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IN and Q are discrete and Hausdorff.

So we have all six relations for them.
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Geometric, not Intuitionistic, logic

A term o : X is called a proposition.

A term ¢ : X is called a predicate or open subspace.

We can form ¢ A pand ¢ V ¢.
Also dn: IN. ¢x, dg: Q. ¢x, dx: R. ¢x and Ix: [0, 1]. ¢px.
But not dx: X. ¢x for arbitrary X — it must be overt.

Negation and implication are not allowed.

Because:
» this is the logic of open subspaces;
©

,) is not continuous;

» the function ©® & e on (

» the Halting Problem is not solvable.
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Universal quantification

When K C X is compact (e.g. [0,1] C R), we can form Vx: K. ¢x.

x:K+FToox

F T e Vx: K ¢x

The quantifier is a (higher-type) function Vi : £X — L.
Like everything else, it’s Scott continuous.

The useful cases of this in real analysis are

Vx: K36 > 0.9(x,0) < 36> 0.Yx:K.o(x,0)
Vx : K. Adn.g(x, n) & dnVx:K(x,n)

in the case where (61 <d2) A ¢(x,02) = P(x,01)
or (n1>mnm) A ¢lx,n) = ¢(x,n).

Recall that uniform convergence, continuity, etc.
involve commuting quantifiers like this.
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Propositions and statements
What'’s the problem with ¥? We can’t write Ye > 0!
Propositions may be computationally observable.

Equations and implications amongst propositions or predicates
may be logically provable from the axioms.

We call them statements.

For example, with | a = (Ad. d < a),

la=]biffa=band |la= [biffa<b

in the arithmetical order.

Hencea < b,a > band a = b are meaningful,
as statements, not as propositions.

In fact, 2 < b is equivalent as a statement to (2 > b) = L,
anda=bto(a#b)= L.

We deal with Ye > 0 by allowing € as parameter or free variable.



Examples: continuity and uniform continuity

Recall that, from local compactness of IR,
¢ox & 30> 0.Vy: [x£06]. Py
Theorem: Every definable function f : R — R is continuous:

e>0 = 35>0.Vy: [x+0]. (|fy—fx|<€)

Proof: Put ¢y ey = (lfy - fx| < e), with parameters x, € : R.

Theorem: Every function f is uniformly continuous
on any compact subspace K C IR:

e>0 = 35>0.Vx: K. Vy: [x £0]. (lfy—fx|<€)

Proof: 36 > 0 and Yx : K commute.



Example: Dini’s theorem

Theorem: Let f, : K — R be an increasing sequence of functions
n:N, x:K F fux <fpax: R
that converges pointwise to g : K — R, so
€>0,x:KF+r Tedngx—fix<e.

If K is compact then f,, converges to g uniformly.
Proof: Using the introduction and Scott continuity rules for V,
e>0+T & Vx: K dngx—fux<e

© dn.Vx: K gx—fuix<e

Corollary: Since ASD has a computational interpretation,
Dini’s theorem is computationally valid.



Relative containment of open subspaces

Let 0, a, § be propositions with parameters x1 : X, ..., xx : X.
(We conventionally write I for this list.
Semantically, I is the space X; X - - X X}.)

Then o, a, p define open subspaces of I'.
They satisfy a Gentzen-stle rule of inference:

I[LoeTra=2p

'rona = B

in which the top line means

within the open subspace of T defined by o,
the open subspace defined by «
is contained in the open subspace defined by p.

and the bottom line means

the intersection of the open subspaces defined by o and o
is contained in that defined by f.



Relative containment of closed subspaces

Let 0, a, § be propositions with parameters x1 : X, ..., xx : X.
(We conventionally write I for this list.
Semantically, I is the space X; X - -- X Xj.)

Then o, a, f define closed subspaces of I'.
They satisfy a Gentzen-stle rule of inference:

[LLoelra=2p

I'ra = oVp

in which the top line means

within the closed subspace of T defined by o,
the closed subspace defined by o
contains the closed subspace defined by p.

and the bottom line means

the intersection of the closed subspaces defined by o and f3
is contained in that defined by o.



Exercise for everyone!

Make a habit of trying to formulate statements in analysis
according to (the restrictions of) the ASD language.

This may be easy — it may not be possible

The exercise of doing so may be 95% of solving your problem!



Constructive intermediate value theorem

Suppose that f : R — R doesn’t hover, i.e.
bd:R+b<d = Ix.(b<x<d) AN (fx#0),

and fO0 <0 < f1. Then fc = 0 for some 0 <c < 1.

Interval trisection: Letay =0, ¢e9 =1,
b, = %(Zun +e,) and d, = %(an + 2¢,).
Then f(c,) # 0 for some b, < ¢, < d,, so put

_ Joan, cn iff(cn) >0
Mtls Cnvl = o if f(cn) < 0.

Then f(a,) <0 < f(ey,) and a, — ¢ < e,.
(This isn’t the ASD proof/algorithm yet!)



Stable zeroes

The interval trisection finds zeroes with this property:

fd fo

Definition: ¢ : R is a stable zero of f if

a,e:RFa<c<e = 3bd. (@<b<c<d<e)
A (fb<0<fd Vfb>0>fd).

The subspace Z c [0, 1] of all zeroes is compact.
The subspace S C [0, 1] of stable zeroes is overt (as we shall
see...)



Straddling intervals

An open subspace U C IR contains a stable zero c € U N S iff U
also contains a straddling interval,

[b,dlcU with fb<0<fd or fb>0>fd.

[=] From the definitions. [«<] The straddling interval
is an intermediate value problem in miniature.



Straddling intervals
An open subspace U C IR contains a stable zero c € U N S iff U
also contains a straddling interval,
[b,dlcU with fb<0<fd or fb>0>fd.
[=] From the definitions. [«<] The straddling interval
is an intermediate value problem in miniature.

Notation: Write ¢ U if U contains a straddling interval.

We write this containment in ASD using the universal
quantifier.

0¢ = Tbd. (Vx: [b,d]. ¢x)
A (fb<0<fd)V(fb>0>fd).
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By hypothesis, ¢(0,1) & T, whilst ¢ 0 & L trivially.
OUigU; & Fi. o U,.
If f : R — Ris an open map, this is easy.

If f : R — R doesn’t hover, it depends on connectedness of IR.



The possibility operator

By hypothesis, ¢(0,1) & T, whilst ¢ 0 & L trivially.

OUig Ui &= 3i. o U,

If f : R — Ris an open map, this is easy.

If f : R — R doesn’t hover, it depends on connectedness of IR.

Definition: A term ¢ : =" with this property

is called an overt subspace of X.

A simpler example: For any pointa : X,

the neighbourhood filter ¢ = na = A¢. ¢a is a possibility
operator.

¢ is a point iff it also preserves T and A.



The Possibility Operator as a Program

Theorem: Let ¢ be an overt subspace of Rwith ¢ T & T.

Then ¢ has an accumulation point ¢ € R,
i.e. one of which every open neighbourhood c € U C R
satisfies ¢ U:

d: IR r dc = 00

Example: In the intermediate value theorem, any such c is a
stable zero.

Proof: Interval trisection.

Corollary: Obtain a Cauchy sequence from a Dedekind cut.

(I expect to get a representation 2N — R in the sense of TTE
by proving a result of Brattko & Hertling in ASD.)



Possibility operators classically
Define ¢ U as U N S # 0, for any subset S C X whatever.
Then ¢ ( User uz-) iff 3i. o U,
Conversely, if ¢ has this property, let

S
14

lneX|forallopenUCX, aclU=oU)
X\8 = | Jiuopen|=-oU)

Then W is open and S is closed.
- ¢ W by preservation of unions.
Hence ¢ U holds iff U ¢ W, ie. UNS # 0.

If ¢ had been derived from some S’ then S = &/, its closure.

Classically, every (sub)space S is overt.



Necessity operators
Let K C R be any compact subspace.
(For example, all zeroes in a bounded interval.)
U — (K c U) is Scott continuous.

Notation: Write O ¢ for Vx: K. ¢x.



Modal operators, separately

O encodes the compact subspace Z = {x € I | fx = 0} of all zeroes.
¢ encodes the overt subspace S of stable zeroes.

OXistrue and oUAOV = olnV)

¢Qisfalse and OUUV) = UV OV.

(Z+0) iff O0isfalse
(S#0) iff ¢Ristrue



Modal operators, together
¢ and O for the subspaces S C Z are related in general by:
oUAOV = oUNY)

oU < (UUW =X)
oV = (Ve w)

S is dense in Z iff
ouUuV) = ouvoeV
OV < (Vg W)

In the intermediate value theorem
for functions that don’t hover (e.g. polynomials):

» S = Zin the non-singular case

» S C Zin the singular case (e.g. double zeroes).



Modal laws in ASD notation

Overt subspace Compact subspace
0L & L OT & T

O(PVY) & 0PV oY O AY) © apAOy
OANOP & O(0AD) ovio¢ & Ox.oV ¢x)

Commutative laws:

o(Ax. ¢(Ay. pry)) & o(Ay. o(Ax. Pay))
o(Ax. m(y. ¢xy)) < m(Ay. O(Ax. pxy))

Mixed modal laws for a compact overt subspace.

O¢pVvoy < ol@Vvy) and DAY = O(PAY)



Empty/inhabited is decidable

Theorem: Any compact overt subspace (O, ¢) is either empty
(O L) or non-empty (¢ T).
Proof:
0T & L empty oL & T
0T © T inhabited 0oL & 1
OLVOT & complementary OLAOT =
O(LVT) ©O0T © T (mixed) ¢LAL) © ¢l o L



Empty/inhabited is decidable

Theorem: Any compact overt subspace (O, ¢) is either empty
(O L) or non-empty (¢ T).
Proof:
0T & L empty oL & T
0T © T inhabited 0oL & 1
OLVOT & complementary OLAOT =
O(LVT) ©O0T © T (mixed) ¢LAL) © ¢l o L

The dichotomy (either O L or ¢ T) means that
the parameter space I' is a disjoint union.

So, if it is connected, like IR™,
something must break at singularities.

It is the modal law O(¢p V ¢) = O V O 9.



Non-empty compact overt subspace of R has a
maximum

Theorem: Any overt compact subspace K C R is
> either empty

» or has a greatest element, maxK € K.

Definition: max K satisfies, for x : IR,

(x<maxK) & (Fk: K. x<k)
(maxK <x) © (Vk: K. k<x)
k:K +r k<maxK

I k: K+ k<x

I' - maxK < x



Compact overt subspace of R has a maximum
Proof: Define a Dedekind cut (next slide)

o0d = Jdk: K.d<k and vu = Vk: K. k<u

Hence there is some a : R with
od & (d<a) and vu & (a<u)

Moreover, a € K.

K is also the closed subspace
co-classified by wx = O(Ak. x # k),
so we must show that wa & 1.

wa = OAk.a#k) © DOlAk.a<k) VvV (k<a)
= O(Ak.a<k) v Ok k <a)

= daVuva
& (@<aV@<a) & L.



Compact overt subspace of R defines a Dedekind cut

Overt subspace ¢ Compact subspace O

1,Vv, \}and so Ir commutes with

T, Aand \/!
od = 0(Ak.d <k) Dedekind cut vu = O(Ak. k < u)
(d<e)Aode = lower/upper VEA(t<u) =
(d<e)Ao(Ak.e <k) Ok k <t) A (t<u)
e O(Ak.d<e<k) (Frobenius/0 T)

& Ok k<t<u)
(transitivity) = O(Ak.k<u) = vu
rounded (interpolation)

dd.6d = 3d. 6(Ak.d < k) inhabited

= 0(Mk.d<k) = od

= =

Ju.vu = Ju. O(Ak. k < u)

< O(Ak.dd. d < k) (directed joins) & Ok Ju. k <u)
© 0T © T (inhabited) (extrapolation) S o0T e T



The Bishop-style proof

Definition: K is totally bounded if, for each € > 0,
there’s a finite subset S¢ C K such that
Yx: K. dy € Se. |x—y| <e.
Proof: If K is closed and totally bounded,
» either the set S is empty, in which case K is empty too,

> or x, = max Sy-» defines a Cauchy sequence
that converges to max K.

But K is also overt, with ¢ ¢ = Je > 0. Jy € S. Py.
Definition: K is located if, for each x € X,

inf{|x — k| | k € K} is defined.

(A different usage of the word “located”.)

closed, totally bounded = compact and overt = located
(in TTE) also r.e. closed

» Total boundedness and locatedness are metrical concepts.
» Compactness and overtness are topological.



The real interval is connected (usual proof)

Any closed subspace of a compact space is compact.
Any open subspace of an overt space is overt.

Any clopen subspace of an overt compact space is overt
compact, so it’s either empty or has a maximum.

Since the clopen subspace is open, its elements are interior,
so the maximum can only be the right endpoint of the interval.
Any clopen subspace has a clopen complement.
» They can’t both be empty, but
> in the interval they can’t both have maxima (the right
endpoint).

Hence one is empty and the other is the whole interval.



Connectedness in modal notation
We have just proved
dPpAY)e L, OpVyYy)e Troopvoy e T

whereo 6 = Vx: [0,1]. Oxand ¢ 6 = dx: [0,1]. Ox.

Using the mixed modal law ¢ p A0 = (P A )
and the Gentzen-style rules

oo TrFra=>f oo Lrra=>f

FoAa = B Fa = BVo

connectedness may be expressed in other ways:

o AY) S L FoO@VyY) = 0ovoy
o AY) S L F OOV ACPAIY S L
0@ v ) = 0pVOYPVIPVY)
D@V AOPAGY = APAY)



Weak intermediate value theorems

Letf :[0,1] = R, and use two of these forms of connectedness.

Put ¢x = (0 < fx) and x = (fx < 0).

Use0(pAY)=L + O(PVYPIAOGPAOY = L.

O(p A1) & L by disjointness.

Then (f0 <0 <f1) A (Vx: [0,1]. fr£0) & L.

So the closed, compact subspace Z = {x : I | fx = 0} is not empty.

Put ¢x = (e < fx) and Px = (fx < t).

UseO(@VYP)AOPAOY = (P AY).
0O(¢ V 1) by locatedness.

Then (f0 <e<t<fl) = (Hx: [0,1]. e <fx < t).
ore >0 F dx. Vx| <e.
So the open, overt subspace {x | ¢ < fx < t} is inhabited.



Straddling intervals in ASD
Letf : [0,1] — R be a function that doesn’t hover.

Proposition: ¢ preserves joins, ¢(dn. 0,) & dn. ¢ 0,.

Proof: Consider
¢*x = In.Jy. (x <y <u) A(fy 2 0) AVz: [x,y]. Onz.
Then 3x. p*x A ¢~ x by connectness.

Lemma: 0 < a < 11is a stable zero of f iff
it is an accumulation point of ¢, i.e. pa = ¢ ¢.
Theorem: ¢ and D obey OPp A OGP = (P A Y).

They also obey O(¢p Vi) = O¢pV O
iff f doesn’t touch the axis without crossing it.

When f is a polynomial, this is the non-singular case, where f
has no zeroes of even multiplicity.



Solving equations in ASD

In the non-singular case, all zeroes are stable,
¢ and O define a non-empty overt compact subspace,
which has a maximum.

So the classical textbook proof of IVT,
a= supi{x:[0,1] [ fx <0},
is computationally meaningful!

The set of zeroes varies discontinuously at singularities in the
parameters.

The modal operators O and ¢ are Scott-continuous
throughout the parameter space.

The interval trisection algorithm for ¢ finds some zero,
even in the singular case,
but it behaves non-deterministically and catastrophically.



Differentiation
Define (fx, f'x) together by a Dedekind cross-hair.
Characterise (ep < fx < tp) A (e1 <f'x <t;) by

36.Vh: [0, 0]. e1+eth <f(x+h)<ty+th
A e1—th <f(x—h) <tyg—eh

This is a Dedekind cut in (ep, tp) since f : R — R is a function.
It is bounded in (ey, t1) if f is Lipschitz at x.
It is a Dedekind cut in (eq, t1) if f is differentiable at x.



I need help!
I'm a categorist, not an analyst.
I'last did real analysis as a second year undergraduate.
Ineed a real analyst to set an agenda for me.

I also need a job from September 2006.
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