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The Classical Intermediate Value Theorem

Any continuous f : [0,1] — R with f(0) <0 < f(1) has a zero.

Indeed, f(xg) = 0 where zg =sup{z | f(z) < 0}.

A so-called ‘closed formula'.



A program: interval halving

Let ag =0 and eg = 1.

By recursion, consider ¢, = 3(an + en) and

(

an, Cnp it f(Cn) > 0
ap+15 €n41 = 9

Cn, €n |f f(Cn) S O,

so by induction f(an) <0 < f(en).

But a, and e, are respectively (non-strictly) increasing and decreasing sequences,
whose differences tend to O.

So they converge to a common value c.

By continuity, f(c) = 0.



Where is the zero??

For —1 <p< 41 and 0 <z < 3 consider

fpr = min(z — 1, max(p,x — 2))

Here is the graph of fp(x) against x for p = 0.
+1, fpx




Where is the zero?

The behaviour of f,(z) depends qualitatively on p and z like this:
+1.,p

—Vve positive

negative +ve

f(1)=0 <= p>0
f(2)=0 <= p<oO

f3)=0 <= p=0

If there is some way of finding a zero of fp,
as a side-effect it will decide how p stands in relation to O.



Let's bar the monster

Definition f : R — R doesn’t hover if,

foranye<t, dz.(e<z<t) A (fx £#=0).

EXxercise Any nonzero polynomial doesn’t hover.



Interval halving again

Suppose that f doesn’'t hover.
Let ag =0 and eg = 1.

By recursion, consider

bn = 2(2an +en) and  dn = i(an + 2en).
Then f(en) # 0 for some b, < ¢ < dp, SO put

i

an, Cnp |f f(Cn) > O
An41, Ent+l =

Cn, €n If f(Cn) < O?
so by induction f(an) < 0 < f(en).

But a, and e, are respectively (non-strictly) increasing and decreasing sequences,
whose differences tend to O.

So they converge to a common value c.

By continuity, f(c) = 0.



Stable zeroes

The revised interval halving algorithm finds zeroes with this property:

Definition a € R is a stable zero of f
if, for all e < a < ¢,

Jyz. (e<y<a<z<t) N (fy<0<fzVfy>0> fz).

Jy Jz

EXxercise Check that a stable zero of a continuous function really is a zero.

Classically, a zero is stable iff
every nearby function (in the sup or £oc norm) has a nearby zero.



Straddling intervals

Proposition An open subspace U C R touches S, j.e. contains a stable zero, a €¢ U N S,
iff U contains a straddling interval,

le,t] CU with fe<O< ft or fe>0> ft.
Proof [«] The straddling interval is an intermediate value problem in miniature.

If an interval [e,t] straddles with respect to f
then it also does so with respect to any nearby function.



T he possibility operator

Notation Write O U if U contains a straddling interval.

By hypothesis, 0 I & T (where I is some open interval containing I).

Trivially, 00 < L.

Theorem QU;c;U; < di. OU;.

Consider

VE = {z|3y:R. Jil. (fy 2 0) Alz,y] C U}
solcVtuv-.

Then z € (a,¢) C VT NV~ by connectedness, with fz # 0 and [z,y] C U;.
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T he Possibility Operator as a Program

Let { be a property of open subspaces of R
that preserves unions and satisfies () Uy for some open interval Up.

Then ) has an “accumulation point” c € Up,
i.e. one of which every open neighbourhood ¢ € U C R satisfies O U.
In the example of the intermediate value theorem, any such c is a stable zero.

Interval halving again: let ag =0, eg=1
and, by recursion, b, = %(Qan + en) and d, = %(an + 2ep), SO
Olan,en) = O ((an,dn) U (bn,en)) < Olan,dn) V O(bn,en).

Then at least one of the disjuncts is true,
so let (an41,ep41) be either (an,dn) or (bn,en).

Hence a, and e, converge from above and below respectively to c.
If ce U then c € (an,en) C (cte) C U for some € > 0 and n,

but O(an,en) is true by construction,
so { U also holds, since () takes C to =.
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Enclosing cells of higher dimensions

Straddling intervals can be generalised.
Let f:R™®™ — R™ with n > m.

Let C C R™ be a sphere, cube, etc.

Definition C is an enclosing cell if
0 € R™M lies in the interior of the image f(C) C R™.

(There is a definition for locally compact spaces too.)

Notation Write O U if U C R™ contains an enclosing cell.

Theorem If § (U;c1U;) < Fi. OU; then
cell halving finds stable zeroes of f.
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Modal operators, separately

Z ={xel| fr =0} is closed and compact.
W ={x| fr # 0} is open.
S is the subspace of stable zeroes.

Notation For U C R open, write QU if Z C U (or UUW = R).

O0X istrue and QUAQOV = OUNV)

OQis false and Q(UUV) = OUVOV.

(Z#0) iff [0 is false

(S£#0) iff ORis true

Both operators are Scott continuous.
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Modal operators, together

The modal operators { and [ for the subspaces S C Z are related in general by:

OUAOV = O(UNV)
OU <— (UUW = X)

OV = (VZWw)

S is dense in Z iff

OUuV) = QOQuvov

OV = (VZWw)

In the intermediate value theorem for functions that don’'t hover (e.g. polynomials):
S = Z in the non-singular case
S C Z in the singular case (e.g. double zeroes).
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Open maps

For continuous f: X — Y,
if V.CY isopen, sois f~1(V)c X
if VCY is closed, sois f~1(V) c X
if U C X is compact, sois f(U) CY
(if U Cc X is overt, sois f(U) CY)

Definition f: X — Y is open if,
whenever U C X is open, so is f(U) C Y.

Proposition If f: X — Y is open then
if V CY is overt, sois f~1(V) C X.

Corollary If f: X — Y is open then all zeroes are stable.
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Examples of open maps
If £:RR — R™ is continuously differentiable, and det (%) £ 0.

If f:C — C is analytic and not constant — even if it has coincident zeroes.

Cauchy’s integral formula:
a disc C C C is enclosing iff fao% # 0.

Stokes's theorem!
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Possibility operators classically

Define QU as UN S # 0,
for any subset S C R whatever.

Then O (Usep U;) iff Ji. O U;.

Conversely, if  has this property, let

S ={aceR|forallopen UCR, a€clU= U}

W = R\S = | J{U open | =QU}

Then W is open and S is closed.
-~ W Dby preservation of unions.
Hence QU holds iff U ¢ W, i.e. UNS % 0.

If ¢ had been derived from some S’

then S = S/, its closure.
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Possibility operators: summary

O is defined, like compactness, in terms of unions of open subspaces,
SO it is a concept of general topology

The proof that { preserves joins uses ideas from geometric topology,
like connectedness and sub-division of cells.

O is like a bounded existential quantifier, so it's logic.

A very dgeneral algorithm uses () to find solutions of problems.

But classical point-set topology is too clumsy to take advantage of this.
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Overt and compact subspaces

Overt subspace

O U means U touches

forany U, (ac€U) = QU
a iS an accumulation point of
a is in the closure of

Overt subspace of discrete space
IS open

Open subspace of overt space
IS overt

Compact subspace

[1U means U covers []

for any U, OU = (a € U)

a IS in the saturation of []

Compact subspace of Hausdorff space
is closed

Closed subspace of compact space
is Hausdorff
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Overt and compact subspaces

Overt subspace of discrete space

O ¢ means ¢ touches

¢zy = (y€{z}) = (z=y)

ar = O(\y.x = vy)

Open subspace of overt space

O¢p = In(an o)

Compact subspace of Hausdorff space

[1¢ means ¢ covers []

¢zy = (y€{z}) = (z £ y)

wr = O\y. ¢ £ v)

Closed subspace of compact space

O¢ = Vig(wV o)
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Overt and compact subspaces

Overt subspace

O U means U touches

u cw

ANU = ()

QU

Closed subspace X \ W

Open subspace A

Compact subspace

[JU means U covers []

UuWw = X

OuU

AN
Qﬁ

C

OuU
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Overt and compact subspaces

Overt subspace
defined by ¢ : ="
acOif pa = O

¢ < w

Cp & L

alNp & L

0P = L

O(Mx. 0(x,O)) <
O (Az. 0(z, M. OV ox)),

Closed subspace
co-classified by
wixX
a€wif was L
Open subspace
classified by
a X
acaifacs T
general
case

Compact subspace
defined by []: ==
a € []if Dqﬁ = ¢a,

O(Ax. 0(x,0)) =
O(Az. 8(x, A\p. O A ¢x)),
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Modal laws

Overt subspace
0L & L
CpVy) <& 0oV Oy
cANQ¢ < O(oNg)
O (Az. #(Ay. ¢zy)) < #(Ay. O(Az. dzy))

Compact subspace
OT7T & T
O(@AY) < OoADOY
cVOe < O\x. oV ox)

O(x. B(\y. ozy)) < By, O(Az. ozy))

Mixed modal laws

OoVOoy <= D@ V)

and

O A0y = 0@ AY)
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Empty/inhabited is decidable

Overt subspace Compact subspace
01T < 1L empty OL < T
OT & T inhabited Ol & 1
OLVOT «= complementary OLAOT =

O(LVvT) & OT < T (mixed modal laws) O(LAL) & 0L < L

The dichotomy means that the parameter space I is a disjoint union.

So, if it is connected, like R?, something must break at singularities.
It is the modal law O(¢ V) = O V O .
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Compact overt subspace of R defines a Dedekind cut

Overt subspace Compact subspace []
1L, V, Vand so dp commutes with T, AN and V
5d = O(\k.d < k) Dedekind cut vu = OO0k k < u)
(d<e)ANde = lower /upper vtNA (t<u) =
(d<e)NO(Ak.e < k) Ok kE<t) At <u)
& O(Mk.d<e<k) (Frobenius/OT) &S Ok k<t <u)
= O(M\k.d< k) = déd (transitivity) = OA\k. k<u) = vu
<= rounded (interpolation) =
3d. 6d = Id. O(M\k.d < k) inhabited Ju.vu = Ju. Ok k < u)
& O(Ak.3Jd. d < k) (directed joins) & Ok, Ju. k < u)

< OT < T (inhabited) (extrapolation) S OT7T < T
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Compact overt subspace of R defines a Dedekind cut

d and v are disjoint, by transitivity of <

(ddAhvu) = O Ak.d<k)ANOMk. kE<u) = O(Mk.d<kNnk<u) = (d<u)

6 and v are located (touch), by locatedness of <

(5dVou) = Ok.d<k)VOOk k<u) < OM0k.d<kVk<u) < (d<u).

The proofs are dual, each using one of the mixed modal laws, and o = ¢ = Jo.
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Compact overt subspace of R defines a Dedekind cut

Hence there is some a : R with

0d < (d<a) & O(Ak.d< k) and vu < (a<u) < OWNk. k<u)

Moreover, a € K.

Recall that K is the closed subspace co-classified by wx = O(Xk. x = k),
so we must show that wa & 1.

wa = OAk.a#k) & Ok.a<k) V (kE<a)
= O(\k.a<k) VvV OWNk. k<a)
= Jda Vva

& (a<a)Via<a) & L.
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Compact overt subspace of R has a maximum

Any overt compact subspace K C R is
either empty
or has a greatest element max K =a € K.

This satisfies, for I -z : R,

(r<maxK) & (Fk:K.z<k)
(mxK <z) & (Vk:K.k<x)
kK F kE<maxK

Mk K F k<z

' - max K <z
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T he Bishop-style proof

K is totally bounded if,
for each € > 0, there’'s a finite subset S C K
such that Vx: K. Jy € Se. |z — y| < €.

If K is closed and totally bounded,
either the set S is empty, in which case K is empty too,
or xn = max S,—n defines a Cauchy sequence that converges to max K.

But K is also overt, with
O = de > 0.dy € Se. py.

K is located if, for each = € X,
inf {|x — k| | kK € K} is defined.
(A different usage of the word “located”.)

closed and totally bounded = compact and overt = |ocated

Total boundedness and |locatedness are metrical concepts.
Compactness and overtness are topological.
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T he real interval Is connected

Any closed subspace of a compact space is compact.
Any open subspace of an overt space is overt.

Any clopen subspace of an overt compact space is overt compact,
SO it's either empty or has a maximum.

Since the clopen subspace is open, its elements are interior,
SO maximum can only be the right endpoint of the interval.

Any clopen subspace has a clopen complement.
They can’'t both be empty, but
in the interval they can’t both have maxima (the right endpoint).

Hence one is empty and the other is the whole interval.

30



Connectedness in modal notation
Using (06 = Vx:[0,1]. 0z and 6§ = dz:[0, 1]. Oz,

Cleny)=1 F O@Vy) = 0oV O(@Vy) = OeVvOy VOo(eVy)
Cleny)=1L F O@VYPIAQGPAQY = L O@VY)ANOINOGY = G A)
QConOyY = O(dANY)) (Gentzen-style rule for O(p A))
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Weak intermediate value theorems

Let f:[0,1] — R, and use two of these forms of connectedness.

Clony) =1L F (@VYPIAOIANOY = L (@ VYINQGPAQY = G(dAY)
oxr = (0 < fx) and vz = (fx < 0) or = (e < fx) and Yz = (fz < t)
O(p A1) < L by disjointness. O(¢ V1) by locatedness.

(fO<O0< f1) A (Vz:[0,1]. fr #0) & L (f0<e<t< fl) = (dz:[0,1]. e< fx < t)
ore>0 F dx.|fx| <e

sO the closed, compact subspace so the open, overt subspace

Z=A{x:1| fr =0} {x|e< fx <t}
IS not empty. IS inhabited.
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Straddling intervals in ASD

Recall that
f:R— R doesn’'t hover if (e<t) = dx.(e<x<t) N (fz#0).
a:Ris astable zero if (e<a<t) = yz.(e<y<a<z<t) N (fuy<O0<fzVfy>0> fy).
O¢ = Fet:[d,u]. (e <t) N (Vz:le,t]. px) N (fe< O < ft V fe>0 > ft).
Then a is a stable zero iff it is an accumulation point of { (¢da = O ¢).

If f doesn’'t hover then { preserves joins, $(In.O,) < In. OOy.

Consider ¢Tz = 3n.Jy. (z <y <u) A (fy 2 0) AVzi[z,y]. Onz.
Then dx. q5+:13 A ¢~ x by connectness and continue as before.
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