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The Classical Intermediate Value Theorem

Any continuous f : [0,1]→ R with f(0) ≤ 0 ≤ f(1) has a zero.

Indeed, f(x0) = 0 where x0 ≡ sup {x | f(x) ≤ 0}.

A so-called “closed formula”.
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A program: interval halving

Let a0 ≡ 0 and e0 ≡ 1.

By recursion, consider cn ≡ 1
2(an + en) and

an+1, en+1 ≡


an, cn if f(cn) > 0

cn, en if f(cn) ≤ 0,

so by induction f(an) ≤ 0 ≤ f(en).

But an and en are respectively (non-strictly) increasing and decreasing sequences,

whose differences tend to 0.

So they converge to a common value c.

By continuity, f(c) = 0.
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Where is the zero?

For −1 ≤ p ≤ +1 and 0 ≤ x ≤ 3 consider

fpx ≡ min (x− 1, max (p, x− 2))

Here is the graph of fp(x) against x for p ≈ 0.
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Where is the zero?

The behaviour of fp(x) depends qualitatively on p and x like this:
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f(1) = 0 ⇐⇒ p ≥ 0

f(2) = 0 ⇐⇒ p ≤ 0

f(3
2) = 0 ⇐⇒ p = 0

If there is some way of finding a zero of fp,
as a side-effect it will decide how p stands in relation to 0.
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Let’s bar the monster

Definition f : R→ R doesn’t hover if,

for any e < t, ∃x. (e < x < t) ∧ (fx 6= 0).

Exercise Any nonzero polynomial doesn’t hover.
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Interval halving again

Suppose that f doesn’t hover.

Let a0 ≡ 0 and e0 ≡ 1.

By recursion, consider

bn ≡ 1
3(2an + en) and dn ≡ 1

3(an + 2en).

Then f(cn) 6= 0 for some bn < cn < dn, so put

an+1, en+1 ≡


an, cn if f(cn) > 0

cn, en if f(cn) < 0,

so by induction f(an) < 0 < f(en).

But an and en are respectively (non-strictly) increasing and decreasing sequences,
whose differences tend to 0.

So they converge to a common value c.

By continuity, f(c) = 0.

7



Stable zeroes

The revised interval halving algorithm finds zeroes with this property:

Definition a ∈ R is a stable zero of f
if, for all e < a < t,

∃yz. (e < y < a < z < t) ∧ (fy < 0 < fz ∨ fy > 0 > fz).

fz fy

e y a z t

z t e y a

fy fz

Exercise Check that a stable zero of a continuous function really is a zero.

Classically, a zero is stable iff
every nearby function (in the sup or `∞ norm) has a nearby zero.
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Straddling intervals

Proposition An open subspace U ⊂ R touches S, i.e. contains a stable zero, a ∈ U ∩ S,

iff U contains a straddling interval,

[e, t] ⊂ U with fe < 0 < ft or fe > 0 > ft.

Proof [⇐] The straddling interval is an intermediate value problem in miniature.

If an interval [e, t] straddles with respect to f

then it also does so with respect to any nearby function.
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The possibility operator

Notation Write ♦U if U contains a straddling interval.

By hypothesis, ♦ I ⇔ > (where I is some open interval containing I).

Trivially, ♦ ∅ ⇔ ⊥.

Theorem ♦
⋃
i∈I Ui ⇐⇒ ∃i. ♦Ui.

Consider

V ± ≡ {x | ∃y:R. ∃i:I. (fy >
< 0) ∧ [x, y] ⊂ Ui}

so I ⊂ V + ∪ V −.

Then x ∈ (a, c) ⊂ V + ∩ V − by connectedness, with fx 6= 0 and [x, y] ⊂ Ui.
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The Possibility Operator as a Program

Let ♦ be a property of open subspaces of R
that preserves unions and satisfies ♦U0 for some open interval U0.

Then ♦ has an “accumulation point” c ∈ U0,
i.e. one of which every open neighbourhood c ∈ U ⊂ R satisfies ♦U .

In the example of the intermediate value theorem, any such c is a stable zero.

Interval halving again: let a0 ≡ 0, e0 ≡ 1
and, by recursion, bn ≡ 1

3(2an + en) and dn ≡ 1
3(an + 2en), so

♦(an, en) ≡ ♦ ((an, dn) ∪ (bn, en)) ⇔ ♦(an, dn) ∨ ♦(bn, en).

Then at least one of the disjuncts is true,
so let (an+1, en+1) be either (an, dn) or (bn, en).

Hence an and en converge from above and below respectively to c.

If c ∈ U then c ∈ (an, en) ⊂ (c± ε) ⊂ U for some ε > 0 and n,
but ♦(an, en) is true by construction,

so ♦U also holds, since ♦ takes ⊂ to ⇒.
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Enclosing cells of higher dimensions

Straddling intervals can be generalised.

Let f : Rn → R
m with n ≥ m.

Let C ⊂ Rn be a sphere, cube, etc.

Definition C is an enclosing cell if

0 ∈ Rm lies in the interior of the image f(C) ⊂ Rm.

(There is a definition for locally compact spaces too.)

Notation Write ♦U if U ⊂ Rn contains an enclosing cell.

Theorem If ♦ (
⋃
i∈I Ui)⇔ ∃i. ♦Ui then

cell halving finds stable zeroes of f .
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Modal operators, separately

Z ≡ {x ∈ I | fx = 0} is closed and compact.
W ≡ {x | fx 6= 0} is open.

S is the subspace of stable zeroes.

Notation For U ⊂ R open, write �U if Z ⊂ U (or U ∪W = R).

�X is true and �U ∧�V ⇒ �(U ∩ V )

♦ ∅ is false and ♦(U ∪ V ) ⇒ ♦U ∨ ♦V.

(Z 6= ∅) iff � ∅ is false

(S 6= ∅) iff ♦R is true

Both operators are Scott continuous.
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Modal operators, together

The modal operators ♦ and � for the subspaces S ⊂ Z are related in general by:

�U ∧ ♦V ⇒ ♦(U ∩ V )

�U ⇐⇒ (U ∪W = X)

♦V ⇒ (V 6⊂W )

S is dense in Z iff

�(U ∪ V ) ⇒ �U ∨ ♦V

♦V ⇐ (V 6⊂W )

In the intermediate value theorem for functions that don’t hover (e.g. polynomials):

S = Z in the non-singular case

S ⊂ Z in the singular case (e.g. double zeroes).
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Open maps

For continuous f : X → Y ,

if V ⊂ Y is open, so is f−1(V ) ⊂ X
if V ⊂ Y is closed, so is f−1(V ) ⊂ X
if U ⊂ X is compact, so is f(U) ⊂ Y
(if U ⊂ X is overt, so is f(U) ⊂ Y )

Definition f : X → Y is open if,

whenever U ⊂ X is open, so is f(U) ⊂ Y .

Proposition If f : X → Y is open then

if V ⊂ Y is overt, so is f−1(V ) ⊂ X.

Corollary If f : X → Y is open then all zeroes are stable.
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Examples of open maps

If f : Rn → R
n is continuously differentiable, and det

(
∂fj
∂xi

)
6= 0.

If f : C→ C is analytic and not constant — even if it has coincident zeroes.

Cauchy’s integral formula:

a disc C ⊂ C is enclosing iff
∮
∂C

dz
f(z) 6= 0.

Stokes’s theorem!
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Possibility operators classically

Define ♦U as U ∩ S 6= ∅,
for any subset S ⊂ R whatever.

Then ♦ (
⋃
i∈I Ui) iff ∃i. ♦Ui.

Conversely, if ♦ has this property, let

S ≡ {a ∈ R | for all open U ⊂ R, a ∈ U ⇒ ♦U}.

W ≡ R \ S =
⋃
{U open | ¬♦U}

Then W is open and S is closed.

¬♦W by preservation of unions.

Hence ♦U holds iff U 6⊂W , i.e. U ∩ S 6= ∅.

If ♦ had been derived from some S′

then S = S′, its closure.
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Possibility operators: summary

♦ is defined, like compactness, in terms of unions of open subspaces,

so it is a concept of general topology

The proof that ♦ preserves joins uses ideas from geometric topology,

like connectedness and sub-division of cells.

♦ is like a bounded existential quantifier, so it’s logic.

A very general algorithm uses ♦ to find solutions of problems.

But classical point-set topology is too clumsy to take advantage of this.
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Overt and compact subspaces

Overt subspace Compact subspace

♦U means U touches ♦ �U means U covers �

for any U , (a ∈ U)⇒ ♦U for any U , �U ⇒ (a ∈ U)

a is an accumulation point of ♦
a is in the closure of ♦ a is in the saturation of �

Overt subspace of discrete space Compact subspace of Hausdorff space

is open is closed

Open subspace of overt space Closed subspace of compact space

is overt is Hausdorff
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Overt and compact subspaces

Overt subspace of discrete space Compact subspace of Hausdorff space

♦φ means φ touches ♦ �φ means φ covers �

φxy ≡ (y ∈ {x}) ≡ (x = y) φxy ≡ (y ∈ {x}) ≡ (x 6= y)

αx ≡ ♦(λy. x = y) ωx ≡ �(λy. x 6= y)

Open subspace of overt space Closed subspace of compact space

♦φ ≡ ∃N(α ∧ φ) �φ ≡ ∀K(ω ∨ φ)
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Overt and compact subspaces

Overt subspace Compact subspace

♦U means U touches ♦ �U means U covers �

U ⊂ W
=====
¬♦U

Closed subspace X \W
U ∪W = X
========

�U

A ∩ U = ∅
=======
¬♦U

Open subspace A
A ⊂ U
=====
�U
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Overt and compact subspaces

Overt subspace Compact subspace

defined by ♦ : ΣΣX
defined by � : ΣΣX

a ∈ ♦ if φa ⇒ ♦φ a ∈ � if �φ ⇒ φa

φ ≤ ω
======
♦φ ⇔ ⊥

Closed subspace

co-classified by

ω : ΣX

a ∈ ω if ωa⇔ ⊥

φ ∨ ω ⇔ >
=======
�φ ⇔ >

α ∧ φ ⇔ ⊥
=======
♦φ ⇔ ⊥

Open subspace

classified by

α : ΣX.

a ∈ α if αa⇔ >

α ≤ φ
======
�φ ⇔ >

♦ (λx. θ(x,♦)) ⇐ general � (λx. θ(x,�)) ⇒
♦ (λx. θ(x, λφ. ♦φ ∨ φx)), case � (λx. θ(x, λφ. �φ ∧ φx)),
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Modal laws

Overt subspace Compact subspace

♦⊥ ⇔ ⊥ �> ⇔ >

♦(φ ∨ ψ) ⇔ ♦φ ∨ ♦ψ �(φ ∧ ψ) ⇔ �φ ∧�ψ

σ ∧ ♦φ ⇔ ♦(σ ∧ φ) σ ∨�φ ⇔ �(λx. σ ∨ φx)

♦ (λx. �(λy. φxy)) ⇔ �(λy. ♦(λx. φxy)) � (λx.�(λy. φxy)) ⇔ �(λy. �(λx. φxy))

Mixed modal laws

�φ ∨ ♦ψ ⇐ �(φ ∨ ψ) and �φ ∧ ♦ψ ⇒ ♦(φ ∧ ψ)
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Empty/inhabited is decidable

Overt subspace Compact subspace

♦> ⇔ ⊥ empty �⊥ ⇔ >

♦> ⇔ > inhabited �⊥ ⇔ ⊥

�⊥ ∨ ♦> ⇐ complementary �⊥ ∧ ♦> ⇒

�(⊥ ∨>) ⇔ �> ⇔ > (mixed modal laws) ♦(⊥ ∧⊥) ⇔ ♦⊥ ⇔ ⊥

The dichotomy means that the parameter space Γ is a disjoint union.

So, if it is connected, like Rn, something must break at singularities.

It is the modal law �(φ ∨ ψ)⇒ �φ ∨ ♦ψ.
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Compact overt subspace of R defines a Dedekind cut

Overt subspace ♦ Compact subspace �

⊥, ∨,
∨
� and so ∃

R
commutes with >, ∧ and

∨
�

δd ≡ ♦(λk. d < k) Dedekind cut υu ≡ �(λk. k < u)

(d < e) ∧ δe ≡ lower/upper υt ∧ (t < u) ≡
(d < e) ∧ ♦(λk. e < k) �(λk. k < t) ∧ (t < u)

⇔ ♦(λk. d < e < k) (Frobenius/�>) ⇔ �(λk. k < t < u)

⇒ ♦(λk. d < k) ≡ δd (transitivity) ⇒ �(λk. k < u) ≡ υu

⇐ rounded (interpolation) ⇐

∃d. δd ≡ ∃d. ♦(λk. d < k) inhabited ∃u. υu ≡ ∃u. �(λk. k < u)

⇔ ♦(λk. ∃d. d < k) (directed joins) ⇔ �(λk. ∃u. k < u)

⇔ ♦> ⇔ > (inhabited) (extrapolation) ⇔ �> ⇔ >
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Compact overt subspace of R defines a Dedekind cut

δ and υ are disjoint, by transitivity of <

(δd ∧ υu) ≡ ♦(λk. d < k) ∧�(λk. k < u) ⇒ ♦(λk. d < k ∧ k < u) ⇒ (d < u)

δ and υ are located (touch), by locatedness of <

(δd ∨ υu) ≡ ♦(λk. d < k) ∨�(λk. k < u) ⇐ �(λk. d < k ∨ k < u) ⇐ (d < u). �

The proofs are dual, each using one of the mixed modal laws, and ♦σ ⇒ σ ⇒ �σ.
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Compact overt subspace of R defines a Dedekind cut

Hence there is some a : R with

δd ⇔ (d < a) ⇔ ♦(λk. d < k) and υu ⇔ (a < u) ⇔ �(λk. k < u)

Moreover, a ∈ K.

Recall that K is the closed subspace co-classified by ωx ≡ �(λk. x 6= k),

so we must show that ωa⇔ ⊥.

ωa ≡ �(λk. a 6= k) ⇔ �(λk. a < k) ∨ (k < a)

⇒ ♦(λk. a < k) ∨ �(λk. k < a)

≡ δa ∨ υa
⇔ (a < a) ∨ (a < a) ⇔ ⊥.
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Compact overt subspace of R has a maximum

Any overt compact subspace K ⊂ R is

either empty

or has a greatest element maxK ≡ a ∈ K.

This satisfies, for Γ ` x : R,

(x < maxK) ⇔ (∃k:K. x < k)

(maxK < x) ⇔ (∀k:K. k < x)

k : K ` k ≤ maxK

Γ, k : K ` k ≤ x

Γ ` maxK ≤ x
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The Bishop-style proof

K is totally bounded if,
for each ε > 0, there’s a finite subset Sε ⊂ K

such that ∀x:K. ∃y ∈ Sε. |x− y| < ε.

If K is closed and totally bounded,
either the set S1 is empty, in which case K is empty too,

or xn ≡ maxS2−n defines a Cauchy sequence that converges to maxK.

But K is also overt, with
♦φ ≡ ∃ε > 0. ∃y ∈ Sε. φy.

K is located if, for each x ∈ X,
inf {|x− k| | k ∈ K} is defined.

(A different usage of the word “located”.)

closed and totally bounded ⇒ compact and overt ⇒ located

Total boundedness and locatedness are metrical concepts.
Compactness and overtness are topological.
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The real interval is connected

Any closed subspace of a compact space is compact.

Any open subspace of an overt space is overt.

Any clopen subspace of an overt compact space is overt compact,

so it’s either empty or has a maximum.

Since the clopen subspace is open, its elements are interior,

so maximum can only be the right endpoint of the interval.

Any clopen subspace has a clopen complement.

They can’t both be empty, but

in the interval they can’t both have maxima (the right endpoint).

Hence one is empty and the other is the whole interval.
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Connectedness in modal notation

Using � θ ≡ ∀x:[0,1]. θx and ♦ θ ≡ ∃x:[0,1]. θx,

♦(φ ∧ ψ) = ⊥ ` �(φ ∨ ψ) ⇒ �φ ∨�ψ �(φ ∨ ψ) ⇒ �φ ∨�ψ ∨ ♦(φ ∨ ψ)

♦(φ ∧ ψ) = ⊥ ` �(φ ∨ ψ) ∧ ♦φ ∧ ♦ψ ⇒ ⊥ �(φ ∨ ψ) ∧ ♦φ ∧ ♦ψ ⇒ ♦(φ ∧ ψ)

(♦φ ∧�ψ ⇒ ♦(φ ∧ ψ)) (Gentzen-style rule for ♦(φ ∧ ψ))
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Weak intermediate value theorems

Let f : [0,1]→ R, and use two of these forms of connectedness.

♦(φ ∧ ψ) = ⊥ ` �(φ ∨ ψ) ∧ ♦φ ∧ ♦ψ ⇒ ⊥

φx ≡ (0 < fx) and ψx ≡ (fx < 0)

♦(φ ∧ ψ) ⇔ ⊥ by disjointness.

(f0 < 0 < f1) ∧ (∀x:[0,1]. fx 6= 0) ⇔ ⊥

so the closed, compact subspace

Z ≡ {x : I | fx = 0}
is not empty.

�(φ ∨ ψ) ∧ ♦φ ∧ ♦ψ ⇒ ♦(φ ∧ ψ)

φx ≡ (e < fx) and ψx ≡ (fx < t)

�(φ ∨ ψ) by locatedness.

(f0 < e < t < f1) ⇒ (∃x:[0,1]. e < fx < t)

or ε > 0 ` ∃x. |fx| < ε

so the open, overt subspace

{x | e < fx < t}
is inhabited.
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Straddling intervals in ASD

Recall that

f : R→ R doesn’t hover if (e < t) ⇒ ∃x. (e < x < t) ∧ (fx 6= 0).

a : R is a stable zero if (e < a < t) ⇒ ∃yz. (e < y < a < z < t) ∧ (fy < 0 < fz ∨ fy > 0 > fy).

♦φ ≡ ∃et:[d, u]. (e < t) ∧ (∀x:[e, t]. φx) ∧ (fe < 0 < ft ∨ fe > 0 > ft).

Then a is a stable zero iff it is an accumulation point of ♦ (φa ⇒ ♦φ).

If f doesn’t hover then ♦ preserves joins, ♦(∃n. θn) ⇔ ∃n. ♦ θn.

Consider φ±x ≡ ∃n. ∃y. (x < y < u) ∧ (fy >
< 0) ∧ ∀z:[x, y]. θnz.

Then ∃x. φ+x ∧ φ−x by connectness and continue as before.
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