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Abstract Stone Duality
ILattice part: >, ⊥, ∧, ∨ for open sets, = for discrete spaces,
, for Hausdorff, ∀ for compact and ∃ for overt ones.
ICategorical part: λ-calculus for Σ(−), and the adjunction

Σ(−)
a Σ(−) is monadic: gives definition by description,

Dedekind completeness and Heine–Borel.

The categorical part only handles locally compact spaces.
It needs to be generalised.

We will get a CCC, but that’s not important, because the
exponential YX is tested by incoming maps, but its topology by
outgoing ones.

We certainly need products, Σ(−) and equalisers.



CCCs with all finite limits
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Want to write E = {x | ∀y. αxy = βxy}.



Equideductive logic

` > x : 0 ` p

p, q ` p&q p&q ` p p&q ` q

Γ, x : A, p(x) ` αx = βx
∀I

Γ ` ∀x : A. p(x) =. αx = βx

Γ ` a : A, p(a) Γ ` ∀x : A. p(x) =. αx = βx
∀E

Γ ` αa = βa

All the variables on the left of =. must be bound by ∀.
Maybe add some dependent types later.
Must have subsitution (cut) for free variable x.



Interpretation of equideductive logic
IThe obvious set-theoretic one — the construction to follow

will give Dana Scott’s equilogical spaces.
I In locales — but I’m not sure whether this works

(Does (−) × X preserve epis? I have both a proof and a
counterexample!)
I In Formal Topology, if this works.
I Proof-theoretic, taking the rules just as they are

(as we shall do for most of this lecture).
I In another type theory such as Coquand’s Calculus of

Constructions or Coq.
IWith additional axioms of our choosing.



Interaction with the lattice structure
The implication =. in equideductive logic depends on the
categorical structure (equalisers and Σ(−)).

If Σ also has lattice structure, with induced order⇒, then these
interact very nicely.

That is, if we assume the Phoa principle.
In the Gentzen style, this is

x : X, αx = > ` βx = >
=======================

x : X ` αx ⇒ βx
and

x : X, βx = ⊥ ` αx = ⊥
=======================

x : X ` αx ⇒ βx

which we rewrite as

(∀x.αx = > =. βx = >) /==. (∀x.αx⇒ βx)

/==. (∀x.βx = ⊥ =. αx = ⊥)

This is also the definition of α 6 β.



Interaction with topological structure
Similarly, equality =N in a discrete space N is a special case of
general equality of terms:

n = m /==. (n =N m) = >, whilst h = k /==. (h ,H k) = ⊥

in a Hausdorff space H.
The universal quantifier U in a compact space is related to ∀:

(∀x. φx = >) /==. (Ux. φx) = >

Similarly
(∀x. φx = ⊥) /==. (∃x. φx) = ⊥

in an overt space.
See Foundations for Computable Topology, §12, for more
discussion: www.Paul Taylor.EU/ASD/foufct



Equideductive spaces
Urtypes: generated from 0, 1 andN by +, × and ((−)→ Σ).
Combinators, including

I : (A→ Σ)→ A→ Σ, K : (A→ Σ)→ B→ A→ Σ,

C :
(
(B→ Σ)→ (C→ Σ)

)
→

(
(A→ Σ)→ (B→ Σ)

)
→ (A→ Σ)→ C→ Σ

T : 1, ν0 : A→ (A + B), ν1 : B→ (A + B),

π0 :
(
(A + B)→ Σ)→ A→ Σ, π1 :

(
(A + B)→ Σ)→ B→ Σ,

〈〉 :
(
(C→ Σ)→ A→ Σ

)
→

(
(C→ Σ)→ B→ Σ

)
→ (C→ Σ)→ (A+B)→ Σ.

A :
(
((A→ Σ) + A)→ Σ

)
→ 1→ Σ,

L :
(
((A + B)→ Σ)→ 1→ Σ

)
→ (A→ Σ)→ (B→ Σ)→ Σ.

with appropriate equational axioms, such as
∀MNφc. CNMφc = N(Mφ)c, without =..



Equideductive spaces
An equideductive space X is (A, p, q) where A is an urtype,
p is an urstatement on ΣA and q one on A, for which

φ,ψ : ΣA, p(φ), ∀a : A. q(a) =. φa = ψa ` p(ψ).

This rule is important in the construction.
Later, we tighten it to ensure that all spaces are definable using
exponentials and equalisers.
LHS is a partial equivalence relation.
A morphism M : X ≡ (A, p, q)→ Y ≡ (B, r, s) is an realiser
M : (A→ Σ)→ B→ Σ such that

φ : ΣA, p(φ) ` r(Mφ)

φ,ψ : ΣA, p(φ), ∀a. q(a) =. φa = ψa ` ∀b. s(b) =. Mφb = Mψb,

where M1 = M2 if

φ : ΣA, p(φ) ` ∀b : B. s(b) =. M1φb = M2φb.



Categorical structure
1 ≡ (0,>,>), Σ ≡ (1,>,>).

The product is (A, p, q) × (B, r, s) ≡
(
A + B, (p · π0&r · π1), [q, s]

)
.

The equaliser is

E ≡ (A, t, q) >
I

> (A, p, q)
M

>

N
> (B, r, s)

t(φ) ≡ p(φ) & ∀b : B. s(b) =. Mφb = Nφb,

The exponential of X ≡ (A, p, q) is ΣX
≡ (ΣA, qp, p), where

qp(F) ≡ ∀φ,ψ : ΣA. p(φ) & (∀a : A. q(a) =. φa = ψa) =. Fφ = Fψ.

(The modulation p(φ)& · · · is the source of many difficulties.)



All objects are definable
If q is defined using >, equations, & and ∀ =. then
q(a) a` q>(λφ. φa).

(A, p,>) � (ΣΣA
, p>& prime,>)

(A,>, q) � (ΣΣA
,>, q>& prime) � Σ(ΣA,q>& prime,>).

(ΣA,prime,>) >> (ΣA,>,>)
F 7→ λF . F F

>

F 7→ λF . F
(
λa. F (λφ. φa)

)> (Σ3A,>,>)

(ΣA, p>& prime,>) >> (ΣA,prime,>)
Σ2M

>

Σ2N
> (B,>, r) � Σ(ΣB,r>& prime,>)

{A | p} > > {A | >}
Σ2M

>

Σ2N
> � Σ{B|r}



An exactness property

Z ≡ {ΣA
| p} ≡ (A, p,>) >

i
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∨
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Exactness property
Let L be the full subcategory of objects (A, p,>).
(In the case of equilogical spaces, L consists of sober Bourbaki
(= textbook) spaces.)

L is closed under ×, regular monos and ΣΣ(−)
.

Σ is injective wrt regular monos in L.
Given regular mono (A, p,>)� (A,>,>),
Σ(−) takes it to a regular epi,
the pullback of this along any regular mono is still regular epi.

Set obeys similar (but stronger) properties.



A Chu-like construction
We can represent any equideductive space (A, p, q)
by two L-objects (A, p,>) and (ΣA, qp,>).

Similarly any morphism (A, p, q)→ (B, r, s) is given by
(A, p,>)→ (B, r,>) and (ΣA, qp,>)← (ΣB, sr,>).

(ΣA, qp,>)← (ΣB, sr,>) is a homomorphism of Σ2-algebras.

Like the real and imaginary parts of a complex number.

So equideductive spaces have a topological part and an
algebraic one, cf. Stone duality.

However, (A, p,>) is not the reflection of (A, p, q) in L,
and indeed does not depend functorially on it.



What kind of theory
Should generalised topology be
I bipartite, with a topological (“real”) part and an algebraic

(“imaginary” one), or
I unitary, where the same (exactness) properties apply to all

objects?
(In “free” equideductive logic, the exactness property only
holds when the basic object is (A,>,>), essentially a locally
compact space.)

An analogy from the history of Science:
IAristotle had a bipartite theory, with rectilinear motion on

Earth and circular motion for the planets.
IGalileo and Newton unified them.

Similarly, whilst C adds
√
−1 to R,

it otherwise obeys the same laws of algebra.
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A critical example
B ≡NN is not locally compact,
so i : B ≡NN� R (where R ≡ ΣN×N orNN

⊥
) is not Σ-split,

i.e. there is no I : ΣB
→ ΣR with Σi

· I = id.
Hence there is no diagonal fill-in

B × ΣB >
i × id

> R × ΣB

Σ

ev
∨
<.....

.......
.......

.......
.......

.......
.......

so Σi×id is not surjective.
((−) × ΣB is crucial to this counterexample.)

Conjecture: Σi×id could still be regular epi.
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Question in recursion theory
Let X ≡ ΣR be the topology on the space R of binary relations
(or partial functions if you prefer).
B ≡NN ⊂ R induces an equivalence relation ∼ on X
(this is definable in equideductive logic).
From this, define the notations

(f ∼ g) ≡ ∀x. fx ∼ gx
(∼f=) ≡ ∀xy. x ∼ y =. fx = fy
(∼g∼) ≡ ∀xy. x ∼ y =. gx ∼ gy.

Is the following extra rule consistent?

∀fg. (∼f∼) & (f ∼ g) & (∼g∼) =. Φf = Φg ∀f . (∼f=) =. Φf = Ψf

∀g. (∼g∼) =. Φg = Ψg

Need to analyse the proof of ∀f . (∼f=) =. Φf = Ψf .



The goal for a new theory of topology
IAll maps are automatically continuous and computable.
IThey represent computationally observable properties.
I Subspaces represent provable properties.
IDefine subspaces as mathematicians (not set theorists) use

set theory, e.g. K ≡ {x : X | ∀φ. �φ =. φx}.
IGeneralised spaces have as many of the exactness properties

of sets that they can have when all maps are continuous.

The new category of spaces would be highly non-pointed.

Potential applications? Measure, distribution or probability
theory.
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