ≺ a⇒ ∃!c ∈ A. C = parse(c),

or γ ⊂ β ∈ α ⇒ γ ∈ α in traditional
notation.

In a much more symbolic style, I introduced
structures with the second property as plump
ordinals in my analysis of Intuitionistic sets

3



and ordinals. Whereas the successor α+ = α ∪
{α} for transitive well founded relations satisfies

β+ ≺ α+ =⇒ β+ ⊂ α ⇐⇒ β ≺ α
β+ ⊂ α+ ⇐⇒ β ≺ α+ =⇒ β ⊂ α,

the successor for plump ordinals, given by

α+ = {β ⊂ α : β is a plump ordinal} ,

makes all of the implications reversible. It ap-
pears that we need replacement to construct
plump ω, the Mostowski “collapse” of (N, <).

Considering instead the category of semilat-
tices (in the binary sense only) and homomor-
phisms, the ensembles are directed ordinals (this
is not automatic intuitionistically). Moving on
to predomains (posets with joins of directed sub-
sets) and Scott-continuous functions (those which
preserve these joins), one can define ordinals
which — pace Burali-Forti, whose centenary is
almost upon us — have fixed points of the suc-
cessor function.

There is also a more abstract approach to the
ordinals which arises if the functor T is part of a
monad; this endows the ensembles with partial
successor and “union” operations automatically.
Eugenio Moggi has argued for monads as a no-
tion of computation. Roy Crole and Andrew
Pitts have constructed “fixed point objects” for
them.

Induction proves new theorems about exist-
ing terms, but recursion generates new terms of
existing types. The next stage is to generate
new types by iterating functors. This is to be
done transfinitely by forming unions or colimits
at limit stages. For example the sequences ℵα
and iα are obtained from ℵ0 = i0 = N by iter-
ating the Hartogs and powerset functors. This
needs replacement.

Another use of replacement is to collect in
one place infinitely much data which we already
have in our possession, for example to define
infinitary colimits. In fact Jean Bénabou has
shown how replacement can be avoided for this
purpose. Essentially, he says that the data al-
ready form a single object anyway.

For example, the family {Xβ : β ∈ α} is coded
by the disjoint union

X ≡
∐
β∈α

Xβ x ∈ Xβ

α
∨

β ∈ α
∨

and we are interested in the case Xβ = T β(∅),
where α is an ordinal. In fact X(−) : α → Set
is to be a functor or diagram: for each γ ≤ β in
α we intend there to be a morphism Xγ → Xβ ;
then X → α is in fact a discrete fibration of
posets.

We regard X → α as an object of a cate-
gory Pos→, whose morphisms are commutative
squares

Z > Y

γ
∨ i

> β
∨

in Pos. The above results apply to this cate-
gory.

For any lower set U ⊂ α, we want to define

YU = colim
β∈U

T (Xβ)

where the colimit is with respect to the subdi-
agram restricted to U . In the Bénabou style,
this colimit is simply the set of order-connected
components, without using replacement.

Theorem Let T : Pos→ → Pos→ be the func-
tor which takes the object X → α to the object∐

U∈L(α)

YU y ∈ YU = colim
γ∈U

T (Xγ)

L(α)
∨

U.
∨

Then the square

X > Y

α
∨ parse

> L(α)
∨

is a pullback iff the fibres over each β and parse(β)
are isomorphic:

Xβ
∼= colim

γ≺β
T (Xγ),

i.e. we have the transfinite iteration of T . �
This characterisation is an example of gener-

alised extensionality, since we may call a square
(morphism of Pos→) “mono” if it is a pullback
and “epi” if the bottom map i is an isomor-
phism.
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Example Well-foundedness of α is necessary:

X
∼=
> P(X) V

{?}
∨ parse

> L({?})
∨

{?}
∨

? > {?}

As a test of my theory, as I want to prove
the

Conjecture Let Θ be a domain (predomain
with least element ⊥) and s : Θ → Θ a mono-
tone (not necessarily continuous) function. Then
s has a least fixed point.

This can be proved classically using ordinals
and Hartogs’ Lemma, and Tarski proved it intu-
itionistically for complete lattices. André Joyal
and Ieke Moerdijk have recently derived it from
an axiom of collection expressed in a categorical
way (which is not the same as mine and Osius’s).

Peter Freyd has proposed as an axiom for do-
main theory that the initial algebra I and final
coalgebra F for any functor T exist and I ∼= F .
Any category with this property has a zero ob-
ject, so my technique is not directly applicable,
but I would like to find a way of stating the co-
incidence without presupposing the existence of
I and F , i.e. that T has rank.

Other active research in this area is based on
the effective topos [4], whose roots lie in Kleene
realisability. The wider aim, synthetic do-
main theory, is to unify topological ideas with
recursion theory.
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