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Russian Recursive Analysis
The recursive real number a : R is one for which
there is a program that, given k :N as input,
yields p, q : Qwith p < a < q and q − p < 2−k.
The recursive real line is the set of all such a : R.

Using some standard recursion theory...
there exists a singular cover of R, i.e. a recursively enumerable
sequence of intervals (pn, qn) ⊂ R with pn < qn : Q such that
I each recursive real number a lies in some interval (pn, qn),
I but

∑
n qn − pn < 1.

There is no finite subcover of I ≡ [0, 1].
Measure theory also goes badly wrong.



One solution: Weihrauch’s Type Two Effectivity
Consider all real numbers.
Represent them (for example) by signed binary expansions

a =
+∞∑

k=−∞

dk · 2−k with dk ∈ {+1, 0,−1}.

Think of {. . . , 0, 0, 0, . . . , d−2, d−1, , d0, d1, d2, . . .} as a Turing tape
with finitely many nonzero digits to the left,
but possibly infinitely many to the right.

Do real analysis in the usual way.

Do computation with the sequences of digits.

Klaus Weihrauch, Computable Analysis, Springer, 2000.
Vasco Brattka, Peter Hertling, Martin Ziegler, ...



Another solution: Bishop’s Constructive Analysis
Live without the Heine–Borel theorem.

Compact = closed and totally bounded.
(X is totally bounded if, for any ε > 0, there’s a finite set Sε ⊂ X
such that for any x ∈ X there’s s ∈ Sε with d(x, s) < ε.)

Errett Bishop, Foundations of Constructive Analysis, 1967

He developed remarkably much of analysis in a “can do” way,
without dwelling on counterexamples that arise from wrong
classical definitions.
Consistent with both Russian Recursive Analysis and Classical
Analysis. Uses Intuitionistic Logic (Brouwer, Heyting).
Douglas Bridges, Hajime Ishihara, Mark Mandelkern, Ray
Mines, Fred Richman, Peter Schuster, ...

No explicit computation, but
the issues that Constructive Analysis raises
are often the same ones that Numerical Analysts experience.
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Disadvantages of these methods
Point-set topology and recursion theory separately are
complicated subjects that lack conceptual structure.

Together, they give pathological results.

Intuitionism makes things even worse —
the natural relationship between open and closed subspaces
is replaced by double negation.

Category theory can do better than this!
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Some topology — the Sierpiński space

Classically, it’s just
(
�
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)
.

For every open subspace U ⊂ X

there’s a unique continuous function φ : X→
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•

)
for which U = φ−1( � ).
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X
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This is a bijective correspondence.
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The Sierpiński space
For every open subspace C ⊂ X
there’s a unique continuous function φ : X→ Σ
for which U = φ−1(>)

For every closed subspace C ⊂ X
there’s a unique continuous function φ : X→ Σ
for which C = φ−1(⊥).

There is a three-way correspondence.
It’s not set-theoretic complementation.
It doesn’t involve double negation or excluded middle.
It’s topology, not set theory.



Relative containment of open subspaces
Let σ, α, β be propositions (terms of type Σ) with parameters
x1 : X1, ..., xk : Xk.
They define open subspaces of Γ.
The correspondence is supposed to be bijective.
So they should satisfy a Gentzen-style rule of inference:

Γ, σ⇔ > ` α ⇒ β
====================
Γ ` σ ∧ α ⇒ β

in which the top line means

within the open subspace of Γ defined by σ,
the open subspace defined by α
is contained in the open subspace defined by β.

and the bottom line means
the intersection of the open subspaces defined by σ and α
is contained in that defined by β.



Relative containment of closed subspaces
Let σ, α, β be propositions (terms of type Σ) with parameters
x1 : X1, ..., xk : Xk.
They define closed subspaces of Γ.
The correspondence is supposed to be bijective.
So they should satisfy a Gentzen-style rule of inference:

Γ, σ⇔ ⊥ ` α ⇒ β
====================
Γ ` α ⇒ σ ∨ β

in which the top line means

within the closed subspace of Γ defined by σ,
the closed subspace defined by α
contains the closed subspace defined by β.

and the bottom line means
the intersection of the closed subspaces defined by σ and β
is contained in that defined by α.



The Euclidean & Phoa Principles
The Gentzen-style rule for open subspaces,

Γ, σ⇔ > ` α ⇒ β
====================
Γ ` σ ∧ α ⇒ β

with α ≡ F> and β ≡ σ ∧ Fσ gives the Euclidean principle

σ ∧ F> ⇐⇒ σ ∧ Fσ.

Combining this with monotonicity, α⇒ β ` Fα⇒ Fβ,
and the Gentzen-style rule for closed subspaces,
we obtain the Phoa principle,

Fσ ⇐⇒ F⊥ ∨ σ ∧ F>.

Paul Taylor, Geometric and Higher Order Logic, 2000.
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The topology as a function space

The topology on X is the set of functions X→ Σ ≡
(
�
•

)
.

Function spaces X→ Y have a (compact–open) topology too.
But it’s only well behaved when X is locally compact.
Ralph Fox, Topologies on function spaces, 1945.
To prove this, the critical case is Y ≡ Σ.
Then X→ Σ carries the Scott topology.

Dana Scott, Continuous Lattices, 1972.



Compactness and Scott continuity
A function F : L1 → L2 between complete lattices
is Scott continuous iff it preserves directed joins.
For example, let K ⊂ X be any subspace
and F : (X→ Σ)→ Σ the function for which
F(U) = > if K ⊂ U and ⊥ otherwise.
Then F is Scott continuous iff K is compact.
(This is just the “finite open subcover” definition in another
form.)

Popularised by Martı́n Escardó, Synthetic Topology, 2004.

In set theory ∃ satisfies the Frobenius law,

∃x. σ ∧ φ(x) ⇐⇒ σ ∧ ∃x. φx

In topology ∀ also satisfies the dual Frobenius law

∀x. σ ∨ φ(x) ⇐⇒ σ ∨ ∀x. φx

Japie Vermeulen, Proper maps in locale theory, 1994.
The Frobenius law for ∃ is a special case of the Euclidean
principle, with

Fσ ≡ ∃x. σ ∧ φx.
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This is still not enough to axiomatise topology
Consider the category Dcpo of posets with directed joins.
It has all limits, colimits and function-spaces.

The Dedekind and Cauchy reals can be defined.

They carry the discrete order, and the discrete topology.

I ≡ [0, 1] and Cantor space are not compact.

This is just as bad as Russian Recursive Analysis.
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Stone Duality and Locales
Marshall Stone, 1934: topology is dual to algebra.

The topology on X is an algebraic structure (finite meets and
infinitary joins).
Continuous functions X→ Y correspond bijectively to
homomorphisms from topology on Y to topology on X.

Locale theory redefines topology as algebra.
Peter Johnstone, Stone Spaces, CUP, 1983.

Eliminates many of the uses of the Axiom of Choice that plague
point-set topology.

Can be defined for sheaves,
and satisfies the Heine–Borel theorem.
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Abstract Stone Duality
Locale theory still uses algebras with sets as carriers.

“What if” the algebras (topologies) are spaces too?

In category theory we may define algebras over any category
we please, using a monad.

The category of topologies is Sop,
the dual of the category S of “spaces”.

It’s also a category of algebras for a
monad on S.

S
op

S

Σ(−)

∧

a Σ(−)

∨

Paul Taylor, 1993.
Inspired by Robert Paré, Colimits in topoi, 1974.
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Some generalised abstract nonsense
Jon Beck (1966) characterised monadic adjunctions:

I Σ(−) : Sop
→ S reflects invertibility,

i.e. if Σf : ΣY � ΣX then f : X � Y, and
I Σ(−) : Sop

→ S creates Σ(−)-split coequalisers.

Category theory is a strong drug —
it must be taken in small doses.

As in homeopathy (?),
it gets more effective the more we dilute it!
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Diluting Beck’s theorem (first part)
If Σf : ΣY � ΣX then f : X � Y.

X is the equaliser of

X >
ηX

> Σ2X ≡ ΣΣ
X

ηΣ2X >

Σ2ηX
> Σ

4X

where ηX : x 7→ λφ. φx.



Diluting Beck’s theorem (first part)
There’s an equivalent type theory for general spaces X.
P : ΣΣ

X
is prime if

Γ, F : Σ3X ` F P = P
(
λx. F (λφ. φx)

)
.

This says that the composites

Γ
P
> ΣΣ

X >
> Σ

4X

are equal.

So we should have a map Γ→ X.



Diluting Beck’s theorem (first part)
P : ΣΣ

X
is prime if Γ, F : Σ3X ` F P = P

(
λx. F (λφ. φx)

)
.

Γ ` P : ΣΣ
X

P is prime

Γ ` focus P : X
focus I

Γ ` P : ΣΣ
X

P is prime

Γ, φ : ΣX
` φ(focus P) = Pφ : Σ

focus β

Γ ` a, b : X Γ, φ : ΣX
` φa = φb

Γ ` a = b
T0

The definition thunk a = ηX(a) = λφ. φa serves as the
elimination rule for focus. Using this, equivalent ways of
writing the focus β and η (T0) rules are

thunk (focus P) = P and focus (thunk x) = x,

where P is prime.



Diluting Beck’s theorem (first part)
For X ≡N this is definition by description
and general recursion.
Paul Taylor, Sober Spaces and Continuations, 2002.

For X ≡ R it is Dedekind completeness.
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Diluting Beck’s theorem (second part)
Σ(−) : Sop

→ S creates Σ(−)-split coequalisers.

This means that (certain) subspaces exist,
and they have the subspace topology.

E > > X >
> Y

Σ
Iφ<....

......
......

.

φ >

Every open subspace of E is the restriction of one of X,
in a canonical way.

There’s a corresponding type theory.
Paul Taylor, Subspaces in Abstract Stone Duality, 2002.

It can be used to develop an abstract, finitary axiomatisation of
the “way below” relation for continuous lattices.
Paul Taylor, Computably based locally compact spaces, 2006.



Diluting Beck’s theorem (second part)
Σ(−) : Sop

→ S creates Σ(−)-split coequalisers.

This means that (certain) subspaces exist,
and they have the subspace topology.

E > > X >
> Y

Σ
Iφ<....

......
......

.

φ >

Every open subspace of E is the restriction of one of X,
in a canonical way.

There’s a corresponding type theory.
Paul Taylor, Subspaces in Abstract Stone Duality, 2002.

It can be used to develop an abstract, finitary axiomatisation of
the “way below” relation for continuous lattices.
Paul Taylor, Computably based locally compact spaces, 2006.



Diluting Beck’s theorem (second part) even further
Σ(−) : Sop

→ S creates Σ(−)-split coequalisers.
In particular, the Dedekind reals can be expressed as an
equaliser

R > > ΣQ × ΣQ >
> Y

Σ <
......

......
.....

>

where, classically, the map I takes
an open subspace O ⊂ R to the open subspace

{(D,U) ∈ ΣQ × ΣQ | ∃d,u : Q. d ∈ D ∧ u ∈ U ∧ [d,u] ⊂ O}.

The idempotent on ΣΣ
Q
×ΣQ can be defined just using rationals.

R can be defined abstractly from this.
It satisfies the Heine–Borel theorem!
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Natural axioms for the reals
The arithmetic operations: 0, 1, +, −, ×, ÷.
The arithmetic relations: <, >, ,.
(Not ≤, ≥ and = since they’re not
topologically open or computationally observable)
Geometric logic: >, ⊥, ∧, ∨, ∃N, ∃R.
(Not ¬ or⇒ since they would solve the halting problem.)
Primitive recursion overN.
Dedekind completeness and the Heine–Borel theorem.
Universal quantification (∀) is defined over compact subspaces.

Andrej Bauer and Paul Taylor, The Dedekind Reals in ASD, 2005.


