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Abstract
As one who has been doing analysis for only two years, I
hesitate to offer an axiomatisation of something so venerable as
the real line.
But at a time when a number of disciplines that are
constructive, computable, both or neither are at last talking to
one another, we badly need such a definition so that we can
agree on what we’re talking about.
Let me say in my own defence that my axioms are at least
headline properties in traditional analysis:
the only unfamiliar statement is that the line is overt, but there
the constroversial thing would be to say otherwise.
The problem is that some of my constructive allies disagree
with some of the traditional properties.



Abstract
Formalists support Cauchy and Cantor against Dedekind
because they like numbers and sequences but not sets. Yet
familiar examples such as Riemann integration give cuts
naturally but sequences artificially. I shall show that Dedekind
completeness and definition by description can naturally be
expressed as λ-calculi.
Bishop abandoned the Heine–Borel theorem because it fails in
recursive analysis, but mathematics seems to be very strange
without it.
In Abstract Stone Duality this theorem is more or less an axiom.
However, this axiom has a rich background, combining
categorical algebra with the fundamental theorem of interval
analysis.



Abstract
So what is the real real line? Can we devise a experiment to
justify the axioms?
Such a test is whether open subsets look like we expect them to
look. Traditionally, any open subset of the real line is a
countable union of disjoint open intervals. Can I prove this in
ASD? Can Bishop prove it?
I shall show how a polished version of the modal notation that I
introduced at CCA in Kyoto in 2005 can be used to give two
definitions of connectedness, each of them linked to an
approximate intermediate value theorem. This will be applied
to the classification of open subspaces and of connected ones,
and I shall conclude with some examples and counterexamples.



Disclaimer
The presentation of this lecture as a “court case” with
“witnesses” must be understood light-heartedly. In particular,
you must not assume that the “evidence” attributed to the
“witnesses” actually represents their views.

Generally speaking, the attibutions are to be understood in the
usual academic way, albeit highly abbreviated since this was a
lecture and not a paper.

In some cases the connection between the person and the ideas
is quite tenuous. In particular, the syntax of a language for the
fragment of ASD for R is linked to John Cleary’s Logical
Arithmetic via my work on Interval Analysis without Intervals,
which is still in progress.



Axioms for the real line
The axioms that I propose are all headline properties in
traditional analysis, apart from overtness, but there the
controversial thing would be to say otherwise.

R is
I overt, with ∃;
I Hausdorff, with ,;
I totally ordered, i.e. (x , y)⇔ (x < y) ∨ (y < x);
I a field, where x−1 is defined iff x , 0;
I Dedekind complete; and
I Archimedean;
I and the closed interval is compact, with ∀.

However, some of my constructive allies disagree with some of
the traditional properties.



La legge è uguale per tutti
The case for Cauchy against Dedekind.

A practical one:
you want to see his figures!

A formalist one:
I he uses general subsets or predicates;
I he’s impredicative.

The practical defence:
Familiar examples such as Riemann integration give cuts
naturally but sequences artificially.

The formalist defence:
Dedekind completeness can naturally be expressed as λ-calculi.

The counter-claim:
Cauchy sequences are much more complicated to define.
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First witness for the defence: Archimedes
Theorem: The area of a circle (K for κυκλoς) is equal to that of
the right triangle ∆ formed from the radius and circumference.

Proof: Compare K and ∆with the areas of the inscribed (In) and
circumscribed (En) regular n-gons.

No. First we bound the ratios In/K and En/K.

Suppose that K > ∆.
Then In > ∆ for some n, which we show to be impossible.

Similarly if K < ∆ then En < ∆ for some n, which is also
impossible.

Actually, we show that any upper or lower bound for ∆ is also
one for K.
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Witness: Giuseppe Peano
Il primo Formalista!

We argue the formalist defence of the axioms for R
(in particular Dedekind completeness)
by analogy with those forN:

I 0 :N
I n :N ` n + 1 :N
I 0 , n + 1
I n = m ⇐⇒ n + 1 = m + 1
I induction

I definition by description or unique choice.

This defines primitive recursion.
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Il primo Formalista!

We argue the formalist defence of the axioms for R
(in particular Dedekind completeness)
by analogy with those forN:

I 0 :N
I n :N ` n + 1 :N
I 0 , n + 1
I n = m ⇐⇒ n + 1 = m + 1
I induction
I definition by description or unique choice.

This defines general recursion (more or less).



Le Discrizioni secondo Peano
Studii di Logica Matematica, 1897, §22.

..., sia α una classe contenente un solo individuo, cioè:
I esistano degli α, e
I comunque si prendano due individui x ed y di α,

essi siano sempre eguali.
Questo individuo lo indicheremo con ῑα. Sicchè

∃a : x, y ∈ α. ⊃x,y .x = y :⊃: x = ῑα . = . α = ιx Def.

Veramente questa definizione dà il significato
di tutta la formula x = ῑα, e non del solo gruppo ῑα.
Ma ogni proposizione contenente ῑα
è riduttibile alla forma ῑα ∈ φ, ove φ è una classe;
e questa ad α ⊃ φ, ove è scomparso il segno ῑ;
quantunque non ci riesca formare un’eguaglianza il cui primo
membro sia ῑα, ed il secondo un gruppo di segni noti.



Descriptions according to Peano
Studies in Mathematical Logic, 1897, §22.

..., let α be a class containing a single member, that is:
I there is an α, and
I whenever we take two things x and y from α, these must

always be equal.
We call this member ῑα. That is

(∃x. x ∈ α), (∀xy. x, y ∈ α⇒ x = y) ` (x = ῑα) ⇐⇒ (α = {x}).

This definition really gives a meaning to the whole formula
x = ῑα, and not just to the combination ῑα.
Any proposition containing ῑα is reducible to the form ῑα ∈ φ,
where φ is a class, and hence to α⇒ φ, from which the sign ῑ
has disappeared,
even though we can’t form an equality whose first member is ῑα
and the second is a group of known symbols
[i.e. define ῑα in terms of known symbols].



A lambda-calculus for Descriptions
Given any predicate α
for which the axioms of a description are provable,
we may introduce its witness:

[n :N]
·
·
·

αn : Σ (∃n. αn)

[αn, αm]
·
·
·

n = m :N

(ῑn. αn) :N



A lambda-calculus for Descriptions
The elimination rules recover the axioms.

The β-rule says that (ῑn. αn) has the property that α specifies:

(ῑn. αn) = m ⇐⇒ αm.

As in the λ-calculus, this simply substitutes part of the context
for the bound variables.

The η-rule says that any number m defines a Dedekind cut in
the obvious way:

αn ≡ (n = m).

There is a normalisation theorem by which, as Peano says,
ogni proposizione ... è riduttibile alla forma ... α ⊃ φ, ove è
scomparso il segno ῑ, although I prefer ∃x. αx ∧ φx.
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A lambda-calculus for Dedekind cuts
Our formulation of Dedekind cuts does not use set theory, or
type-theoretic predicates of arbitrary logical strength.

Given any pair [δ, υ] of predicates for which the axioms of a
Dedekind cut are provable,
we may introduce a real number:

[d : R]
·
·
·

δd : Σ

[u : R]
·
·
·

υu : Σ axioms for Dedekind cut

(cut du. δd ∧ υu) : R



A λ-calculus for Dedekind cuts
The elimination rules recover the axioms.

The β-rule says that (cut du. δd ∧ υu) obeys the order relations
that δ and υ specify:

e < (cut du. δd ∧ υu) < t ⇐⇒ δe ∧ υt.

As in the λ-calculus, this simply substitutes part of the context
for the bound variables.

The η-rule says that any real number a defines a Dedekind cut
in the obvious way:

δd ≡ (d < a), and υu ≡ (a < u).

There is a normalisation theorem whereby
this syntax for individual real numbers
can be translated into interval computation.
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Witness: John Cleary

N R N&Σ R&Σ N&? Σ

N 0 succ rec the

R 0, 1 n +,−,×,÷ rec cut

Σ >,⊥
=,≤,≥
<,>,, <,>,, ∃n ∃x : R

∀x : [a, b] rec ∧,∨

This syntax can be manipulated using constraint logic
programming.



Summary of the formalist defence: precedent

set theory: {− | −} membership

λ-calculus: λ application

descriptions: ῑ equality

Dedekind cuts: cut order



Witness: Marshall Stone
A term P : ΣΣ

X
or P : (X→ Σ)→ Σ is prime if

P> ⇔ > P(φ ∧ ψ)⇔ Pφ ∧ Pψ

P⊥ ⇔ ⊥ P(φ ∨ ψ)⇔ Pφ ∨ Pψ

(This idea was in Aleš Pultr’s first lecture on Monday.)

The space X is sober if it has introduction and β-rules

P : ΣΣ
X

prime

(focus P) : X

P : ΣΣ
X

prime φ : ΣX

φ(focus P)⇔ Pφ

where elimination is application and the η-rule is

P ≡ thunk a ≡ ηXa ≡ λφ. φa.

(thunk and force are used in extensions of functional
programming languages that allow computational effects
such as goto.)



Descriptions as primes
If α : ΣN is a description then

P ≡ λφ. ∃x. αx ∧ φx

is prime.

If P : ΣΣ
N

is prime then

α ≡ λx. P(λy. x = y)

is a description.

If one satisfies the relevant rules then so does the other.



Dedekind cuts as primes
If (δ, υ) is a Dedekind cut then

P ≡ λφ. ∃du. δd ∧ (∀x : [d,u]. φx) ∧ υu

is prime (relying on the co-defendants, Heine–Borel).

If P : ΣΣ
R

is prime then

δ ≡ λd. P(λx. d < x) υ ≡ λu. P(λx. x < u)

is a Dedekind cut.

If one satisfies the relevant rules then so does the other.



Witness: Peter Schuster
Let f : [0, 1]→ [0, 1] be continuous. Suppose that
I inf {fx | x : [0, 1]} = 0, and
I x , y⇒ (fx > 0) ∨ (fy > 0).

Then fx = 0 for some (unique) x.

Then ω ≡ λx. (fx , 0) is a codescription:(
∀x : [0, 1]. ωx

)
⇔ ⊥ cf.

(
∃n : N. αn

)
⇔ >

x , y⇒ ωx ∨ ωy cf. n = m⇐ αn ∧ αm

Also
I P ≡ λφ. ∀x : [0, 1]. ωx ∨ φx is prime;
I cf. P ≡ λφ. ∃n : N. αn ∨ φn;
I δ ≡ λd. ∀x : [0, d]. ωx and υ ≡ λu. ∀x : [u, 1]. ωx

define a Dedekind cut.
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Witnesses: Jon Beck and Joachim Lambek
A space X is sober if
every homomorphism ΣX

→ ΣΓ

is Σf for some unique function f : Γ→ X.

A space X is sober iff the diagram

X
x 7→ λφ. φx

> ΣΣ
X

F 7→ λΦ.Φ(λφ. Fφ)
>

F 7→ λΦ. F(λx.Φ(λφ. φx))
> Σ

ΣΣ
ΣX

is an equaliser.



Witnesses: Jon Beck and Robert Paré
Every homomorphism ΣX

→ ΣΓ is Σf for some unique function
f : Γ→ X.

Every algebra is ΣX for some unique space X.

Lindenbaum–Tarksi–Paré: the category of sets or any
elementary topos has this property.

The court will adjourn for eight years,

while I prepare the formalist defence of Heine–Borel:

There is an algebra that
I has Dedekind cuts as its points; and
I obeys Heine–Borel: [0, 1] ⊂ R is compact.
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Witnesses: Jon Beck and Robert Paré
Every homomorphism ΣX

→ ΣΓ is Σf for some unique function
f : Γ→ X.

Every algebra is ΣX for some unique space X.

Lindenbaum–Tarksi–Paré: the category of sets or any
elementary topos has this property.

The court will adjourn for eight years 1997-2005,

while I prepare the formalist defence of Heine–Borel:

There is an algebra that
I has Dedekind cuts as its points; and
I obeys Heine–Borel: [0, 1] ⊂ R is compact.



The topology on R as an algebra
The topology, ΣR, on R is a retract
of the topology on the space ΣQ × ΣQ of Dedekind cuts:

ΣR >
....................

I
......................>

<<
Σi

ΣΣ
Q
×ΣQ

This says that

R >
i

> ΣQ × ΣQ

has the subspace topology in a canonical way.

We shall look at this classically first.

Then we show how to define the retract just using rationals.



Witness: Ramon Moore
In order to use Dedekind cuts for real computation,
we must extend the definitions of the arithmetic operations.

R ×R >
i × i

> ΣQ × ΣQ × ΣQ × ΣQ

R

+

∨

>
i

> ΣQ × ΣQ

⊕

∨

...............

For the arithmetic operations, this was done classically by
Ramon Moore, Interval Analysis, 1966.

How does this work for open sets?



Extending open subspaces classically
Recall that φ : ΣR defines an open subspace V ⊂ R.

R >
i

> ΣQ × ΣQ a > (↓ a, ↑ a)

Σ

Φ

<....
.....

.....
.....

...

φ

>

(a ∈ V)

<....
.....

.....
.....

.

>
We require (a ∈ V) ≡ φa ⇐⇒ Φ(ia) ≡ Φ(↓ a, ↑ a).

So R has the subspace topology inherited from ΣQ × ΣQ.

V 7→ {(D,U) | ∃d ∈ D. ∃u ∈ U. d < u ∧ ([d,u] ⊂ V)}

φ 7→ λδυ. ∃du. δd ∧ υu ∧ d < u ∧ ∀x : [d,u]. φx



We can settle this argument rationally
We have defined the idempotent E ≡ I · Σi on ΣΣ

Q
×ΣQ by

EΦ(δ, υ) ≡ I
(
λx.Φ(ix)

)
(δ, υ)

⇔ ∃du : R. δd ∧ υu ∧ ∀x : [d,u]. Φ(δx, υx) : ΣΣ
Q
×ΣQ .

Since Φ is Scott continuous and [d,u] is compact, this is

∃q0 < · · · < q2n+1 : Q. δq1 ∧ υq2n ∧

n−1∧
k=0

Φ(λe. e < q2k, λt. q2k+3 < t)

(See Dedekind Reals in ASD.)

This only depends on rational numbers and predicates.



The case for and against Heine–Borel
Let E be the rationally defined idempotent on ΣΣ

Q
×ΣQ .

This is the same in all foundational situations.

In each situation, let i : R� ΣQ × ΣQ be the subspace of
Dedekind cuts.

Classically, there is a Scott continuous function
I : ΣR� ΣΣ

Q
×ΣQ such that Σi

· I = id and I · Σi = E.

In other situations, e.g. Russian Recursive Analysis,
I need not exist.

Indeed, it exists iff R is locally compact iff [0, 1] is compact.

The “subspace” is an equaliser that depends on what objects
exist in the category.



Witness: Paul Taylor
This argument is useless if it only applies to R in isolation.

We must construct a new category whose objects are formal
Σ-split subspaces {X | E}� X.
(cf. constructing a new field containing a formal root of a
polynomial).

The good news:

there is an equivalent type theory with a
normalisation theorem.

The bad news: all of this takes over 200 journal pages [A,B,G].
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Further differences of opinion
There are many human objectives
that are best achieved by co-operation with your alies,
even if they only agree on a few things.

Designing a system of mathematical axioms is not one of them.

We borrow ideas and try to talk comparable languages.

Formal topology is founded on Martin-Löf type theory.
This has, in particular, =⇒ and Π.

Locale theory is founded on the theory of elementary toposes.
This has, in particular, powersets, P(X) = ΩX.

These are both (different) logics of discrete sets,
on top of which topology is defined.
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Yet more differences of opinion
Abstract Stone Duality is a logic of pure topology,
and of computation.

⇒ is neither continuous nor computable.

In ASD, Σ just has ∧, ∨, ∃N and ∀[0,1].

Abstract Stone Duality, locale theory and formal topology
all define spaces via their algebras of open sets.

They all prove the Heine–Borel theorem.

Martı́n Escardó has developed some ideas about topology and
computation using a similar logic on Σ.

However, he does not define spaces via algebras.

He has different opinions about the Heine–Borel theorem.
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Martı́n Escardó has developed some ideas about topology and
computation using a similar logic on Σ.

However, he does not define spaces via algebras.

He has different opinions about the Heine–Borel theorem.



Yet more differences of opinion
Abstract Stone Duality is a logic of pure topology,
and of computation.

⇒ is neither continuous nor computable.

In ASD, Σ just has ∧, ∨, ∃N and ∀[0,1].

Abstract Stone Duality, locale theory and formal topology
all define spaces via their algebras of open sets.

They all prove the Heine–Borel theorem.
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Witnesses: André Joyal and Milly Maietti
Later we shall use some naı̈ve set theory.

This will not be set, type or topos theory.

Such arguments are possible because “naı̈ve set theory”
in the form of an arithmetic universe
can be interpreted in ASD.

The overt discrete objects (those with ∃ and =) admit

I products 1 and ×;
I equalisers (sets of solutions of equations);
I stable disjoint unions ∅ and +;
I stable effective quotients of equivalence relations;
I free monoids (sets of lists), with (general) recursion.

This too depends on the definition of spaces via algebras.

Since the logic of ASD is very weak, the proofs are very long.
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Witness: Karl Weierstraß
What can we do with this logic for R?

Theorem: R is locally compact:

φx ⇔ ∃δ > 0. ∀y : [x ± δ]. φy

Theorem: Every definable function f : R→ R is continuous:

ε > 0 ⇒ ∃δ > 0. ∀y : [x ± δ].
(∣∣∣fy − fx

∣∣∣ < ε)
Proof: Put φx,εy ≡

(∣∣∣fy − fx
∣∣∣ < ε), with parameters x, ε : R.

Theorem: Every function f is uniformly continuous
on any compact subspace K ⊂ R:

ε > 0 ⇒ ∃δ > 0. ∀x : K. ∀y : [x ± δ].
(∣∣∣fy − fx

∣∣∣ < ε)
Proof: ∃δ > 0 and ∀x : K commute.
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Some more challenging elementary analysis
We shall use this language to study
I other compact subspaces of R besides [0, 1];

I a new kind of subspace called overt; and
I connectedness.
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Compact subspaces and necessity
The finite open sub-cover definition says that,
for a compact subspace K,
the predicate K ⊂ U is Scott continuous in U.

Martı́n Escardó explained this in his lecture on Monday.

We have already written ∀x : K. φx for K ⊂ U.

We shall now write �φ for the same thing.

It defines the subspace K
(at least in an ambient Hausdorff space).
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Properties of compact subspaces

�> ⇔ > and �(φ ∧ ψ)⇔ �φ ∧ �ψ.

In a Hausdorff space, like R, , is observable.

Then � defines a closed subspace,
co-classified by

ωx ≡ x < K ⇐⇒ �(λy. x , y)

Any closed subspace C of a compact space K is again compact,
with

�φ ≡ ∀x : K. ωx ∨ φx,

where ωx ≡ x < C co-classifies C.

The direct image of � under f : X→ Y is also compact

�ψ ≡ �(φ · f ).
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Overt subspaces and possibility
We wrote ∀x : K. φx or �φ for K ⊂ U (U covers K).
It satisfied �> ⇔ > and �(φ ∧ ψ)⇔ �φ ∧ �ψ.

Classically, for any set S ⊂ X of points, write

♦φ ≡ ∃x ∈ S. φx : Σ

for the property that U touches the set S (i.e. they intersect
non-trivially).

Then ♦⊥ ⇔ ⊥ and ♦(φ ∨ ψ)⇔ ♦φ ∨ ♦ψ.

Indeed, ♦∃i. φi ⇔ ∃i. ♦φi.

Forgetting the set S, we can consider any term ♦ : ΣΣ
X

that
preserves disjunction like this.

We call ♦ an overt subspace.
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Properties of overt subspaces

♦⊥ ⇔ ⊥ and ♦(φ ∨ ψ)⇔ ♦φ ∨ ♦ψ.

In a discrete space, likeN or Q, = is observable.

Then ♦ defines a open subspace, classified by

αn ≡ n ∈ U ⇐⇒ ♦(λm. n = m)

Any open subspace U of an overt space S is again overt, with

♦φ ≡ ∃n : N. αn ∧ φn,

where αn ≡ (n ∈ U) classifies U.

This is the well known equivalence between the two definitions
of recursive enumerability inN: overt=proactive,
open=reactive.

The direct image of ♦ under f : X→ Y is also overt

�ψ ≡ ♦(φ · f ).
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Overtness elsewhere
Open locales, i.e. those for which X→ 1 is an open map, were
introduced by Peter Johnstone, André Joyal, Myles Tierney,...

I changed the name from open to overt.

Positività has the same role in formal topology.

Total boundedness and locatedness are metrical ideas that are
used in contructive analysis to do the same things.
Bas Spitters will tell you more about this connection on
Saturday.

But it is computation that makes the need for this idea most
apparent.
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Why is overtness interesting computationally?

It abstracts interval halving algorithms:
if ♦(0, 1) then either ♦(0, 2

3 ) or ♦( 1
3 , 1),

and so on, until we have ♦(x − ε, x + ε) for some x and
arbitrarily small ε.

But interval halving is ridiculously slow:
we get one more bit per iteration.
Newton’s algorithm, by contrast, doubles the precision each
time.

Here constructive and numerical analysts are arguing at cross
purposes.

There are other (logic programming) methods of finding
solutions (members, accumulation points) of ♦ operators.
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Accumulation points of a ♦ operator
Axiomatically,N is overt: it has ∃N.

A direct image ofN is called a sequence.

The modal operator for the image of map a(−) :N→ X is

♦φ ≡ ∃n. φ(an).

Suppose that a : X satisfies (λφ. φa) ≤ ♦.
Let φ : ΣX be a neighbourhood of a, so φa⇔ >.
Then

> ⇔ φa ⇒ ♦φ ≡ ∃n. φ(fn).

In other words, some element of the sequence also belongs to φ,
i.e. a is an accumulation point of the sequence.
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Accumulation points of a ♦ operator
Some consequences of overtness of direct images.

Any overt subspace has the same ♦ operator as its (sequential)
closure (if this exists).

Any subspace that has a countable dense subspace is overt.

This is a common hypothesis in classical analysis and topology,
where all subspaces are overt for trivial reasons.

Is overtness the constructive content of this hypothesis?

Do all overt subspaces have dense subsequences?
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Stable zeroes
Numerical algorithms find zeroes with this property:

fd fb

a b c d e

d e a b c

fb fd

Definition: c : R is a stable zero of f if

a, e : R ` a < c < e ⇒ ∃bd. (a < b < c < d < e)
∧ (fb < 0 < fd ∨ fb > 0 > fd).

The subspace Z ⊂ [0, 1] of all zeroes is compact.
The subspace S ⊂ [0, 1] of stable zeroes is overt.



Straddling intervals
An open subspace U ⊂ R contains a stable zero c ∈ U ∩ S iff U
also contains a straddling interval,

[b, d] ⊂ U with fb < 0 < fd or fb > 0 > fd.

[⇒] From the definitions. [⇐] The straddling interval
is an intermediate value problem in miniature.

Notation: Write ♦U if U contains a straddling interval.

♦φ ≡ ∃bd. (∀x : [b, d]. φx)
∧ (fb < 0 < fd) ∨ (fb > 0 > fd).
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Modal operators, separately
� encodes the compact subspace Z ≡ {x ∈ I | fx = 0} of all zeroes.
♦ encodes the overt subspace S of stable zeroes.

�> ⇔ > ♦⊥ ⇔ ⊥

�(φ ∧ ψ)⇔ �φ ∧ �ψ ♦(φ ∨ ψ)⇔ ♦φ ∨ ♦ψ

(Z , ∅) iff �⊥ ⇔ ⊥

(S , ∅) iff ♦> ⇔ >



Modal operators, together
In the intermediate value theorem
for functions that don’t hover (e.g. polynomials):
I S = Z in the non-singular case
I S ⊂ Z in the singular case (e.g. double zeroes).

♦ and � for the subspaces S ⊂ Z are related in general by:

�φ ∧ ♦ψ ⇒ ♦(φ ∧ ψ)

(this happens even when there are double zeroes and S , Z)

S = Z (more precisely, S is dense in Z) iff

�(φ ∨ ψ) ⇒ �φ ∨ ♦ψ



Modal operators versus sets of zeroes
Example: cubic equation x3 + 3px + 2q = 0

As p and q vary, the set of real zeroes goes from 3 to 2 to 1 and
back.

Such a description cannot be continuous.

The modal operators � and ♦ are (Scott) continuous throughout
the paramater space.

Something must break at singularities: it is one of the mixed
modal laws.
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Compact overt subspaces
This conjunction is very powerful:

Theorem: It is decidable whether such a subspace is
I empty, when �⊥ ⇔ >, or
I inhabited, when ♦> ⇔ >.

Proof:
♦> ⇔ ⊥ empty �⊥ ⇔ >

♦> ⇔ > inhabited �⊥ ⇔ ⊥

�⊥ ∨ ♦> ⇐ complementary �⊥ ∧ ♦> ⇒
�(⊥ ∨ >) ⇔ �> ⇔ > (mixed) ♦(⊥ ∧ ⊥) ⇔ ♦⊥ ⇔ ⊥
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Theorem: It is decidable whether such a subspace is
I empty, when �⊥ ⇔ >, or
I inhabited, when ♦> ⇔ >.

Proof:
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Non-empty compact and overt subspaces
An accumulation point a : X of an overt subspace ♦ satisfies
λφ. φa ≤ ♦.

Then ♦ is inhabited, i.e. ♦> ⇔ >.

A point a : X of (the saturation of) a compact subspace �
satisfies λφ. φa ≥ �.

Then � is occupied, i.e. �⊥ ⇔ ⊥.

Example: any function f : K→ R on a compact space is
bounded and attains its bounds and any given intermediate
value on an occupied subspace.



Non-empty compact and overt subspaces
An accumulation point a : X of an overt subspace ♦ satisfies
λφ. φa ≤ ♦.

Then ♦ is inhabited, i.e. ♦> ⇔ >.

A point a : X of (the saturation of) a compact subspace �
satisfies λφ. φa ≥ �.

Then � is occupied, i.e. �⊥ ⇔ ⊥.

Example: any function f : K→ R on a compact space is
bounded and attains its bounds and any given intermediate
value on an occupied subspace.



Connectedness



Language and metalanguage
A simple counterexample concerning the intersection of two
overt subspaces shows the importance of evidence.

Example: Let g : R such that neither ` g = 0 nor ` g , 0.

Let K ≡ {0} ∩
{
g
}

and U ≡ R \ K.
U is the open, overt subspace and K the closed, compact one
defined by δ ∨ υ : R→ Σ, where

δd ≡ (d < 0 ∨ d < g ∨ g , 0) and υu ≡ (0 < u ∨ g < u ∨ g , 0)

If g = 0 then K = {0}, which is compact and overt.

If g , 0 then K = ∅, which is compact and overt.

Is K compact? Yes: �φ ≡ φ0 ∨ g , 0, so �⊥ ⇔ (g , 0).

Is K overt?
No: the observation ♦>would allow us to detect g = 0.
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Connectedness, classically
Definition: A space X is connected if any f : X→ 2 is constant.

Example: Let K ≡ {0} ∩
{
g
}

and U ≡ R \ K as before.

Is U classically connected?

I believe that we have to say that it is,
because we cannot define a non-constant function f : U→ 2
without knowing that g = 0.

Compare this piece of classical hubris:
Are there irrational numbers a, b with ab rational?
Yes: if (

√
2)(
√

2) is rational then let a ≡ b ≡
√

2.
Otherwise, let a ≡ (

√
2)(
√

2) and b ≡
√

2, so ab = 2.

However, U is not constructively connected.
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Constructive (overt) connectedness
An overt subspace I ⊂ X defined by ♦ : ΣΣ

X
is connected if

♦> ⇔ > and φ ∨ ψ = >I ` ♦φ ∧ ♦ψ ⇒ ♦(φ ∧ ψ),

where φ,ψ : ΣX, so whenever I ⊂ U ∪ V is covered by open
inhabited subspaces, their intersection is inhabited.

Proposition: Any function f : I→ R that takes values both
above −ε and below +ε also takes values within ε of zero:

∃xz : I. (−ε < fx) ∧ (fz < +ε) ⇒ ∃y : I. (−ε < fy < +ε),

so the open, overt subspace {x : X |
∣∣∣fx∣∣∣ < ε} is inhabited.

Proof: Let φx ≡ (−ε < fx) and ψx ≡ (fx < +ε), so φ ∨ ψ = > and

∃xz. (−ε < fx) ∧ (fz < +ε) ≡ ♦φ ∧ ♦ψ

⇒ ♦(φ ∧ ψ) ≡ ∃y. (−ε < fy < +ε).
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Dually, compact connectedness
A compact subspace K ⊂ X defined by � : ΣΣ

X
is connected if

�⊥ ⇔ ⊥ and φ ∧ ψ = ⊥I ` �φ ∨ �ψ ⇐ �(φ ∨ ψ),

for φ,ψ : ΣX, so whenever K ⊂ A ∪ B is covered by closed
occupied subspaces then their intersection is occupied.

Proposition: Let f : K→ R such that both of the closed,
compact subspaces {x : K | fx ≥ 0} and {x : K | fx ≤ 0} are
occupied. Then so is Z ≡ {x : K | fx = 0}.

Proof: Let φx ≡ (0 < fx) and ψx ≡ (fx < 0), so φ ∧ ψ = ⊥. Then

(∀x. 0 < fx) ∨ (∀x. fx < 0) ≡ �φ ∨ �ψ

⇐ �(φ ∨ ψ) ≡ (∀x. fx , 0).
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Three definitions of connectedness?
Theorem: For any compact overt subspace,
all three definitions are equivalent.

Proof: Using the mixed modal laws

♦φ ∧ �ψ ⇒ ♦(φ ∧ ψ) and ♦φ ∨ �ψ ⇐ �(φ ∨ ψ)

and the Gentzen-style rules

σ⇔ > ` α ⇒ β
=================
` σ ∧ α ⇒ β

σ⇔ ⊥ ` α ⇒ β
=================
` α ⇒ β ∨ σ

connectedness may be expressed in four equivalent ways:

φ ∨ ψ = > ` ♦φ ∧ ♦ψ ⇒ ♦(φ ∧ ψ)
φ ∧ ψ = ⊥ ` �φ ∨ �ψ ⇐ �(φ ∨ ψ)
�(φ ∨ ψ) ⇒ �φ ∨ �ψ ∨ ♦(φ ∨ ψ)
♦(φ ∧ ψ) ⇐ �(φ ∨ ψ) ∧ ♦φ ∧ ♦ψ



The interval [0, 1] is connected (usual proof)
Any closed subspace of a compact space is compact.
Any open subspace of an overt space is overt.

Any clopen subspace of an overt compact space is overt
compact, so it’s either empty or has a maximum.

Since the clopen subspace is open, its elements are interior,
so the maximum can only be the right endpoint of the interval.

Any clopen subspace has a clopen complement.
I They can’t both be empty, but
I in the interval they can’t both have maxima (the right

endpoint).

Hence one is empty and the other is the whole interval.



Converse
Theorem: Any compact overt connected subspace K ⊂ R
is an interval [d,u].

Proof: If K is compact overt,
I either K � ∅, which is forbidden by either definition of

connectedness;
I or it has e ≡ min K and t ≡ max K.

We want to show that ωx ≡ (∀y : K. x , y) is δx ∨ υx,
where (δ, υ) is the pseudo-Dedekind cut
δd ≡ (d < e), υu ≡ (t < u).

This should be impossible.
Imagine arriving from a hike at an isolated bus stop
to find the timetable obliterated.
The one daily bus is not there now (ωx).
How can you decide whether you should wait for it (δx)
or if it’s already gone (υx)?

You can’t. But we can still prove a more general theorem...
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Compact intervals
Theorem: Any compact connected subspace K ≡ (�, ω) ⊂ R is a
closed interval [δ, υ], i.e. it is co-classified by δ ∨ υ where (δ, υ) is
a rounded, bounded and disjoint pseudo-cut.

Proof: For x : R, let φxy ≡ (y < x) and ψxy ≡ (x < y), so
φx ∧ ψx = ⊥. By compact connectedness,

ωx ≡ �(λy. x , y) ≡ �(φx ∨ ψx) ⇔ �φx ∨ �ψx,

so δd ≡ �φd and υu ≡ �ψu.

(Either the bus hasn’t come yet, or it will never come again.)

δ and υ are disjoint because

δx ∧ υx ≡ �(λy. y < x) ∧ �(λy. x < y)
⇔ �(λy. y < x ∧ x < y) ⇔ �⊥ ⇔ ⊥.



Open intervals
Theorem: Let U ⊂ R be open, classified by α : ΣR.
This is overt connected iff α = δ ∧ υ,
where (δ, υ) is an overlapping pseudo-cut.

Proof [⇒]: For x : R, let φx ≡ αx ∧ (x < y) and ψx ≡ αx ∧ (x > y),
so ♦(φ ∧ ψ)⇔ ⊥. Then

αx ⇒ αx ∧ (αy ∨ x , y) ⇒ αy ∨ φx ∨ ψx.

If αy⇔ ⊥, this says that α ≤ φ ∨ ψ, so by overt connectedness,

αy⇔ ⊥ ` αx ∧ (x < y < z) ∧ αz ⇒ φx ∧ ψz ⇒ ♦φ ∧ ♦ψ

⇒ ♦(φ ∧ ψ) ⇒ ⊥

Hence αx ∧ (x < y < z) ∧ αz⇒ αy, so α = δ ∧ υ, where

δd ≡ ∃e. d < e ∧ αe and υu ≡ ∃t. αt ∧ t < u.



The main case for the defence
Do our axioms characterise the real real line?

This is the crux of our practical defence of Heine–Borel.

It is also our counter-claim against Bishop.
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Open sets as unions of intervals
Classically, any open U ⊂ R is
the union of at most countably many disjoint open intervals.
Moreover this decomposition is unique.

For any open U ⊂ R classified by φ : ΣR, define

(x ≈φ y) ≡
(
[x, y] ⊂ φ

)
∧

(
[y, x] ⊂ φ

)
≡

(
x > y ∨ ∀z : [x, y]. φz

)
∧

(
x < y ∨ ∀z : [y, x]. φz

)
,

which is a partial equivalence relation on R
that is reflexive exactly on U: φx⇔ (x ≈ x).

We shall show that the equivalence classes of ≈
are the required intervals.
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Open relations on the closed interval
Lemma: Let ∼ be an open reflexive relation on I ≡ [0, 1]:

· · · , x, y : R ` x ∼ y : Σ such that ∀x : [0, 1]. x ∼ x.

Then ∼ is represented by finitely many dyadic rationals:

∀x : [0, 1]. x ∼ x
⇒ ∀x. ∃p, q : R. p < x < q ∧ ∀y : [p, q]. x ∼ y
⇒ ∀x. ∃k,m : N. 0 ≤ m ≤ 2k

∧ x ∼ m
2k

⇒ ∃k. ∀x. ∃m. 0 ≤ m ≤ 2k
∧ x ∼ m

2k



Graph-theoretic connectedness
Lemma: Let θ0, . . . , θn−1 be open subsets of a space X that

I are each inhabited in (♦θi) and
I together cover (∃i < n. θi) = >I)

an overt connected subspace I ⊂ X defined by ♦.

Then the overlaps of the θi define a connected graph,
in the sense that there is some permutation p : n � n for which

∀1 ≤ i < n. ∃0 ≤ j < i. ♦(θp(i) ∧ θp(j)).

Because of the infinitary lemma,
we want n :N to be a parameter,
so “fill in” θi ≡ > for i ≥ n.



Graph-theoretic connectedness
Proof: We prove by induction on 1 ≤ m ≤ n that

∃p : n � n.
{

∀1 ≤ i < m. ∃0 ≤ j < i. ♦(θp(i) ∧ θp(j))
∧ ∀m ≤ i < n. p(i) = i,

where the initial case m ≡ 1 is satisfied by p ≡ id
and the final one m ≡ n gives the required result.

Assume the induction hypothesis for some 1 ≤ m < n and put

φx ≡ ∃0 ≤ j < m. θp(j)x and ψx ≡ ∃m ≤ i < n. θix.

Then φ ∨ ψ = >I, > ⇔ ♦θ0 ⇒ ♦φ and > ⇔ ♦θn−1 ⇒ ♦ψ.
Since ♦ is overt connected and preserves joins, we deduce

♦(φ ∧ ψ) ≡ ∃m ≤ i < n. ∃0 ≤ j < m. ♦(θi ∧ θp(j)).

Let s : n � n be the swap (m, i), and p′ ≡ s · p.
Then p′ satisfies the induction hypothesis for m+ 1 in place of m.
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Equivalence relations
Theorem: Any open equivalence relation ∼ on I ≡ [0, 1]
is indiscriminate, i.e. ∀x, y : I. x ∼ y, and in particular 0 ∼ 1.

Proof: Using k from the infinitary lemma,
put n ≡ 2k + 1 and θix ≡ (x ∼ i · 2−k) in the finitary one.
Then ∼ is connected in the graph-theoretic sense.
As it is also symmetric and transitive, 0 ∼ 1,
and more generally ∀xy : [0, 1]. x ∼ y.
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Proof: Using k from the infinitary lemma,
put n ≡ 2k + 1 and θix ≡ (x ∼ i · 2−k) in the finitary one.
Then ∼ is connected in the graph-theoretic sense.
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Local connectedness with equivalence relations
Corollary: Any open partial equivalence relation ∼ on R
satisfies (

∀y : [x, z]. y ∼ y
)
⇒ x ∼ z.

Corollary: Any function f : X→ N with N discrete is constant,
where X ≡ I, R, (d,u) or (υ, δ).

Proof: The open equivalence relation (x ∼ y) ≡ (fx =N fy) is
indiscriminate.



Witness: Andrej Bauer
Bishop cannot prove this without Heine–Borel.

Example: Let n :N ` θn be a singular cover of [0, 1] in recursive
analysis, i.e. one with no finite subcover.

Define the reflexive relation ∼ by

(x ∼ z) ≡ ∃n. ∀y : [x, z]. θny.

Then its symmetric transitive closure
has infinitely many equivalence classes in [0, 1].
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A universal property
Proposition: ≈ is an open partial equivalence relation on R
that is reflexive on the open subspace classified by φ:

φx⇒ (x ≈ x), x ≈ y⇒ y ≈ x and x ≈ y ≈ z⇒ x ≈ z.

The classes are disjoint in the sense that
if any two overlap, they actually coincide.
Each of these classes is open and connected.

It is the sparsest such relation:
any other one, ∼, satisfies (x ≈ y)⇒ (x ∼ y).

Finally, (x ≈ x)⇒ φx.
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Countably many intervals
Lemma: From any open subspace U ⊂ R
there is an open surjection U� N/≈with open connected fibres
onto an overt discrete space.

Proof: Let U be classified by φ : ΣR.

Let N ≡ {q : Q | φq} ⊂ Q,
which is an open subspace of an overt discrete space.

Then ≈ restricts to a (total) open equivalence relation on N,

so the quotient N/≈ is an overt discrete space.

Since Q ⊂ R is dense, N� U is epi

so there is an open surjection U� N/≈.

Geometric and Higher Order Logic in terms of ASD,
Theory and Applications of Categories, 7 (2000) 284–338.



Order on the intervals
Lemma: The relation ≤ on N/≈ defined by

[x] ≤ [y] ≡ ∃p, q : Q. x ≈ p ≤ q ≈ y

is a total order, in the sense that

[x] ≤ [x], [x] ≤ [y] ≤ [x]⇒ [x] ≤ [z],

[x] ≤ [y] ≤ [x]⇒ (x ≈ y), [x] ≤ [y] ∨ [y] ≤ [x].

Example: It need not be decidable:
the open complement U of {0} ∩

{
g
}

has {−1,+1}/≈ components,
where (−1 ≈ +1) ≡ g , 0.



Re-stating the universal property categorically
Theorem: Every open subspace U ⊂ R is locally connected:
I there is a map p : U� N/≈with N/≈ discrete;
I any map f : U→M to a discrete space factors uniquely as

U
p

>> N/≈

M

f
∨
<....

......
......

......
......

......
..

I N/≈ is overt and p is an open surjection;
I this representation is unique up to unique isomorphism.

Proof: (x ∼ y) ≡ (fx =M fy) is an open partial equivalence
relation on R with φx⇒ x ∼ x, so x ≈ y⇒ x ∼ y.
Hence f factors uniquely through the quotient.



Witnesses: Richard Dedekind, Eduard Heine and
Emile Borel
R is
I overt, with ∃;
I Hausdorff, with ,;
I totally ordered, i.e. (x , y)⇔ (x < y) ∨ (y < x);
I a field, where x−1 is defined iff x , 0;
I Dedekind complete; and
I Archimedean;
I and the closed interval is compact, with ∀.

Practical defence: these axioms are natural, necessary and
complete for analysis.

Formalist defence: they have a recursive model (ASD).


