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Axioms for the real line
An object R is a Dedekind real line if
I it is overt, with ∃;
I it is Hausdorff, with ,;
I it has a total order, i.e. (x , y)⇔ (x < y) ∨ (y < x);
I it is a field, where x−1 is defined iff x , 0;
I it is Dedekind complete;
I it is Archimedean:

p, q : R ` q > 0 ⇒ ∃n : Z. q(n − 1) < p < q(n + 1);

I and the closed interval is compact, with ∀.



Is any of these axioms optional?
We don’t try to axiomatise arithmetic on a Pentium, Cray or
abacus as different kinds of “fields”.

Compactness of the closed interval shouldn’t depend on
foundations.

But compactness fails in theories in which R is
the set of computable numbers:
I Type-One Effectivity (See Andrej Bauer’s notes.)
I Synthetic Topology with the internal view of data
I (Russian) Recursive Analysis

(See, e.g., Varieties of Constructive Mathematics by Douglas
Bridges and Fred Richman, LMS Lecture Notes 97, 1987.)

Abstract Stone Duality is a recursive theory of topology
in which the closed real interval is compact.



Objectives
This lecture:
I How to fix models of analysis to make the interval

compact.
I The computational interpretation of the axioms for the

Dedekind real line.

Second lecture:
I Learning to use the ASD language for analysis.
I Overt subspaces and the Intermediate Value Theorem.



The traditional picture

computable analysis

traditional topology

>

recursion theory

<

points

>

open sets

<

set theory

><

Turing machines

∧

From amongst general set-theoretic functions,
continuous and/or computable ones are selected
by means of extra conditions.



Direct axiomatisation of computable topology

ASD λ-calculus
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Abstract Stone Duality only introduces computably continuous
functions.

From amongst general spaces,
it selects the overt discrete ones to play the role of sets.



The methodology of ASD
Use the experience of proof theory (Gentzen, 1935)
and categorical logic (Lawvere, 1963, 1970).

I Identify the key properties of topology and analysis as
universal properties,

I translate the universal properties into proof rules
(introduction, elimination, β- and η-rules),

I develop topology and analysis in the new language,
I and use the proof rules for computation.

No pre-conceived ideas from set theory or recursion theory.



Topology as λ-calculus — the classical ideas
I Σ ≡

(
�
•

)
is the Sierpiński space

(S in Martı́n Escardó’s lecture)
I its points are (“geometric”) truth values > and ⊥
I continuous functions X→ Σ correspond to open subspaces

of X (inverse images of >)
I continuous functions X→ Σ correspond to closed

subspaces of X (inverse images of ⊥)
I ΣX is the topology on X
I ΣX itself has the Scott (= compact–open) topology
I this works fine when X is locally compact
I in this case, ΣX is a continuous lattice
I Scott continuous (>,∧)-homomorphisms ΣX

→ Σ
correspond to compact subspaces of X.



Bibliography — topology as λ-calculus
I 1945 Fox On topologies for function spaces
I 1972 Scott Continuous lattices
I 1981 Hofmann & Mislove Local Compactness and Continuous

Lattices
I 2000 Taylor [C] Geometric and higher order logic in terms of

ASD
I 2002 Taylor [A] Sober spaces and continuations
I 2002 Taylor [B] Subspaces in ASD
I 2003 Taylor [G−] Local compactness and the Baire category

theorem in ASD
I 2004 Escardó Synthetic topology of data types and classical

spaces
I 2005 Taylor [G] Computably based locally compact spaces
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An abstract λ-calculus for Synthetic Topology
The axioms consist of
I the simply typed λ-calculus,

but with restricted type-formation for ΣX

I distributive lattice structure >, ⊥, ∧, ∨ on Σ (not⇒, ¬)
I the Phoa principle Fσ⇔ F⊥ ∨ σ ∧ F>

(this captures the extensional correspondence amongst
terms of type ΣX, open subspaces and closed subspaces
of X — see Geometric & Higher Order Logic [C])

I the natural numbersNwith zero, successor, recursion,
description and existential quantification

I Scott continuity.

I Σ-split subspaces.

See The Dedekind Reals in ASD, Section 4 for details.

In models of this system, [0, 1] need not be compact.



The λ-calculus for Abstract Stone Duality
The axioms consist of
I the simply typed λ-calculus,

but with restricted type-formation for ΣX

I distributive lattice structure >, ⊥, ∧, ∨ on Σ (not⇒, ¬)
I the Phoa principle Fσ⇔ F⊥ ∨ σ ∧ F>

(this captures the extensional correspondence amongst
terms of type ΣX, open subspaces and closed subspaces
of X — see Geometric & Higher Order Logic [C])

I the natural numbersNwith zero, successor, recursion,
description and existential quantification

I Scott continuity.
I Σ-split subspaces.

See The Dedekind Reals in ASD, Sections 4–5 for details.

In this system, [0, 1] is provably compact.



Dedekind cuts
A (Dedekind) cut (δ, υ) is a pair of predicates on Q or R

Γ, q ` δq, υq : Σ,

such that

υu ⇔ ∃t. υt ∧ (t < u) υ rounded upper
δd ⇔ ∃e. (d < e) ∧ δe δ rounded lower
> ⇔ ∃u. υu bounded above
> ⇔ ∃d. δd bounded below
δd ∧ υu ⇒ (d < u) disjoint
(d < u) ⇒ (δd ∨ υu) located

Both halves of the cut are needed since there is no negation.



Legitimate and illegitimate cuts
Let a : R and e < t.

δd υu

real a d < a a < u legitimate

−∞ ⊥ > unbounded below

+∞ > ⊥ unbounded above

interval [e, t] d < e t < u not located

[t, e] d < t e < u not disjoint

Rounded disjoint pseudo-cuts form the interval domain.

Constructively, they need not have endpoints [e, t].



Extending functions from reals to cuts
In order to use Dedekind cuts for real computation,
we must extend the definitions of the operations.

R ×R >
i × i

> ΣQ × ΣQ × ΣQ × ΣQ

R

+

∨

>
i

> ΣQ × ΣQ

z

∨

...............

For the arithmetic operations, this was done classically by
Ramon Moore, Interval Analysis, 1966.

How is this generalised to other continuous functions?



Extending functions from reals to cuts
The extension of functions can be obtained
from that for predicates with parameters.

Rn >
in

> (ΣQ × ΣQ)n Γ ×Rn >
in
> Γ × (ΣQ × ΣQ)n

R

f

∨

>
i

> ΣQ × ΣQ

F

∨

..............
Σ

φ

∨

Φ

<....
......

......
......

......
......

......

Let Φd andΨu be the extensions of

φd ≡ λ~x. d < f~x and ψu ≡ λ~x. f~x < u

Then F(~δ, ~υ) ≡
(
λd.Φd(~δ, ~υ), λu.Ψu(~δ, ~υ)

)
extends f .



Extending open subspaces classically
Recall that φ defines an open subspace U ⊂ R.

R >
i

> ΣQ × ΣQ a > (↓ a, ↑ a)

Σ

Φ
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.....

.....
.....

...
φ

>

(a ∈ U)

<....
.....

.....
.....

.

>

We require (a ∈ U) ≡ φa ⇐⇒ Φ(ia) ≡ Φ(↓ a, ↑ a).
This means that R has the subspace topology
inherited from ΣQ × ΣQ.

Consider Φ(δ, υ) ≡ ∃du. δd ∧ υu ∧
(
[d,u] ⊂ U

)
(δ, υ) 7→ Φ(δ, υ) preserves all joins, so Φ is Scott continuous.
Since R is locally compact,
(a ∈ U) ⇐⇒ ∃du. (d < a < u) ∧

(
[d,u] ⊂ U

)
⇐⇒ Φ(↓ a, ↑ a)
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The extension of predicates is uniform
Since [d,u] is compact, U 7→ ([d,u] ⊂ U) is Scott continuous.

Since the restricted λ-calculus is valid in the category
of locally compact spaces, the process

I : φ↔ U 7→ Φ ≡ λδυ. ∃du. δd ∧ υu ∧
(
[d,u] ⊂ U

)
is itself a Scott-continuous function.

By construction, I and i satisfy φa⇔ (Iφ)(ia) or id = Σi
· I.

So E ≡ I · ΣI is idempotent, E = E · E.

So ΣR is a retract of ΣΣ
Q
×ΣQ , splitting E.

So E determines R amongst sober spaces from ΣQ × ΣQ.
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It can all be expressed rationally
We have defined the idempotent E ≡ I · Σi on ΣΣ

Q
×ΣQ by

EΦ(δ, υ) ≡ I
(
λx.Φ(ix)

)
(δ, υ)

⇔ ∃du : R. δd ∧ υu ∧ ∀x : [d,u]. Φ(δx, υx) : ΣΣ
Q
×ΣQ .

Since Φ is Scott continuous and [d,u] is compact, this is

∃q0 < · · · < q2n+1 : Q. δq1 ∧ υq2n ∧

n−1∧
k=0

Φ(λe. e < q2k, λt. q2k+3 < t)

(See Dedekind Reals in ASD, Section 3.)

This only depends on rational numbers and predicates.



The classical versus other situations
Let E be the rationally defined idempotent on ΣΣ

Q
×ΣQ .

This is the same in all foundational situations.

In each situation, let i : R� ΣQ × ΣQ be the subspace of
Dedekind cuts.

Classically, there is a Scott continuous function
I : ΣR� ΣΣ

Q
×ΣQ such that Σi

· I = id and I · Σi = E.

In other situations, e.g. Russian Recursive Analysis,
I need not exist.

Indeed, it exists iff R is locally compact iff [d,u] is compact.

When it exists, we say that the subspace is Σ-split by I.
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It all depends on the category
The subspace R of Dedekind cuts is an equaliser.

R > > ΣQ × ΣQ >
> Σ

Q
× ΣQ × Σ × Σ × ΣQ×Q × ΣQ×Q

Γ

∧
......... (δ, υ)

>

Equalisers are defined using other objects of the category.

The equaliser is the “nearest” object with a certain property.

If there are not enough objects, the wrong one may be the
equaliser.

If we add new objects, one of them may become the equaliser.
(The old one is “relieved of its duties”.)

The new object may have the right properties.
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Type theory for Σ-split subspaces
This argument is useless if it only applies to R in isolation.

We must construct a new category whose objects are formal
Σ-split subspaces {X | E}� X.
(cf. constructing a new field containing a formal root of a
polynomial).

The good news: there is an equivalent type theory with a
normalisation theorem.

Show that the new category has the required properties.
(The most difficult part is to construct products.)

Relate it to a familiar category of spaces.
(Computably based locally compact locales.)

The bad news: all of this takes over 200 journal pages [A,B,G].
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Instead, we specialise to Rn

To complete the construction of R:
I (δ, υ) is a cut iff it’s E-admissible
I R is overt, Hausdorff and totally ordered
I R is Dedekind complete: R-cuts � Q-cuts
I define the arithmetic operations
I the closed interval is compact
I any model of the axioms is uniquely isomorphic to the

construction.



A project for you!
In your favourite model of analysis (TTE, Bishop, Brouwer,
realisability, ...)

I Does I : ΣR → ΣΣ
Q
×ΣQ exist already?

I Follow the details of the construction in Subspaces in ASD
[B].

I Is the other interesting structure of your model preserved?
I How do the theorems in ASD compare with the original

ones?

This could be an exercise for a PhD student, or a major piece of
research.
Please ask me for help.



Computation using interval notation
Now use the notation of Interval Analysis
(but not its semantics).
I Instead of Dedekind cuts

(δ, υ) = (λd. d < a, λu. a < u) : ΣQ × ΣQ

I we use families of intervals (connected neighbourhoods)
θ = (λdu. d < a < u) : ΣQ×Q,

where Q is the type of dyadic rationals.

θdu ≡ δd ∧ υu δd ≡ ∃u. θdu υu ≡ ∃d. θdu.

Note: [d,u] is a pair of rational numbers, not a subspace of R.

In n dimensions, a system of close-packed spheres
could be used, instead of cubes.



Use some proof theory
Since the axioms are complete, we examine the syntax.

Normalisation theorems say that the last rule
or outermost connective is an introduction rule.
Apply the η-rule corresponding to the type of the term.

For a predicate, φ = λx1 . . . xk. φx1 . . . xk : ΣX1×···×Xk ,
using λ-abstraction and application.

For an integer, a = the n. (n =N a) :N,
using equality and definition by description.

For an real number, a = admit(λet. e < a < t) : R,
using arithmetic order and Dedekind completeness.

(t − e is the ε of ε–δ continuity.)
(Is there a similar interpretation of Cauchy completeness?)

So we just consider propositions (terms of type Σ).
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Propositions with real-valued sub-expressions
Remember that [d,u] is a pair of rationals — not a subset of R.

It’s like an open interval in a ∈ [d,u] ≡ d < a < u
but like a closed one in ∀x : [d,u]. φx
and both of them in [d,u] b [e, t] ≡ (e < d) ∧ (u < t).

Using

[d,u] < [e, t] ≡ (u < e) and [d,u] # [e, t] ≡ (u < e) ∨ (t < d),

we reduce < and , for numbers to ∈,

a < b ⇔ ∃duet. a ∈ [d,u] ∧ [d,u] < [e, t] ∧ b ∈ [e, t]
a , b ⇔ ∃duet. a ∈ [d,u] ∧ [d,u] # [e, t] ∧ b ∈ [e, t]

So just consider propositions of the form a ∈ [e, t]
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Proof theory again
Recall that, since R is locally compact,

φx ⇔ ∃du. (d < x < u) ∧ ∀od ≤ x′ ≤ u. φx′

where the width u − d is the δ of ε–δ continuity.
The subscript on ∀o indicates that
this width may be reduced whenever necessary.

Let R be the type of rational pairs [d,u] with d < u,
for which we also introduce variables x : R.
Then wlog every real variable x is bound by ∀ox ∈ x.

In particular, when φx is of the form x ∈ [e, t],

∀ox ∈ x. (x ∈ [e, t]) ⇔ x b [e, t].

So, in the normalisation of a ∈ [e, t] ≡ z under ∀ox ∈ x,

x ∈ z becomes x b z.

Hence real variables become interval variables, ∈ becomes b.
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Real arithmetic becomes interval arithmetic
When a is an arithmetic expression b ? c,

b ? c ∈ z ⇔ ∃xy. b ∈ x ∧ c ∈ y ∧ (x ? y b z)

where x ? y has Moore’s interpretation:

[d,u] + [e, t] ≡ [d + e,u + t] − [d,u] ≡ [−u,−d]

[d,u] × [e, t] ≡ [min(de, dt,ue,ut), max(de, dt,ue,ut)]

For division and roots we must say separately that

[d,u]−1 b [e, t] ≡ (0 < d ∧ ue < 1 < dt) ∨ (u < 0 ∧ dt < 1 < ue)√
[d,u] b [e, t] ≡ (e < 0 ∨ e2 < d) ∧ (0 < t ∧ u < t2).

If a is a Dedekind cut or family of intervals,

admit(δ, υ) ∈ [d,u] ⇔ δd ∧ υu admit(θ) ∈ [d,u] ⇔ θdu.



Compactness, quantification and optimisation
The one non-trivial case is the universal quantifier
arising from the compact interval [d,u].

For any d < m < u we have

∀x ∈ [d,u]. φx ⇔ ∀x ∈ [d,m]. φx ∧ ∀x ∈ [m,u]. φx

but this recursion has no base case.

The first disjunct provides the base of the recursion.
The ∀o now means that the quantifier is treated in the same
(non-recursive) way as before.

The restriction on m causes the intervals to get arbitrarily small.

The recursion is well founded because [d,u] is compact.

In fact, ∀x : [d,u]. Φ(↓ x, ↑ x)⇔ EΦ(↓ d, ↑u).



Compactness, quantification and optimisation
The one non-trivial case is the universal quantifier
arising from the compact interval [d,u].

For 2
3 d + 1

3 u < m < 1
3 d + 2

3 u we have

∀x ∈ [d,u]. φx ⇔ ∀ox ∈ [d,u]. φx
∨ ∀x ∈ [d,m]. φx ∧ ∀x ∈ [m,u]. φx

The first disjunct provides the base of the recursion.
The ∀o now means that the quantifier is treated in the same
(non-recursive) way as before.

The restriction on m causes the intervals to get arbitrarily small.

The recursion is well founded because [d,u] is compact.

In fact, ∀x : [d,u]. Φ(↓ x, ↑ x)⇔ EΦ(↓ d, ↑u).



Compactness, quantification and optimisation
The one non-trivial case is the universal quantifier
arising from the compact interval [d,u].

For 2
3 d + 1

3 u < m < 1
3 d + 2

3 u we have

∀x ∈ [d,u]. φx ⇔ ∀ox ∈ [d,u]. φx
∨ ∀x ∈ [d,m]. φx ∧ ∀x ∈ [m,u]. φx

The first disjunct provides the base of the recursion.
The ∀o now means that the quantifier is treated in the same
(non-recursive) way as before.

The restriction on m causes the intervals to get arbitrarily small.

The recursion is well founded because [d,u] is compact.

In fact, ∀x : [d,u]. Φ(↓ x, ↑ x)⇔ EΦ(↓ d, ↑u).



Compactness, quantification and optimisation
The one non-trivial case is the universal quantifier
arising from the compact interval [d,u].

For 2
3 d + 1

3 u < m < 1
3 d + 2

3 u we have

∀x ∈ [d,u]. φx ⇔ ∀ox ∈ [d,u]. φx
∨ ∀x ∈ [d,m]. φx ∧ ∀x ∈ [m,u]. φx

The first disjunct provides the base of the recursion.
The ∀o now means that the quantifier is treated in the same
(non-recursive) way as before.

The restriction on m causes the intervals to get arbitrarily small.

The recursion is well founded because [d,u] is compact.

In fact, ∀x : [d,u]. Φ(↓ x, ↑ x)⇔ EΦ(↓ d, ↑u).



The result of the normalisation
I λ-abstraction and application normalise using essentially

Peter Landin’s SECD machine,
I equality of integer terms normalises by unification,
I excluding disjunction and recursion,

this leaves a P clause,
I in which real arithmetic becomes

a system of polynomial constraints.
I With disjunction or recursion we have

a non-deterministic parallel P program.
I The universal quantifier becomes an optimisation problem.



The benefits of this for analysis
Assuming that we can develop some analysis from just these
axioms,

we can develop analysis conceptually,
using real- (not interval-) valued variables and expressions in
the usual way
and translate it automatically
into exact computation with intervals.

Interval analysis without intervals!
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Conclusion
We axiomatised R according to analyst’s intuition.

We rejected foundational prejudice
from both set theory and recursion theory.

Instead we relied on categorical intuition.

Using techniques of proof theory,
we turned this into computation.

We still have to show that this is useful for analysis.
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