
Cartesian Closure for Stable Categories (draft)

Paul Taylor

1989

1 Rigid Adjunctions

1.1 Rigid Comparisons

It is not apparent what meaning, if any, is to be attached to the group of automorphisms of a
rigid comparison (perhaps this is a kind of “gauge invariance”) but in view of the lemma it seems
we can ignore it and make the

Definition 1.1 RC is the category whose (?)

• objects are stable categories, i.e., for our purposes so far, categories with pullbacks, and

• morphisms are isomorphism classes of rigid comparisons (the right adjoints are also consid-
ered to exist only “up to isomorphism”).

The symbol RC, like the term stable category, is considered as a variable, parametric upon our
specific requirements.

Exercises 1.2

(a) Composition in RC is well-defined by representatives.

(b) A morphism of RC is invertible ⇐⇒ it is a class of strong equivalences ⇐⇒ its counit is
an isomorphism.

(c) Objects of RC are isomorphic iff they are equivalent categories.

(d) RC/T ' Copt(T) (?). �

Rigid comparisons embody an important idea from domain theory: approximation. This must
have the property that if X ′ approximates X then [X ′ → Y] approximates [X → Y] and not vice
versa as with precomposition with ordinary maps. Considering a stable functor to be given by its
trace, we consider the diagram

X �
C

T
F - Y

X ′

Ξ

6

� C ′
T ′

Φ

6

F ′ - Y ′

Ψ

6

in which C and C ′ are comparisons, F and F ′ isotomies and Ξ, Ψ and Φ are rigid comparisons
(which are both comparisons and isotomies). As in the definition of RC, we interpret “rigid
comparison” as an isomorphism class, and the diagram is to commute up to isomorphism. The

1

idea is that the functor F ′H ′ : X ′ → Y ′ approximates FH : X → Y, and its domain and codomain
are also approximations.

This corresponds to a definition of polymorphism suggested by Eugenio Moggi: we may
see SCat as an internal category in itself. The category-of-objects is RC, and the category-
of-morphisms has trace factorisations as objects and diagrams like this as morphisms; domain,
codomain and identity are obvious forgetful functors and composition is tensor product. Moggi’s
definition of polymorphism is simply that SCat is an internal cartesian closed category which has
products indexed by its category-of-objects.

1.2 Calculating Slices of Function-Spaces

We shall now calculate the category Copt(T) = [T → T]/id explicitly in terms of T , and hence
show that the function-space [X → Y] has slices “of the same kind” as those of (X and) Y. First,

Exercise 1.3 If T has a terminal object then Copt(T) ' T , i.e. the only rigid comparisons into
a category with finite limits are slice maps. [Hint: consider M1; cf. Lemma 2.2.4.] �

Lemma 1.4 T 7→ T /T induces an isotomy

T /− : T → RC

whose effect on morphisms, t : T ′ → T , is given by the pair t! a t∗.
Proof Its restriction to T /T0 is the equivalence T /T0 ' Copt(T /T0) ' RC/(T /T0). �

(?) There are forgetful (pseudo)functors RC → Cat and RCop → Cat which take a rigid
adjunction to its left and right parts respectively. Of course, we have the

Exercise 1.5 T is the (pseudo)colimit of the diagram T → RC → Cat. �
More interestingly,

Proposition 1.6 Copt(T) is the (pseudo)limit of the diagram T op → RCop → Cat.
Proof What is an object of this limit? It is an assignment of an object κT : MT → T of T /T
to each object T ∈ T , consistently with the diagram, in the sense that t∗(κT) = κT ′ for each
t : T ′ → T . This is exactly the content of the pullback square

MT ′
Mt- MT

T ′

κT ′

? t - T

κT

?

which asserts that κ : M → id is a cartesian transformation. This is enough to determine an
object of Copt(T). A similar argument applies to morphisms. �

Lemma 1.7 Any two subfunctions of the identity commute (up to canonical isomorphism), their
composite being their product in Copt(T).
Proof Consider the two pullback diagrams which express naturality of κ1 and κ2 respectively:

M1
κ1 - id

M1M2

M1κ2

6

κ1M2

- M2

κ2

6

and

M1
κ1 - id

M2M1

κ2M1

6

M2κ1

- M2

κ2

6

2

There is a unique mediating isomorphism τ : T1T2
∼= T2T1. These diagrams are also clearly

product diagrams in Copt(T). �

Proposition 1.8 RC has pullbacks and Copt(T) has finite limits. Moreover these limits are
constructed pointwise, and a pullback of rigid comparisons quâ rigid comparisons is also a pullback
quâ (stable) functors.
Proof By the equivalence RC/T ' Copt(T) we have just constructed a typical pullback in
RC. Observe that objects of the pullback category, i.e. M1M2-coalgebras, correspond to pairs
of objects at the other corners, i.e. a M1-coalgebra together with a M2-coalgebra whose carrier
is isomorphic. This follows immediately from the fact that M1M2 is defined by a pullback. To
construct a pullback over M in Copt(T) we find the product in Copt(T)/M ' Copt(trace(M));
but Copt(T) also has a terminal object, so we can obtain all finite limits. �

Exercise 1.9 Prove Propositions 2.6.4 and 2.6.6 directly for [X → Y]/S. �

Corollary 1.10 Pullbacks of stable functors and cartesian transformations exist and are calculated
pointwise. �

We need pullbacks to be constructed pointwise in order that they be preserved by evaluation.

Exercise 1.11 More generally if T has wide pullbacks of a given size then Copt(T) has limits
and [X → Y] and RC have wide pullbacks of that size. These are calculated pointwise, and hence
preserved by evaluation. �

1.3 Special Adjoint Functor Theorem

We have almost proved that SCat is cartesian closed, except that we have to use the Adjoint
Functor Theorem to prove that evaluation is stable, and so we have to consider questions of size.
This is really a form of spread , which we shall discuss in the final section.

[This subsection is currently in a very sketchy state!]

Definition 1.12 A set G of objects coseparates a category X if for each pair f, g : X ⇒ Y , if
every s : Y → G with G ∈ G has f ; s = g ; s then already f = g.

This is usually phrased in the negative way that if f 6= g then there is some s : X → G with
f ;s 6= g ;s.) For example {2} coseparates Set. Obviously the whole object-set always coseparates:
we are interested in the case where a set of objects of a large category suffices.

Conjecture 1.13 If evX : Copt(X)→ X is stable for each X ∈ X then X has a set of coseparators.
Proof Here is a pointwise-descending class of functors whose big limit is id, but no small sub-
diagram has this limit unless there is a set of coseparators. Let G be any set of objects of X . Let
kG0X, k

G
1X : KGX ⇒ X be the kernel pair of all arrows s : X → G with G ∈ G, i.e. for each s

we form the pullback of s against itself, and then (for each of the projections) we form the wide
pullback (in which the arrows are in fact mono). Unfortunately the kGi are not cartesian. Observe
that kG0 = kG1 = id iff G coseparates, whilst if X ∈ G then kG0X = kG1X = idX . There is a mediating
map kGi → kG

′

i for G′ ⊂ G, and the big limit is id, but this is attained by G iff it coseparates. �

Definition 1.14 A category X is well-powered if for every object X there is a set of monos
X ′ ↪→ X up to isomorphism in X/X.

Exercise 1.15 Let S : X → Y be stable with trace T . If T has a set of coseparators then
SpecS(Y) is a small groupoid, i.e. there is a set of components and each component group is
small. In particular if Y has epi-mono factorisation and S is the inclusion of the monos then Y is
co-well-powered. �

3

Proposition 1.16 (Special Adjoint Functor Theorem) Suppose X is complete, well-powered and
locally small and has a set of coseparators. Then every functor H : X → Y has a left adjoint iff it
preserves limits. �

[Coseparators in slices?]

Lemma 1.17 Suppose X has a final set G and Y is locally small and well-powered. Then [X → Y]
is locally small and well-powered.
Proof It suffices to show that for S1, S2 : X ⇒ Y, if φ, ψ : S1 ⇒ S1 are cartesian transformations
with φG = ψG for all G ∈ G then φX = ψX for all X ∈ X . Given X, let s : X → G; then
φX = (S2s)∗φG = (S2s)∗ψG = ψX . The same method applies to being well-powered. �

1.4 The Pushout-Pullback Coincidence

The limit-colimit coincidence is a very famous result in domain theory which is the basis of the
solution of recursive domain equations. An analogous result holds for stable domains, but its
proof is of a rather different character from the results of this paper, so we do not discuss it
here. However our present theory has its own limit-colimit coincidence, for wide pullbacks of rigid
comparisons and the corresponding pushouts of their right adjoints. First we show that a wide
pullback of rigid comparisons is also a pullback quâ ordinary functors.

Lemma 1.18 Let M = limMi be a limit diagram in Copt(X) and Ci : T → Coalg(Mi, κi) a cone
of comparisons over the diagram Φu : Coalg(Mi, κi) → Coalg(Mj , κj) of forgetful functors. Then
the mediator C : T → Coalg(M,κ) is a comparison.
Proof An object of Coalg(M,κ) is of the form X = (X, (αi)) where αi : X → MiX is a cone
over the diagram with arrows κu : Mi → Mj , so that Xi = ΦiX = (X,αi) is an Mi-coalgebra.
As usual Φi a Θi with unit ιi and counit κi, etc. An M -homomorphism is an X -map which is
simultaneously a homomorphism at each i.

In particular for T ∈ T , we have CT = (C0T, (βi)), where CiT = (C0T, βi), i.e. the cone
commutes exactly. Suppose Ci a Hi with unit ηi and counit εi, where for simplicity we assume
that the cocone also commutes exactly, i.e. Hj = HiΘu with

ηj = ηi ;HiιuCi and εj = ΦuεiΘu ; κu (1)

Now consider the diagram in T with arrows of the form

HiXi
HiιuXi- HiΘuΦuXi = HjXj

Since this diagram has a terminal vertex we may take its limit, HX, with limiting cone γiX :
HX → HiXi, i.e.

γjX = γiX ;HiιuXi (2)

It is easy to show that γi : H → HiΦi is cartesian, so if Hi is continuous and T is pullback-
continuous then we deduce from Lemma 3.3.6 that H is also continuous.

For T ∈ T the units of the adjunctions Ci a Hi afford a cone ηiT : T → HiCiT over a diagram
of the above form (by (1)), so let ηT : T → HCT be its mediator; then

ηiT = ηT ; γiCT (3)

We define ε by
ΦiεX = CiγiX ; εiXi (4)

This is justified because

CjγjX ; εjXj

= Cj(γiX ;HiιuXi) ; (ΦuεiΘuΦuXi ; κuXj) by (1) & (2)

4

= CjγiX ; ΦuεiXi ; ΦuιuXi ; κuXj naturality of Φuεi
= CjγiX ; ΦuεiXi Φu a Θu

= Φu(CiγiX ; εiXi)
Then

Φi(CηT ; εCT)
= CiηT ; CiγiCT ; εiCiT by (4)
= CiηiT ; εiCiT by (3)
= id Ci a Hi

and
(ηHX ;HεX) ; γiX

= ηHX ; γiCHX ;HiΦiεX construction of Hε
= ηHX ; γiCHX ;HiCiγiX ;HiεiXi by (4)
= ηiHX ;HiCiγiX ;HiεiXi by (3)
= γiX ; ηiHiXi ;HiεiXi naturality of ηi
= γiX Ci a Hi

so C a H. �

Theorem 1.19 Given a wide pullback diagram of rigid comparisons, the pullback of the com-
parisons quâ functors, the pushout of their right adjoints quâ functors and the pullback of the
comparisons quâ rigid comparisons all exist and are equivalent.
Proof We have to show that a pullback of rigid comparisons is the pushout of their right
adjoints; by the equivalence RC/X ' Copt(X) we may assume that the diagram is equivalent to
the special form in the lemma. Let Si : Xi → Y be a cocone of stable functors over the diagram
Θu. Applying the trace factorisation to each of them, we find that they share the same isotomy
part (up to equivalence), so they factor through Hi : Xi → T and F : T → Y with Ci a Hi.
Then Ci : T → Xi is a cone of comparisons over the (pointwise) limit diagram, and so there is a
mediator C : T → X , which by the lemma has a (continuous) right adjoint H. This mediates for
the cocone Hi and so S = FH mediates for Si. Given another mediator, we may take its trace
factorisation, of which the isotomy part must be F , whilst the comparison part mediates for the
limit diagram and so must be C. �

The true significance of this result is domain-theoretic, so we shall postpone discussion to the
next section.

Lemma 1.20 Let Y be a stable category and X and Xi be as in Lemma 2.8.1. Then the mediator

[colim
i
Xi → Y]→ lim

i
[Xi → Y]

is an equivalence.
Proof The functor is simply the correspondence between mediators S = FH : X → T → Y and
cocones Si = FHi : Xi → T → Y. This is essentially surjective by definition of colim and we have
to show that it is full and faithful. Cartesian transformations φ : S′ → S correspond to diagonals
Φ : T ′ → T . On the other hand, if φi : S′i → Si is a natural system of cartesian transformations,
their diagonals Φi : T ′ → T must coincide. �

The coincidence does not hold for pushouts and coequalisers of rigid comparisons. That leaves
equalisers:

Exercise 1.21 Find a parallel pair of rigid comparisons which has no equaliser, although the
corresponding pair of right adjoints has a coequaliser. [Hint: a five-point poset will suffice.] �

5

1.5 Rigid Comparisons — Notes

However this representation would appear to introduce 3-cells, namely cartesian natural transfor-
mations between rigid comparisons, into the 2-category SCat, and, by iteration, worse. However
we already know from Definition 1.7.1 that these have no effect.

Lemma 1.22 Let Φ1,Φ2 : T ⇒ T0 be rigid comparisons and τ : Φ1 → Φ2 a cartesian natural
transformation between them. Then τ is invertible (the same is true for isotomies and functors
with left adjoints, but, of course, not for arbitrary stable functors).
Proof Φ1 and Φ2 are isotomies, and so are the second parts of their own (non-standard) trace
factorisations, the first parts being identities. In order to make the triangles commute, any di-
agonal between them must be a (strong) equivalence. Hence the corresponding cartesian natural
transformation τ is invertible, but (in the case where Φ1 = Φ2) not necessarily the identity. The
same argument applies to functors with left adjoints and isotomies. �

Lemma 1.23 Equivalent diagonals correspond to isomorphic subfunctions.
Proof We interpret “equivalent” in the weakest possible sense. Let S0, S1, S2 : X → Y be
stable functors with traces T0,, T1 and T2, and φ1 : S1 → S0 and φ2 : S2 → S0 be cartesian
natural transformations with diagonals Φ1 : T1 → T0 and Φ2 : T2 → T0. Suppose that there is
a strong equivalence I2 : T2 → T1 with pseudoinverse I1 such that Φ1I2 ∼= Φ2; then I1Θ1

∼= Θ2

and M = Φ1Θ1
∼= Φ2I1I2Θ2

∼= Φ2Θ2. Let κ′2 : M ∼= Φ2Θ2 → id; then by Exercise 3.5.9
κ′2
∼= κ1 : M → id and we can recover φ1 and φ2 using Lemma 3.4.8, whence φ′2 ∼= φ1. �
In most of the examples of categories of stable domains which have been introduced the do-

mains are posets, so the stronger property holds that any two rigid comparisons which are Berry-
comparable are uniquely isomorphic. Unfortunately this simplification is not available in general,
essentially because of the

Examples 1.24

(a) Let X be a group considered as a category with one object (•) and φ• a nontrivial element
of the centre of the group.

(b) Let X = VSp, the the category of (real) vector spaces, and φX be scalar multiplication by
some fixed nonzero real number.

Then id : X → X is a rigid comparison with a nontrivial cartesian automorphism φ. �

2 Cartesian Closed Categories

2.1 The Limit-Colimit Coincidence

In this final section we shall conclude our investigation of cartesian closure by constructing filtered
colimits in function-spaces, and then turn to the interpretation of first-order (dependent-type)
polymorphism. In the terminology of [T85] we shall show that SCat is relatively cartesian closed
with respect to rigid bifibrations. Second-order (impredicative) polymorphism may be treated in
the same way by considering RC as a domain; unfortunately it is too big (in fact, too “wide”)
for this to work unless we restrict attention to smaller domains. This is the subject of the final
part of the paper: a systematic survey of what restrictions we may put on our domains whilst still
being able to perform the constructions of interest. In this way we reproduce the previous work
on specific subcategories of SCat and suggest new ones of potential interest.

Firstly, we must say something more about continuity (preservation of filtered colimits), which
is the essential technical feature underlying the construction of fixed points and hence the modelling
of recursion. We have made only passing reference to this topic, because stability and continuity
are orthogonal concepts: each is more clearly understood in the absence of the other and (although
this is not obvious) they may be combined with almost no interaction. For the most part, then,

6

we have little to add to the traditional theory; in particular recursive domain equations such as
X ' [X → X]⊥ may be solved in the usual way. The other ingredient needed for fixed points is an
initial object (⊥), but this is just a special case of the general topic of spread , i.e. the complexity
of polycolimits, which we shall discuss later.

The solution of recursive domain equations (in particular those involving the function-space
functor) depends on a property called the limit-colimit coincidence, which was first noticed by
Scott for complete lattices and is now well-known for sequences of embedding-projection pairs
between domains of various kinds. It can be proved in general for FCCat (the 2-category of
categories with small filtered colimits, continuous functors and natural transformations), although
I know of no reference to a proof in the literature. Although it contains no surprises, the proof
is notationally complicated and has nothing to do with stability, so we shall state the theorem
without proof.

Theorem 2.1 Let T(−) : I → FCCat be a filtered diagram whose arrows Φu : Ti → Tj are
comparisons. Write Φu a Θu and T i = Ti, so that the Θu are the arrows of a cofiltered diagram
T (−) : Iop → FCCat. Then

(a) the (pseudo)limit of the cofiltered diagram T (−) and the (pseudo)colimit of the filtered
diagram T(−) both exist and are equivalent;

(b) corresponding functors Φi in the colimiting cocone and Θi in the limiting cone are adjoint;

(c) colimi ΦiΘi
∼= id in the common limit and colimit;

(d) this is also the (pseudo)colimit in the 2-category FCCatcp whose morphisms are compar-
isons. �

We write bilimi Ti for the common limit and colimit of the diagram. When we write “X =
colimXi” we mean that the context determines a diagram with typical vertex Xi and a cocone
X → Xi, and that this cocone is (pseudo)colimiting; similarly “Y = limYj”. “X = bilimXi”
means that both of these hold, and further that the corresponding arrows in the diagrams are
adjoint, as are the cocones and cones.

Apart from the application to the solution of recursive domain equations, this has the important

Corollary 2.2 The covariant continuous function-space functor

(− → −) : FCCatcp × FCCatcp → FCCatcp

is continuous.
Proof The reader is invited to supply the diagrams and (co)cones in the following identities:

(bilim
i
Xi → bilim

j
Yj) = (colim

i
Xi → lim

j
Yj) the Theorem

= lim
i

(Xi → lim
j
Yj) definition of colim

= lim
i

lim
j

(Xi → Yj) definition of lim

= bilim
i

bilim
j

(Xi → Yj) the Theorem

The identity (colimXi → Y) = lim(Xi → Y) at the level Set is simply the correspondence be-
tween cocones Xi → Y and mediators colimXi → Y. This is enriched over Cat because natural
transformations between mediators correspond bijectively to natural families of natural transfor-
mations between the cocones; we shall spell this out in Lemma 3.1.5. Finally it is enriched over
FCCat because the forgetful functor FCCat→ Cat creates (pseudo)limits. The same applies to
(X → limYj) = lim(X → Yj). The two bilimits may of course be interchanged. �

7

The same result will hold (for much the same reasons) in the stable case, but first we have
to extend the theorem to rigid comparisons. We can do this by proving a separate result for
isotomies.

Lemma 2.3 Let T be the colimit of a filtered diagram T(−) : I → FCCat whose arrows Φu :
Ti → Tj are isotomies. Then the functors Φi : Ti → T in the colimiting cocone are also isotomies.
Proof Let 0 be an arbitrary point of I. Since I is filtered, replacing I by the coslice I\0 we
may assume without loss of generality that this is the initial vertex, with ı̂ : 0→ i. Let X0 ∈ T0;
we have to show that Φ0 : T0/X

0 → T /Φ0X
0 is an equivalence.

Now T is generated by the images of the Ti together with filtered colimits; by filteredness
we do not even need to consider composition. Hence any map f : Y → Φ0X

0 = X in T is at
worst the mediator for a cocone over a filtered diagram, where the maps in the diagram and the
cocone are images of Ti-maps. Let the diagram have vertices Yi = ΦiY ii and arrows Φjyju where
yju : ΦuY ii → Y jj for u : i→ j in I, and let the cocone be fi = Φi(f ii : Y ii → Φı̂X0).

But Φı̂ is an isotomy, so Y ii ∼= Φı̂Y 0
i (without loss of generality equality holds) and f ii = Φı̂f0

i ,
and then yju = Φ̂y0

u. This reduces the diagram (y0
u : Y 0

i → Y 0
j) and cocone (f0

i : Y 0
i → X0) to

the level 0 ∈ I, and we may put Y 0 = colimY 0
i there, with mediator f0 : Y 0 → X0. Then Φ0f

0

mediates for the cocone in the colimit and hence f0 is the required lifting of f . Lifting triangles
is similar. �

Lemma 2.4 Let T be the colimit of a filtered diagram T(−) : I → FCCat and Fi : Ti → Y a
cocone of isotomies, where Y is pullback-continuous. Then the mediator F : T → Y is also an
isotomy.
Proof Let T = colim ΦiTi ∈ T and y : Y → FT in Y. Form the pullback

FiT
′
i

Fiti- FiTi

Y
? y - FT

?

where we may write the upper map as an Fi-image because this is an isotomy. Then the right-hand
side is a typical map in a colimiting cocone in Y and by pullback-continuity so is the left. Put
T ′ = colim ΦiT ′i ∈ T , so that FT ′ ∼= colimFiT

′
i , and let t : T ′ → T mediate the cocone. Then t′ is

the required F -lifting of y. Lifting triangles is similar. �

Lemma 2.5 The equivalence

[colim
i
Xi → Y] = lim

i
[Xi → Y]

is enriched over SCat.
Proof We have to verify the correspondence between natural transformations between cocones
and between mediators restricts to cartesian transformations. Let Θi : X → Xi and Φi : Xi → X
be the limiting cone and colimiting cocone respectively, and C,D : colimi Xi → Y. Clearly if
α : C → D is cartesian then so is αi = αΦi : CΦi → DΦi for each i, so we have to prove the
converse. Since any object X ∈ X can be expressed as X = colim ΦiXi with Xi ∈ Xi, we may
obtain α from αi as the mediator between two colimits:

colimCΦiXi
∼= CX

αX- DX ∼= colimDΦiXi

CΦiXi

Cξi

6

αiXi - DΦiXi

Dξi

6

8

Morphisms x : X ′ → X correspond to cocones xj : ΦjX ′j → X; any such map is of the form
Φjxij ; Φiξi with xij : X ′j → Xi, and in fact corresponds to an equivalence class.

We make a cube out of this diagram x : X ′ → X in X and xij : X ′j → ΦuXi in Xj . The
lower square is a pullback since αj is cartesian. To show that the top is also, let y : Y → CX
and z : Y → DX ′ and form a cube with vertex Yij by pulling back against both of Cξi and
Dξ′j . Then by pullback-continuity we have Y = colimij Yij whilst by cartesianness of αj we have
wij : Yij → CΦjX ′j . Finally w : Y → CX ′ is the mediator. (?) �

Theorem 2.6 The limit-colimit coincidence holds for filtered diagrams of rigid comparisons be-
tween pullback-continuous categories. Hence RC has filtered colimits and the covariant stable-
function-space functor [− → −] : RC ×RC → RC preserves them.
Proof The first part is a special case of the continuous version, except for saying that we have
the filtered colimit in RC. But Lammas 3.1.4&5 show that the colimiting cocone and mediator are
isotomies as well as comparisons. Continuity of the function-space is analogous to Corollary 3.1.2,
except that we need Lemma 3.1.5 to show that the colimit identity is enriched; the limit version
requires nothing else to be proved (exercise). �

Exercise 2.7 Let Φi : Xi → X be a cocone of rigid comparisons over a filtered diagram of them,
with Φi a Θi. Show that this cocone is colimiting iff colim↑ ΦiΘi

∼= id. [Hint: rigid comparisons
are comonadic.] �

2.2 Filtered Colimits of Stable Functors

In this subsection we shall use the limit-colimit coincidence to show that the function-space [X →
Y] has filtered colimits, and that they are preserved by evaluation. Let Si : X → Y be stable
functors for i ∈ I, with cartesian natural transformations φu : Si → Sj for u : i → j in I.
Let Si = FiH

i with Ci a Hi be the standard trace factorisation via Ti, and for u : i → j let
Φu : Ti → Tj be the diagonal, so that

Ti

X
�

C i

Y

F
i

-

Tj

Φu

?
F j

-
�

C
j

commutes “on the nose” and Φu a Θu for u : i→ j.
We know from the limit-colimit coincidence, or indeed from general considerations of universal

algebra, that the (pseudo)colimit, T , of the diagram (Ti,Φu) exists, with colimiting cocone Φi,
and hence that there are continuous mediators C : T → X and F : T → Y so that the triangles

T

Ti
Φu -

Φ i
-

Tj

�

Φ
j and

T

X �
Ci�

C

Ti

Φi

6

Fi - Y

F

-

commute (up to natural isomorphism). In fact it will be possible to dispose of these irritating
natural isomorphisms, because it will turn out that T is a trace and hence may be chosen to be
standard.

9

Lemma 2.8 C and Φi are comparisons, say with C a H and Φi a Θi, whilst F and Φi are
isotomies. Moreover colimi∈I ΦiΘi ∼= idT .
Proof From the last two parts of Theorem 3.1.1, and Lemma 3.1.3. �

Corollary 2.9 S = FH is a continuous stable functor and SX = colimSiX.
Proof F and H are stable. Since F and C mediate and C a H, etc., we have Fi ∼= FΦi and
Hi ∼= ΘiH. Then using the lemma,

FHX ∼= colimFΦiΘiHX ∼= colimFiH
iX = colimSiX

since F and H are continuous. �
It is easy to show that X 7→ colimSiX defines a continuous functor which is the colimit with

respect to continuous functors and arbitrary natural transformations, but showing by brute force
that this functor is stable — let alone the colimit in the stable functor category — is very difficult.
It is done in the poset case in [T88].

Theorem 2.10 The category [X → Y] of stable functors and cartesian natural transformations
has filtered colimits, and ev : [X → Y]×X → Y preserves them.
Proof Let S and Si be as constructed, so that S is the pointwise colimit. Proposition 1.4.3
gives an equivalence between the category of traces and diagonals which are adjoint pairs, and by
the limit-colimit coincidence T is also the colimit in this category. For fixed X ∈ X , ev(−, X)
is continuous precisely because filtered colimits are constructed pointwise, whilst ev(S,−) is con-
tinuous because S is. But separate continuity of a function in two arguments suffices for joint
continuity. �

Lemma 2.11 S is also the colimit in the category of stable functors and arbitrary natural trans-
formations.
Proof From Proposition 1.7.3 there is an equivalence between this category and the category of
traces and equivalence classes of diagonals. Since natural transformations appear in the definition
of diagonals, it would appear at first sight that we are faced with a lax colimit problem. However
composition is defined in terms of Φ alone (and in fact we only need it up to isomorphism), so in
fact it is an ordinary colimit given (by construction) by T . The Fi and (since the φu are cartesian)
the Ci afford cocones, and so (T , C, F), and hence S, is the colimit. �

However the assumption that the natural transformations in the diagram are cartesian is
necessary, because the pointwise colimit of stable functions is not in general stable.

Example 2.12 Let X = N∪{∞} with the usual order and let Y be the Sierpinski space. Consider
the (stable) functions Si : X → Y where

Si(x) =
{
> if i ≤ x ≤ ∞
⊥ if 0 ≤ x < i

Then (Si : i ∈ N) is a cofiltered system in the pointwise order, but

lim
i∈N

Si

(
colim↑
x∈N

x
)

= > 6= ⊥ = colim↑
x∈N

lim
i∈N

Si(x)

so limi Si is not continuous. By reversing the order we have a pointwise filtered system of stable
functions whose colimit is not stable.

Exercise 2.13 Explain how we managed to prove that a pullback of continuous stable functors
is continuous in section 2 whilst barely mentioning continuity. Also, why is our proof (using the
Berry order) so radically different from the counterexample (in the pointwise order)?

Exercise 2.14 Show that [X → Y] has and ev preserves cofiltered limits by the same technique.
The above proof is based on the obvious forgetful functor SCat → FCCat, but we may in-
stead take a stable category to its opposite, hence interchanging the notions of comparison and
homomorphism.

10

2.3 Dependent Sums

Suppose we have a domain Y[X] which depends on an object X ∈ X ranging over another domain.
We may quantify over the variable X to give the dependent sum,

ΣX : X .Y[X] = {(X,Y) : X ∈ X , Y ∈ Y[X]}

or the dependent product ,

ΠX : X .Y[X] =
{

(SX)X∈X : ∀X ∈ X .SX ∈ Y[X]
}

This is first order polymorphism, which we shall discuss in the next two sections. Replacing X
by a “type of types” such as RC we obtain Girard-Reynolds second-order polymorphism, but there
are size problems involved in this.

We have to make the definition of the dependent sum more functorial, so for x : X ′ → X there
is to be a rigid adjunction

Y[x]! a Y[x]∗

which is (pseudo)functorial in x, i.e.
Y[−] : X → RC

Y = ΣX : X .Y[X] is then given by the total category of X → SCat → Catop. This has objects
the pairs (X,Y) where X ∈ X and Y ∈ Y[X] and morphisms (x, y) : (X ′, Y ′) → (X,Y) where
x : X ′ → X in X and either y : Y[x]!(Y ′) → Y in Y[X ′] or equivalently y : Y ′ → Y[x]∗(Y) in
Y[X]. The functor P : Y → X given by (X,Y) 7→ X is called the Grothendieck fibration, and for
fixed X0 ∈ X we have injections νX0 : Y[X0]→ Y.

Definition 2.15 A functor p : Y → X is a bifibration if both it and p : Yop → X op are fibrations;
this is equivalent to saying that substitution functors have left adjoints. (This term is due to
Lamarche.) It is a rigid bifibration if the adjunctions are rigid.

It is well-known that this set-up interprets dependent sums: our purpose is to examine the
specific results for stable categories.

Theorem 2.16 Suppose X and Y have pullbacks and P : Y → X is a rigid bifibration. Then the
slices of Y are of the form Y0 ↓ T for some functor T : X0 → Y0.
Proof Let (X0, Y0) ∈ Y, i.e. X0 ∈ X and Y0 ∈ Y[X0] = P−1(X0). Put X0 = X/X0 and
Y0 = Y[X0]/Y0. Now define the functor T : X0 → Y0 on objects by

T (X x→ X0) =
(
Y[x]!

(
Y[x]∗(Y0)

) κ→ Y0

)
and use the horizontal liftings afforded by Y[x]∗ to provide those for ξ : (X → X0)→ (X ′ → X0);
in other words the definition on morphisms is essentially the same.

Now let (x, y) : (X,Y) → (X0, Y0) in Y, i.e. y : Y → Y[x]∗(Y0) in Y[X]. But Y[x]! is an
isotomy, so

Y[X]/Y[x]∗(Y0) ' Y[X0]/Y[x]!
(
Y[x]∗(Y0)

)
' Y0/Tx

In other words, (X,Y) is determined up to isomorphism by x and Y[x]!(y) : Y[x]!(Y)→ Tx, which
is an object of Y0 ↓ T . The same applies to morphisms. Hence Y/(X0, Y0)→ X/X0 is equivalent
to the forgetful functor Y0 ↓ T → X0. �

The functor T : X/X0 → Y[X0]/Y0 is actually just the restriction of the indexation Y[−] :
X → RC, as we may see by comparison with Proposition 2.6.4.

Corollary 2.17 The fibration and injections are stable.
Proof We have to show that P and νX0 have left adjoints on slices.

[a P] On slices P is Y0 ↓ T → X0 by (Y w→ TX) 7→ X. For X ∈ X0 let I → TX be the
polyinitial candidate below TX, i.e. the initial object of Y[X]/TX; then the left adjoint is
X 7→ (0→ TX).

11

[P a] There is also a right adjoint on slices, given by X 7→ (TX → TX).

[a νX0] On slices νX0 is Y 7→ (Y → 1), which has left adjoint (Y w→ TX) 7→ Y (but no right
adjoint). �

Proposition 2.18 In this notation the rigid comparisons and homomorphisms are given by com-
position and pullback, so for ξ : X ′ → X in X0,

Y[ξ]!
(
X ′, Y ′

y′→ TX ′
)

=
(
X, (Tξ)! y

′)
Y[ξ]∗

(
X,Y

y→ TX
)

=
(
X ′, (Tξ)∗y

)
where Y, Y ′ ∈ Y0, etc. (cf. Lemma 2.2.3 and Exercise 2.2.7; recall that f! y = y ; f). �

Exercise 2.19 When does P has a left adjoint (cf. Exercise 1.7.7)? When is it an isotomy?
The magnitude of what we have just proved is easily overlooked. Imagine the base category as

the frame of a weaving loom, with the fibres as the “warp”. The substitution functors form the
“weft”, which may in the general case wander erratically, and so there is little redundancy in the
description. However if these functors are rigid homomorphisms, once the top border has been
woven (which may be arbitrary), the strands of the weft below it are parallel , and so the top row
determines the structure of the whole tapestry. Hence lemmas like “a compact object of the total
category is a compact object of a compact fibre” become obvious corollaries.

In fact it can be shown (using lemmas of this kind) that the total category of a fibration
whose substitution functors are merely stable (so they have poly- rather than rigid adjoints) is, for
example, locally finitely presentable iff the base category and fibres are. However one may show
that whereas parts of the construction of the dependent product are also possible in this way, its
display is not a fibration unless the given fibration is also an op-fibration, i.e. its substitutions
have (rigid) left adjoints. Consequently the construction under weaker hypotheses, besides being
far more difficult to execute (and this property possessed by finite presentability is not shared by
other features) is of no interest in the study of polymorphism.

If we are interested in continuous stable functors we must show that the total category has
and the fibration and injections preserve filtered colimits. This result again has nothing to do with
stability, and so we shall omit the proof, even though this also is not to be found anywhere in the
literature.

Proposition 2.20 Let X ∈ FCCat and Y[−] : X → FCCatop be continuous in the sense that
filtered colimits are taken to cofiltered (pseudo)limits. Then ΣX : X .Y[X] has filtered colimits
and they are preserved by the fibration and injections. �

It is quite essential that Y[−] be continuous in this result, and so the functor T must also be
continuous.

Now let’s consider the complexity of other polycolimits (the spread). The essence of the result
already lies in Exercise 1.6.7: if X and each Y[X] are groups then since p : Y → X is a fibration it
is (exactly) a surjective group homomorphism, in fact Y ∼= Y[X] : X , a group extension of Y[X]
by X (exercise: what is the associated action?).

Definition 2.21 B→ A is the groupoid-extension of A by B if this is the fibration corresponding
to the indexation B : A → Gpdop where A is a groupoid. (Of course this makes the functor
B → A an isotomy, but we intend it to be actually a fibration.) The extension is split if the
fibration is split, i.e. B is a functor (not a pseudofunctor).

Exercise 2.22 (〈xi, yi〉 : 〈Xi, Yi〉 → 〈X,Y 〉) is a polycolimit candidate in ΣX : X .Y[X] iff
(xi : Xi → X) is in X and (yi : Y[xi]!(Yi)→ Y) is in Y[X]. �

12

Proposition 2.23 The spread of ΣX : X .Y[X] is the groupoid extension of the spread of X by
that of Y.
Proof Let Y → X be the display of a dependent sum and 〈Xi, Yi〉 a diagram in Y of type
I. Let A be the groupoid of polycolimit candidates for the diagram Xi in X . For a candidate
A = (xi : Xi → X) ∈ A, let B[A] be the groupoid of polycolimit candidates for the diagram
Y[xi]!(Yi) in Y[X], and for an automorphism a : A ∼= A of the candidate, let B[a] = Y[a]∗. Using
the exercise we deduce that ΣA : A.B[A] is the groupoid of polycolimits of Y. �

Exercise 2.24 Recall that in a fibration, maps of the form

〈X ′,Y[x]∗(Y)〉 - 〈X,Y 〉 in Y

X ′
x - X in X

P

?

are called horizontal ; indeed the definition of a fibration is that there is a factorisation system
(Definition 1.3.5) of Y-maps into vertical maps (whose images under P are identities) followed by
horizontal maps.

(a) Show that horizontal maps are cartesian in the sense that they give rise to a cartesian
transformation Y[x]∗νX → νX .

(b) The above diagram is called the horizontal lifting of x at 〈X,Y 〉. Show that the lifting
preserves pullbacks.

(c) A pullback of a horizontal map is horizontal. �

Exercise 2.25 Similarly op-horizontal maps are those of the form 〈X ′, Y ′〉 → 〈X ′,Y[x]!(Y ′)〉.
Show that for a rigid bifibration, op-horizontal maps are also cartesian. [Hint: take the vertical-
horizontal factorisation of the op-horizontal maps and use the fact that ι : id → Y[x]∗Y[x]! is
cartesian.] �

Exercise 2.26 Describe the effect of the functors

ΣX : (X → RC)→ RC and Σ :
(
ΣX : RC.(X → RC)

)
→ RC

on morphisms, and show that they are continuous. [Hint: for naturality of Φ[X] a Θ[X] with
respect to x : X ′ → X, Y[x]! and Y[x]∗ must both commute with each of Φ[X], Θ[X], κ[X] and
ι[X], interchanging X ↔ X ′ and Y ↔ Y ′; cf. Proposition 3.4.1 below.] �

2.4 The Beck Condition

Proposition 2.27 The quantifier Σ commutes with substitution:(
ΣY : Y[X].Z[X,Y]

)[
X := SX ′

]
= ΣY : Y[SX ′].Z[SX ′, Y]

Proof When we express dependent types with the display Y → X instead of the pseudofunctor
Y : X → RC, substitution becomes pullback and sums become composition of displays. This is

13

illustrated in the following diagram:

Σ(X ′, Y) :
(
ΣX ′ : X ′.Y[SX ′]

)
.Z[SX ′, Y] ∼=

ΣX ′ : X ′.ΣY : Y[SX ′].Z[SX ′, Y] - ΣX ′ : X ′.Y[SX ′] - X ′

Σ(X,Y) :
(
ΣX : X .Y[X]

)
.Z[X,Y]

?
- ΣX : X .Y[X]

?
- X

S

?

∼= ΣX : X .ΣY : Y[X].Z[X,Y]

where the isomorphisms are “Fubini’s theorem” for calculating iterated dependent sums. The
commutation of the quantifier (Σ) with substitution — known as the Beck condition — is the fact
that the iterated sum on the top (obtained by substitution and then sum) is indeed the pullback
(obtained by sum and then substitution). �

There is a similar condition for dependent products.
There are also interesting examples of indexations in universal algebra where the substitutions

have left adjoints, such as the assignment of the category of modules to a ring (induced and
restricted modules) and the category of models to a theory (free and underlying algebras), but
these do not satisfy the Beck condition. Nor is it satisfied (by the substitution functors and their
adjoints) in continuous domain-theoretic models of polymorphism, so one might imagine that there
are simply two branches of indexed category theory: one concerned with logic where adjoints to
substitution are called quantifiers and satisfy the Beck condition, and the other concerned with
model theory where the (left) adjoint is a “free” functor and does not satisfy this condition.

However when we come to stable domain theory, this changes: the base type X has pullbacks,
which we now consider algebraically significant (as they are in logic but not model theory), and
so they should be preserved in the “domain” of domains RC. Hence it is appropriate to make
Y[−] : X → RC stable. This arises quite naturally from Lemma 2.6.2 and when we consider
second-order polymorphism, because of the

Proposition 2.28 The stable function space functor [− → −] : RC × RC → RC is stable and
continuous.
Proof Continuity has already been proved in Theorem 3.1.6, and preservation of wide pullbacks
is exactly analogous using Theorem 2.8.2 and Lemma 2.8.3. To deduce stability we have to use
the Adjoint Functor Theorem as in section 2.7. �

Lamarche has observed that stability has the result that the Beck condition holds. Since the
functor T of Theorem 3.3.2 is essentially the restriction of Y[−] to a slice, and by construction it
also preserves the terminal object, T then has a left adjoint.

Proposition 2.29 Let Y[−] : X → RC be stable and suppose the square on the left is a pullback
in X :

X1 ×X0 X2
π1 - X1

X2

π2

? x2 - X0

x1

?

Y[X1 ×X0 X2] �
Y[π1]∗

Y[X1]

δ⇒

Y[X2]

Y[π2]!

?
� Y[x2]∗

Y[X0]

Y[x1]!

?

Then the right-hand square commutes up to isomorphism δ.
Proof Let Y1 ∈ Y[X1] and put Y0 = Y[x1]!(Y1); we shall work in the slice of ΣX : X .Y[X]
by (X0, Y0), so to simplify notation assume that this is terminal. The object Y1 is now given by

14

(X1, 1
y1→ TX1), where y1 = Y[x1]!(ιY1). Forming the pullback on the left in Y0,

Y
y3- T (X1 ×X2)

Tπ2- TX2

1
? y1 - TX1

Tπ1

? !TX1- TX0=1

!TX2

?

we represent

Y1 by (X1, y1)

Y[π1]∗(Y1) by (X1 ×X2, y3)

Y[π2]!
(
Y[π1]∗(Y1)

)
by (X2, y2) where y2 = y3 ; Tπ2

Y0 = Y[x1]!(Y1) by (X0, id1)
and Y[x2]∗

(
Y[x1]!(Y1)

)
by (X2, idTX2)

so the mediator is δ = y2. However the bottom composite is the identity and the right-hand square
is a pullback by the hypothesis that the indexation is stable, so the mediator is an isomorphism.
Observe that we used Theorem 3.3.2 to give the representation of Y[f]∗ and hence to make the
left-hand square a pullback. �

Exercise 2.30 Let Y[−] : X → RC be stable. Show that

(a) Y0 ↓ T ∼= G ↓ X0 where G a T ;

(b) νX0 : Y[X0]/Y0 → Y/〈X0, Y0〉 has a second left adjoint given by the unit Y 7→ (Y → TGY);

(c) op-horizontal lifting preserves pullbacks;

(d) the pullback of an op-horizontal map is op-horizontal. �

Exercise 2.31 Show that Σ :
(
ΣX : RC.[X → RC]

)
→ RC is stable (and continuous). �

2.5 Dependent Products

Dependent products are a generalisation of function-spaces, and we shall use the same technique
to calculate their slices. As with dependent sums, this turns out to be much simpler than in the
usual case. Dependent products over types (RC) we shall consider separately, since they raise a
number of questions of a different kind.

It is not difficult to see that the dependent product ΠX : X .Y[X] must be constructed as the
domain Sect(P) of sections of the fibration P : Y = ΣX : X .Y[X] → X . However although this
exists irrespective of the properties of P (since

Sect(P) ⊂- [X → Y]
S 7→ S ; P-
S 7→ id

- [X → X]

is an equaliser in SCat) it does not give the dependent product unless P is a fibration whose
substitutions are rigid homomorphisms.

Suppose that the base domain is itself dependent upon a variable Z : Z, so that X : Z → RC.
The Beck condition requires that the quantifier Π commute with substitution for Z, either of a

15

determinate value Z0 ∈ Z or an expression SZ ′ with Z ′ ∈ Z ′. This means that ΠX : X [Z].Y[Z,X]
must be functorial in Z, and in fact be a dependent type Z → RC.

Conjecture 2.32 Let S : Y → X be a (stable) functor between (stable) categories. Suppose that
S∗, pullback against S in (S)Cat, has a right adjoint. Then S is a (rigid) bifibration.

Theorem 2.33 Let X : Z → RC and Y : (ΣZ : Z.X [Z]) → RC be dependent types. Then
ΠX : X [Z].Y[Z,X], given by the domain of sections of P [X] : ΣX : X [Z].Y[Z,X]→ X [Z], is also
a dependent type. Moreover evaluation is stable and the Beck condition holds.
Proof The substitution functors and their adjoints are given by pre- and post-composition with
those of X and Y in a standard way. The adjunctions are rigid because the units and counits are
obtained by applying stable functors to cartesian transformations. �

Theorem 2.34 The functor Π :
(
ΣX : RC.[X → RC]

)
→ RC is stable and continuous.

Proof From Exercise 3.4.6, the construction of Y = ΣX : X .Y[X] is continuous and stable, and
by the same technique so is that of P : Y → X , so we have only to show that P 7→ Sect(P) is
stable and continuous. For stability, we use the pushout-pullback coincidence (Theorem 2.8.2) to
express the diagram as a wide pullback of rigid comparisons; similarly for continuity we use the
limit-colimit coincidence (Theorem 3.1.6) and a cofiltered limit of rigid homomorphisms. Then
these limits commute with equalisers. �

These results are standard: what interests us here is how to calculate dependent products, in
particular what their slices and polycolimits look like.

Proposition 2.35 Let S : X → Y be a section of the fibration P corresponding to Y : X → RC.
Then there is a (stable) functor X → RC such that Sect(P)/S is given by the pseudolimit of a
diagram X op → RCop → Cat.
Proof Let φ : S′ → S in Sect(P) and x : X ′ → X in X . Write the vertical-horizontal factorisa-
tion of Sx as |Sx| ; Sx. Then in the diagram

S′X ′
|S′x|- Y[x]∗(S′X)

S′x
- S′X

SX ′

φx′

?

|Sx|
- Y[x]∗(SX)

Y[x]∗(φX)

?

Sx

- SX

φX

?

the right-hand square is a pullback because the top and bottom are horizontal maps, whilst the
rectangle is since φ is cartesian, so the left-hand square is also. Hence

Y[X ′]/SX ′ �
|Sx|∗

|Sx|!
- Y[X ′]/Y[x]∗(SX) �

Y[x]∗

Y[x]!
- Y[X]/SX

SX ′ � Y[x]∗(SX) � SX

so X 7→ Y[X]/SX defines a functor X → RC and by the same argument as Proposition 2.6.4
Sect(P)/S is the limit of the diagram of rigid homomorphisms. �

16

Exercise 2.36 Any stable functor Z : X → RC such that Z[X] has a terminal object may occur
in this way. �

There are several ways of finding filtered colimits in the dependent product. There’s brute force.
We could also find a “dependent trace” and reproduce the method of section 3.2. The simplest
method, however, is to observe that since pidq and postcomposition with P are continuous, the
equaliser above creates filtered colimits, which we know to exist and be calculated pointwise in
[X → Y].

Proposition 2.37 Sect(P) = ΠX : X .Y[X] has filtered colimits. �
Calculating polycolimits in dependent products (or function-spaces) is an entirely different

matter. We shall find later that the existence and uniqueness (connectedness) of polycolimit
candidates depends not only on polycolimits in the codomain (as with slices) and those in the
domain, but also on the slices of the codomain. Their automorphisms, however, can be bounded
by those of the codomain.

Proposition 2.38 Suppose that each Y[X] has filtered colimits which are preserved by Y[x]∗ and
polycolimits of type I and of type X\X. Then ΠX.X : Y[X] has polycolimits of type I.
Proof Let Si → S be a cocone in ΠX.X : Y[X]. For X ∈ X let SiX → F0X → SX be the
polycolimit candidate in Y[X]; note that F0 is not necessarily stable (unless pullbacks preserve
colimits of type I) and the natural transformations Si → F0 → S are not cartesian. However for
any X0 ∈ X , we may define a stable functor on X/X0 by

(x : X → X0) 7→ Y[x]∗(F0X0 → SX0)

and it is easy to show that this is the initial stable functor between Si and S on this slice. (Imagine
this functor like a cable-car coming down a mountain.) This is fine if X0 is terminal, but otherwise
we have to patch together lots of functors like this. Thus we define(

Fn+1X → SX
)

= colim
x:X→X′

Y[x]∗(FnX ′ → SX ′)

which gives an increasing sequence of functors between Si and S. (This is where polycolimits of
type X\X come in.) Now we have

SiX → FnX → FωX = colim↑
n

X → SX

and I claim that Fω is stable and the natural transformation Fω → S is cartesian. This depends
solely on preservation of filtered colimits by pullbacks: indeed so long as pullbacks have “rank” in
some sense we may perform the same argument by transfinite iteration.

Let x : X → X ′; then there is a commutative square with SX → SX ′ on the top and
FnX → FnX

′ on the bottom, so there is a mediator to the pullback, FnX → Y[x]∗FnX ′. On the
other hand, the latter is a component of the colimit making Fn+1X, and so we have a “sandwich”

· · · - FnX - Y[x]∗FnX ′ - Fn+1X - · · ·

Since Y[x]∗ preserves filtered colimits, we deduce that Y[x]∗FωX ′ ∼= FωX as required, i.e. Fω → S
is cartesian and hence Fω is stable. It is easy to check that this is the required polycolimit
candidate. �

Corollary 2.39 Polycolimits (where they exist) are computed pointwise iff pullback functors
preserve colimits in slices. �

The explicit description of polycolimits enables us to calculate their automorphism groups.

Proposition 2.40 The automorphism group of a polycolimit candidate in ΠX : X .Y[X] is ob-
tained from automorphism groups of polycolimits in Y by a process of forming products, subgroups
and extensions.

17

Proof Let φ : Fω → Fω be a natural automorphism which commutes with the cocone Si → Fω,
and let X ∈ X . Since SiX → F0X → FωX is a polycolimit candidate, there is a unique map φ0X :
F0X → F0X which commutes with the diagram involving φX, and φ0 is a natural automorphism
of F0. Now we construct φnX by mimicking the construction of FnX: for x : X → X ′ we have
a cocone Y[x]∗φnX ′ : Y[x]∗FnX ′ → Y[x]∗FnX ′ and hence a unique mediator φn+1X : Fn+1X →
Fn+1X below φX. Then also Φn+1 is a natural automorphism of Fn+1.

Now the construction φ 7→ φ0X is a group homomorphism from the required automorphism
group (of Si → Fω) to that of the pointwise colimit SiX → F0X. Automorphisms of the functor
F0 must be natural, which we may express as a subgroup of the product of the automorphism
groups at each component. For the higher stages a similar argument applies: with φn fixed,
φn+1X belongs to the automorphism group of the polycolimit of type X\X. Allowing the lower
candidates to vary, we obtain an extension group with the component for φn+1X at the bottom
and that for φ0 at the top; again naturality of φn+1 may be expressed as a subgroup of a product.

Finally φ is determined by the sequence (φn) since we have assumed the existence of filtered
colimits (not “poly”), and so φ belongs to the cofiltered limit of the groups for φn (if the filtered
colimit were poly, there would simply be yet another factor below the limit). �

Corollary 2.41 If each Y[X] has equalisers then so does ΠX : X .Y[X]. �
Lamarche has observed that we cannot make stable functors preserve equalisers if we want

cartesian closure, but his semigranular categories and aggregates have them. This result explains
why this is possible, although our proof, unlike his (implicitly), does not depend on distributivity.

2.6 Categories of Stable Categories

Hitherto we have set out the theory of stable categories in the most general form possible, whereas
other authors have studied more restricted versions. The remainder of this paper will be devoted
to showing how their results can be recovered by working “top-down” and to a semi-systematic
survey of the possible subcategories of stable categories which admit dependent sums and products
(including function-spaces). We find that although the restrictions which previous authors have
placed on their stable domains are not necessary for cartesian closure (and in some cases proved a
substantial burden to them) they are of interest in themselves, and so we shall study their axioms
one by one, and hence recover their results by taking suitable combinations of axioms.

As we have seen, the characteristic feature of stable domain theory is really pullbacks. Write
Pbk for the 2-category of categories with pullbacks, functors which preserve them and cartesian
transformations.

Theorem 2.42 The abstract adjunctions in Pbk are exactly rigid adjunctions, and the category
Pbkrc of categories with pullbacks and rigid comparisons between them has pullbacks. Pbk is
cartesian closed and admits dependent sums and products.
Proof Left adjoints are isotomies by Lemma 2.5.1. Pbk has binary products from Exercise
1.8.2. We went a long way round to find stable function-spaces, but it is an easy exercise to show
that we may calculate pullbacks in function-spaces and RC pointwise. For dependent sums and
products, Propositions 3.3.2 and 3.5.3 still apply. �

Everything else is built up from here. Write Pbkκλ for the 2-category of locally small categories
which

(i) have wide pullbacks of size λ

(ii) and filtered colimits of size κ (which must be preserved by pullbacks),

functors preserving them and cartesian transformations. Similarly write SCatκ for the 2-category
of locally small categories which

(i′) have wide pullbacks, a set of coseparators and are well-powered

(ii) and have filtered colimits of size κ (which must be preserved by pullbacks),

18

functors preserving them and cartesian transformations.

Theorem 2.43 Pbkκλ and SCatκ admit dependent sums and products, which are created by
the forgetful functors to Pbk. Moreover the categories of domains and rigid comparisons have
appropriate wide pullbacks and filtered colimits. �

This is the first aspect of flavour of stable categories, which we call (algebraic) structure.
Clearly there’s nothing very exciting to be said about this, and we shall concentrate on the most
restrictive case: continuous stability. This classification really applies to stable functors, since we
may use spin (see below) to say that equalisers exist , whereas we may not require them to be
preserved .

The second aspect of flavour is size: we may seek to restrict our stable categories to be such that
there is, for instance, a countable set of objects from which others may be obtained by countable
filtered colimits. Restrictions like this are popular in Computer Science for reasons of effectivity,
but again nothing very much needs to be said about them, except that they may be inconsistent
with the behaviour of spread, essentially because of a result adapted from Smyth’s theorem about
maximal cartesian closed categories of countably-based algebraic posets and continuous functions.
Thus if we want to restrict size or spread by large cardinals we have to use < iω rather than
< ℵ1.

Exercise 2.44 Let X be an algebraic stable poset with some pair of finitely presentable objects
which have κ ≥ 2 multijoins. Then [X → X] has a pair of finitely presentable objects with at least
2κ multijoins.

Besides the ubiquity of pullbacks in the theory we have forever been discussing slices, and we
have shown that traces, function-spaces, RC, dependent sums and dependent products have slices
of the same kind as the given domains.

Definition 2.45 A class of slices is a class of complete categories closed under equivalence and
the following operations:

(i) Singleton, cartesian product and slices.

(ii) Arrow categories Y ↓ T , where T : X → Y is a homomorphism.

(iii) Limits of diagrams whose arrows are pullback functors X∗ : X → X/X.

We shall split the problem of the complexity of polycolimits into two parts: the number of
components (spread) and their automorphism groups (spin). The second problem is more tractable
than the first.

Definition 2.46 A class of spins is a class of groups closed under isomorphism and the following
operations:

(i) Singleton (trivial group).

(ii) Extensions.

(iii) Products and subgroups (alternatively arbitrary diagrams of group homomorphisms).

Theorem 2.47 Let S be a class of slices and G be a class of spins. Write SCat[S,G] for the
full sub-2-category of stable categories whose slices belong to S and the automorphism groups of
whose polycolimit candidates belong to G. Then SCat[S,G] is cartesian closed, and indeed admits
dependent sums, and dependent products indexed by arbitrary stable categories.
Proof As regards slices, condition (i) provides finite products and (ii) gives dependent sums; we
need (iii) for cofiltered diagrams to construct filtered colimits in function-spaces and for general
diagrams to construct dependent products. For spins, we used limits and extensions. �

19

We shall consider separately each of the restrictions which other authors have placed on their
stable domains, showing that they may be expressed in terms of slices, spin and spread and why
they arise naturally. Cartesian closure of their categories of domains considered will follow from
the above results and such others as we can prove about preservation of spread by function-spaces
and dependent products.

Exercise 2.48 Let X be a stable category and I a diagram-type (directed graph or category).
Write I + 1 for the type obtained by freely adjoining a terminal object, and

∆ : X I+1 → X I

for the forgetful functor between the categories of diagrams of these types in X . Then the diagonal
universals for ∆ are exactly the polycolimit candidates and

Spec∆(Xi) ∈ Gpd

is the groupoid of polycolimits of the diagram (Xi). �

Exercise 2.49 Let S : X → Y be stable with trace T and (Ti) be a diagram of type I in T . Show
that polycolimit candidates T for this diagram are given by pairs (X,Y, u) where X and Y are
polycolimit candidates in X and in Y which are compatible in the sense that there is a (unique)
morphism u making the diagram commute. By Lemma 1.5.8 this is diagonally universal. Show
also that an automorphism of the candidate T is a pair 〈x, y〉 of compatible automorphisms, and
hence that AutT (Ti → T) is the intersection of AutT (T) and AutX (Xi → X) × AutY (Yi → Y) in
AutX (X)× AutY (Y). �

The following two results relate binary products and equalisers to spread (connectedness of
polycolimits) and spin (discreteness). It is immediate from the adjoint functor theorem that a
stable category has a terminal object iff it has colimits.

Exercise 2.50 A stable category has equalisers iff all polycolimits are discrete (multicolimits in
Diers’ terminology). This happens if (but not only if) all polycoequalisers are non-empty, or if the
category has (pullbacks and) binary products. �

Exercise 2.51 A stable category X has binary products iff every diagram in X which has a cocone
has a colimit (not poly). In this case −×− : X × X → X is a stable functor, continuous iff X is
pullback-continuous, and π0 : −×X → id is cartesian.

Exercise 2.52 If all multijoins in a stable poset are non-empty then it has a top element. Find
an example of a stable category in which all polycoproducts are non-empty but some of them are
disconnected. [Hint: fields.]

What about the spread of RC? We mentioned something analogous to disjoint coproducts
(disjoint polypushouts) in Exercise 3.7.12. The problem with RC is that its spread tends to far
exceed that of its objects:

Example 2.53 Consider X = Y = 2 ∈ RC. A polycoproduct candidate for X and Y is a domain
Z consisting of three points in a “V”, bounded by an arbitrary groupoid. Hence the polycoproduct
is a large groupoid. �

2.7 Posets and Monomorphisms

In every account of stable domain theory (except [G85], which in any case did not define a cartesian
closed category) the domains have satisfied the following:

Exercise 2.54 The following are equivalent for a category X :

(α) Every morphism x : X ′ → X of X is mono.

20

(β) Every slice X/X is a preorder.

(γ) If the parallel pair f, g : X ′ ⇒ X has an non-empty polycoequaliser then f = g. �

Proposition 2.55 Complete lattices form a class of slices, and hence stable categories in which
all maps are mono form a relatively cartesian closed category. �

This condition is found in the mathematical examples of Diers as well: the categories of fields
and linear orders have all maps mono, although they are not preorders. This phenomenon is partly
explained by Exercise 1.3.5 but mainly by the

Exercise 2.56 Let T be a first-order theory. Every homomorphism of models of T is mono iff
there is a positive formula φ(x, y) [i.e. one involving ∧, ∨, ∃ and ∀ but not ¬ or ⇒] such that
T ` ∀x, y.φ(x, y) ⇐⇒ x 6= y. �

Examples 2.57

(a) For fields, x 6= y ⇐⇒ ∃z.z(x− y) = 1.

(b) For linear orders, x 6= y ⇐⇒ x < y ∨ y < x.

(c) For (tokens of) coherence spaces, x 6= y ⇐⇒ x ^ y ∨ x _ y, where ^ and _ denote strict
(in)coherence. In this case the model homomorphisms are rigid embeddings. �

We are going to give a number of examples to show that the various axioms restricting stable
domains may be expressed in terms of slices and spread. Some of them may appear to be a
long-winded way of saying something very simple! Notice that we can deduce the existence of
equalisers (and hence that polycolimits are discrete) from (ii) alone, and the existence of binary
products (meets) from (iii) alone.

Example 2.58 A stable category X is a preorder iff

(i) every slice is a preorder and

(ii) every parallel pair has at least (exactly) one polycoequaliser candidate.

It is boundedly complete iff additionally

(iii) every pair of objects has at most one polycoproduct candidate. �

Proposition 2.59 Stable posets form a relatively cartesian closed category. �

Conjecture 2.60 Suppose that the polycoequaliser of any parallel pair in [X → X] is nonempty;
then X is a preorder. Hence stable posets are the largest cartesian closed category of stable
categories with coequalisers.

Example 2.61 A boundedly complete poset is

(i) a qualitative domain iff every slice is a complete atomic Boolean algebra and

(ii) a coherence space iff additionally the polycoproduct of a set of objects is the wide pullback
of the polycoproducts of the subsets containing at most two objects. �

The last part shows that spread may or may not be determined by simple diagrams (polyinitial
families, polycoequalisers and binary polycoproducts). The study of this phenomenon suggests
the use of descent or homology. We do not quite have the tools to assert that qualitative and
coherence domains form a cartesian closed category, but

Exercise 2.62 Complete atomic Boolean algebras form a class of slices, and hence Lamarche’s
semigranular categories (which are stable categories with Boolean slices) form a relatively cartesian
closed category. �

21

2.8 Algebraic Stable Categories

The theme of Diers’ work is the generalisation of features of the study of algebraic theories ex-
pressed in terms of functors with left adjoints to disjunctive theories using stable functors. The
most famous result about the use of category theory to describe algebraic theories is the Gabriel-
Ulmer duality between LFP, whose objects are categories of algebras, and Lex, whose objects are
algebraic theories. More precisely, LFP is the 2-category of locally finitely presentable categories,
homomorphisms and natural transformations, and Lex consists of categories with finite limits
and functors preserving them. Diers’ result extended the class of objects of these 2-categories
by admitting (discretely) stable categories with LFP-slices on the one hand and categories with
multipullbacks on the other. However he did not generalise the morphisms, and he also use natural
rather than cartesian transformations.

Definition 2.63 A category is locally finitely poly-presentable if it has wide pullbacks, filtered
colimits and a set of (isomorphism classes of) finitely presentable objects, and every object may be
expressed as a filtered colimit of finitely presentable objects. The category is locally finitely multi-
presentable if it also has equalisers. Write LFPP (LFMP) for the 2-category of locally finitely
poly- (multi-)presentable categories, continuous stable functors and cartesian transformations.

Definition 2.64

(a) A plex-category is a small category with finite poly-limits (its opposite has finite polycolim-
its); it is called a mlex-category if the poly-limits are discrete.

(b) A homomorphism of plex-categories C : Y→ X is a functor which preserves poly-limits.

(c) A trace from a plex-category Y to another X is a pair of functors C : T→ X and F : T→ Y

such that C preserves poly-limits and F is an equivalence on each coslice. The trace is
discrete if F preserves coequalisers.

(d) A diagonal between traces Φ : T′ → T is an isomorphism class of functors which preserve
poly-limits and make the C- and F -triangles commute.

Write PLex (MLex) for the 2-category of plex- (mlex-)categories, traces and diagonals.

Theorem 2.65 LFPP and PLex are dual in the sense that there is a 2-equivalence which is
contravariant on 1-cells and covariant on 2-cells. LFMP and MLex are also dual, and both
dualities restrict to discrete traces and to homomorphisms.
Proof If X is a locally finitely poly-presentable category, put X = (Xfp)op; conversely put
X = Ind(Xop). Lemma 1.5.8 and Exercise 1.9.9 show that this translation also applies to the
trace, whilst Propositions 1.7.3 and 2.1.4 relate diagonals and cartesian transformations. The
results easily restrict. �

Our interest is in relatively cartesian closed categories:

Proposition 2.66 LFP is a class of slices.
Proof

(i) Singleton, cartesian product and slices: easy.

(ii) Arrow categories Y↓T , where T is continuous, not necessarily a homomorphism. The typical
finitely presentable object is y : Y → TX where X ∈ Xfp and Y ∈ Yfp. It is easy to show
that these approximate.

(iii↓) Cofiltered limits of (not necessarily rigid) homomorphisms, or equivalently filtered colimits
of comparisons. Comparisons preserve finite presentability, and so the typical finitely pre-
sentable object of bilimXi is Φi(Xi) where Xi ∈ Xifp. These approximate images, whilst
images approximate all objects.

22

(iiifin) The limiting cone over a diagram of homomorphisms between complete LFP-categories con-
sists of homomorphisms. Typical finitely presentable objects of the limit are finite colimits
of images of finitely presentables. �

Corollary 2.67 The following full sub-2-categories of SCat are relatively cartesian closed:

(a) locally finitely poly-presentable categories,

(b) locally finitely multi-presentable categories,

(c) categories with filtered colimits whose slices are algebraic lattices and

(d) the same, but also having equalisers.

(e) algebraic stable posets. �

Exercise 2.68 A stable category is profinite (i.e. it can be expressed as a limit of a diagram of
finite stable categories and stable functors) iff its slices are algebraic lattices. �

Exercise 2.69 Continuous categories in the sense of [Johnstone & Joyal 1982] form a class of
slices, and hence the continuous analogue of Corollary 3.8.5 holds (continuous stable posets were
studied in [T88]). �

Bifinite stable categories (those which can be expressed as cofiltered limits of finite domains
and rigid homomorphisms) are much more special, because rigid comparisons, being isotomies,
preserve more than just finite presentability.

Definition 2.70 X ∈ X is called strongly finite if X/X is a finite category. X is strongly
presentable if every object can be expressed as a filtered colimit of strongly finite objects.

Exercise 2.71

(a) Show that rigid comparisons create strong finiteness, and strongly finite objects of pullback-
continuous categories are finitely presentable.

(b) Strongly presentable categories form a class of slices contained in the class of algebraic
lattices.

(c) Suppose that the polycoproduct of any pair of strongly finite objects is finite; then any finite
set of strongly finite objects is contained in a rigidly embedded finite subcategory.

(d) Hence show that a stable category is bifinite iff it is strongly presentable and the polyco-
product of any pair of strongly finite objects is finite. �

Exercise 2.72 Show that the following are bifinite stable categories:

(a) algebraic number fields (i.e. algebraic field extensions of Q) and field homomorphisms;

(b) LOrd (linear orders and strict monotone functions);

(c) dI-domains and rigid embeddings. �

Jung [1988] has shown how to extend the polycoproduct condition to arbitrary objects by
imposing the Scott or Lawson topologies on the domain, so that finite becomes compact , but this
is outside the scope of this paper. Although we cannot use spread to prove cartesian closure, the
following result follows easily from Theorem 3.1.6, Exercise 3.4.6 and Proposition 3.5.3 (Coquand
mentions bifinite stable posets).

23

Proposition 2.73 The 2-category of bifinite stable categories is relatively cartesian closed. �

Conjecture 2.74 The category of bifinite stable posets admits dependent products indexed by
its category of rigid embeddings, and hence models System F. The interest of such a model is that
Πα.α→ α→ α would have only the points ⊥, t and f , and not “intersection” as in the coherence
space model.

Question 2.75 What about finitely presentable categories as slices?
The most interesting classes of slices are the subclasses of the class of locally cartesian closed

categories, which we shall discuss after we have shown why this condition has a serious effect on
spread. Let us just conclude this subsection with the trivial case.

Exercise 2.76 Every slice of X/X is trivial (equivalent to the singleton category) iff every mor-
phism of X is invertible. Trivial categories form a class of slices, and hence Gpd is relatively
cartesian closed. Trivial groups also form a class of spins, and hence Set is relatively cartesian
closed. In Set and Gpd every morphism is a display, and so these categories are locally cartesian
closed. �

2.9 Distributivity

By far the most interesting restriction we may place on stable categories is distributivity. All
accounts of stable domain theory except [T88] have assumed this because it makes the compu-
tation of function-spaces substantially easier. However the importance of this condition lies in
the possibility of topological representations, of which there is some hint in [CGW], and in the
application to linear logic.

We cannot define a “class of spreads” and prove a simple analogue of Theorem 3.6.5. In
particular we cannot make the spread trivial (i.e. all colimits exist) without making the category
of domains trivial too. The problem is that whereas slices and spin are essentially independent of
each other and of spread, the spread of function-spaces is critically affected by the slices and spin
of the domains.

Proposition 2.77 Suppose X and [X → X] are boundedly complete stable posets. Then meets
distribute over joins (where they exist) in X .
Proof It is well-known that any non-distributive lattice contains one or other of the following

24

as sub-lattices:

a ∨ b

A

-

b

�

a

6

a ∧ b

-

�

⊥

6

a ∨ b

a

-

b

6

c

�

a ∧ b

6 -
�

⊥

6

(In this context, a “lattice” has bottom but not top.) Let j : Y ⊂ X be such a sublattice, so that
p : X → Y with p and j stable, and j a p. Define the three endo-functions of Y:

â : y 7→ a ∧ y b̂ : y 7→ b ∧ y h : y 7→ (a ∧ y) ∨ (b ∧ y)

and verify case-wise that they are stable and h is a multijoin of â and b̂ in [Y → Y]. Then p ; h ; j
is a multijoin of p ; â ; j and p ; b̂ ; j in [X → X], and p ; j also lies above them (in the Berry order).
By the hypothesis that [X → X] is boundedly complete, the multijoin should be a join, but if we
test cartesianness of p ; h ; j ≤ p ; j at y ≤ a ∨ b with y = A or y = c we obtain the pullback

(a ∧ (a ∨ b)) ∨ (b ∧ (a ∨ b)) ===== a ∨ b

(a ∧ y) ∨ (b ∧ y)

6

- (a ∨ b) ∧ y

6

from which distributivity follows. (This argument appears to be a proof by contradiction, but
with slight re-wording it can be made constructive.) �

Conjecture 2.78 If [X → X] has binary products then in X pullbacks preserve colimits.
We have already required pullbacks to preserve filtered colimits as a necessary part of continuity

of stable functors, and now we are asking that they also preserve finite colimits. It is because
previous authors have defined stable categories in terms of polycolimits that they have needed
distributivity to prove cartesian closure.

Definition 2.79 A category X is locally cartesian closed if pullback functors x∗ exist and have
right adjoints (cf. Lemma 2.2.4). Notice that we have not required there to be a terminal object.
We say X is an lccc.

Proposition 2.80 The following are equivalent for X :

25

(α) pullback functors have right adjoints;

(β) every slice is cartesian closed;

(γ) X is relatively cartesian closed with respect to all maps;

and if X has wide pullbacks and a set of coseparators (...),

(δ) pullbacks preserve colimits;

(ε) pullbacks preserve the initial object (it is strict), coproducts (the pullback ofX → X+Y ← Y
against Z → X + Y is X ′ → X ′+ Y ′ = Z ← Y ′), coequalisers (similar) and filtered colimits
(pullback-continuous).

Proof Standard exercise. �

Lemma 2.81 In an LCCC, pullbacks preserve exponentials.
Proof This is the Beck condition for Π; it states the commutativity of a square whose maps are
the right adjoints of those in the Beck condition for Σ (exercise). �

Lemma 2.82 Let S1, S2 : X ⇒ Y be stable functors between locally cartesian closed categories.
Suppose that the (pointwise) coproduct S1X+S2X exists in Y for each X ∈ X . Then this defines
a stable functor S1 + S2 : X → Y.
Proof Let νiX : SiX → S1X + S2X be the inclusion; this is not a cartesian transformation
without additional hypotheses (which we shall investigate in the next subsection). Given w : Y →
S1X + S2X in Y, form its pullback (νiX)∗w : Yi → SXi and factorise this as (νiX)∗w = ui ; Sifi
with ui : Yi → SiXi diagonally universal and fi : Xi → X. Now, using preservation of coproducts
by pullbacks, it is an exercise to show that X1 +X2 is the required intermediate object. �

Theorem 2.83 LCCCs with 1 form a class of slices. Hence

(a) LCCCs,

(b) LCCCs with equalisers and

(c) LCCCs with products

form relatively cartesian closed categories.
Proof Either exponentials or pullbacks and colimits may be constructed componentwise; hence
[a] and [b] follow immediately from Theorem 3.6.5. For [c], having binary products is equivalent
to having at most one polycolimit for any diagram. By Corollary 3.5.8, any polycolimit candidate
for a diagram in the function-space is computed pointwise and so is unique. �

The relatively cartesian closed categories of stable domains which we have as a result of this are
too numerous to mention individually, so we shall just list the ones which others have considered.

Corollary 2.84 The following classes of stable domains form relatively cartesian closed categories:

(a) boundedly complete, strongly presentable and distributive: dI-domains, Berry [1978] and
Coquand, Gunter & Winskel [1986];

(b) boundedly complete and Boolean: qualitative domains, Girard [1984];

(c) boundedly complete and Boolean, where any pairwise bounded set has a join; coherence
spaces, Girard [1986] and Girard, Lafont & Taylor [1988];

(d) mono, algebraic and distributive: stable categories of embeddings, Coquand [1988];

(e) mono, equalisers, strongly presentable and distributive: aggregates, Lamarche [1988];

26

(f) Boolean and equalisers: semigranular categories, Lamarche [1988].

In cases (a–c) we may understand non-empty if we please.
Proof Obviously Boolean algebras are strongly presentable distributive posets. That the binary
condition (c) is reproduced in function-spaces follows from the form of condition 3.7.6(ii). �

[Any distributive domain has a reflection into any class of slices.]
Our reason for considering distributivity was that it was necessary for bounded completeness,

whilst the fact that the domain may be taken to be a subset of a frame suggests topological
representations of which [CGW] gives some hint. It also appears (although I do not know why)
that distributivity is needed to interpret linear logic. Domains of this kind appear to be worthy
of specify study, and Girard’s qualitative/quantitative terminology seems too good to waste:

Definition 2.85 A qualitative domain is a boundedly complete poset with directed joins and
bottom whose slices are frames.

Theorem 2.86 Qualitative domains form a relatively cartesian closed category.
Proof Special case of Theorem 3.9.7 where all maps are mono. �

Theorem 2.87 Qualitative domains admit second-order dependent types, i.e. they model Girard-
Reynolds polymorphism.
Proof The category of qualitative domains and rigid comparisons has small spread, so we are
permitted to form dependent products over it. The slices of such a dependent product are frames,
so it only remains to verify that it is boundedly complete; but the argument of Theorem 3.9.7 still
applies. �

These dependent products satisfy Moggi’s uniformity property, but the values of polymorphic
types are likely to be much the same as in coherence spaces and dI-domains.

2.10 Quantitative Domains

Qualitative domains exploit the best we can do in demanding existence of coequaliers and unique-
ness of coproducts; as we shall see, we cannot have both, so we shall now look for the reverse. The
following is a special case of Conjecture 3.9.2:

Lemma 2.88 If [X → X] is connected then X (is empty or) has a strict initial object.
Proof Clearly X is connected, so let I be the unique polyinitial candidate. By hypothesis
id, pIq : X → X are connected by some zig-zag, which using pullbacks we may reduce to

id �
κ

M
φ - pIq

Put Z = MI ∈ X and p = κI : Z → I. Since I is a polyinitial candidate, there is a (unique)
j : I → Z with j ; p = id, so p is split epi. For any X ∈ X we have some ξ : I → X and then the
left-hand square is a pullback, making Mξ an isomorphism:

Z
φI - I

MX

Mξ

? φX - I

id

?

MZ
κZ - Z

Z

∼= Mp

? p = κI- I

p

?

It follows that M takes every morphism to an isomorphism, and in particular Mp is one. Then
the right-hand square shows that p is mono and hence iso, so φ : M ∼= pIq. The argument also

27

shows that any given p′ : Z ′ → I is iso; in particular so are g, (φ−1 ; κ)I : I → I. But suppose
we have g : I ∼= I; then naturality of φ−1 ; κ with respect to g shows that g = id, so I is strict
initial. �

The following property of slices is essentially the difference between Girard’s qualitative and
quantitative domains: in a poset, binary coproducts (joins) are idempotent , i.e. X ∨ X ∼= X,
whereas in Set or any topos they are disjoint , i.e. the pullback of the inclusions is the (strict)
initial object. This is the reason why [2→ 2] is not 3 but a V-shaped domain.

Lemma 2.89 Suppose that the polycoproduct of any pair of objects of [X → X] is nonempty.
Then X has disjoint polycoproducts.
Proof Clearly [X → X] is connected, and so by Proposition 3.9.1 X has a strict initial object 0.
Let X,Y ∈ X and consider id, pXq : X → X . By hypothesis these have a polycoproduct candidate
S, with φ : pXq→ S and ψ : id→ S, where (φ and) ψ are cartesian. Then the square is a pullback:

0
ψ0 = ?S0 - S0

X

φ 0

-
?
X

-

Y

?Y

? ψY - SY

S?Y

?

φ
Y

-

X + Y

ν1

?

m

-

ν
2

-

where m : X + Y → SY is the coproduct in X/SY with inclusions ν1 and ν2. It is easy to see
that the parallelogram from 0 to X + Y is also a pullback. �

A categorical logician might imagine that the analogous result for polycoequalisers is that
equivalence relations are effective. Unfortunately by conjecture 3.7.6 the result is more drastic.

Proposition 2.90 Suppose that [X → X] has a terminal object. Then X is degenerate, i.e.
equivalent to either 0 or 1.
Proof Suppose that X is connected. The polycoproduct of any pair of objects of [X → X] is
nonempty, and so X has disjoint polycoproducts and a strict initial object 0. X also has colimits
(since diagrams of constant functors have colimits) and hence a terminal object 1, binary products
and equalisers.

Consider the stable functor SX = X2 and the object 2 = 1 + 1; as well as the identity, these
carry “switch” automorphisms s : 2→ 2 and t : S → S, giving a parallel pair

〈S, 2〉
〈t, s〉-
〈id, id〉
- 〈S, 2〉

in [X → X]× X . The latter has a terminal object, whence any stable functor out of it preserves
equalisers. Clearly applying ev to this pair makes them equal, and so the equaliser of the images
is 22.

Since ev preserves equalisers jointly, it must do so separately (although the converse is not
true), and in particular equalisers of stable functors are calculated pointwise. The coproduct

28

2 = 1 + 1 is disjoint, so the equaliser of the above pair is 〈p0q, 0〉, which becomes 0 on application
of ev. Hence 22 ∼= 0 and X is degenerate. �

Corollary 2.91 In any non-trivial cartesian closed category of stable categories, there are objects
for which some polycoproduct or some polycoequaliser is empty. �

Question 2.92 What feature, if any, of [X → X] would force X to have effective equivalence
relations in slices? Is there a connection between this and when rigid adjunctions are monadic?

The following terminology arises from Giraud’s theorem that a category is a Grothendieck
topos iff it is of this form.

Definition 2.93 A Giraud topos is a locally small category which has set-indexed colimits and a
set of generators and satisfies

(i) it is locally cartesian closed;

(ii) coproducts are disjoint;

(iii) equivalence relations are effective, i.e. if a subobject R ⊂ X ×X is reflexive, symmetric and
transitive then it is the kernel of its coequaliser;

(iv) epimorphisms are regular, i.e. the coequaliser of their kernels.

Lemma 2.94 In a topos, pullback functors preserve the subobject classifier Ω. �

Theorem 2.95 Giraud toposes form a class of slices, and hence stable domains whose slices are
toposes form a relatively cartesian closed category.
Proof Either we may compute Ω componentwise, or else we compute pullbacks and colimits
componentwise and verify (ii–iv) in the same way as (i). �

As with distributivity, our aim was to optimise spread, and again it seems appropriate to
modify Girard’s terminology. Here also we should look for topological representations, since any
quantitative domain is a full subcategory of a topos.

Definition 2.96 A quantitative domain is a category with filtered colimits, a strict initial object,
binary products and binary coproducts, whose slices are toposes.

Lemma 2.97 Let S1 and S2 be stable functors between quanitative domains. Then ν1X : S1X →
S1X + S2X is cartesian.
Proof Suppose f : Y → S1X

′ + S2X
′ and g : Y → S1X make the square commute. Let

Y = Y1 +Y2, where Yi = f ∗ (νiX ′). Then Y2 → 0 since the coproduct S1X +S2X is disjoint, and
so Y2

∼= 0 and Y ∼= Y1 → S1X
′. �

Theorem 2.98 Quantitative domains form a relatively cartesian closed category.
Proof (Sketch) The strict initial object of [X → X] is p0q, and we have shown that coproducts
are constructed pointwise. Coequalisers, where they exist, are also computed pointwise and hence
are unique; it follows that any colimit diagram with a cocone has a colimit, which is equivalent to
possessing binary products. The results are easily extended to dependent (sums and) products.�

Theorem 2.99 The category of quantitative domains and rigid comparisons is a quantitative
domain, i.e. a type of types.
Proof The strict initial object is the singleton, and coproducts are given by products quantita-
tive domains quâ categories. Binary product is a “tensor product” construction which for toposes
is topological product. �

29

Conjecture 2.100 This is the largest category of stable domains with a type of types. �
[The following result belongs in section 2.1; necessity was remarked by Lamarche.]

Lemma 2.101 Φ is full (as well as faithful) iff φ is mono.
Proof

[⇒] Suppose w1 ; φX = w2 ; φX , in which we may put w1 = u′1 ; S′x1 and w2 = u′2 ; S′x2. Then

u1 ; Sx1 = u′1 ; φX′1 ; Sx1 = u′1 ; S′x1 ; φX = u′2 ; S′x2 ; φX = u′2 ; φX′2 ; Sx2 = u2 ; Sx2

by naturality of φ, and so by diagonal universality of u1 and u2 there is a unique h : X ′1 ∼= X ′2
such that

u2 = u1 ; Sh and x2 = h−1 ; x1

The first equation makes 〈h, id〉 : Φ〈X1, Y, u
′
1〉 → Φ〈X2, Y, u

′
2〉 a morphism, and so by hy-

pothesis 〈h, id〉 : 〈X1, Y, u
′
1〉 → 〈X2, Y, u

′
2〉 is also, i.e. u′2 = u′1 ; S′h. But then

w2 = u′2 ; S′x2 = u′1 ; S′h ; S′(h−1 ; x1) = u′1 ; S′x1 = w1

as required.

[⇐] Let 〈x, y〉 : Φ〈X1, Y, u
′
1〉 → Φ〈X2, Y, u

′
2〉 be a morphism. Then the square on the left com-

mutes and that on the right is a pullback:

Y1
u1- SX1

Y2

y ; u′2

? φX2- SX2

Sx

?

S′X1
φX1- SX1

S′X2

S′x

? φX2- SX2

Sx

?

Let v : Y1 → S′X1 be the mediator. But then v ; φX1 = u1 = u′1 ; φX1 and φX1 is mono, so
v = u′1. Hence also u′1 ; S′x = y ; u′2, i.e. 〈x, y〉 : 〈X1, Y, u

′
1〉 → 〈X2, Y, u

′
2〉 is a morphism. �

30

