
Interval Analysis Without Intervals

Paul Taylor

Department of Computer Science
University of Manchester

UK EPSRC GR/S58522

Real Numbers and Computers 7
Nancy, Monday, 10 July 2006

www.cs.man.ac.uk/∼pt/ASD

http://www.cs.man.ac.uk/~pt/ASD/index.pdf

A theorist amongst programmers
I am offering you
I a logic that is complete for computably continuous

functions Rn
→ R

I and some vague ideas for programming with it.

I want you to tell me
I how you could use my ideas to extend your exact real

arithmetic systems,
I what other theoretical issues (such as backtracking)

emerge from your programming,
I and can you implement my language?

A theorist amongst programmers
I am offering you
I a logic that is complete for computably continuous

functions Rn
→ R

I and some vague ideas for programming with it.

I want you to tell me
I how you could use my ideas to extend your exact real

arithmetic systems,
I what other theoretical issues (such as backtracking)

emerge from your programming,
I and can you implement my language?

Where am I coming from?

Category theory.

Category theory is a distillation of decades of mathematical
experience into a form in which it can be used in other subjects
(algebraic topology, logic, computer science, physics...).

Used skillfully, it can often tell us how to do mathematics,
though not necessarily why.

But it is a strong drug — it becomes more effective when it is
diluted.

Where am I coming from?
Category theory.

Category theory is a distillation of decades of mathematical
experience into a form in which it can be used in other subjects
(algebraic topology, logic, computer science, physics...).

Used skillfully, it can often tell us how to do mathematics,
though not necessarily why.

But it is a strong drug — it becomes more effective when it is
diluted.

Where am I coming from?
Category theory.

Category theory is a distillation of decades of mathematical
experience into a form in which it can be used in other subjects
(algebraic topology, logic, computer science, physics...).

Used skillfully, it can often tell us how to do mathematics,
though not necessarily why.

But it is a strong drug — it becomes more effective when it is
diluted.

To cut a long story short
I had a “what if” idea from category theory in 1993.

(It’s called Abstract Stone Duality.)

I have been diluting it ever since.

It gives a new account of
computably based locally compact spaces.

In 2004 (with Andrej Bauer) I began to apply it to the real line.

It worked very nicely.

Keeping to the original idea, it says that
the real line is Dedekind complete (NB!)
and has the Heine–Borel property ([0, 1] is compact).

The language that I shall discuss today
is the fragment of the main ASD calculus for the type R.

To cut a long story short
I had a “what if” idea from category theory in 1993.

(It’s called Abstract Stone Duality.)

I have been diluting it ever since.

It gives a new account of
computably based locally compact spaces.

In 2004 (with Andrej Bauer) I began to apply it to the real line.

It worked very nicely.

Keeping to the original idea, it says that
the real line is Dedekind complete (NB!)
and has the Heine–Borel property ([0, 1] is compact).

The language that I shall discuss today
is the fragment of the main ASD calculus for the type R.

To cut a long story short
I had a “what if” idea from category theory in 1993.

(It’s called Abstract Stone Duality.)

I have been diluting it ever since.

It gives a new account of
computably based locally compact spaces.

In 2004 (with Andrej Bauer) I began to apply it to the real line.

It worked very nicely.

Keeping to the original idea, it says that
the real line is Dedekind complete (NB!)
and has the Heine–Borel property ([0, 1] is compact).

The language that I shall discuss today
is the fragment of the main ASD calculus for the type R.

To cut a long story short
I had a “what if” idea from category theory in 1993.

(It’s called Abstract Stone Duality.)

I have been diluting it ever since.

It gives a new account of
computably based locally compact spaces.

In 2004 (with Andrej Bauer) I began to apply it to the real line.

It worked very nicely.

Keeping to the original idea, it says that
the real line is Dedekind complete (NB!)
and has the Heine–Borel property ([0, 1] is compact).

The language that I shall discuss today
is the fragment of the main ASD calculus for the type R.

I have been impressed by
Intellectual diversity — many different skills applied to R.

Theoretical issues that emerge from programming —
e.g. when and how to back-track to improve precision.

The logical content of crude arithmetic —
e.g. the Interval Newton algorithm.

I am not impressed by
Timing benchmarks.

Excessive attention to representations of real numbers.
Heavy dependency on dyadic rationals or Cauchy sequences.

Theory without insight.
Naı̈ve and dogmatic application of naı̈ve set theory.
This applies especially to the “theoretical foundations” of
Interval Analysis.

What’s in it for you?
A theoretical framework
on which to structure your programming.

Not just exact real arithmetic, but also analysis.

How to generalise interval computations
to Rn, C and other (locally compact) spaces from geometry.

All functions are continuous and computable
This is not a Theorem (à la Brouwer) but a design principle.
The language only introduces continuous computable
functions.

For R, we understand “continuity”
in the familiar ε–δ sense of Weierstrass.

Therefore, step functions, etc.
are not definable as functions R→ R.

The full language of Abstract Stone Duality (currently)
describes all (not necessarily Hausdorff) locally compact spaces.

Step functions and lots of other things
are definable as functions to other spaces besides R,
such as the interval domain.

All functions are continuous and computable
This is not a Theorem (à la Brouwer) but a design principle.
The language only introduces continuous computable
functions.

For R, we understand “continuity”
in the familiar ε–δ sense of Weierstrass.

Therefore, step functions, etc.
are not definable as functions R→ R.

The full language of Abstract Stone Duality (currently)
describes all (not necessarily Hausdorff) locally compact spaces.

Step functions and lots of other things
are definable as functions to other spaces besides R,
such as the interval domain.

All functions are continuous and computable
This is not a Theorem (à la Brouwer) but a design principle.
The language only introduces continuous computable
functions.

For R, we understand “continuity”
in the familiar ε–δ sense of Weierstrass.

Therefore, step functions, etc.
are not definable as functions R→ R.

The full language of Abstract Stone Duality (currently)
describes all (not necessarily Hausdorff) locally compact spaces.

Step functions and lots of other things
are definable as functions to other spaces besides R,
such as the interval domain.

All functions are continuous and computable
This is not a Theorem (à la Brouwer) but a design principle.
The language only introduces continuous computable
functions.

For R, we understand “continuity”
in the familiar ε–δ sense of Weierstrass.

Therefore, step functions, etc.
are not definable as functions R→ R.

The full language of Abstract Stone Duality (currently)
describes all (not necessarily Hausdorff) locally compact spaces.

Step functions and lots of other things
are definable as functions to other spaces besides R,
such as the interval domain.

A very important non-Hausdorff space
Besides R andN, we also use the Sierpiński space Σ.

Topologically, Σ looks like
(
�
•

)
.

In programming languages, Σ is called void or unit.
ASD exploits the analogy amongst
I (continuous) functions X→ Σ,
I programs X→ Σ,
I open subspaces U ⊂ X,
I recursively enumerable subspaces U ⊂ X,
I and observable properties of x ∈ X.

In fact, it makes this correspondence exact.
In particular, the exponential X→ Σ is the topology on X.
It is a lattice that is itself equipped with the Scott topology
(which is also used in domain theory).
Similar methods have been used in compiler design,
where X→ Σ is the type of continuations from X.

A very important non-Hausdorff space
Besides R andN, we also use the Sierpiński space Σ.

Topologically, Σ looks like
(
�
•

)
.

In programming languages, Σ is called void or unit.

ASD exploits the analogy amongst
I (continuous) functions X→ Σ,
I programs X→ Σ,
I open subspaces U ⊂ X,
I recursively enumerable subspaces U ⊂ X,
I and observable properties of x ∈ X.

In fact, it makes this correspondence exact.
In particular, the exponential X→ Σ is the topology on X.
It is a lattice that is itself equipped with the Scott topology
(which is also used in domain theory).
Similar methods have been used in compiler design,
where X→ Σ is the type of continuations from X.

A very important non-Hausdorff space
Besides R andN, we also use the Sierpiński space Σ.

Topologically, Σ looks like
(
�
•

)
.

In programming languages, Σ is called void or unit.
ASD exploits the analogy amongst
I (continuous) functions X→ Σ,
I programs X→ Σ,
I open subspaces U ⊂ X,
I recursively enumerable subspaces U ⊂ X,
I and observable properties of x ∈ X.

In fact, it makes this correspondence exact.

In particular, the exponential X→ Σ is the topology on X.
It is a lattice that is itself equipped with the Scott topology
(which is also used in domain theory).
Similar methods have been used in compiler design,
where X→ Σ is the type of continuations from X.

A very important non-Hausdorff space
Besides R andN, we also use the Sierpiński space Σ.

Topologically, Σ looks like
(
�
•

)
.

In programming languages, Σ is called void or unit.
ASD exploits the analogy amongst
I (continuous) functions X→ Σ,
I programs X→ Σ,
I open subspaces U ⊂ X,
I recursively enumerable subspaces U ⊂ X,
I and observable properties of x ∈ X.

In fact, it makes this correspondence exact.
In particular, the exponential X→ Σ is the topology on X.
It is a lattice that is itself equipped with the Scott topology
(which is also used in domain theory).

Similar methods have been used in compiler design,
where X→ Σ is the type of continuations from X.

A very important non-Hausdorff space
Besides R andN, we also use the Sierpiński space Σ.

Topologically, Σ looks like
(
�
•

)
.

In programming languages, Σ is called void or unit.
ASD exploits the analogy amongst
I (continuous) functions X→ Σ,
I programs X→ Σ,
I open subspaces U ⊂ X,
I recursively enumerable subspaces U ⊂ X,
I and observable properties of x ∈ X.

In fact, it makes this correspondence exact.
In particular, the exponential X→ Σ is the topology on X.
It is a lattice that is itself equipped with the Scott topology
(which is also used in domain theory).
Similar methods have been used in compiler design,
where X→ Σ is the type of continuations from X.

Observable arithmetic relations
In particular, functions R ×R→ Σ
correspond to open binary relations.

Hence a < b, a > b and a , b are definable,
but a 6 b, a > b and a = b are not definable.

This agrees with programming experience
(even in classical numerical analysis).

Topologically, it is because R is Hausdorff but not discrete.

On the other handN and Q are discrete and Hausdorff,
so we have all six relations for them.

Observable arithmetic relations
In particular, functions R ×R→ Σ
correspond to open binary relations.

Hence a < b, a > b and a , b are definable,
but a 6 b, a > b and a = b are not definable.

This agrees with programming experience
(even in classical numerical analysis).

Topologically, it is because R is Hausdorff but not discrete.

On the other handN and Q are discrete and Hausdorff,
so we have all six relations for them.

Observable arithmetic relations
In particular, functions R ×R→ Σ
correspond to open binary relations.

Hence a < b, a > b and a , b are definable,
but a 6 b, a > b and a = b are not definable.

This agrees with programming experience
(even in classical numerical analysis).

Topologically, it is because R is Hausdorff but not discrete.

On the other handN and Q are discrete and Hausdorff,
so we have all six relations for them.

Observable arithmetic relations
In particular, functions R ×R→ Σ
correspond to open binary relations.

Hence a < b, a > b and a , b are definable,
but a 6 b, a > b and a = b are not definable.

This agrees with programming experience
(even in classical numerical analysis).

Topologically, it is because R is Hausdorff but not discrete.

On the other handN and Q are discrete and Hausdorff,
so we have all six relations for them.

The logic of observable properties
A term σ : Σ is called a proposition.
A term φ : ΣX is called a predicate.
Recall that it represents an open subspace or observable
predicate.

We can form φ ∧ ψ and φ ∨ ψ,
by running programs in series or parallel.

Also ∃n : N. φx, ∃q : Q. φx, ∃x : R. φx and ∃x : [0, 1]. φx.

(But not ∃x : X. φx for arbitrary X — it must be overt.)

Negation and implication are not allowed.

Because:
I this is the logic of open subspaces;

I the function �� • on
(
�
•

)
is not continuous;

I the Halting Problem is not solvable.

The logic of observable properties
A term σ : Σ is called a proposition.
A term φ : ΣX is called a predicate.
Recall that it represents an open subspace or observable
predicate.

We can form φ ∧ ψ and φ ∨ ψ,
by running programs in series or parallel.

Also ∃n : N. φx, ∃q : Q. φx, ∃x : R. φx and ∃x : [0, 1]. φx.

(But not ∃x : X. φx for arbitrary X — it must be overt.)

Negation and implication are not allowed.

Because:
I this is the logic of open subspaces;

I the function �� • on
(
�
•

)
is not continuous;

I the Halting Problem is not solvable.

The logic of observable properties
A term σ : Σ is called a proposition.
A term φ : ΣX is called a predicate.
Recall that it represents an open subspace or observable
predicate.

We can form φ ∧ ψ and φ ∨ ψ,
by running programs in series or parallel.

Also ∃n : N. φx, ∃q : Q. φx, ∃x : R. φx and ∃x : [0, 1]. φx.

(But not ∃x : X. φx for arbitrary X — it must be overt.)

Negation and implication are not allowed.

Because:
I this is the logic of open subspaces;

I the function �� • on
(
�
•

)
is not continuous;

I the Halting Problem is not solvable.

The logic of observable properties
A term σ : Σ is called a proposition.
A term φ : ΣX is called a predicate.
Recall that it represents an open subspace or observable
predicate.

We can form φ ∧ ψ and φ ∨ ψ,
by running programs in series or parallel.

Also ∃n : N. φx, ∃q : Q. φx, ∃x : R. φx and ∃x : [0, 1]. φx.

(But not ∃x : X. φx for arbitrary X — it must be overt.)

Negation and implication are not allowed.

Because:
I this is the logic of open subspaces;

I the function �� • on
(
�
•

)
is not continuous;

I the Halting Problem is not solvable.

Universal quantification
When K ⊂ X is compact (e.g. [0, 1] ⊂ R), we can form ∀x : K. φx.

. . . , x : K ` φx
======================
. . . ` ∀x : K. φx

The quantifier is a (higher-type) function ∀K : ΣK
→ Σ.

Like everything else, it’s Scott continuous.

The useful cases of this in real analysis are

∀x : K.∃δ > 0.φ(x, δ) ⇔ ∃δ > 0.∀x : K.φ(x, δ)
∀x : K.∃n.φ(x,n) ⇔ ∃n.∀x : K.φ(x,n)

in the case where (δ1 < δ2) ∧ φ(x, δ2) ⇒ φ(x, δ1)
or (n1 > n2) ∧ φ(x,n2) ⇒ φ(x,n1).

Recall that uniform convergence, continuity, etc.
involve commuting quantifiers like this.

Universal quantification
When K ⊂ X is compact (e.g. [0, 1] ⊂ R), we can form ∀x : K. φx.

. . . , x : K ` φx
======================
. . . ` ∀x : K. φx

The quantifier is a (higher-type) function ∀K : ΣK
→ Σ.

Like everything else, it’s Scott continuous.

The useful cases of this in real analysis are

∀x : K.∃δ > 0.φ(x, δ) ⇔ ∃δ > 0.∀x : K.φ(x, δ)
∀x : K.∃n.φ(x,n) ⇔ ∃n.∀x : K.φ(x,n)

in the case where (δ1 < δ2) ∧ φ(x, δ2) ⇒ φ(x, δ1)
or (n1 > n2) ∧ φ(x,n2) ⇒ φ(x,n1).

Recall that uniform convergence, continuity, etc.
involve commuting quantifiers like this.

Universal quantification
When K ⊂ X is compact (e.g. [0, 1] ⊂ R), we can form ∀x : K. φx.

. . . , x : K ` φx
======================
. . . ` ∀x : K. φx

The quantifier is a (higher-type) function ∀K : ΣK
→ Σ.

Like everything else, it’s Scott continuous.

The useful cases of this in real analysis are

∀x : K.∃δ > 0.φ(x, δ) ⇔ ∃δ > 0.∀x : K.φ(x, δ)
∀x : K.∃n.φ(x,n) ⇔ ∃n.∀x : K.φ(x,n)

in the case where (δ1 < δ2) ∧ φ(x, δ2) ⇒ φ(x, δ1)
or (n1 > n2) ∧ φ(x,n2) ⇒ φ(x,n1).

Recall that uniform convergence, continuity, etc.
involve commuting quantifiers like this.

Local compactness
Wherever a point a lies in the open subspace represented by φ,
so φa in my logical notation,

•&%
'$

there are a compact subspace K and an open one representing β
such that a is in the open set, i.e. βa and the open set is
contained in the compact one, ∀x ∈ K. βx.
Altogether, φa ⇐⇒ βa ∧ ∀x ∈ K. βx.

In fact β and K come from a basis that is encoded in some way.
For example, for R, β and K may be the open and closed
intervals with dyadic rational endpoints p, q.
Then φa ⇐⇒ ∃p, q : Q. a ∈ (p, q) ∧ ∀x ∈ [p, q]. φx.
Alternatively, φa ⇐⇒ ∃δ > 0. ∀x ∈ [a ± δ]. φx.

Local compactness
Wherever a point a lies in the open subspace represented by φ,
so φa in my logical notation,

•&%
'$

�
��
there are a compact subspace K and an open one representing β
such that a is in the open set, i.e. βa and the open set is
contained in the compact one, ∀x ∈ K. βx.
Altogether, φa ⇐⇒ βa ∧ ∀x ∈ K. βx.

In fact β and K come from a basis that is encoded in some way.
For example, for R, β and K may be the open and closed
intervals with dyadic rational endpoints p, q.
Then φa ⇐⇒ ∃p, q : Q. a ∈ (p, q) ∧ ∀x ∈ [p, q]. φx.
Alternatively, φa ⇐⇒ ∃δ > 0. ∀x ∈ [a ± δ]. φx.

Local compactness
Wherever a point a lies in the open subspace represented by φ,
so φa in my logical notation,

•&%
'$

�
��
there are a compact subspace K and an open one representing β
such that a is in the open set, i.e. βa and the open set is
contained in the compact one, ∀x ∈ K. βx.
Altogether, φa ⇐⇒ βa ∧ ∀x ∈ K. βx.

In fact β and K come from a basis that is encoded in some way.
For example, for R, β and K may be the open and closed
intervals with dyadic rational endpoints p, q.
Then φa ⇐⇒ ∃p, q : Q. a ∈ (p, q) ∧ ∀x ∈ [p, q]. φx.
Alternatively, φa ⇐⇒ ∃δ > 0. ∀x ∈ [a ± δ]. φx.

Examples: continuity and uniform continuity

Theorem: Every definable function f : R→ R is continuous:

ε > 0 ⇒ ∃δ > 0. ∀y : [x ± δ].
(∣∣∣fy − fx

∣∣∣ < ε)
Proof: Put φx,εy ≡

(∣∣∣fy − fx
∣∣∣ < ε), with parameters x, ε : R.

Theorem: Every function f is uniformly continuous
on any compact subspace K ⊂ R:

ε > 0 ⇒ ∃δ > 0. ∀x : K. ∀y : [x ± δ].
(∣∣∣fy − fx

∣∣∣ < ε)
Proof: ∃δ > 0 and ∀x : K commute.

Dedekind completeness
A real number a is specified
by saying whether (real or rational) numbers d,u
are bounds for it: d < a < u.

Historically first example: Archimedes calculated π (the area of
a circle)
using regular 3 · 2n-gons inside and outside it.

The question whether d is a lower bound
is an observable predicate, so is expressed in our language.

These two predicates define a Dedekind cut — they have to
satisfy certain axioms.

In practice, most of these axioms are easy to verify.
The one that isn’t is called locatedness:
there are some bounds d,u that are arbitrarily close together.

Pseudo-cuts that are not (necessarily) located are called
intervals.

Dedekind completeness
A real number a is specified
by saying whether (real or rational) numbers d,u
are bounds for it: d < a < u.

Historically first example: Archimedes calculated π (the area of
a circle)
using regular 3 · 2n-gons inside and outside it.

The question whether d is a lower bound
is an observable predicate, so is expressed in our language.

These two predicates define a Dedekind cut — they have to
satisfy certain axioms.

In practice, most of these axioms are easy to verify.
The one that isn’t is called locatedness:
there are some bounds d,u that are arbitrarily close together.

Pseudo-cuts that are not (necessarily) located are called
intervals.

Dedekind completeness
A real number a is specified
by saying whether (real or rational) numbers d,u
are bounds for it: d < a < u.

Historically first example: Archimedes calculated π (the area of
a circle)
using regular 3 · 2n-gons inside and outside it.

The question whether d is a lower bound
is an observable predicate, so is expressed in our language.

These two predicates define a Dedekind cut — they have to
satisfy certain axioms.

In practice, most of these axioms are easy to verify.
The one that isn’t is called locatedness:
there are some bounds d,u that are arbitrarily close together.

Pseudo-cuts that are not (necessarily) located are called
intervals.

Dedekind completeness
A real number a is specified
by saying whether (real or rational) numbers d,u
are bounds for it: d < a < u.

Historically first example: Archimedes calculated π (the area of
a circle)
using regular 3 · 2n-gons inside and outside it.

The question whether d is a lower bound
is an observable predicate, so is expressed in our language.

These two predicates define a Dedekind cut — they have to
satisfy certain axioms.

In practice, most of these axioms are easy to verify.
The one that isn’t is called locatedness:
there are some bounds d,u that are arbitrarily close together.

Pseudo-cuts that are not (necessarily) located are called
intervals.

A lambda-calculus for Dedekind cuts
Our formulation of Dedekind cuts does not use set theory, or
type-theoretic predicates of arbitrary logical strength.
It’s based on a simple adaptation of λ-calculus and proof
theory.

Given any pair [δ, υ] of predicates for which the axioms of a
Dedekind cut are provable,
we may introduce a real number:

[d : R]
·
·
·

δd : Σ

[u : R]
·
·
·

υu : Σ axioms for Dedekind cut

(cut du. δd ∧ υu) : R

A lambda-calculus for Dedekind cuts
Our formulation of Dedekind cuts does not use set theory, or
type-theoretic predicates of arbitrary logical strength.
It’s based on a simple adaptation of λ-calculus and proof
theory.

Given any pair [δ, υ] of predicates for which the axioms of a
Dedekind cut are provable,
we may introduce a real number:

[d : R]
·
·
·

δd : Σ

[u : R]
·
·
·

υu : Σ axioms for Dedekind cut

(cut du. δd ∧ υu) : R

A λ-calculus for Dedekind cuts
The elimination rules recover the axioms.

The β-rule says that (cut du. δd ∧ υu) obeys the order relations
that δ and υ specify:

e < (cut du. δd ∧ υu) < t ⇐⇒ δe ∧ υt.

As in the λ-calculus, this simply substitutes part of the context
for the bound variables.

The η-rule says that any real number a defines a Dedekind cut
in the obvious way:

δd ≡ (d < a), and υu ≡ (a < u).

Summary of the syntax

N R N&Σ R&Σ N&? Σ

N 0 succ rec the

R 0, 1 n +,−,×,÷ rec cut

Σ >,⊥
=,6,>
<,>,, <,>,, ∃n ∃x : R

∀x : [a, b] rec ∧,∨

the: definition by description.
cut: Dedekind completeness.

A valuable exercise
Make a habit of trying to formulate statements in analysis
according to (the restrictions of) the ASD language.

This may be easy — it may not be possible

The exercise of doing so may be 95% of solving your problem!

Real numbers and representable intervals
The language that we have described
I has continuous variables and terms

a, b, c, x, y, z (in italic)

that denote real numbers, or maybe vectors,
I about which we reason using pure mathematics, using

ideas of real analysis.

We need another language
I with discrete variables and terms

a, b, c, x, y, z (in sans serif)

that denote machine-representable intervals or cells,
I with which we compute directly.

Real numbers and representable intervals
The language that we have described
I has continuous variables and terms

a, b, c, x, y, z (in italic)

that denote real numbers, or maybe vectors,
I about which we reason using pure mathematics, using

ideas of real analysis.

We need another language
I with discrete variables and terms

a, b, c, x, y, z (in sans serif)

that denote machine-representable intervals or cells,
I with which we compute directly.

Cells for locally compact spaces
For computation on the real line, the interval x has machine
representable endpoints x ≡ d and x ≡ u.

For Rn the cells need not be cubes.
The theory of locally compact spaces tells us what to do.

A basis for a locally compact space is a family of cells.
A cell x is a pair U ⊂ K of spaces
with (x) ≡ U open and [x] ≡ K compact.
For example, U ≡ (p, q) and K ≡ [p, q] in R1.

The cell x is encoded in some machine-representable way.
For example, p and q are dyadic rationals.

Cells for locally compact spaces
For computation on the real line, the interval x has machine
representable endpoints x ≡ d and x ≡ u.

For Rn the cells need not be cubes.
The theory of locally compact spaces tells us what to do.

A basis for a locally compact space is a family of cells.
A cell x is a pair U ⊂ K of spaces
with (x) ≡ U open and [x] ≡ K compact.
For example, U ≡ (p, q) and K ≡ [p, q] in R1.

The cell x is encoded in some machine-representable way.
For example, p and q are dyadic rationals.

Cells for locally compact spaces
For computation on the real line, the interval x has machine
representable endpoints x ≡ d and x ≡ u.

For Rn the cells need not be cubes.
The theory of locally compact spaces tells us what to do.

A basis for a locally compact space is a family of cells.
A cell x is a pair U ⊂ K of spaces
with (x) ≡ U open and [x] ≡ K compact.
For example, U ≡ (p, q) and K ≡ [p, q] in R1.

The cell x is encoded in some machine-representable way.
For example, p and q are dyadic rationals.

Theory and practice
You already know how to program interval arithmetic.
The theory tells how to structure its generalisations.

Suppose that you want to generalise interval computations
to R2, Rn, C, the sphere S2 or some other space.

Its natural cells may be respectively
hexagons, close-packed spheres or circular discs.

The geometry and computation of sphere packing in many
dimensions is well known amongst group theorists.

Theory and practice
You already know how to program interval arithmetic.
The theory tells how to structure its generalisations.

Suppose that you want to generalise interval computations
to R2, Rn, C, the sphere S2 or some other space.

Its natural cells may be respectively
hexagons, close-packed spheres or circular discs.

The geometry and computation of sphere packing in many
dimensions is well known amongst group theorists.

Theory and practice
The theory of locally compact spaces tells us what we need to
know about the system of cells:
I How are arbitrary open subspaces expressed as unions of

basic ones?
I When is the compact subspace [x] of one cell

contained in the open subspace (y) of another?
We write x b y for this observable relation.

I How are any finite intersections of basic compact
subspaces
covered by finite unions of basic open subspaces?

I could give formal axioms, but geometric intuition is enough.

From the theory we derive a plan for the programming:
I how are (finite unions of) cells to be represented?
I how are the arithmetic operations and relations to be

computed?
I how are finite intersections covered by finite unions?

Theory and practice
The theory of locally compact spaces tells us what we need to
know about the system of cells:
I How are arbitrary open subspaces expressed as unions of

basic ones?
I When is the compact subspace [x] of one cell

contained in the open subspace (y) of another?
We write x b y for this observable relation.

I How are any finite intersections of basic compact
subspaces
covered by finite unions of basic open subspaces?

I could give formal axioms, but geometric intuition is enough.
From the theory we derive a plan for the programming:
I how are (finite unions of) cells to be represented?
I how are the arithmetic operations and relations to be

computed?
I how are finite intersections covered by finite unions?

Logic for the representation of cells
Cells are ultimately represented in the machine as integers.
These are finite but arbitrarily large.

In their logic, there is ∃ but not ∀.

∃x in principle involves a search over all possible
representations of intervals.

In applications to analysis (e.g. solving differential equations), ∃
may range over structures such as grids of sample points.

In practice, we find witnesses for ∃ by logic programming
techniques such as unification.

Programming ∀x ∈ [a, b] is based on the Heine–Borel theorem.

Logic for the representation of cells
Cells are ultimately represented in the machine as integers.
These are finite but arbitrarily large.

In their logic, there is ∃ but not ∀.

∃x in principle involves a search over all possible
representations of intervals.

In applications to analysis (e.g. solving differential equations), ∃
may range over structures such as grids of sample points.

In practice, we find witnesses for ∃ by logic programming
techniques such as unification.

Programming ∀x ∈ [a, b] is based on the Heine–Borel theorem.

Logic for the representation of cells
Cells are ultimately represented in the machine as integers.
These are finite but arbitrarily large.

In their logic, there is ∃ but not ∀.

∃x in principle involves a search over all possible
representations of intervals.

In applications to analysis (e.g. solving differential equations), ∃
may range over structures such as grids of sample points.

In practice, we find witnesses for ∃ by logic programming
techniques such as unification.

Programming ∀x ∈ [a, b] is based on the Heine–Borel theorem.

Some deliberately ambiguous notation
x ∈ a means x ∈ (x) or x < x < x.

∀x ∈ x means ∀x ∈ [x] or ∀x ∈ [x, x].

∃x ∈ x means both ∃x ∈ (x) and ∃x ∈ [x]
because these are equivalent, so long as x is not empty, so x < x.

Cells and data flow
The topological duality between compact and open subspaces
has a computational meaning.

Think of a b b (which means [a] ⊂ (b)) as a plug in a socket.

The plug or value may be a real number a,
or a compact subspace [a].

The socket or test may be an open subspace (b),
or a universal quantifier ∀x ∈ (−). φx.

These define a natural direction

a ∈ b
>

and a b b
>

but ∀x∈ a
<

which also goes up arithmetic expression trees,
from arguments to results.

a b y is like the constraint y is a in some versions of P.
This transfers the value of a to y and (unlike “=” considered as
unification) not vice versa.

Cells and data flow
The topological duality between compact and open subspaces
has a computational meaning.

Think of a b b (which means [a] ⊂ (b)) as a plug in a socket.

The plug or value may be a real number a,
or a compact subspace [a].

The socket or test may be an open subspace (b),
or a universal quantifier ∀x ∈ (−). φx.

These define a natural direction

a ∈ b
>

and a b b
>

but ∀x∈ a
<

which also goes up arithmetic expression trees,
from arguments to results.

a b y is like the constraint y is a in some versions of P.
This transfers the value of a to y and (unlike “=” considered as
unification) not vice versa.

Cells and data flow
The topological duality between compact and open subspaces
has a computational meaning.

Think of a b b (which means [a] ⊂ (b)) as a plug in a socket.

The plug or value may be a real number a,
or a compact subspace [a].

The socket or test may be an open subspace (b),
or a universal quantifier ∀x ∈ (−). φx.

These define a natural direction

a ∈ b
>

and a b b
>

but ∀x∈ a
<

which also goes up arithmetic expression trees,
from arguments to results.

a b y is like the constraint y is a in some versions of P.
This transfers the value of a to y and (unlike “=” considered as
unification) not vice versa.

Cells and data flow
The topological duality between compact and open subspaces
has a computational meaning.

Think of a b b (which means [a] ⊂ (b)) as a plug in a socket.

The plug or value may be a real number a,
or a compact subspace [a].

The socket or test may be an open subspace (b),
or a universal quantifier ∀x ∈ (−). φx.

These define a natural direction

a ∈ b
>

and a b b
>

but ∀x∈ a
<

which also goes up arithmetic expression trees,
from arguments to results.

a b y is like the constraint y is a in some versions of P.
This transfers the value of a to y and (unlike “=” considered as
unification) not vice versa.

Cells and data flow
The topological duality between compact and open subspaces
has a computational meaning.

Think of a b b (which means [a] ⊂ (b)) as a plug in a socket.

The plug or value may be a real number a,
or a compact subspace [a].

The socket or test may be an open subspace (b),
or a universal quantifier ∀x ∈ (−). φx.

These define a natural direction

a ∈ b
>

and a b b
>

but ∀x∈ a
<

which also goes up arithmetic expression trees,
from arguments to results.

a b y is like the constraint y is a in some versions of P.
This transfers the value of a to y and (unlike “=” considered as
unification) not vice versa.

Cells and data flow
The topological duality between compact and open subspaces
has a computational meaning.

Think of a b b (which means [a] ⊂ (b)) as a plug in a socket.

The plug or value may be a real number a,
or a compact subspace [a].

The socket or test may be an open subspace (b),
or a universal quantifier ∀x ∈ (−). φx.

These define a natural direction

a ∈ b
>

and a b b
>

but ∀x∈ a
<

which also goes up arithmetic expression trees,
from arguments to results.

a b y is like the constraint y is a in some versions of P.
This transfers the value of a to y and (unlike “=” considered as
unification) not vice versa.

Another constraint, on the output precision
A lazy logic programming interpretation of this
would be very lazy.
To make it do anything, we also need a way to specify the
precision that we require of the output.

We squeeze the width ‖x‖ ≡ (x − x) of an interval by the
constraint

‖x‖ < ε ≡ ∀x, y ∈ x.
∣∣∣x − y

∣∣∣ < ε.
This is syntactic sugar — it is already definable as a predicate in
our calculus.

Failure of this constraint (as of others) causes back-tracking.
This is one of the cases of back-tracking that has already
emerged from programming multiple-precision arithmetic.

Moore arithmetic
Returning specifically to R, we write ⊕,	,⊗ for Moore’s
arithmetical operations on intervals:

a ⊕ b ≡ [a + b, a + b]
	a ≡ [−a, −a]

a ⊗ b ≡ [min(a × b, a × b, a × b, a × b),

max(a × b, a × b, a × b, a × b)],

and <,=,t,b for the computationally observable relations

x < y ≡ x < y ≡ y = x

x t y ≡ [x] ∩ [y] = ∅ or (x < y) ∨ (y < x),

x b y ≡ x < y < x < y.

NB: in a < b, a = b and a t b, the intervals a and b are disjoint.

Extending the Moore operations to expressions
By structural recursion on syntax, we may extend the Moore
operations from symbols to expressions.
Essentially, we just

replace x + − × < > , ∈ ∃x
by x ⊕ 	 ⊗ < = t b ∃x

other variables, constants, n :N, ∧, ∨, ∃n, rec, the stay the same.
(We can’t translate ∀x ∈ [a, b] — yet.)

This extends the meaning of arithmetic expressions fx and
logical formulae φx in such a way that
I substituting x ≡ [x, x] recovers the original value,
I the dependence on the interval argument x is monotone,
I and substitution is preserved.

Of course, the laws of arithmetic are not preserved.

Extending the Moore operations to expressions
By structural recursion on syntax, we may extend the Moore
operations from symbols to expressions.
Essentially, we just

replace x + − × < > , ∈ ∃x
by x ⊕ 	 ⊗ < = t b ∃x

other variables, constants, n :N, ∧, ∨, ∃n, rec, the stay the same.
(We can’t translate ∀x ∈ [a, b] — yet.)

This extends the meaning of arithmetic expressions fx and
logical formulae φx in such a way that
I substituting x ≡ [x, x] recovers the original value,
I the dependence on the interval argument x is monotone,
I and substitution is preserved.

Of course, the laws of arithmetic are not preserved.

Extending the Moore operations to expressions
We shall write |∀|x ∈ x. fx or |∀|x ∈ x. φx for the translation of the
arithmetical expression fx or logical formula φx.

The symbol |∀| is a cross between ∀ and M (for Moore).

Remember that it is a syntactic translation (like substitution).
So the continuous variable x does not occur in |∀|x ∈ x. fx or
|∀|x ∈ x. φx.

|∀| is not a quantifier.

But there is a reason why it looks like one...

The fundamental theorem of interval analysis
Interval computation is reliable in the sense that
it provides upper and lower bounds for all computations in R.
More generally, bounding cells for computations in Rn.

If this were all that interval computation could do,
it would be useless.

In fact, it is much better than this:
by making the working intervals sufficiently small,
it can compute a compact bounding cell within
any arbitrary open bounding cell that exists mathematically.

This is an ε–δ statement:
∀ε > 0 (the required output precision),
∃δ > 0 (the necessary size of the working intervals).

The fundamental theorem of interval analysis???
Interval computation is reliable in the sense that
it provides upper and lower bounds for all computations in R.
More generally, bounding cells for computations in Rn.

If this were all that interval computation could do,
it would be useless.

In fact, it is much better than this:
by making the working intervals sufficiently small,
it can compute a compact bounding cell within
any arbitrary open bounding cell that exists mathematically.

This is an ε–δ statement:
∀ε > 0 (the required output precision),
∃δ > 0 (the necessary size of the working intervals).

The fundamental theorem of interval analysis
Interval computation is reliable in the sense that
it provides upper and lower bounds for all computations in R.
More generally, bounding cells for computations in Rn.

If this were all that interval computation could do,
it would be useless.

In fact, it is much better than this:
by making the working intervals sufficiently small,
it can compute a compact bounding cell within
any arbitrary open bounding cell that exists mathematically.

This is an ε–δ statement:
∀ε > 0 (the required output precision),
∃δ > 0 (the necessary size of the working intervals).

The fundamental theorem of interval analysis
Interval computation is reliable in the sense that
it provides upper and lower bounds for all computations in R.
More generally, bounding cells for computations in Rn.

If this were all that interval computation could do,
it would be useless.

In fact, it is much better than this:
by making the working intervals sufficiently small,
it can compute a compact bounding cell within
any arbitrary open bounding cell that exists mathematically.

This is an ε–δ statement:
∀ε > 0 (the required output precision),
∃δ > 0 (the necessary size of the working intervals).

Locally compact spaces again
Recall the fundamental property of locally compact spaces:

φa ⇐⇒ ∃x. a ∈ x ∧ ∀x ∈ x. φx,

which means:
I if a satisfies the observable predicate φ

(or a belongs to the open subspace that corresponds to φ),
I then a is in the interior of some cell x
I throughout which φ holds

(or which is contained in the open subspace that
corresponds to φ).

Here is the fundamental theorem
Using the quantifier ∀we have

φa ⇐⇒ ∃x. a ∈ x ∧ ∀x ∈ x. φx.

By an easy structural induction on syntax we can prove

φa ⇐⇒ ∃x. a ∈ x ∧ |∀|x ∈ x. φx,

for the Moore interpretation |∀|. This means:
I if a satisfies the observable predicate φ,
I then a is in the interior of some cell x
I which satisfies the translation of φ.

For example, fa ∈ b ⇐⇒ ∃x. a ∈ x ∧ (|∀|x ∈ x. fx) b b.

So we obtain arbitrary precision ‖b‖
by choosing the working interval x to be sufficiently small.

Here is the fundamental theorem
Using the quantifier ∀we have

φa ⇐⇒ ∃x. a ∈ x ∧ ∀x ∈ x. φx.

By an easy structural induction on syntax we can prove

φa ⇐⇒ ∃x. a ∈ x ∧ |∀|x ∈ x. φx,

for the Moore interpretation |∀|.

This means:
I if a satisfies the observable predicate φ,
I then a is in the interior of some cell x
I which satisfies the translation of φ.

For example, fa ∈ b ⇐⇒ ∃x. a ∈ x ∧ (|∀|x ∈ x. fx) b b.

So we obtain arbitrary precision ‖b‖
by choosing the working interval x to be sufficiently small.

Here is the fundamental theorem
Using the quantifier ∀we have

φa ⇐⇒ ∃x. a ∈ x ∧ ∀x ∈ x. φx.

By an easy structural induction on syntax we can prove

φa ⇐⇒ ∃x. a ∈ x ∧ |∀|x ∈ x. φx,

for the Moore interpretation |∀|. This means:
I if a satisfies the observable predicate φ,
I then a is in the interior of some cell x
I which satisfies the translation of φ.

For example, fa ∈ b ⇐⇒ ∃x. a ∈ x ∧ (|∀|x ∈ x. fx) b b.

So we obtain arbitrary precision ‖b‖
by choosing the working interval x to be sufficiently small.

Here is the fundamental theorem
Using the quantifier ∀we have

φa ⇐⇒ ∃x. a ∈ x ∧ ∀x ∈ x. φx.

By an easy structural induction on syntax we can prove

φa ⇐⇒ ∃x. a ∈ x ∧ |∀|x ∈ x. φx,

for the Moore interpretation |∀|. This means:
I if a satisfies the observable predicate φ,
I then a is in the interior of some cell x
I which satisfies the translation of φ.

For example, fa ∈ b ⇐⇒ ∃x. a ∈ x ∧ (|∀|x ∈ x. fx) b b.

So we obtain arbitrary precision ‖b‖
by choosing the working interval x to be sufficiently small.

Solving equations
How do we find a zero of a function, x such that 0 = f (x)?

Any zero c that we can find numerically
is stable in the sense that,
arbitrarily closely to c, there are b, d with b < c < d
and either f (b) < 0 < f (d) or vice versa.

fd fb

a b c d e

d e a b c

fb fd

Solving equations
How do we find a zero of a function, x such that 0 = f (x)?

Any zero c that we can find numerically
is stable in the sense that,
arbitrarily closely to c, there are b, d with b < c < d
and either f (b) < 0 < f (d) or vice versa.

fd fb

a b c d e

d e a b c

fb fd

Solving equations
The definition of a stable zero may be written in the calculus for
continuous variables, and translated into intervals.

Write x for the outer interval [a, e].

There are b ∈ b, c ∈ c and d ∈ d with
b < c < d and f (b) < 0 < f (d).

So if the interval x contains a stable zero,
0 ∈ f(x) ≡ |∀|x ∈ x. f (x).
Remember that ∈means “in the interior”.

This is how ∈ f (x) and b f (x) arise
with an expression on the right of b.

Logic programming with intervals
Remember that the continuous variable x does not occur in the
translation |∀|x ∈ x. φx of φx. Of course, we eliminate the other
continuous variables y, z, ... in the same way.
This leaves a predicate involving cellular variables like x.

We build up arithmetical and logical expressions in this order:
I the interval arithmetical operations ⊕, 	, ⊗;
I more arithmetical operations;

I the relations <, =, t, b;

I conjunction ∧;
I cellular quantification ∃x;

I disjunction ∨, integer quantification ∃n and recursion;
I universal quantification ∀x ∈ [a, b];

I more conjunction, etc.

Logic programming with intervals
Remember that the continuous variable x does not occur in the
translation |∀|x ∈ x. φx of φx. Of course, we eliminate the other
continuous variables y, z, ... in the same way.
This leaves a predicate involving cellular variables like x.

We build up arithmetical and logical expressions in this order:
I the interval arithmetical operations ⊕, 	, ⊗;
I more arithmetical operations;

I the relations <, =, t, b;

I conjunction ∧;
I cellular quantification ∃x;

I disjunction ∨, integer quantification ∃n and recursion;
I universal quantification ∀x ∈ [a, b];

I more conjunction, etc.

Some logic programming techniques
We can manipulate ∃x applied to ∧ using various techniques of
logic programming.

I Constraint logic programming,
essentially due to John Cleary.
This is the closest analogue of unification for intervals.

I Symbolic differentiation, to pass the required precision of
outputs back to the inputs.

I The Interval Newton algorithm for solving equations,
which are expressed as 0 ∈ f (x).

I (Maybe) classification of semi-algebraic sets.

Surprisingly, this fragment appears to be decidable.
But adding ∃n and recursion makes it Turing complete.

The universal quantifier ∀x ∈ [a, b] applied to ∨ and ∃n,
may be turned into a recursive program using the Heine–Borel
property, with |∀| as its base base.

Some logic programming techniques
We can manipulate ∃x applied to ∧ using various techniques of
logic programming.

I Constraint logic programming,
essentially due to John Cleary.
This is the closest analogue of unification for intervals.

I Symbolic differentiation, to pass the required precision of
outputs back to the inputs.

I The Interval Newton algorithm for solving equations,
which are expressed as 0 ∈ f (x).

I (Maybe) classification of semi-algebraic sets.

Surprisingly, this fragment appears to be decidable.
But adding ∃n and recursion makes it Turing complete.

The universal quantifier ∀x ∈ [a, b] applied to ∨ and ∃n,
may be turned into a recursive program using the Heine–Borel
property, with |∀| as its base base.

Some logic programming techniques
We can manipulate ∃x applied to ∧ using various techniques of
logic programming.

I Constraint logic programming,
essentially due to John Cleary.
This is the closest analogue of unification for intervals.

I Symbolic differentiation, to pass the required precision of
outputs back to the inputs.

I The Interval Newton algorithm for solving equations,
which are expressed as 0 ∈ f (x).

I (Maybe) classification of semi-algebraic sets.

Surprisingly, this fragment appears to be decidable.
But adding ∃n and recursion makes it Turing complete.

The universal quantifier ∀x ∈ [a, b] applied to ∨ and ∃n,
may be turned into a recursive program using the Heine–Borel
property, with |∀| as its base base.

The ∃x,∧ fragment
We consider the fragment of the language consisting of
formulae like

∃y1y2y3. x2 ⊕ y1 < x3 ⊗ x1 ∧ x3 , y3

∧ y1 ⊗ x3 b z2 ∧ 0 ∈ z1 ⊗ z1 ∧ ‖z1‖ < 2−40

in which the variables
I x1, x2, . . . are free and occur only as plugs (on the left of b);
I y1,y2, . . . are bound, and may occur as both plugs and

sockets;
I z1, z2, . . . are free, occurring only as sockets (right of b).

Using convex union, each socket contains at most one plug.

Since the relevant directed graph is acyclic, bound variables
that occur as both plugs and sockets may be eliminated.
So wlog bound variables occur only as plugs.

The ∃x,∧ fragment
We consider the fragment of the language consisting of
formulae like

∃y1y2y3. x2 ⊕ y1 < x3 ⊗ x1 ∧ x3 , y3

∧ y1 ⊗ x3 b z2 ∧ 0 ∈ z1 ⊗ z1 ∧ ‖z1‖ < 2−40

in which the variables
I x1, x2, . . . are free and occur only as plugs (on the left of b);
I y1,y2, . . . are bound, and may occur as both plugs and

sockets;
I z1, z2, . . . are free, occurring only as sockets (right of b).

Using convex union, each socket contains at most one plug.

Since the relevant directed graph is acyclic, bound variables
that occur as both plugs and sockets may be eliminated.
So wlog bound variables occur only as plugs.

The ∃x,∧ fragment
We consider the fragment of the language consisting of
formulae like

∃y1y2y3. x2 ⊕ y1 < x3 ⊗ x1 ∧ x3 , y3

∧ y1 ⊗ x3 b z2 ∧ 0 ∈ z1 ⊗ z1 ∧ ‖z1‖ < 2−40

in which the variables
I x1, x2, . . . are free and occur only as plugs (on the left of b);
I y1,y2, . . . are bound, and may occur as both plugs and

sockets;
I z1, z2, . . . are free, occurring only as sockets (right of b).

Using convex union, each socket contains at most one plug.

Since the relevant directed graph is acyclic, bound variables
that occur as both plugs and sockets may be eliminated.
So wlog bound variables occur only as plugs.

Cleary’s algorithm
In the context of the rest of the problem, the free plugs x1, x2, . . .
have given interval values (the arguments, to their currently
known precision). The other free and bound variables are
initially assigned the completely undefined value [−∞,+∞].

We evaluate the arithmetical (interval) expressions.
In any conjunct a b z, where z is a (socket) variable (so it
doesn’t occur elsewhere, and has been assigned the value
[−∞,+∞]), assign the value of a to z.
If all the constraints are satisfied — return successfully.
If one of them can never be satisfied, even if the variables are
assigned narrower intervals —back-track.
If they’re not, we update the values assigned to the variables,
replacing one interval by a narrower one, using one of the four
techniques.
Then repeat the evaluation and test.
For this fragment, the algorithm terminates.

Cleary’s algorithm
In the context of the rest of the problem, the free plugs x1, x2, . . .
have given interval values (the arguments, to their currently
known precision). The other free and bound variables are
initially assigned the completely undefined value [−∞,+∞].
We evaluate the arithmetical (interval) expressions.

In any conjunct a b z, where z is a (socket) variable (so it
doesn’t occur elsewhere, and has been assigned the value
[−∞,+∞]), assign the value of a to z.
If all the constraints are satisfied — return successfully.
If one of them can never be satisfied, even if the variables are
assigned narrower intervals —back-track.
If they’re not, we update the values assigned to the variables,
replacing one interval by a narrower one, using one of the four
techniques.
Then repeat the evaluation and test.
For this fragment, the algorithm terminates.

Cleary’s algorithm
In the context of the rest of the problem, the free plugs x1, x2, . . .
have given interval values (the arguments, to their currently
known precision). The other free and bound variables are
initially assigned the completely undefined value [−∞,+∞].
We evaluate the arithmetical (interval) expressions.
In any conjunct a b z, where z is a (socket) variable (so it
doesn’t occur elsewhere, and has been assigned the value
[−∞,+∞]), assign the value of a to z.

If all the constraints are satisfied — return successfully.
If one of them can never be satisfied, even if the variables are
assigned narrower intervals —back-track.
If they’re not, we update the values assigned to the variables,
replacing one interval by a narrower one, using one of the four
techniques.
Then repeat the evaluation and test.
For this fragment, the algorithm terminates.

Cleary’s algorithm
In the context of the rest of the problem, the free plugs x1, x2, . . .
have given interval values (the arguments, to their currently
known precision). The other free and bound variables are
initially assigned the completely undefined value [−∞,+∞].
We evaluate the arithmetical (interval) expressions.
In any conjunct a b z, where z is a (socket) variable (so it
doesn’t occur elsewhere, and has been assigned the value
[−∞,+∞]), assign the value of a to z.
If all the constraints are satisfied — return successfully.

If one of them can never be satisfied, even if the variables are
assigned narrower intervals —back-track.
If they’re not, we update the values assigned to the variables,
replacing one interval by a narrower one, using one of the four
techniques.
Then repeat the evaluation and test.
For this fragment, the algorithm terminates.

Cleary’s algorithm
In the context of the rest of the problem, the free plugs x1, x2, . . .
have given interval values (the arguments, to their currently
known precision). The other free and bound variables are
initially assigned the completely undefined value [−∞,+∞].
We evaluate the arithmetical (interval) expressions.
In any conjunct a b z, where z is a (socket) variable (so it
doesn’t occur elsewhere, and has been assigned the value
[−∞,+∞]), assign the value of a to z.
If all the constraints are satisfied — return successfully.
If one of them can never be satisfied, even if the variables are
assigned narrower intervals —back-track.

If they’re not, we update the values assigned to the variables,
replacing one interval by a narrower one, using one of the four
techniques.
Then repeat the evaluation and test.
For this fragment, the algorithm terminates.

Cleary’s algorithm
In the context of the rest of the problem, the free plugs x1, x2, . . .
have given interval values (the arguments, to their currently
known precision). The other free and bound variables are
initially assigned the completely undefined value [−∞,+∞].
We evaluate the arithmetical (interval) expressions.
In any conjunct a b z, where z is a (socket) variable (so it
doesn’t occur elsewhere, and has been assigned the value
[−∞,+∞]), assign the value of a to z.
If all the constraints are satisfied — return successfully.
If one of them can never be satisfied, even if the variables are
assigned narrower intervals —back-track.
If they’re not, we update the values assigned to the variables,
replacing one interval by a narrower one, using one of the four
techniques.
Then repeat the evaluation and test.

For this fragment, the algorithm terminates.

Cleary’s algorithm
In the context of the rest of the problem, the free plugs x1, x2, . . .
have given interval values (the arguments, to their currently
known precision). The other free and bound variables are
initially assigned the completely undefined value [−∞,+∞].
We evaluate the arithmetical (interval) expressions.
In any conjunct a b z, where z is a (socket) variable (so it
doesn’t occur elsewhere, and has been assigned the value
[−∞,+∞]), assign the value of a to z.
If all the constraints are satisfied — return successfully.
If one of them can never be satisfied, even if the variables are
assigned narrower intervals —back-track.
If they’re not, we update the values assigned to the variables,
replacing one interval by a narrower one, using one of the four
techniques.
Then repeat the evaluation and test.
For this fragment, the algorithm terminates.

Cleary’s “unification” rules for a < b
There are six possibilities for the existing values of a and b.
Remember that a and b are our current state of knowledge
about certain real numbers a ∈ a and b ∈ b with a < b.

a
<

b

a

b
a

b
<

<
a

b

<
a

b
<

b
<

a

Cleary’s “unification” rules for a < b
There are six possibilities for the existing values of a and b.
Remember that a and b are our current state of knowledge
about certain real numbers a ∈ a and b ∈ b with a < b.

a
<

b
success

a

b
split

a
b

< trim a trim b <
a

...........
b

<
a
b

< trim both

b
<

a
failure

Cleary’s rules for a ⊕ b
Working down the expression tree, the requirement to trim
intervals passes from the values to the arguments of arithmetic
operators.

Suppose we want to trim the right endpoint of a ⊕ b to c.

Think of
I a as (the range of) the cost of meat and
I b as (the range of) the cost of vegetables,
I and c as the budget for the whole meal.

Then we have to trim
I a to c − b, and

I b to c − a.

There are similar (but more complicated) rules for ⊗.

Cleary’s rules for a ⊕ b
Working down the expression tree, the requirement to trim
intervals passes from the values to the arguments of arithmetic
operators.

Suppose we want to trim the right endpoint of a ⊕ b to c.

Think of
I a as (the range of) the cost of meat and
I b as (the range of) the cost of vegetables,
I and c as the budget for the whole meal.

Then we have to trim
I a to c − b, and

I b to c − a.

There are similar (but more complicated) rules for ⊗.

Cleary’s rules for a ⊕ b
Working down the expression tree, the requirement to trim
intervals passes from the values to the arguments of arithmetic
operators.

Suppose we want to trim the right endpoint of a ⊕ b to c.

Think of
I a as (the range of) the cost of meat and
I b as (the range of) the cost of vegetables,
I and c as the budget for the whole meal.

Then we have to trim
I a to c − b, and

I b to c − a.

There are similar (but more complicated) rules for ⊗.

Cleary’s rules for a ⊕ b
Working down the expression tree, the requirement to trim
intervals passes from the values to the arguments of arithmetic
operators.

Suppose we want to trim the right endpoint of a ⊕ b to c.

Think of
I a as (the range of) the cost of meat and
I b as (the range of) the cost of vegetables,
I and c as the budget for the whole meal.

Then we have to trim
I a to c − b, and

I b to c − a.

There are similar (but more complicated) rules for ⊗.

Moore’s Interval Newton algorithm (my version)
Given a function f and and interval x,

Evaluate
I the function f at a point x0 in the middle of x
I and the derivative f ′ on the whole interval: |∀|x ∈ x. f ′(x).

This bounds the values of the function throughout the interval:

f (x) ∈ f (x0) ⊕ (x − x0) ⊗ |∀|x ∈ x. f ′(x)

This is a two-term Taylor series.
It’s how we should define derivatives of interval-valued
functions.

Slogan: Crude arithmetic gives subtle logical information.

Moore’s Interval Newton algorithm (my version)
Given a function f and and interval x,

Evaluate
I the function f at a point x0 in the middle of x
I and the derivative f ′ on the whole interval: |∀|x ∈ x. f ′(x).

This bounds the values of the function throughout the interval:

f (x) ∈ f (x0) ⊕ (x − x0) ⊗ |∀|x ∈ x. f ′(x)

This is a two-term Taylor series.
It’s how we should define derivatives of interval-valued
functions.

Slogan: Crude arithmetic gives subtle logical information.

Moore’s Interval Newton algorithm (my version)
Given a function f and and interval x,

Evaluate
I the function f at a point x0 in the middle of x
I and the derivative f ′ on the whole interval: |∀|x ∈ x. f ′(x).

This bounds the values of the function throughout the interval:

f (x) ∈ f (x0) ⊕ (x − x0) ⊗ |∀|x ∈ x. f ′(x)

This is a two-term Taylor series.
It’s how we should define derivatives of interval-valued
functions.

Slogan: Crude arithmetic gives subtle logical information.

Translating the universal quantifier
Applying the translation to φx, we need to simplify

∀x ∈ a. φx ≡ ∀x ∈ a. ∃x. x ∈ x ∧ |∀|x′ ∈ x. φx′.

This says that the compact (closed bounded) interval a
is covered by the open interiors of cells x
each of which satisfies the translation |∀|x′ ∈ x. φx′.

The Heine–Borel property (classical theorem, axiom of ASD)
says that there is a finite sub-cover,
so wlog ‖x‖ = 2−k for some k.

Translating ∀with ∨ and ∃n
It’s natural to include (∨ and) ∃n in the Heine–Borel property:

∀x ∈ [0, 1]. ∃n. φnx ⇐⇒

∃k.
2k
−1∧

j=0

∃n. |∀|x ∈ [j · 2−k, (j + 1) · 2−k]. φnx.

We can read this as a recursive program for

θ[a, b] ≡ ∀x ∈ [a, b]. ∃n. φnx

that splits [a, b] into subintervals. When these get smaller than
2−k(b − a), use |∀| instead of deeper recursion.

θ[a, b] ⇐⇒ ∃k.
(
∃n. |∀|x ∈ [a, a + 2−k(b − a)]. φnx

)
∧ θ[a + 2−k(b − a), b]

Conclusion: some programming projects
(Logic) programming environment together with multiple
precision arithmetic.

Use this to implement:
I Cleary’s algorithm, Interval Newton, ...
I Cellular computation for R2, R3, C, ...
I Heine–Borel translation of ∀.

Syntactic stuff:
I Simple front end to translate the continuous language into

the interval methods.
I Proof assistant for the deduction rules of ASD.

	Introductory remarks
	The language for the real line
	Intervals and cells
	The translation
	Logic programming
	Interval differentiation and the Newton algorithm
	Compactness and universal quantification
	Programming

