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Abstract Stone Duality
ASD’s axiomatisation of general topology consists of
I a lattice part: >, ⊥, ∧, ∨ for open sets, = for discrete spaces,
, for Hausdorff, U for compact and ∃ for overt ones
(we’ll see the reason for the new symbol U in place of ∀);
I a categorical part: λ-calculus for Σ(−), and the adjunction
Σ(−)
a Σ(−) is monadic: gives definition by description,

Dedekind completeness and Heine–Borel.

But the categorical part only handles locally compact spaces.
It needs to be generalised.

We will get a CCC, but that’s not important, because
I the exponential YX is tested by incoming maps,
I but its topology by outgoing ones.

We certainly need products, Σ(−) and equalisers.
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Not the definition of a topos
A topos
I has an internal Heyting algebra Ω; and
I is cartesian closed, with equalisers as well as products, and

all powers, in particular of Ω.

Even though this is much weaker than the correct definition,
these two ideas are surprisingly powerful.

Don’t worry — this is not a category theory talk!
Besides constructive topologists,
it’s aimed at (some particular) type theorists.
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CCCs with all finite limits
Working with nested equalisers and exponentials is clumsy.
Want to write E = {x | ∀y. αxy = βxy}.

E

Γ
a

b
..........

..........
..........

.....>

> X
α̃

>

β̃
>

i>

> ΣY

E × Y

∧

Γ × Y

∧

a × idY..........
..........

........>

> X × Y

∧

α̃ × Y
>

β̃ × Y
>

i × idY

>
ΣY
× Y

∧

Σ

α

∨

β

∨

<
ev>

α(a, y) = β(a, y)
>

This can be stated without mentioning ΣY

as a universal property called a partial product.



Equideductive logic
The symbolic rules for ∀ =. are as you would expect:

Γ, x : A, p(x) ` αx = βx
∀I

Γ ` ∀x : A. p(x) =. αx = βx

Γ ` a : A, p(a) Γ ` ∀x : A. p(x) =. αx = βx
∀E

Γ ` αa = βa

Of course, we need substitution (cut) for the free variable x.
It is given by a small change to the partial product diagram.

This logic also has conjunction, with

` > p, q ` p&q p&q ` p p&q ` q,

given by equalisers targeted at products. So, although ∀ =.
fundamentally has an equation on the right, we may define

∀y.
(
p(y) ==. ∀z. (q(z) =. αxyz = βxyz)

)
as ∀yz. (p(y) & q(z) ==. αxyz = βxyz).
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The variable-binding rule
In the expression ∀~y. p(~y) ==. α~x~y = β~x~y,
all of the variables on the left of =. must be bound by ∀.

This is because the target of the equaliser was ΣY,
not a dependent type.



Not all dependent types
Maybe we can add some dependent types later, but
we cannot have all dependent types,
because we’re doing topology, not set theory.

Write $ for the ascending natural number domain,

∞...
•

•

•

•

1
∞

> $

0

∧

>N

∧

ThenN→ $ is epi but not surjective,
since∞ has no inverse image, i.e. its pullback is the initial object.

Therefore, a category of “sober” spaces and Scott-continuous
functions cannot be locally cartesian closed.
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Equideductive translation of rules
An algebraic theory may be presented using judgements

x : X, y : Y, . . . , a = b, c = d, . . . ` e = f

which we re-write in equideductive logic as

∀x : X.∀y : Y. . . . a = b & c = d & · · · ==. e = f ,

in which all of the variables are bound by ∀.

Then a rule
x : X, y : Y, . . . , a = b, c = d, . . . ` e = f

u : U, v : V, . . . , g = h, k = `, . . . ` m = n
is re-written as(

∀x : X.∀y : Y. . . . a = b & c = d & · · · =. e = f
)

==.
(
∀u : U.∀v : V. . . . g = h & k = ` & · · · =. m = n

)
.

But =. can be nested arbitrarily deeply, so we write induction as

∀n. p(0) &
(
∀m. p(m) =. p(m + 1)

)
==. p(n).
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A “double negation” property
If p(a) is >, q(a)&r(a) or ∀y. q(y) =. αay = βay then

p(a) a` ∀φψ. (∀a′. p(a′) =. φa′ = ψa′) ==. φa = ψa

where a : A and φ,ψ : ΣA.



Disjunction and existential quantification
Using

p(a) a` ∀φψ. (∀a′. p(a′) =. φa′ = ψa′) ==. φa = ψa

we may also define (p ∨ q)(a) as

∀φψ. (∀a′. p(a′) =. φa′ = ψa′) &
(∀a′′. q(a′′) =. φa′′ = ψa′′) =. φa = ψa

and (∃x. p)(a) as

∀φψ. (∀a′x. p(x, a′) =. φa′ = ψa′) =. φa = ψa

satisfying the distributive and Frobenius laws (???).



Constructive topology
Remember that, so far, we have just been working in a category
with products, equalisers and a kind of partial product.

Not necessarily even a cartesian closed category.
(The CCC motivated the partial product and so ∀ =.,
but we then looked at a subcategory.)

So far, Σ has needed no special properties.

So what does all of this have to do with constructive topology?
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Equilogical spaces
Dana Scott introduced equilogical spaces.
They are given by partial equivalence relations
on algebraic lattices.

They provide a cartesian closed extension
of the textbook category of topological spaces.

There are many variations, including
Martin Hyland’s filter spaces and Alex Simpson’s QCB.

Giuseppe Rosolini related these categories to presheaves on,
and exact completions of, the textbook category.

However, they include many objects
that owe more to set theory than to topology.



Equideductive spaces
In Scott’s construction, the objects that are definable
from algebraic lattices using products, equalisers and Σ(−)

involve partial equivalence relations
that are restrictions of congruences.

So we replace one, two-argument partial equivalence relation
with two one-argument predicates (p and q).

Also, instead of set theory, we use equideductive logic,
possibly with some other interpretation.

What other interpretation?
That’s a question for you — at the end of this lecture!
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Equideductive spaces
Urtypes: generated from 0, 1 andN by +, × and ((−)→ Σ).
Combinators, including

I : (A→ Σ)→ A→ Σ, K : (A→ Σ)→ B→ A→ Σ,

C :
(
(B→ Σ)→ (C→ Σ)

)
→

(
(A→ Σ)→ (B→ Σ)

)
→ (A→ Σ)→ C→ Σ

T : 1, ν0 : A→ (A + B), ν1 : B→ (A + B),

π0 :
(
(A + B)→ Σ)→ A→ Σ, π1 :

(
(A + B)→ Σ)→ B→ Σ,

〈〉 :
(
(C→ Σ)→ A→ Σ

)
→

(
(C→ Σ)→ B→ Σ

)
→ (C→ Σ)→ (A+B)→ Σ.

A :
(
((A→ Σ) + A)→ Σ

)
→ 1→ Σ,

L :
(
((A + B)→ Σ)→ 1→ Σ

)
→ (A→ Σ)→ (B→ Σ)→ Σ.

with appropriate equational axioms, such as
∀MNφc. CNMφc = N(Mφ)c, without =..



Equideductive spaces
An equideductive space X is (A, p, q) where A is an urtype,
p is a predicate on ΣA and q one on A, for which

φ,ψ : ΣA, p(φ), ∀a : A. q(a) =. φa = ψa ` p(ψ).

This rule is important in the construction.
It can be tightened to ensure that all spaces are definable using
exponentials and equalisers.
LHS is a partial equivalence relation.

A morphism M : X ≡ (A, p, q)→ Y ≡ (B, r, s) is a realiser
M : (A→ Σ)→ B→ Σ such that

φ : ΣA, p(φ) ` r(Mφ)

φ,ψ : ΣA, p(φ), ∀a. q(a) =. φa = ψa ` ∀b. s(b) =. Mφb =Mψb,

where M1 =M2 if

φ : ΣA, p(φ) ` ∀b : B. s(b) =. M1φb =M2φb.
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The type structure
1 ≡ (0,>,>), Σ ≡ (1,>,>).

The product is (A, p, q) × (B, r, s) ≡
(
A + B, (p · π0&r · π1), [q, s]

)
.

The equaliser is

E ≡ (A, t, q) >
I

> (A, p, q)
M

>

N
> (B, r, s)

t(φ) ≡ p(φ) & ∀b : B. s(b) =. Mφb = Nφb,

The exponential of X ≡ (A, p, q) is ΣX
≡ (ΣA, qp, p), where

qp(F) ≡ ∀φ,ψ : ΣA. p(φ) & (∀a : A. q(a) =. φa = ψa) =. Fφ = Fψ,

cf. the “double negation” property earlier.
(The modulation p(φ)& · · · is the source of many difficulties.)



There’s still nothing special about the object Σ
cf. the two-level structure of Abstract Stone Duality for locally
compact spaces:

we have replaced the underlying categorical strucure with a
new one,

although it’s not actually a generalisation

(this is a problem that we shall try to solve later).



The structure on Σ
At least, a distributive lattice: (Σ,>,⊥,∧,∨).



Classifying open subsets
We want Σ to be a dominance (Giuseppe Rosolini again):

U > 1

X

i

∨

∩

χU
> Σ

>

∨

I If U � V then χU = χV (pace Per Martin-Löf);
I idX is a pullback of > : > → Σ (along λx.>);
I If U ↪→ V and V ↪→W are pullbacks of > : > → Σ

then so is their composite U ↪→W;
I i is Σ-split: there is ∃i : ΣU

→ ΣX with
Σi
· ∃i = idΣU and ∃i · Σ

i = (−) ∧ χU 6 idΣX , so ∃i a Σ
i.



When is Σ a dominance?
Recall that the implication =. in equideductive logic depends
on the categorical structure (equalisers and Σ(−)).

If Σ also has lattice structure, we write⇒ for the induced order.

i : U ↪→ X is Σ-split iff =. and⇒ are related
by the Euclidean principle in the form

σ = > =. α = β ` σ ∧ α = σ ∧ β

and then Σ is a dominance.

This is the translation of the Gentzen-style rule

σ = > ` α = β
===============
` σ ∧ α = σ ∧ β
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Interaction of =. with⇒ and & with ∧
Another way of writing the Euclidean principle is

σ = > =. α = > a` σ⇒ α.

So it is natural to read

σ : Σ as σ = >

φ : ΣX as ∀x. φx = >

making⇒ a special case of =..

Then we have, as observed by Matija Pretnar,

α = > & β = > a` α ∧ β = >

making ∧ a special case of &.
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The Phoa principle
In topology, all maps preserve⇒ and
Σ classifies both open and closed subspaces.

Monotonicity says that

∀a. φa⇒ ψa ` Fφ⇒ Fψ

for φ,ψ : ΣA and F : ΣA
→ Σ.

The dual Euclidean principle is

σ = ⊥ =. α = ⊥ a` σ⇐ α,

cf. the contrapositive in classical logic.

Then the lattice-theoretic ∨ and ∃
are special cases of those defined earlier using ∀ =. from the
categorical structure (??).
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Interaction with topological structure
Similarly, equality =N in a discrete space N is a special case of
general equality of terms:

n = m a` (n =N m) = >, whilst h = k a` (h ,H k) = ⊥

in a Hausdorff space H.
The universal quantifier U in a compact space is related to ∀:

(∀x. φx = >) a` (Ux. φx) = >

(Existential quantifiers in an overt space too???)



A more complicated example
Recall from Andrej Bauer’s lecture that
an overt subspace I ⊂ X defined by ♦ is connected if

♦> ⇔ > and . . . , φ, ψ : ΣX, φ∨ψ = >I ` ♦φ∧♦ψ ⇒ ♦(φ∧ψ).

The subspace I is {x : X | ∀θ.θx =. ♦θ}.
The second clause of connectedness is

∀φ,ψ.
(
∀x. (∀θ.θx =. ♦θ) =. φx∨ψx

)
==.
(
♦φ∧♦ψ⇒ ♦(φ∧ψ)

)
.

The variable-binding rule does not allow parameters in ♦.
What does this mean?
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A new language for topology
Since⇒, ∧, ∨ (in Σ) and =N, U, ∃ (discrete, compact, overt) are
special cases of =., &, ∨, =, ∀, ∃we can just use the traditional
symbols.

But they generate two different logics:
IThe inner one provides the terms of type Σ, which are

observable properties or open subspaces; computably
continuous functions are derived from these.
IThe outer one is the logic of provable properties and

general subspaces.

We may form =, ,, ∀ or ∃within the inner calculus so long as
the relevant space is discrete, Hausdorff, compact or overt, as in
the old calculus.
The other cases, including⇒, take us to the outer calculus.
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The goal for a new theory of topology
IAll maps are automatically continuous and computable.
IThey represent computationally observable properties.
I Subspaces represent provable properties.
IDefine subspaces as mathematicians (not set theorists) use

set theory, e.g. K ≡ {x : X | ∀φ. �φ =. φx}.
IEach object should automatically have the correct topology.

But, as it stands we do not necessarily have the “correct”
topology (whatever that is, which I shall not discuss now)
or all of the exactness properties (of ASD) that we would like.
We need some extra axioms...
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Interpretation of equideductive logic
IThe obvious set-theoretic one — the construction earlier

gives Dana Scott’s equilogical spaces.
I In locales — but I’m not sure whether this works

(Does (−) × X preserve epis? I have both a proof and a
counterexample!)
I In Formal Topology, if this works.
I Proof-theoretic, taking the rules just as they are

(as we have done in this lecture).
I In another type theory such as Thierry Coquand’s Calculus

of Constructions or Coq.
IWith additional axioms of our choosing.



A critical example
B ≡NN is not locally compact,
so i : B ≡NN� R (where R ≡ ΣN×N orNN

⊥
) is not Σ-split,

i.e. there is no I : ΣB
→ ΣR with Σi

· I = id.
Hence there is no diagonal fill-in

B × ΣB >
i × id

> R × ΣB

Σ

ev
∨
<.....

.......
.......

.......
.......

.......
.......

so Σi×id is not surjective.
((−) × ΣB is crucial to this counterexample.)
Conjecture: Σi×id could still be regular epi.



Question in recursion theory
Let X ≡ ΣR be the topology on the space R of binary relations
(or partial functions if you prefer).
B ≡NN ⊂ R induces an equivalence relation ∼ on X
(this is definable in equideductive logic).
From this, define the notations

(f ∼ g) ≡ ∀x. fx ∼ gx
(∼f=) ≡ ∀xy. x ∼ y =. fx = fy
(∼g∼) ≡ ∀xy. x ∼ y =. gx ∼ gy

for f , g : X→ X.
Is the following extra rule consistent?

∀fg. (∼f∼) & (f ∼ g) & (∼g∼) =. Φf = Φg ∀f . (∼f=) =. Φf = Ψf

∀g. (∼g∼) =. Φg = Ψg

where Φ,Ψ : ΣXX
.

Need to analyse the proof of ∀f . (∼f=) =. Φf = Ψf .



Conjecture for a new interpretation
Equideductive logic −→ Calculus of Constructions

−→ Domain theory
(for example the topos model of Hyland and Pitts).

Being domain theory, this has
a Scott continuous intepretation of proofs.

What is the extra logical axiom that this entails?
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