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Preface

This little book comes from a short graduate course on typed λ-calculus given at
the Université Paris VII in the autumn term of 1986–7. It is not intended to be
encyclopedic — the Church-Rosser theorem, for instance, is not proved — and
the selection of topics was really quite haphazard.

Some very basic knowledge of logic is needed, but we will never go into tedious
details. Some book in proof theory, such as [Gir], may be useful afterwards to
complete the information on those points which are lacking.

The notes would never have reached the standard of a book without the
interest taken in translating (and in many cases reworking) them by Yves Lafont
and Paul Taylor. For instance Yves Lafont restructured chapter 6 and Paul Taylor
chapter 8, and some sections have been developed into detailed appendices.

The translators would like to thank Luke Ong, Christine Paulin-Mohring,
Ramon Pino, Mark Ryan, Thomas Streicher, Bill White and Liz Wolf for their
suggestions and detailed corrections to earlier drafts and also Samson Abramsky
for his encouragement throughout the project.

In the reprinting an open problem on page 140 has been resolved.
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Chapter 1

Sense, Denotation and Semantics

Theoretical Computing is not yet a science. Many basic concepts have not been
clarified, and current work in the area obeys a kind of “wedding cake” paradigm:
for instance language design is reminiscent of Ptolomeic astronomy — forever
in need of further corrections. There are, however, some limited topics such as
complexity theory and denotational semantics which are relatively free from this
criticism.

In such a situation, methodological remarks are extremely important, since we
have to see methodology as strategy and concrete results as of a tactical nature.

In particular what we are interested in is to be found at the source of the
logical whirlpool of the 1900’s, illustrated by the names of Frege, Löwenheim,
Gödel and so on. The reader not acquainted with the history of logic should
consult [vanHeijenoort].

1.1 Sense and denotation in logic

Let us start with an example. There is a standard procedure for multiplication,
which yields for the inputs 27 and 37 the result 999. What can we say about
that?

A first attempt is to say that we have an equality

27× 37 = 999

This equality makes sense in the mainstream of mathematics by saying that the
two sides denote the same integer1 and that × is a function in the Cantorian
sense of a graph.

1By integer we shall, throughout, mean natural number: 0, 1, 2,...

1



2 CHAPTER 1. SENSE, DENOTATION AND SEMANTICS

This is the denotational aspect, which is undoubtedly correct, but it misses
the essential point:

There is a finite computation process which shows that the denotations are
equal. It is an abuse (and this is not cheap philosophy — it is a concrete
question) to say that 27× 37 equals 999, since if the two things we have were the
same then we would never feel the need to state their equality. Concretely we ask
a question, 27 × 37, and get an answer, 999. The two expressions have different
senses and we must do something (make a proof or a calculation, or at least look
in an encyclopedia) to show that these two senses have the same denotation.

Concerning ×, it is incorrect to say that this is a function (as a graph) since
the computer in which the program is loaded has no room for an infinite graph.
Hence we have to conclude that we are in the presence of a finitary dynamics
related to this question of sense.

Whereas denotation was modelled at a very early stage, sense has been pushed
towards subjectivism, with the result that the present mathematical treatment of
sense is more or less reduced to syntactic manipulation. This is not a priori
in the essence of the subject, and we can expect in the next decades to find
a treatment of computation that would combine the advantages of denotational
semantics (mathematical clarity) with those of syntax (finite dynamics). This
book clearly rests on a tradition that is based on this unfortunate current state
of affairs: in the dichotomy between infinite, static denotation and finite, dynamic
sense, the denotational side is much more developed than the other.

So, one of the most fundamental distinctions in logic is that made by Frege:
given a sentence A, there are two ways of seeing it:

• as a sequence of instructions, which determine its sense, for example A ∨B
means “A or B”, etc..

• as the ideal result found by these operations: this is its denotation.

“Denotation”, as opposed to “notation”, is what is denoted, and not what
denotes. For example the denotation of a logical sentence is t (true) or f
(false), and the denotation of A ∨ B can be obtained from the denotations
of A and B by means of the truth table for disjunction.

Two sentences which have the same sense have the same denotation, that is
obvious; but two sentences with the same denotation rarely have the same sense.
For example, take a complicated mathematical equivalence A⇔ B. The two
sentences have the same denotation (they are true at the same time) but surely
not the same sense, otherwise what is the point of showing the equivalence?
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This example allows us to introduce some associations of ideas:

• sense, syntax, proofs;

• denotation, truth, semantics, algebraic operations.

That is the fundamental dichotomy in logic. Having said that, the two sides
hardly play symmetrical rôles!

1.1.1 The algebraic tradition

This tradition (begun by Boole well before the time of Frege) is based on a radical
application of Ockham’s razor: we quite simply discard the sense, and consider
only the denotation. The justification of this mutilation of logic is its operational
side: it works!

The essential turning point which established the predominance of this tradition
was Löwenheim’s theorem of 1916. Nowadays, one may see Model Theory as
the rich pay-off from this epistemological choice which was already very old. In
fact, considering logic from the point of view of denotation, i.e. the result of
operations, we discover a slightly peculiar kind of algebra, but one which allows
us to investigate operations unfamiliar to more traditional algebra. In particular,
it is possible to avoid the limitation to — shall we say — equational varieties, and
consider general definable structures. Thus Model Theory rejuvenates the ideas
and methods of algebra in an often fruitful way.

1.1.2 The syntactic tradition

On the other hand, it is impossible to say “forget completely the denotation
and concentrate on the sense”, for the simple reason that the sense contains
the denotation, at least implicitly. So it is not a matter of symmetry. In fact
there is hardly any unified syntactic point of view, because we have never been
able to give an operational meaning to this mysterious sense. The only tangible
reality about sense is the way it is written, the formalism; but the formalism
remains an unaccommodating object of study, without true structure, a piece of
soft camembert.

Does this mean that the purely syntactic approach has nothing worthwhile
to say? Surely not, and the famous theorem of Gentzen of 1934 shows that
logic possesses some profound symmetries at the syntactical level (expressed by
cut-elimination). However these symmetries are blurred by the imperfections of
syntax. To put it in another way, they are not symmetries of syntax, but of sense.
For want of anything better, we must express them as properties of syntax, and
the result is not very pretty.
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So, summing up our opinion about this tradition, it is always in search of
its fundamental concepts, which is to say, an operational distinction between
sense and syntax. Or to put these things more concretely, it aims to find deep
geometrical invariants of syntax: therein is to be found the sense.

The tradition called “syntactic” — for want of a nobler title — never reached
the level of its rival. In recent years, during which the algebraic tradition has
flourished, the syntactic tradition was not of note and would without doubt have
disappeared in one or two more decades, for want of any issue or methodology.
The disaster was averted because of computer science — that great manipulator
of syntax — which posed it some very important theoretical problems.

Some of these problems (such as questions of algorithmic complexity) seem
to require more the letter than the spirit of logic. On the other hand all the
problems concerning correctness and modularity of programs appeal in a deep
way to the syntactic tradition, to proof theory. We are led, then, to a revision
of proof theory, from the fundamental theorem of Herbrand which dates back to
1930. This revision sheds a new light on those areas which one had thought were
fixed forever, and where routine had prevailed for a long time.

In the exchange between the syntactic logical tradition and computer science
one can wait for new languages and new machines on the computational side.
But on the logical side (which is that of the principal author of this book) one
can at last hope to draw on the conceptual basis which has always been so cruelly
ignored.

1.2 The two semantic traditions

1.2.1 Tarski

This tradition is distinguished by an extreme platitude: the connector “∨” is
translated by “or”, and so on. This interpretation tells us nothing particularly
remarkable about the logical connectors: its apparent lack of ambition is the
underlying reason for its operationality. We are only interested in the denotation,
t or f , of a sentence (closed expression) of the syntax.

1. For atomic sentences, we assume that the denotation is known; for example:

• 3 + 2 = 5 has the denotation t.

• 3 + 3 = 5 has the denotation f .
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2. The denotations of the expressions A ∧ B, A ∨ B, A ⇒ B and ¬A are
obtained by means of a truth table:

A B A ∧B A ∨B A⇒ B ¬A
t t t t t f
f t f t t t
t f f t f
f f f f t

3. The denotation of ∀ξ. A is t iff for every a in the domain of interpretation2,
A[a/ξ] is t. Likewise ∃ξ. A is t iff A[a/ξ] is t for some a.

Once again, this definition is ludicrous from the point of view of logic, but
entirely adequate for its purpose. The development of Model Theory shows this.

1.2.2 Heyting

Heyting’s idea is less well known, but it is difficult to imagine a greater disparity
between the brilliance of the original idea and the mediocrity of subsequent
developments. The aim is extremely ambitious: to model not the denotation, but
the proofs.

Instead of asking the question “when is a sentence A true?”, we ask “what is
a proof of A?”. By proof we understand not the syntactic formal transcript, but
the inherent object of which the written form gives only a shadowy reflection. We
take the view that what we write as a proof is merely a description of something
which is already a process in itself. So the reply to our extremely ambitious
question (and an important one, if we read it computationally) cannot be a formal
system.

1. For atomic sentences, we assume that we know intrinsically what a proof is;
for example, pencil and paper calculation serves as a proof of “27×37 = 999”.

2. A proof of A ∧ B is a pair (p, q) consisting of a proof p of A and a proof
q of B.

3. A proof of A ∨B is a pair (i, p) with:

• i = 0, and p is a proof of A, or

2A[a/ξ] is meta-notation for “A where all the (free) occurrences of ξ have been replaced
by a”. In defining this formally, we have to be careful about bound variables.
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• i = 1, and p is a proof of B.

4. A proof of A⇒ B is a function f , which maps each proof p of A to a proof
f(p) of B.

5. In general, the negation ¬A is treated as A⇒ ⊥ where ⊥ is a sentence with
no possible proof.

6. A proof of ∀ξ. A is a function f , which maps each point a of the domain of
definition to a proof f(a) of A[a/ξ].

7. A proof of ∃ξ. A is a pair (a, p) where a is a point of the domain of definition
and p is a proof of A[a/ξ].

For example, the sentence A ⇒ A is proved by the identity function, which
associates to each proof p of A, the same proof. On the other hand, how can
we prove A ∨ ¬A? We have to be able to find either a proof of A or a proof
of ¬A, and this is not possible in general. Heyting semantics, then, corresponds
to another logic, the intuitionistic logic of Brouwer, which we shall meet later.

Undeniably, Heyting semantics is very original: it does not interpret the
logical operations by themselves, but by abstract constructions. Now we can see
that these constructions are nothing but typed (i.e. modular) programs. But
the experts in the area have seen in this something very different: a functional
approach to mathematics. In other words, the semantics of proofs would express
the very essence of mathematics.

That was very fanciful: indeed, we have on the one hand the Tarskian tradition,
which is commonplace but honest (“∨” means “or”, “∀ ” means “for all”), without
the least pretension. Nor has it foundational prospects, since for foundations,
one has to give an explanation in terms of something more primitive, which
moreover itself needs its own foundation. The tradition of Heyting is original, but
fundamentally has the same problems — Gödel’s incompleteness theorem assures
us, by the way, that it could not be otherwise. If we wish to explain A by the
act of proving A, we come up against the fact that the definition of a proof uses
quantifiers twice (for ⇒ and ∀). Moreover in the ⇒ case, one cannot say that the
domain of definition of f is particularly well understood!

Since the ⇒ and ∀ cases were problematic (from this absurd foundational point
of view), it has been proposed to add to clauses 4 and 6 the codicil “together
with a proof that f has this property”. Of course that settles nothing, and the
Byzantine discussions about the meaning which would have to be given to this
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codicil — discussions without the least mathematical content — only serve to
discredit an idea which, we repeat, is one of the cornerstones of Logic.

We shall come across Heyting’s idea working in the Curry-Howard isomorphism.
It occurs in Realisability too. In both these cases, the foundational pretensions
have been removed. This allows us to make good use of an idea which may have
spectacular applications in the future.



Chapter 2

Natural Deduction

As we have said, the syntactic point of view shows up some profound symmetries
of Logic. Gentzen’s sequent calculus does this in a particularly satisfying
manner. Unfortunately, the computational significance is somewhat obscured by
syntactic complications that, although certainly immaterial, have never really been
overcome. That is why we present Prawitz’ natural deduction before we deal with
sequent calculus.

Natural deduction is a slightly paradoxical system: it is limited to the
intuitionistic case (in the classical case it has no particularly good properties) but
it is only satisfactory for the (∧,⇒,∀) fragment of the language: we shall defer
consideration of ∨ and ∃ until chapter 10. Yet disjunction and existence are the
two most typically intuitionistic connectors!

The basic idea of natural deduction is an asymmetry: a proof is a vaguely
tree-like structure (this view is more a graphical illusion than a mathematical
reality, but it is a pleasant illusion) with one or more hypotheses (possibly none)
but a single conclusion. The deep symmetry of the calculus is shown by the
introduction and elimination rules which match each other exactly. Observe,
incidentally, that with a tree-like structure, one can always decide uniquely what
was the last rule used, which is something we could not say if there were several
conclusions.

8
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2.1 The calculus

We shall use the notation

···
A

to designate a deduction of A, that is, ending at A. The deduction will be written
as a finite tree, and in particular, the tree will have leaves labelled by sentences.
For these sentences, there are two possible states, dead or alive.

In the usual state, a sentence is alive, that is to say it takes an active part in
the proof: we say it is a hypothesis. The typical case is illustrated by the first
rule of natural deduction, which allows us to form a deduction consisting of a
single sentence:

A

Here A is both the leaf and the root; logically, we deduce A, but that was easy
because A was assumed!

Now a sentence at a leaf can be dead, when it no longer plays an active part in
the proof. Dead sentences are obtained by killing live ones. The typical example
is the ⇒-introduction rule:

[A]
···
B

⇒I
A⇒ B

It must be understood thus: starting from a deduction of B, in which we choose
a certain number of occurrences of A as hypotheses (the number is arbitrary: 0,
1, 250, . . . ), we form a new deduction of which the conclusion is A⇒ B, but in
which all these occurrences of A have been discharged, i.e. killed. There may be
other occurrences of A which we have chosen not to discharge.

This rule illustrates very well the illusion of the tree-like notation: it is
of critical importance to know when a hypothesis was discharged, and so it is
essential to record this. But if we do this in the example above, this means we
have to link the crossed A with the line of the ⇒I rule; but it is no longer a
genuine tree we are considering!
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2.1.1 The rules

• Hypothesis : A

• Introductions :

···
A

···
B
∧I

A ∧B

[A]
···
B

⇒I
A⇒ B

···
A
∀I

∀ξ. A

• Eliminations :

···
A ∧B

∧1E
A

···
A ∧B

∧2E
B

···
A

···
A⇒ B

⇒E
B

···
∀ξ. A

∀E
A[a/ξ]

The rule ⇒E is traditionally called modus ponens.

Some remarks:
All the rules, except ⇒I, preserve the stock of hypotheses: for example,

the hypotheses in the deduction above which ends in ⇒E , are those of the two
immediate sub-deductions.

For well-known logical reasons, it is necessary to restrict ∀I to the case where
the variable1 ξ is not free in any hypothesis (it may, on the other hand, be free
in a dead leaf).

The fundamental symmetry of the system is the introduction/elimination
symmetry, which replaces the hypothesis/conclusion symmetry that cannot be
implemented in this context.

2.2 Computational significance

We shall re-examine the natural deduction system in the light of Heyting semantics;
we shall suppose fixed the interpretation of atomic formulae and also the range
of the quantifiers. A formula A will be seen as the set of its possible deductions;
instead of saying “δ proves A”, we shall say “δ ∈ A”.

1The variable ξ belongs to the object language (it may stand for a number, a data-record,
an event). We reserve x, y, z for λ-calculus variables, which we shall introduce in the next
section.
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The rules of natural deduction then appear as a special way of constructing
functions: a deduction of A on the hypotheses B1, . . . , Bn can be seen as a function
t[x1, . . . , xn] which associates to elements bi ∈ Bi a result t[b1, . . . , bn] ∈ A. In fact,
for this correspondence to be exact, one has to work with parcels of hypotheses :
the same formula B may in general appear several times among the hypotheses,
and two occurrences of B in the same parcel will correspond to the same variable.

This is a little mysterious, but it will quickly become clearer with some
examples.

2.2.1 Interpretation of the rules

1. A deduction consisting of a single hypothesis A is represented by the
expression x, where x is a variable for an element of A. Later, if we have
other occurrences of A, we shall choose the same x, or another variable,
depending upon whether or not those other occurrences are in the same
parcel.

2. If a deduction has been obtained by means of ∧I from two others
corresponding to u[x1, . . . , xn] and v[x1, . . . , xn], then we associate to our
deduction the pair 〈u[x1, . . . , xn], v[x1, . . . , xn]〉, since a proof of a conjunction
is a pair. We have made u and v depend on the same variables; indeed,
the choice of variables of u and v is correlated, because some parcels of
hypotheses will be identified.

3. If a deduction ends in ∧1E , and t[x1, . . . , xn] was associated with the
immediate sub-deduction, then we shall associate π1t[x1, . . . , xn] to our
proof. That is the first projection, since t, as a proof of a conjunction, has
to be a pair. Likewise, the ∧2E rule involves the second projection π2.

Although this is not very formal, it will be necessary to consider the
fundamental equations:

π1〈u, v〉 = u π2〈u, v〉 = v 〈π1t, π2t〉 = t

These equations (and the similar ones we shall have occasion to write down)
are the essence of the correspondence between logic and computer science.

4. If a deduction ends in ⇒I, let v be the term associated with the immediate
sub-deduction; this immediate sub-deduction is unambiguously determined
at the level of parcels of hypotheses, by saying that a whole A-parcel has
been discharged. If x is a variable associated to this parcel, then we have
a function v[x, x1, . . . , xn]. We shall associate to our deduction the function



12 CHAPTER 2. NATURAL DEDUCTION

t[x1, . . . , xn] which maps each argument a of A to v[a, x1, . . . , xn]. The
notation is λx. v[x, x1, . . . , xn] in which x is bound.

Observe that binding corresponds to discharge.

5. The case of a deduction ending with ⇒E is treated by considering the two
functions t[x1, . . . , xn] and u[x1, . . . , xn], associated to the two immediate
sub-deductions. For fixed values of x1, . . . , xn, t is a function from A to B,
and u is an element of A, so t(u) is in B; in other words

t[x1, . . . , xn]u[x1, . . . , xn]

represents our deduction in the sense of Heyting.

Here again, we have the equations:

(λx. v)u = v[u/x]
λx. t x = t (when x is not free in t)

The rules for ∀ echo those for ⇒: they do not add much, so we shall in
future omit them from our discussion. On the other hand, we shall soon replace
the boring first-order quantifier by a second-order quantifier with more novel
properties.
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2.2.2 Identification of deductions

Returning to natural deduction, the equations we have written lead to equations
between deductions. For example:

···
A

···
B
∧I

A ∧B
∧1E

A

“equals” ···
A

···
A

···
B
∧I

A ∧B
∧2E

B

“equals” ···
B

···
A

[A]
···
B

⇒I
A⇒ B

⇒E
B

“equals”
···
A···
B

What we have written is clear, provided that we observe carefully what happens
in the last case: all the discharged hypotheses are replaced by (copies of) the
deduction ending in A.



Chapter 3

The Curry-Howard Isomorphism

We have seen that Heyting’s ideas perform very well in the framework of natural
deduction. We shall exploit this remark by establishing a formal system of typed
terms for discussing the functional objects which lie behind the proofs. The
significance of the system will be given by means of the functional equations we
have written down. In fact, these equations may be read in two different ways,
which re-iterate the dichotomy between sense and denotation:

• as the equations which define the equality of terms, in other words the
equality of denotations (the static viewpoint).

• as rewrite rules which allows us to calculate terms by reduction to a normal
form. That is an operational, dynamic viewpoint, the only truly fruitful
view for this aspect of logic.

Of course the second viewpoint is under-developed by comparison with the
first one, as was the case in Logic! For example denotational semantics of
programs (Scott’s semantics, for example) abound: for this kind of semantics,
nothing changes throughout the execution of a program. On the other hand,
there is hardly any civilised operational semantics of programs (we exclude ad
hoc semantics which crudely paraphrase the steps toward normalisation). The
establishment of a truly operational semantics of algorithms is perhaps the most
important problem in computer science.

The correspondence between types and propositions was set out in [Howard].

14
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3.1 Lambda Calculus

3.1.1 Types

When we think of proofs in the spirit of Heyting, formulae become types.
Specifically:

1. Atomic types T1, . . . , Tn are types.

2. If U and V are types, then U×V and U→V are types.

3. The only types are (for the time being) those obtained by means of 1 and 2.

This corresponds to the (∧,⇒) fragment of propositional calculus: atomic
propositions are written Ti, “∧” becomes “×” (Cartesian product) and “⇒”
becomes “→”.

3.1.2 Terms

Proofs become terms ; more precisely, a proof of A (as a formula) becomes a term
of type A (as a type). Specifically:

1. The variables xT0 , . . . , x
T
n , . . . are terms of type T .

2. If u and v are terms of types respectively U and V , then 〈u, v〉 is a term of
type U×V .

3. If t is a term of type U×V then π1t and π2t are terms of types respectively
U and V .

4. If v is a term of type V and xUn is a variable of type U then λxUn . v is a term
of type U→V . In general we shall suppose that we have settled questions of
the choice of bound variables and of substitution, by some means or other,
which allows us to disregard the names of bound variables, the idea being
that a bound variable has no individuality.

5. If t and u are terms of types respectively U→V and U , then t u is a term
of type V .



16 CHAPTER 3. THE CURRY-HOWARD ISOMORPHISM

3.2 Denotational significance

Types represent the kind of object under discussion. For example an object of
type U→V is a function from U to V , and an object of type U×V is an ordered
pair consisting of an object of U and an object of V . The meaning of atomic
types is not important — it depends on the context.

The terms follow very precisely the five schemes which we have used for
Heyting semantics and natural deduction.

1. A variable xT of type T represents any term t of type T (provided that xT

is replaced by t).

2. 〈u, v〉 is the ordered pair of u and v.

3. π1t and π2t are respectively the first and second projection of t.

4. λxU . v is the function which to any u of type U associates v[u/x], that is v
in which xU is regarded as an abbreviation for u.

5. t u is the result of applying the function t to the argument u.

Denotationally, we have the following (primary) equations

π1〈u, v〉 = u π2〈u, v〉 = v (λxU . v)u = v[u/x]

together with the secondary equations

〈π1t, π2t〉 = t λxU . t x = t (x not free in t)

which have never been given adequate status.

Theorem The system given by these equations is consistent and decidable.

By consistent, we mean that the equality x = y, where x and y are distinct
variables, cannot be proved.

Although this result holds for the whole set of equations, one only ever
considers the first three. It is a consequence of the Church-Rosser property and
the normalisation theorem (chapter 4).
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3.3 Operational significance

In general, terms will represent programs. The purpose of a program is to calculate
(or at least put in a convenient form) its denotation. The type of a program is
seen as a specification, i.e. what the program (abstractly) does. A priori it is a
commentary of the form “this program calculates the sum of two integers”.

What is the relevant part of this commentary? In other words, when we give
this kind of information, are we being sufficiently precise — for example, ought
one to say in what way this calculation is done? Or too precise — is it enough to
say that the program takes two integers as arguments and returns an integer?

In terms of syntax, the answer is not clear: for example the type systems
envisaged in this book concern themselves only with the most elementary
information (sending integers to integers), whereas some systems, such as that of
[KriPar], give information about what the program calculates, i.e. information of
a denotational kind.

At a more general level, abstracting away from any peculiar syntactic choice,
one should see a type as an instruction for plugging things together. Let us
imagine that we program with modules, i.e. closed units, which we can plug
together. A module is absolutely closed, we have no right to open it. We just
have the ability to use it or not, and to choose the manner of use (plugging). The
type of a module is of course completely determined by all the possible pluggings
it allows without crashing. In particular, one can always substitute a module
with another of the same type, in the event of a breakdown, or for the purpose
of optimisation.

This idea of arbitrary pluggings seems mathematisable, but to attempt this
would lead us too far astray.

A term of type T , say t, which depends on variables x1, x2, . . . , xn of types
respectively U1, . . . , Un, should be seen no longer as the result of substituting
for xi the terms ui of types Ui, but as a plugging instruction. The term has
places (symbolised, according to a very ancient tradition, by variables) in which
we can plug inputs of appropriate type: for example, to each occurrence of xi
corresponds the possibility of plugging in a term ui of type Ui, the same term
being simultaneously plugged in each instance. But also, t itself, being of type T ,
is a plugging instruction, so that it can be plugged in any variable y of type T
appearing in another term.

This way of seeing variables and values as dual aspects of the same plugging
phenomenon, allows us to view the execution of an algorithm as a symmetrical
input/output process. The true operational interpretation of the schemes is still
in an embryonic state (see appendix B).
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For want of a clearer idea of how to explain the terms operationally, we have
an ad hoc notion, which is not so bad: we shall make the equations of 3.2
asymmetric and turn them into rewrite rules. This rewriting may be seen as
an embryonic program calculating the terms in question. That is not too bad,
because the operational semantics which we lack is surely very close to this process
of calculation, itself based on the fundamental symmetries of logic.

So one could hope to make progress at the operational level by a close study
of normalisation.

3.4 Conversion

A term is normal if none of its subterms is of the form:

π1〈u, v〉 π2〈u, v〉 (λxU . v)u

A term t converts to a term t′ when one of the following three cases holds:

t = π1〈u, v〉 t = π2〈u, v〉 t = (λxU . v)u
t′ = u t′ = v t′ = v[u/x]

t is called the redex and t′ the contractum; they are always of the same type.

A term u reduces1 to a term v when there is a sequence of conversions from u
to v, that is a sequence u = t0, t1, . . . , tn−1, tn = v such that for i = 0, 1, . . . , n− 1,
ti+1 is obtained from ti by replacing a redex by its contractum. We write u v
for “u reduces to v”: “ ” is reflexive and transitive.

A normal form for t is a term u such that t  u and which is normal. We
shall see in the following chapter that normal forms exist and are unique.

We shall want to discuss normal forms in detail, and for this purpose the
following definition, which is essential to the study of untyped λ-calculus, is useful:

Lemma A term t is normal iff it is in head normal form:

λx1. λx2. . . . λxn. y u1 u2 . . . um

(where y may, but need not, be one of the xi), and moreover the uj are also
normal.

1A term converts in one step, reduces in many. In chapter 6 we shall introduce a more
abstract notion called reducibility, and the reader should be careful to avoid confusion.
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Proof By induction on t; if it is a variable or an abstraction there is nothing to
do. If it is an application, t = uv, we apply the induction hypothesis to u, which
by normality cannot be an abstraction. �

Corollary If the types of the free variables of t are strictly simpler than the type
of t, or in particular if t is closed, then it is an abstraction. �

3.5 Description of the isomorphism

This is nothing other than the precise statement of the correspondence between
proofs and functional terms, which can be done in a precise way, now that
functional terms have a precise status. On one side we have proofs with parcels
of hypotheses, these parcels being labelled by integers, on the other side we have
the system of typed terms:

1. To the deduction A (A in parcel i) corresponds the variable xAi .

2. To the deduction

···
A

···
B
∧I

A ∧B

corresponds 〈u, v〉 where u and v

correspond to the deductions of A and B.

3. To the deduction

···
A ∧B

∧1E
A

(respectively

···
A ∧B

∧2E
B

) corresponds

π1t (respectively π2t), where t corresponds to the deduction of A ∧B.

4. To the deduction

[A]
···
B

⇒I
A⇒ B

corresponds λxAi . v, if the deleted

hypotheses form parcel i, and v corresponds to the deduction of B.

5. To the deduction

···
A

···
A⇒ B

⇒E
B

corresponds the term t u, where t

and u correspond to the deductions of A⇒ B and B.
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3.6 Relevance of the isomorphism

Strictly speaking, what was defined in 3.5 is a bijection. We cannot say it is
an isomorphism: this requires that structures of the same kind already exist on
either side.

In fact the tradition of normalisation exists independently for natural deduction:
a proof is normal when it does not contain any sequence of an introduction and
an elimination rule:

···
A

···
B
∧I

A ∧B
∧1E

A

···
A

···
B
∧I

A ∧B
∧2E

B

···
A

[A]
···
B

⇒I
A⇒ B

⇒E
B

For each of these configurations, it is possible to define a notion of conversion.
In chapter 2, we identified deductions by the word “equals”; we now consider
these identifications as rewriting, the left member of the equality being rewritten
to the right one.

That we have an isomorphism follows from the fact that, modulo the bijection
we have already introduced, the notions of conversion, normality and reduction
introduced in the two cases (and independently, from the historical viewpoint)
correspond perfectly. In particular the normal form theorem we announced in 3.4
has an exact counterpart in natural deduction. We shall discuss the analogue of
head normal forms in section 10.3.1.

Having said this, the interest in an isomorphism lies in a difference between
the two participants, otherwise what is the point of it? In the case which interests
us, the functional side possesses an operational aspect alien to formal proofs.
The proof side is distinguished by its logical aspect, a priori alien to algorithmic
considerations.

The comparison of the two alien viewpoints has some deep consequences from
a methodological point of view (technically none, seen at the weak technical level
of the two traditions):

• All good (constructive) logic must have an operational side.

• Conversely, one cannot work with typed calculi without regard to the implicit
symmetries, which are those of Logic. In general, the “improvements” of
typing based on logical atrocities do not work.
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Basically, the two sides of the isomorphism are undoubtedly the the same
object, accidentally represented in two different ways. It seems, in the light of
recent work, that the “proof” aspect is less tied to contingent intuitions, and is
the way in which one should study algorithms. The functional aspect is more
eloquent, more immediate, and should be kept to a heuristic rôle.



Chapter 4

The Normalisation Theorem

This chapter concerns the two results which ensure that the typed λ-calculus
behaves well computationally. The Normalisation Theorem provides for the
existence of a normal form, whilst the Church-Rosser property guarantees its
uniqueness. In fact we shall simply state the latter without proof, since it
is not really a matter of type theory and is well covered in the literature,
e.g. [Barendregt].

The normalisation theorem has two forms:

• a weak one (there is some terminating strategy for normalisation), which we
shall prove in this chapter,

• a strong one (all possible strategies for normalisation terminate), proved in
chapter 6.

4.1 The Church-Rosser property

This property states the uniqueness of the normal form, independently of its
existence. In fact, it has a meaning for calculi — such as untyped λ-calculus —
where the normalisation theorem is false.

Theorem If t u, v one can find w such that u, v  w.

t

u v

w

�
�	

@
@R

@
@R

�
�	
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Corollary A term t has at most one normal form.

Proof If t  u, v normal, then u, v  w for some w, but since u, v are normal,
they cannot be reduced except to themselves, so u = w = v. �

The Church-Rosser theorem is rather delicate to prove (at least if we try to
do it by brute force). It can be stated for a great variety of systems and its proof
is always much the same.

An immediate corollary of Church-Rosser is the consistency of the calculus: it
is not the case that every equation u = v (with u and v of the same type) is
deducible from the equations of 3.2. Indeed, let us note that:

• If u  v then the equality u = v is derivable from 3.2 and the general
axioms for equality.

• Conversely, if from 3.2 and the axioms for equality one can deduce u = v,
then it is easy to see that there are terms u = t0, t1, . . . , t2n−1, t2n = v
such that, for i = 0, 1, ..., n − 1, we have t2i, t2i+2  t2i+1. By repeated
application of the Church-Rosser theorem, we obtain the existence of w such
that u, v  w.

w

. . .u = t0 t2

t1 t3

@@R ��	 @@R

@@R ��	

@@R

···

t2n = vt2n−2

t2n−1t2n−3

��	@@R��	

��	@@R

��	

···

Now, if u and v are two distinct normal forms of the same type (for example
two distinct variables) no such w exists, so the equation u = v cannot be
proved. So Church-Rosser shows the denotational consistency of the system.
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4.2 The weak normalisation theorem

This result states the existence of a normal form — which is necessarily unique —
for every term. Its immediate corollary is the decidability of denotational equality.
Indeed we have seen that the equation u = v is provable exactly when u, v  w
for some w; but such w has a normal form, which then becomes the common
normal form for u and v. To decide the denotational equality of u and v we
proceed thus:

• in the first step, calculate the normal forms of u and v,

• in the second step, compare them.

There is perhaps a small difficulty hidden in calculating the normal forms,
since the reduction is not a deterministic algorithm. That is, for fixed t, many
conversions (but only a finite number) are possible on the subterms of t. So
the theorem states the possibility of finding the normal form by appropriate
conversions, but does not exclude the possibility of bad reductions, which do not
lead to a normal form. That is why one speaks of weak normalisation.

Having said that, it is possible to find the normal form by enumerating all the
reductions in one step, all the reductions in two steps, and so on until a normal
form is found. This inelegant procedure is justified by the fact that there are only
finitely many reductions of length n starting from a fixed term t.

The strong normalisation theorem will simplify the situation by guaranteeing
that all normalisation strategies are good, in the sense they all lead to the normal
form. Obviously, some are more efficient than others, in terms of the number of
steps, but if one ignores this (essential) aspect, one always gets to the result!

4.3 Proof of the weak normalisation theorem

The degree ∂(T ) of a type is defined by:

• ∂(Ti) = 1 if Ti is atomic.

• ∂(U×V ) = ∂(U→V ) = max(∂(U), ∂(V )) + 1.

The degree ∂(r) of a redex is defined by:

• ∂(π1〈u, v〉) = ∂(π2〈u, v〉) = ∂(U×V ) where U×V is the type of 〈u, v〉.

• ∂((λx. v)u) = ∂(U→V ) where U→V is the type of (λx. v).
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The degree d(t) of a term is the sup of the degrees of the redexes it contains. By
convention, a normal term (i.e. one containing no redex) has degree 0.

NB A redex r has two degrees: one as redex, another as term, for the redex may
contain others; the second degree is greater than or equal to the first: ∂(r) ≤ d(r).

4.3.1 Degree and substitution

Lemma If x is of type U then d(t[u/x]) ≤ max(d(t), d(u), ∂(U)).

Proof Inside t[u/x], one finds:

• the redexes of t (in which x has become u)

• the redexes of u (proliferated according to the occurrences of x)

• possibly new redexes, in the case where x appears in a context π1x
(respectively π2x or x v) and u is 〈u′, u′′〉 (respectively 〈u′, u′′〉 or λy. u′).
These new redexes have the degree of U . �

4.3.2 Degree and conversion

First note that, if r is a redex of type T , then ∂(r) > ∂(T ) (obvious).

Lemma If t u then d(u) ≤ d(t).

Proof We need only consider the case where there is only one conversion step:
u is obtained from t by replacing r by c. The situation is very close to that of
lemma 4.3.1, i.e. in u we find:

• redexes which were in t but not in r, modified by the replacement of r by c
(which does not affect the degree),

• redexes of c. But c is obtained by simplification of r, or by an internal
substitution in r: (λx. s) s′ becomes s[s′/x] and lemma 4.3.1 tells us that
d(c) ≤ max(d(s), d(s′), ∂(T )), where T is the type of x. But ∂(T ) < d(r), so
d(c) ≤ d(r).

• redexes which come from the replacement of r by c. The situation is the
same as in lemma 4.3.1: these redexes have degree equal to ∂(T ) where T
is the type of r, and ∂(T ) < ∂(r). �
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4.3.3 Conversion of maximal degree

Lemma Let r be a redex of maximal degree n in t, and suppose that all the
redexes strictly contained in r have degree less than n. If u is obtained from t by
converting r to c then u has strictly fewer redexes of degree n.

Proof When the conversion is made, the following things happen:

• The redexes outside r remain.

• The redexes strictly inside r are in general conserved, but sometimes
proliferated: for example if one replaces (λx. 〈x, x〉) s by 〈s, s〉, the redexes
of s are duplicated. The hypothesis made does not exclude duplication, but
it is limited to degrees less than n.

• The redex r is destroyed and possibly replaced by some redexes of strictly
smaller degree. �

4.3.4 Proof of the theorem

If t is a term, consider µ(t) = (n,m) with

n = d(t) m = number of redexes of degree n

Lemma 4.3.3 says that it is possible to choose a redex r of t in such a way that,
after conversion of r to c, the result t′ satisfies µ(t′) < µ(t) for the lexicographic
order, i.e. if µ(t′) = (n′,m′) then n′ < n or (n′ = n and m′ < m). So the result is
established by a double induction. �

4.4 The strong normalisation theorem

The weak normalisation theorem is in fact a bit better than its statement leads
us to believe, because we have a simple algorithm for choosing at each step an
appropriate redex which leads us to the normal form. Having said this, it is
interesting to ask whether all normalisation strategies converge.

A term t is strongly normalisable when there is no infinite reduction sequence
beginning with t.
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Lemma t is strongly normalisable iff there is a number ν(t) which bounds the
length of every normalisation sequence beginning with t.

Proof From the existence of ν(t), it follows immediately that t is strongly
normalisable.

The converse uses König’s lemma1: one can represent a sequence of conversions
by specifying a redex r0 of t0, then a redex r1 of t1, and so on. The possible
sequences can then be arranged in the form of a tree, and the fact that a term
has only a finite number of subterms assures us that the tree is finitely-branching.
Now, the strong normalisation hypothesis tells us that the tree has no infinite
branch, and by König’s lemma, the whole tree must be finite, which gives us the
existence of ν(t). �

There are several methods to prove that every term (of the typed λ-calculus)
is strongly normalisable:

• internalisation: this consists of a tortuous translation of the calculus into
itself in such a way as to prove strong normalisation by means of weak
normalisation. Gandy was the first to use this technique [Gandy].

• reducibility : we introduce a property of “hereditary calculability” which
allows us to manipulate complex combinatorial information. This is the
method we shall follow, since it is the only one which generalises to very
complicated situations. This method will be the subject of chapter 6.

1A finitely branching tree with no infinite branch is finite. Unless the branches are labelled
(as they usually are), this requires the axiom of Choice.



Chapter 5

Sequent Calculus

The sequent calculus, due to Gentzen, is the prettiest illustration of the symmetries
of Logic. It presents numerous analogies with natural deduction, without being
limited to the intuitionistic case.

This calculus is generally ignored by computer scientists1. Yet it underlies
essential ideas: for example, PROLOG is an implementation of a fragment of sequent
calculus, and the “tableaux” used in automatic theorem-proving are just a special
case of this calculus. In other words, it is used unwittingly by many people, but
mixed with control features, i.e. programming devices. What makes everything
work is the sequent calculus with its deep symmetries, and not particular tricks.
So it is difficult to consider, say, the theory of PROLOG without knowing thoroughly
the subtleties of sequent calculus.

From an algorithmic viewpoint, the sequent calculus has no Curry-Howard
isomorphism, because of the multitude of ways of writing the same proof. This
prevents us from using it as a typed λ-calculus, although we glimpse some deep
structure of this kind, probably linked with parallelism. But it requires a new
approach to the syntax, for example natural deductions with several conclusions.

1An exception is [Gallier].

28
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5.1 The calculus

5.1.1 Sequents

A sequent is an expression A ` B where A and B are finite sequences of formulae
A1, . . . , An and B1, . . . , Bm.

The näıve (denotational) interpretation is that the conjunction of the Ai
implies the disjunction of the Bj. In particular,

• if A is empty, the sequent asserts the disjunction of the Bj;

• if A is empty and B is just B1, it asserts B1;

• if B is empty, it asserts the negation of the conjunction of the Ai;

• if A and B are empty, it asserts contradiction.

5.1.2 Structural rules

These rules, which seem not to say anything at all, impose a certain way of
managing the “slots” in which one writes formulae. They are:

1. The exchange rules

A,C,D,A′ ` B
LX

A,D,C,A′ ` B

A ` B,C,D,B′
RX

A ` B,D,C,B′

These rules express in some way the commutativity of logic, by allowing
permutation of formulae on either side of the symbol “`”.

2. The weakening rules

A ` B
LW

A,C ` B

A ` B
RW

A ` C,B

as their name suggests, allow replacement of a sequent by a weaker one.

3. The contraction rules

A,C,C ` B
LC

A,C ` B

A ` C,C,B
RC

A ` C,B

express the idempotence of conjunction and disjunction.
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In fact, contrary to popular belief, these rules are the most important of
the whole calculus, for, without having written a single logical symbol, we have
practically determined the future behaviour of the logical operations. Yet these
rules, if they are obvious from the denotational point of view, should be examined
closely from the operational point of view, especially the contraction.

It is possible to envisage variants on the sequent calculus, in which these rules
are abolished or extremely restricted. That seems to have some very beneficial
effects, leading to linear logic [Gir87]. But without going that far, certain
well-known restrictions on the sequent calculus seem to have no purpose apart
from controlling the structural rules, as we shall see in the following sections.

5.1.3 The intuitionistic case

Essentially, the intuitionistic sequent calculus is obtained by restricting the form
of sequents: an intuitionistic sequent is a sequent A ` B where B is a sequence
formed from at most one formula. In the intuitionistic sequent calculus, the only
structural rule on the right is RW since RX and RC assume several formulae on
the right.

The intuitionistic restriction is in fact a modification to the management
of the formulae — the particular place distinguished by the symbol ` is a
place where contraction is forbidden — and from that, numerous properties
follow. On the other hand, this choice is made at the expense of the left/right
symmetry. A better result is without doubt obtained by forbidding contraction
(and weakening) altogether, which allows the symmetry to reappear.

Otherwise, the intuitionistic sequent calculus will be obtained by restricting
to the intuitionistic sequents, and preserving — apart from one exception — the
classical rules of the calculus.

5.1.4 The “identity” group

1. For every formula C there is the identity axiom C ` C . In fact one could
limit it to the case of atomic C, but this is rarely done.

2. The cut rule

A ` C,B A′, C ` B′
Cut

A,A′ ` B,B′

is another way of expressing the identity. The identity axiom says that C
(on the left) is stronger than C (on the right); this rule states the converse
truth, i.e. C (on the right) is stronger than C (on the left).
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The identity axiom is absolutely necessary to any proof, to start things off.
That is undoubtedly why the cut rule, which represents the dual, symmetric
aspect can be eliminated, by means of a difficult theorem (proved in chapter 13)
which is related to the normalisation theorem. The deep content of the two results
is the same; they only differ in their syntactic dressing.

5.1.5 Logical rules

There is tradition which would have it that Logic is a formal game, a succession of
more or less arbitrary axioms and rules. Sequent calculus (and natural deduction
as well) shows this is not at all so: one can amuse oneself by inventing one’s own
logical operations, but they have to respect the left/right symmetry, otherwise
one creates a logical atrocity without interest. Concretely, the symmetry is the
fact that we can eliminate the cut rule.

1. Negation: the rules for negation allow us to pass from the right hand side
of “`” to the left, and conversely:

A ` C,B
L¬

A,¬C ` B

A,C ` B
R¬

A ` ¬C,B

2. Conjunction: on the left, two unary rules; on the right, one binary rule:

A,C ` B
L1∧

A,C ∧D ` B

A,D ` B
L2∧

A,C ∧D ` B

A ` C,B A′ ` D,B′
R∧

A,A′ ` C ∧D,B,B′

3. Disjunction: obtained from conjunction by interchanging right and left:

A,C ` B A′, D ` B′
L∨

A,A′, C ∨D ` B,B′

A ` C,B
R1∨

A ` C ∨D,B

A ` D,B
R2∨

A ` C ∨D,B
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Special case: The intuitionistic rule L∨ is written:

A,C ` B A′, D ` B
L∨

A,A′, C ∨D ` B

where B contains zero or one formula. This rule is not a special case of its
classical analogue, since a classical L∨ leads to B,B on the right. This is
the only case where the intuitionistic rule is not simply a restriction of the
classical one.

4. Implication: here we have on the left a rule with two premises and on the
right a rule with one premise. They match again, but in a different way
from the case of conjunction: the rule with one premise uses two occurrences
in the premise:

A ` C,B A′, D ` B′
L⇒

A,A′, C ⇒ D ` B,B′
A,C ` D,B

R⇒
A ` C ⇒ D,B

5. Universal quantification: two unary rules which match in the sense that one
uses a variable and the other a term:

A,C[a/ξ] ` B
L∀

A,∀ξ. C ` B

A ` C,B
R∀

A ` ∀ξ. C,B

R∀ is subject to a restriction: ξ must not be free in A,B.

6. Existential quantification: the mirror image of 5:

A,C ` B
L∃

A,∃ξ. C ` B
A ` C[a/ξ], B

R∃
A ` ∃ξ. C,B

L∃ is subject to the same restriction as R∀: ξ must not be free in A,B.

5.2 Some properties of the system without cut

Gentzen’s calculus is a possible formulation of first order logic. Gentzen’s theorem,
which is proved in chapter 13, says that the cut rule is redundant, superfluous.
The proof is very delicate, and depends on the perfect right/left symmetry which
we have seen. Let us be content with seeing some of the more spectacular
consequences.
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5.2.1 The last rule

If we can prove A in the predicate calculus, then it is possible to show the sequent
` A without cut. What is the last rule used? Surely not RW, because the empty
sequent is not provable. Perhaps it is the logical rule Ris where s is the principal
symbol of A, and this case is very important. But it may also be RC, in which
case we are led to ` A,A and all is lost! That is why the intuitionistic case, with
its special management which forbids contraction on the right, is very important:
if A is provable in the intuitionistic sequent calculus by a cut-free proof, then the
last rule is a right logical rule.

Two particularly famous cases:

• If A is a disjunction A′ ∨ A′′, the last rule must be R1∨, in which case
` A′ is provable, or R2∨, in which case ` A′′ is provable: this is what is
called the Disjunction Property.

• If A is an existence ∃ξ. A′, the last rule must be R1∃, which means that the
premise is of the form ` A′[a/ξ] ; in other words, a term t can be found
such that ` A′[a/ξ] is provable: this is the Existence Property.

These two examples fully justify the interest of limiting the use of the structural
rules, a limitation which leads to linear logic.

5.2.2 Subformula property

Let us consider the last rule of a proof: can one somehow predict the premises?
The cut rule is absolutely unpredictable, since an arbitrary formula C disappears:
it cannot be recovered from the conclusions. It is the only rule which behaves so
badly. Indeed, all the other rules have the property that the unspecified “context”
part (written A, B, etc.) is preserved intact. The rule actually concerns only
a few of the formulae. But the formulae in the premises are simpler than the
corresponding ones in the conclusions. For example, for A ∧ B as a conclusion,
A and B must have been used as premises, or for ∀ξ. A as a conclusion, A[a/ξ]
must have been used as a premise. In other words, one has to use subformulae as
premises:

• The immediate subformulae of A ∧B, A ∨B and A⇒ B are A and B.

• The only immediate subformula of ¬A is A.

• The immediate subformulae of ∀ξ. A and ∃ξ. A are the formulae A[a/ξ]
where a is any term.
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Now it is clear that all the rules — except the cut — have the property
that the premises are made up of subformulae of the conclusion. In particular,
a cut-free proof of a sequent uses only subformulae of its formulae. We shall
prove the corresponding result for natural deduction in section 10.3.1. This is
very interesting for automated deduction. Of course, it is not enough to make
the predicate calculus decidable, since we have an infinity of subformulae for the
sentences with quantifiers.

5.2.3 Asymmetrical interpretation

We have described the identity axiom and the cut rule as the two faces of
“A is A”. Now, in the absence of cut, the situation is suddenly very different:
we can no longer express that A (on the right) is stronger than A (on the left).
Then there arises the possibility of splitting A into two interpretations AL and
AR, which need not necessarily coincide. Let us be more precise.

In a sentence, we can define the signature of an occurrence of an atomic
predicate, +1 or −1: the signature is the parity of the number of times that this
symbol has been negated. Concretely, P retains the signature which it had in A,
when it is considered in A ∧ B, B ∧ A, A ∨ B, B ∨ A, B ⇒ A, ∀ξ. A and ∃ξ. A,
and reverses it in ¬A and A⇒ B.

In a sequent too, we can define the signature of an occurrence of a predicate:
if P occurs in A on the left of “`”, the signature is reversed, if P occurs on the
right, it is conserved.

The rules of the sequent calculus (apart from the identity axiom and the cut)
preserve the signature: in other words, they relate occurrences with the same
signature. The identity axiom says that the negative occurrences (signature −1)
are stronger than the positive ones; the cut says the opposite. So in the absence
of cut, there is the possibility of giving asymmetric interpretations to sequent
calculus: A does not have the same meaning when it is on the right as when it is
on the left of “`”.

• AR is obtained by replacing the positive occurrences of the predicate P by
PR and the negative ones by PL.

• AL is obtained by replacing the positive occurrences of the predicate P by
PL and the negative ones by PR.

The atomic symbols PR and PL are tied together by a condition, namely
PL ⇒ PR.
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It is easy to see that this kind of asymmetrical interpretation is consistent
with the system without cut, interpreting A ` B by AL ` BR .

The sequent calculus seems to lend itself to some much more subtle asymmetrical
interpretations, especially in linear logic.

5.3 Sequent Calculus and Natural Deduction

We shall consider here the noble part of natural deduction, that is, the fragment
without ∨, ∃ or ¬. We restrict ourselves to sequents of the form A ` B ; the
correspondence with natural deduction is given as follows:

• To a proof of A ` B corresponds a deduction of B under the hypotheses,
or rather parcels of hypotheses, A.

• Conversely, a deduction of B under the (parcels of) hypotheses A can be
represented in the sequent calculus, but unfortunately not uniquely.

From a proof of A ` B , we build a deduction of B, of which the hypotheses
are parcels, each parcel corresponding in a precise way to a formula of A.

1. The axiom A ` A becomes the deduction A .

2. If the last rule is a cut

A ` B A′, B ` C
Cut

A,A′ ` C

and the deductions δ of

A
···
B

and δ′ of
A′, B
···
C

are associated to

the sub-proofs above the two premises, then we associate to our proof the
deduction δ′ where all the occurrences of B in the parcel it represents are
replaced by δ:

A′,

A
···
B
···
C
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In general the hypotheses in the parcel in A are proliferated, but the number
is preserved by putting in the same parcel afterwards the hypotheses which
came from the same parcel before and have been duplicated. No regrouping
occurs between A and A′.

3. The rule LX

A,C,D,A′ ` B
LX

A,D,C,A′ ` B

is interpreted as the identity: the same deduction before and after the rule.

4. The rule LW

A ` B
LW

A,C ` B

is interpreted as the creation of a mock parcel formed from zero occurrences
of C. Weakening is then the possibility of forming empty parcels.

5. The rule LC

A,C,C ` B
LC

A,C ` B

is interpreted as the unification of two C-parcels into one. Contraction is
then the possibility of forming big parcels.

6. The rule R∧

A ` B A′ ` C
R∧

A,A′ ` B ∧ C

will be interpreted by ∧I: suppose that deductions ending in B and C have
been constructed to represent the proofs above the two premises; then our
proof is interpreted by:

A
···
B

A′

···
C
∧I

B ∧ C
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7. The rule R⇒ will be interpreted by ⇒I:

A,B ` C
R⇒

A ` B ⇒ C

becomes
A, [B]
···
C

⇒I
B ⇒ C

where a complete B-parcel is discharged at one go.

8. The rule R∀ will be interpreted by ∀I:

A ` B
R∀

A ` ∀ξ. B

becomes

A
···
B
∀I

∀ξ. B

9. With the left rules appears one of the hidden properties of natural deduction,
namely that the elimination rules (which correspond grosso modo to the left
rules of sequents) are written backwards! This is nowhere seen better than
in linear logic, which makes the lost symmetries reappear. Here concretely,
this is reflected in the fact that the left rules are translated by actions on
parcels of hypotheses.

The rule L1∧ becomes ∧1E :

A,B ` D
L1∧

A,B ∧ C ` D

is interpreted by
A,

B ∧ C
∧1E

B
···
D

∧1E allows us to pass from a (B ∧ C)-parcel to a B-parcel.

Similarly, the rule L2∧ becomes ∧2E .



38 CHAPTER 5. SEQUENT CALCULUS

10. The rule L⇒ becomes ⇒E :

A ` B A′, C ` D
L⇒

A,A′, B ⇒ C ` D

is interpreted by

A′,

A
···
B B ⇒ C

⇒E
C

···
D

Here again, a C-parcel is replaced by a (B ⇒ C)-parcel; something must
also be done about the proliferation of A-parcels, as in case 2.

11. Finally the rule L∀ becomes ∀E :

A,B[a/ξ] ` C
L∀

A,∀ξ. B ` C

is interpreted by
A,

∀ξ. B
∀E

B[a/ξ]
···
C

5.4 Properties of the translation

The translation from sequent calculus into natural deduction is not 1–1: different
proofs give the same deduction, for example

A ` A B ` B
R∧

A,B ` A ∧B
L1∧

A ∧ A′, B ` A ∧B
L1∧

A ∧ A′, B ∧B′ ` A ∧B

A ` A B ` B
R∧

A,B ` A ∧B
L1∧

A,B ∧B′ ` A ∧B
L1∧

A ∧ A′, B ∧B′ ` A ∧B

which differ only in the order of the rules, have the same translation:

A ∧ A′
∧1E

A

B ∧B′
∧1E

B
∧I

A ∧B

In particular, it would be vain to look for an inverse transformation. What is
true is that for a given deduction δ, there is at least one proof in sequent calculus
whose translation is δ.
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In some sense, we should think of the natural deductions as the true “proof”
objects. The sequent calculus is only a system which enable us to work on these
objects: A ` B tells us that we have a deduction of B under the hypotheses A.

A rule such as the cut

A ` C A′, C ` B
Cut

A,A′ ` B

allows us to construct a new deduction from two others, in a sense made explicit
by the translation.

In other words, the system of sequents is not primitive, and the rules of
the calculus are in fact more or less complex combinations of rules of natural
deduction:

1. The logical rules on the right correspond to introductions.

2. Those on the left to eliminations. Here the direction of the rules is inverted
in the case of natural deduction, since in fact, the tree of natural deduction
grows by its leaves at the elimination stage.

The correspondence R = I, L = E is extremely precise, for example we have
R∧ = ∧I and L1∧ = ∧1E .

3. The contraction rule LC corresponds to the formation of parcels, and LW,
in some cases, to the formation of mock parcels.

4. The exchange rule corresponds to nothing at all.

5. The cut rule does not correspond to a rule of natural deduction, but to the
need to make deductions grow at the root. Let us give an example: the
strict translation of L⇒ gives us “from a deduction of A and one of C (with
a B-parcel as hypothesis), the deduction

···
A A⇒ B

⇒E
B···
C

is formed” which grows in the wrong direction (towards the leaves). Yet,
the full power of the calculus is only obtained with the “top-down” rule
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···
A

···
A⇒ B

⇒E
B

which is the translation of the block of proof:

A′ ` A B ` B
L⇒

A′, A⇒ B ` B B′ ` A⇒ B
Cut

A′, B′ ` B

The cut corresponds so well to a reversal of the direction of the deductions,
that, if we translate a cut-free proof, it is almost immediate that the result
is a normal deduction. Indeed non-normality comes from a conflict between
an introduction and an elimination, which only arises because the two sorts of
rules evolve from top to bottom. But just try to produce a redex, writing the
introduction rules from top to bottom and the elimination rules from bottom to
top! Once again, linear logic clarifies the empirical content of this kind of remark.

We come to the moral equivalence:

normal = cut-free

In fact, whilst a cut-free proof gives a normal deduction, numerous proofs with
cut also give normal deductions, for example

A ` A A ` A
Cut

A ` A

is translated by the deduction A !

In particular, we see that the sequent calculus sometimes inconveniently
complicates situations, by making cuts appear when there is no need. The
cut-elimination theorem (Hauptsatz) in fact reiterates the normalisation theorem,
but with some technical complications which reflect the lesser purity of the syntax.

As we have already said, every deduction is the translation of some proof, but
this proof is not unique. Moreover a normal deduction is the image of a cut-free
proof. This is established by induction on the deduction δ of B from parcels of
hypotheses A: we construct a proof π of A ` B whose translation is δ; moreover,
we want π to be cut-free in the case where δ is normal.



Chapter 6

Strong Normalisation Theorem

In this chapter we shall prove the strong normalisation theorem for the simple
typed λ-calculus, but since we have already discussed this topic at length, and
in particular proved weak normalisation, the purpose of the chapter is really to
introduce the technique which we shall later apply to system F.

For simple typed λ-calculus, there is proof theoretic techniques which make it
possible to express the argument of the proof in arithmetic, and even in a very
weak system. However our method extends straightforwardly to Gödel’s system
T, which includes a type of integers and hence codes Peano Arithmetic. As a
result, strong normalisation implies the consistency of PA, which means that it
cannot itself be proved in PA (Second Incompleteness Theorem).

Accordingly we have to use a strong induction hypothesis, for which we
introduce an abstract notion called reducibility, originally due to [Tait]. Some of
the technical improvements, such as neutrality, are due to [Gir72]. Besides proving
strong normalisation, we identify the three important properties (CR 1-3) of
reducibility which we shall use for system F in chapter 14.

6.1 Reducibility

We define a set REDT (“reducible1 terms of type T”) by induction on the type T .

1. For t of atomic type T , t is reducible if it is strongly normalisable.

2. For t of type U×V , t is reducible if π1t and π2t are reducible.

3. For t of type U→V , t is reducible if, for all reducible u of type U , t u is
reducible of type V .

1This is an abstract notion which should not be confused with reduction.
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The deep reason why reducibility works where combinatorial intuition fails is
its logical complexity. Indeed, we have:

t ∈ REDU→V iff ∀u (u ∈ REDU ⇒ t u ∈ REDV )

We see that in passing to U→V , REDU has been negated, and a universal
quantifier has been added. In particular the normalisation argument cannot
be directly formalised in arithmetic because t ∈ REDT is not expressed as an
arithmetic formula in t and T .

6.2 Properties of reducibility

First we introduce a notion of neutrality : a term is called neutral if it is not of
the form 〈u, v〉 or λx. v. In other words, neutral terms are those of the form:

x π1t π2t t u

The conditions that interest us are the following:

(CR 1) If t ∈ REDT , then t is strongly normalisable.

(CR 2) If t ∈ REDT and t t′, then t′ ∈ REDT .

(CR 3) If t is neutral, and whenever we convert a redex of t we obtain a term
t′ ∈ REDT , then t ∈ REDT .

As a special case of the last clause:

(CR 4) If t is neutral and normal, then t ∈ REDT .

We shall verify by induction on the type that RED satisfies these conditions.

6.2.1 Atomic types

A term of atomic type is reducible iff it is strongly normalisable. So we must
show that the set of strongly normalisable terms of type T satisfies the three
conditions:

(CR 1) is a tautology.

(CR 2) If t is strongly normalisable then every term t′ to which t reduces is
also.

(CR 3) A reduction path leaving t must pass through one of the terms t′, which
are strongly normalisable, and so is finite. In fact, it is immediate that ν(t)
(see 4.4) is equal to the greatest of the numbers ν(t′) + 1, as t′ varies over
the (one-step) conversions of t.
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6.2.2 Product type

A term of product type is reducible iff its projections are.

(CR 1) Suppose that t, of type U×V , is reducible; then π1t is reducible and by
induction hypothesis (CR 1) for U , π1t is strongly normalisable. Moreover
ν(t) ≤ ν(π1t), since to any reduction sequence t, t1, t2, . . ., one can apply π1

to construct a reduction sequence π1t, π1t1, π
1t2, . . . (in which the π1 is not

reduced). So ν(t) is finite, and t is strongly normalisable.

(CR 2) If t  t′, then π1t  π1t′ and π2t  π2t′. As t is reducible by
hypothesis, so are π1t and π2t. The induction hypothesis (CR 2) for U and
V says that the π1t′ and π2t′ are reducible, and so t′ is reducible.

(CR 3) Let t be neutral and suppose all the t′ one step from t are reducible.
Applying a conversion inside π1t, the result is a π1t′, since π1t cannot itself
be a redex (t is not a pair), and π1t′ is reducible, since t′ is. But as π1t
is neutral, and all the terms one step from π1t are reducible, the induction
hypothesis (CR 3) for U ensures that π1t is reducible. Likewise π2t, and so
t is reducible.

6.2.3 Arrow type

A term of arrow type is reducible iff all its applications to reducible terms are
reducible.

(CR 1) If t is reducible of type U→V , let x be a variable of type U ; the
induction hypothesis (CR 3) for U says that the term x, which is neutral
and normal, is reducible. So t x is reducible. Just as in the case of
the product type, we remark that ν(t) ≤ ν(t x). The induction hypothesis
(CR 1) for V guarantees that ν(t x) is finite, and so ν(t) is finite, and t is
strongly normalisable.

(CR 2) If t  t′ and t is reducible, take u reducible of type U ; then t u is
reducible and t u t′ u. The induction hypothesis (CR 2) for V gives that
t′ u is reducible. So t′ is reducible.

(CR 3) Let t be neutral and suppose all the t′ one step from t are reducible. Let u
be a reducible term of type U ; we want to show that t u is reducible. By
induction hypothesis (CR 1) for U , we know that u is strongly normalisable;
so we can reason by induction on ν(u).

In one step, t u converts to

• t′ u with t′ one step from t; but t′ is reducible, so t′ u is.
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• t u′, with u′ one step from u. u′ is reducible by induction hypothesis
(CR 2) for U , and ν(u′) < ν(u); so the induction hypothesis for u′ tells
us that t u′ is reducible.

• There is no other possibility, for t u cannot itself be a redex (t is not
of the form λx. v).

In every case, we have seen that the neutral term t u converts into reducible
terms only. The induction hypothesis (CR 3) for V allows us to conclude
that t u is reducible, and so t is reducible. �

6.3 Reducibility theorem

6.3.1 Pairing

Lemma If u and v are reducible, then so is 〈u, v〉.

Proof Because of (CR 1), we can reason by induction on ν(u) + ν(v) to show
that π1〈u, v〉 is reducible. This term converts to:

• u, which is reducible.

• π1〈u′, v〉, with u′ one step from u. u′ is reducible by (CR 2), and we have
ν(u′) < ν(u); so the induction hypothesis tells us that this term is reducible.

• π1〈u, v′〉, with v′ one step from v: this term is reducible for similar reasons.

In every case, the neutral term π1〈u, v〉 converts to reducible terms only, and by
(CR 3) it is reducible. Likewise π2〈u, v〉, and so 〈u, v〉 is reducible. �

6.3.2 Abstraction

Lemma If for all reducible u of type U , v[u/x] is reducible, then so is λx. v.

Proof We want to show that (λx. v)u is reducible for all reducible u. Again we
reason by induction on ν(v) + ν(u).

The term (λx. v)u converts to

• v[u/x], which is reducible by hypothesis.

• (λx. v′)u with v′ one step from v; so v′ is reducible, ν(v′) < ν(v), and the
induction hypothesis tells us that this term is reducible.

• (λx. v)u′ with u′ one step from u: u′ is reducible, ν(u′) < ν(u), and we
conclude similarly.

In every case the neutral term (λx. v)u converts to reducible terms only, and by
(CR 3) it is reducible. So λx. v is reducible. �
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6.3.3 The theorem

Now we can prove the

Theorem All terms are reducible.

Hence, by (CR 1), we have the

Corollary All terms are strongly normalisable.

In the proof of the theorem, we need a stronger induction hypothesis to handle
the case of abstraction. This is the purpose of the following proposition, from
which the theorem follows by putting ui = xi.

Proposition Let t be any term (not assumed to be reducible), and suppose all
the free variables of t are among x1, . . . , xn of types U1, . . . , Un. If u1, . . . , un are
reducible terms of types U1, . . . , Un then t[u1/x1, . . . , un/xn] is reducible.

Proof By induction on t. We write t[u/x] for t[u1/x1, . . . , un/xn].

1. t is xi: one has to check the tautology “if ui is reducible, then ui is
reducible”; details are left to the reader.

2. t is π1w: by induction hypothesis, for every sequence u of reducible terms,
w[u/x] is reducible. That means that π1(w[u/x]) is reducible, but this term
is nothing other than π1w[u/x] = t[u/x].

3. t is π2w: as 2.

4. t is 〈v, w〉: by induction hypothesis both v[u/x] and w[u/x] are reducible.
Lemma 6.3.1 says that t[u/x] = 〈v[u/x], w[u/x]〉 is reducible.

5. t is w v: by induction hypothesis w[u/x] and v[u/x] are reducible, and
so (by definition) is w[u/x] (v[u/x]); but this term is nothing other than
t[u/x].

6. t is λy. w of type V→W : by induction hypothesis, w[u/x, v/y] is reducible
for all v of type V . Lemma 6.3.2 says that t[u/x] = λy. (w[u/x]) is
reducible. �



Chapter 7

Gödel’s system T

The extremely rudimentary type system we have studied has very little expressive
power. For example, can we use it to represent the integers or the booleans, and
if so can we represent sufficiently many functions on them? The answer is clearly
no.

To obtain more expressivity, we are inexorably led to the consideration of other
schemes: new types, or new terms, often both together. So it is quite natural
that systems such as that of Gödel appear, which we shall look at briefly. That
said, we come up against a two-fold difficulty:

• Systems like T are a step backwards from the logical viewpoint: the new
schemes do not correspond to proofs in an extended logical system. In
particular, that makes it difficult to study them.

• By proposing improvements of expressivity, these systems suggest the
possibility of further improvements. For example, it is well known that the
language PASCAL does not have the type of lists built in! So we are led to
endless improvement, in order to be able to consider, besides the booleans,
the integers, lists, trees, etc. Of course, all this is done to the detriment of
conceptual simplicity and modularity.

The system F resolves these questions in a very satisfying manner, as it will
be seen that the addition of a new logical scheme allows us to deal with common
data types. But first, let us concentrate on the system T, which already has
considerable expressive power.
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7.1 The calculus

7.1.1 Types

In chapter 3 we allowed for given additional constant types; we shall now specify
two such types, namely Int (integers) and Bool (booleans).

7.1.2 Terms

Besides the usual five, there are schemes for the specific constants Int and Bool.
We have retained the introduction/elimination terminology, as these schemes will
appear later in F:

1. Int-introduction:

• O is a constant of type Int;

• if t is of type Int, then S t is of type Int.

2. Int-elimination: if u, v, t are of types respectively U , U→(Int→U) and Int,
then Ru v t is of type U .

3. Bool-introduction: T and F are constants of type Bool.

4. Bool-elimination: if u, v, t are of types respectively U , U and Bool, then
Du v t is of type U .

7.1.3 Intended meaning

1. O and S are respectively zero and the successor function.

2. R is a recursion operator: Ru v 0 = u, Ru v (n+ 1) = v (Ru v n)n.

3. T and F are the truth values.

4. D is the operation “if . . . then . . . else” — definition by case: Du v T = u,
Du v F = v.

7.1.4 Conversions

To the classical redexes, we add:

Ru vO  u Du v T  u
Ru v (S t)  v (Ru v t) t Du v F  v
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7.2 Normalisation theorem

In T, all the reduction sequences are finite and lead to the same normal form.

Proof Part of the result is the extension of Church-Rosser; it is not difficult to
extend the proof for the simple system to this more complex case. The other part
is a strong normalisation result, for which reducibility is well adapted (it was for
T that Tait invented the notion).

First, the notion of neutrality is extended: a term is called neutral if it is not
of the form 〈u, v〉, λx. v, O, S t, T or F. Then, without changing anything, we
show successively:

1. O, T and F are reducible — they are normal terms of atomic type.

2. If t of type Int is reducible (i.e. strongly normalisable), then S t is reducible
— that comes from ν(S t) = ν(t).

3. If u, v, t are reducible, then Du v t is reducible — u, v, t are strongly
normalisable by (CR 1), and so one can reason by induction on the number
ν(u) + ν(v) + ν(t). The neutral term Du v t converts to one of the following
terms:

• Du′ v′ t′ with u, v, t reduced respectively to u′, v′, t′. In this case,
we have ν(u′) + ν(v′) + ν(t′) < ν(u) + ν(v) + ν(t), and by induction
hypothesis, the term is reducible.

• u or v if t is T or F; these two terms are reducible.

We conclude by (CR 3) that Du v t is reducible.

4. If u, v, t are reducible, then Ru v t is reducible — here also we reason
by induction, but on ν(u) + ν(v) + ν(t) + `(t), where `(t) is the number of
symbols of the normal form of t. In one step, Ru v t converts to:

• Ru′ v′ t′ with etc. — reducible by induction.

• u (if t = O) — reducible.

• v (Ru v w)w, where Sw = t; since ν(w) = ν(t) and `(w) < `(t), the
induction hypothesis tells us that Ru v w is reducible. As v and w are,
v (Ru v w)w is reducible by the definition for U→V . �

The use of the induction hypothesis in the final case is really essential: it is
the only occasion, in all the uses so far made of reducibility, where we truly use
an induction on reducibility. For the other cases, the cognoscenti will see that
we really have no need for induction on a complex predicate, by reformulating
(CR 3) in an appropriate way.
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7.3 Expressive power: examples

7.3.1 Booleans

The typical example is given by the logical connectors:

neg(u) = D F Tu disj(u, v) = D T v u conj(u, v) = D v Fu

For example, disj(T, x) T and disj(F, x) x; but on the other hand, faced with
the expression disj(x,T), we do not know what to do.

Question Is it possible to define another disjunction which is symmetrical?

We shall see in 9.3.1, by semantic methods, that there is no term G of type
Bool,Bool→Bool such that:

G 〈T, x〉 T G 〈x,T〉 T G 〈F,F〉 F

7.3.2 Integers

First we must represent the integers: the choice of n = Sn O to represent the
integer n is obvious.

The classical functions are defined by simple recurrence relations. Let us give
the example of the addition: we have to work from the defining equations we
already know:

x+ O = x x+ S y = S (x+ y)

Consider t[x, y] = R x (λzInt. λz′ Int. S z) y:

t[x,O] x t[x, S y] (λzInt. λz′ Int. S z) (t[x, y]) y  S t[x, y]

This shows that one can take t[x, y] as a definition of x+ y.

Among easy exercises in this style, one can amuse oneself by defining
multiplication, exponential, predecessor etc.

Predicates on integers can also be defined, for example

null(O) = T null(Sx) = F

gives

null(x)
def
= R T (λzBool. λz′ Int.F)x

which allows us to turn a characteristic function (type Int) into a predicate (type
Bool).
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None of these examples makes serious use of higher types. However, as the
types used in the recursion increase, more and more functions become expressible.
For example, if f is of type Int→ Int, one can define it(f) of type Int→ Int by

it(f)x = R 1 (λzInt. λz′ Int. f z)x (it(f)n is fn 1)

As an object of type (Int→ Int)→(Int→ Int), the function it, is:

λxInt→Int. it(x)

It is easy to see that by finite iteration of some reasonable function f0, we can
exceed every primitive recursive function. The function which, given n, returns
itn f0 (Ackermann’s function), grows more quickly than all the primitive recursive
functions.

This kind of function is easily definable in T, provided we use a recursion on a
complex type, such as Int→ Int: take R f0 (λxInt→Int. λzInt. it(x)) y, which normalises
for y = O to f0, and for n to itn f0.

To finish, let us remark that the second argument of v in Ru v t is frequently
unused. One would prefer an iterator It instead of the recursor R, applying to u
of type T , v of type T→T , and t of type Int, with the rule:

Itu v (S t) v (Itu v t)

The one-step predecessor satisfying the equations pred(O) = O, pred(Sx) = x
cannot be constructed using the iterator: R is essential. In fact, if one has only
the iterator one can define the same functions but a certain number of equations
with variables disappear. So the predecessor will still be definable, but will satisfy
pred(S t)  t only when t is of the form n, in other words by values. This is a
little annoying (in particular for F, where we shall no longer have anything but
the iterator), for it shows that to calculate pred(n), the program makes n steps,
which is manifestly excessive. We do not know how to type the predecessor,
except in systems like T, where the solution is visibly ad hoc.

As an exercise, define R from It and pairing (by values only). We shall use
this in system F (see 11.5.1).
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7.4 Expressive power: results

7.4.1 Canonical forms

First a question: what guarantee do we have that Int represents the integers, Bool
the booleans, etc.? It is not because we have represented the integers in the type
Int that this type can immediately claim to represent the integers. The answer
lies in the following lemma:

Lemma Let t be a closed normal term:

• If t is of type Int, then t is of the form n.

• If t is of type Bool, then t is of the form T or F.

• If t is of type U×V , then t is of the form 〈u, v〉.

• If t is of type U→V , then t is of the form λx. v.

Proof By induction on the number of symbols of t. If t is Sw, the induction
hypothesis applied to w gives w = n, so t = n+ 1. So we suppose that t is not of
the form O, T, F, 〈u, v〉 or λx. v:

• If t is Ru v w, then the induction hypothesis says that w is of the form n,
and then t is not normal.

• If t is Du v w, then by the induction hypothesis w is T or F, and then t is
not normal.

• If t is πiw, then again w is of the form 〈u, v〉, and t is not normal.

• If t is w u, then w is of the form λx. v, and t is not normal. �

7.4.2 Representable functions

In particular, if t is a closed term of type Int→ Int of T, it induces a function |t|
from N to N defined by:

|t|(n) = m iff t n m

Likewise, a closed term of type Int→Bool induces a predicate |t| on N:

|t|(n) holds iff t n T

The functions |t| are clearly calculable: the normalisation algorithm gives |t|(n)
as a function of n. So those functions representable in T are recursive. Can we
characterise the class of such functions?
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In general, recursive functions are defined using partial algorithms, whose
convergence is not assured, but which have nice closure properties not shared by
total ones. Seen as a partial algorithm, |t| amounts to looking for the normal form,
and, in the case where this succeeds, writing it. The normalisation theorem is thus
a proof of program guaranteeing termination of all algorithms obtained from T.
Now, what are the mathematical principles necessary to prove the reducibility of
a fixed term t?

We need

• to be able to express the reducibility of t and of its subterms: one must be
able to write a finite number of reducibilities, which can be done in Peano
arithmetic (PA).

• to be able to reason by mathematical induction on this finite number of
reducibility predicates; that can again be done in PA, modulo some awful
coding without significant interest (Gödel numbering).

Summing up, the termination is provable in arithmetic: we say that |t| is
provably total in PA.

The converse is true: let f be a recursive function, provably total in PA, then
one can find a term of type Int→ Int in T, such that f(n) = |t|(n) for all n. In
other words, the expressive power of the system T is enormous, and much more
than what is feasible1 on a computer! The further generalisations are not aiming
to increase the class of representable functions, which is already too big, but only
to enlarge the class of particular algorithms calculating simple given functions.
For example, finding a type system where the predecessor is well-behaved.

We do not want to give a proof of this converse here, since we consider the
(more delicate) case of system F in 15.2.

1In the sense of complexity. Thus for instance hyperexponential algorithms, such as the
proof of cut elimination, are not feasible.



Chapter 8

Coherence Spaces

The earliest work in denotational semantics was done by [Scott69] for the untyped
λ-calculus, and much has been written since then. His approach is characterised by
continuity, i.e. the preservation of directed joins. In this chapter, a novel kind of
domain theory is introduced, in which we also have (and preserve) meets bounded
above (pullbacks). This property, called stability, was originally introduced by
[Berry] in an attempt to give a semantic characterisation of sequential algorithms.
We shall find that this semantics is well adapted to system F and leads us towards
linear logic.

8.1 General ideas

The fundamental idea of denotational semantics is to interpret reduction (a dynamic
notion) by equality (a static notion). To put it in another way, we model the
invariants of the calculi. This said, there are models and models: it has been
known since Gödel (1930) how to construct models as maximally consistent
extensions. This is certainly not what we mean, because it gives no information.

We have in mind rather to take literally the näıve interpretation — that an
object of type U → V is a function from U to V — and see if we can give a
reasonable meaning to the word “function”. In this way of looking at things,
we try to avoid being obsessed by completeness, but instead look for simple
geometrical ideas.

The first idea which comes to mind is the following:

• type = set.

• U → V is the set of all functions (in the set-theoretic sense) from U to V .
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This interpretation is all very well, but it does not explain anything. The
computationally interesting objects just get drowned in a sea of set-theoretic
functions. The function spaces also quickly become enormous.

Kreisel had the following idea (hereditarily effective operations):

• type = partial equivalence relation on N.

• U → V is the set of (codes of) partial recursive functions f such that, if
xU y, then f(x)V f(y), subject to the equivalence relation:

f (U → V ) g iff ∀x, y (xU y ⇒ f(x)V g(y))

This sticks more closely to the computational paradigm which we seek to
model — a bit too closely, it seems, for in fact it hardly does more than interpret
the syntax by itself, modulo some unexciting coding.

Scott’s idea is much better:

• type = topological space.

• U → V = continuous functions from U to V .

Now it is well known that topology does not lend itself well to the construction
of function spaces. When should we say that a sequence of functions converges —
pointwise, or uniformly in some way1?

To resolve these problems, Scott was led to imposing drastic restrictions on his
topological spaces which are far removed from the traditional geometrical spirit of
topology2. In fact his spaces are really only partially ordered sets with directed
joins: the topology is an incidental feature. So it is natural to ask oneself whether
perhaps the topological intuition is itself false, and look for something else.

1The most common (but by no means the universal) answer to this question is to use the
compact-open topology, in which a function lies in a basic open set if, when restricted to a
specified compact set, its values lie in a specified open set. This topology is only well-behaved
when the spaces are locally compact (every point has a base of compact neighbourhoods), and
even then the function space need not itself be locally compact.

2There is, however, a logical view of topology, which has been set out in a computer
science context by [Abr88, ERobinson, Smyth, Vickers].
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8.2 Coherence Spaces

A coherence space3 is a set (of sets) A which satisfies:

i) Down-closure: if a ∈ A and a′ ⊂ a, then a′ ∈ A.

ii) Binary completeness: if M ⊂ A and if ∀a1, a2 ∈ M (a1 ∪ a2 ∈ A), then⋃
M ∈ A.

In particular, we have the undefined object, ∅ ∈ A.

The reader may consider a coherence space as a “domain” (partially ordered
by inclusion); as such it is algebraic (any set is the directed union of its finite
subsets) and satisfies the binary condition (ii), so that
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is not. However we shall see that coherence spaces are better regarded as
undirected graphs.

8.2.1 The web of a coherence space

Consider |A| def
=
⋃
A = {α : {α} ∈ A}. The elements of |A| are called tokens, and

the coherence relation modulo A is defined between tokens by

α _^ α′ (mod A) iff {α, α′} ∈ A

which is a reflexive symmetric relation, so |A| equipped with _
^ is a graph,

called the web of A.

3The term espace cohérent is used in the French text, and indeed Plotkin has also used the
word coherent to refer to this binary condition. However coherent space is established, albeit
peculiar, usage for a space with a basis of compact open sets, also called a spectral space.
Consequently, the term was modified in translation.
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For example, the web of Bool consists of the tokens t and f , which are
incoherent; similarly the web of Int is a discrete graph whose points are the
integers. Such domains we call flat.

The construction of the web of a coherence space is a bijection between
coherence spaces and (reflexive-symmetric) graphs. From the web we recover the
coherence space by:

a ∈ A⇔ a ⊂ |A| ∧ ∀α1, α2 ∈ a (α1
_
^ α2 (mod A))

So in the terminology of Graph Theory, a point is exactly a clique, i.e. a
complete subgraph.

8.2.2 Interpretation

The aim is to interpret a type by a coherence space A, and a term of this type
by a point of A (coherent subset of |A|, infinite in general: we write Afin for the
set of finite points).

To work in an effective manner with points of A, it is necessary to introduce
a notion of finite approximation. An approximant of a ∈ A is any subset a′ of a.
Condition (i) for coherence spaces ensures that approximants are still in A. Above
all, there are enough finite approximants to a:

• a is the union of its set of finite approximants.

• The set I of finite approximants is directed. In other words,

i) I is nonempty (∅ ∈ I).

ii) If a′, a′′ ∈ I, one can find a ∈ I such that a′, a′′ ⊂ a (take a = a′ ∪ a′′).

This comes from the following idea:

• On the one hand we have the true (or total) objects of A. For example,
in Bool , the singletons {t} and {f}, in Int , {0}, {1}, {2}, etc.

• On the other hand, the approximants, of which, in the two simplistic cases
considered, ∅ is the only example. They are partial objects.
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The addition of partial objects has much the same significance as in recursion
theory, where we shift from total to partial functions: for example, to the integers
(represented by singletons) we add the “undefined” ∅.

One should not, however, attach too much importance to this first intuition.
For example, it is misguided to seek to identify the total points of an arbitrary
coherence space A. One might perhaps think that the total points of A are the
maximal points, i.e. such that:

∀α ∈ |A| (∀α′ ∈ a α _^ α′ (mod A))⇒ α ∈ a

which indeed they are — in the simple cases (integers, booleans, etc.). However
we would like to define totality in coherence spaces which are the interpretations
of complex types, using formulae analogous to the ones for reducibility (see 6.1).
These are of greater and greater logical complexity4, and altogether unpredictable,
whilst the notion of maximality remains desperately Π0

2, so one cannot hope for
a coincidence. In fact, for any given coherence space there are many notions of
totality, just as there are many reducibility candidates (chapter 14) for the same
type. In fact the semantics partialises everything, and the total objects get a bit
lost inside it.

The functions from A to B will be seen as functions defined uniquely by
their approximants, and in this way “continuous”. Here it is possible to use a
topological language where the subsets {a : a◦ ⊂ a} of A, for a◦ finite, are open.
However whereas in Scott-style domain theory the functions between domains are
exactly those which are continuous for this topology, this will no longer be so
here.

8.3 Stable functions

Given two coherence spaces A and B, a function F from A to B is stable if:

i) a′ ⊂ a ∈ A ⇒ F (a′) ⊂ F (a)

ii) F (
⋃↑
i∈I ai) =

⋃↑
i∈I F (ai) (directed union)

iii) a1 ∪ a2 ∈ A ⇒ F (a1 ∩ a2) = F (a1) ∩ F (a2) (St)

4The logical complexity of a formula is essentially determined by the number of alternations
of quantifiers. In particular, we say that a formula ∀x.∃x′.∀x′′. . . . P (x, x′, x′′, . . .) where P
is a primitive recursive predicate, is of logical complexity Π0

n, where n is the number of
quantifiers. Similarly, ∃x.∀x′.∃x′′. . . . P (x, x′, x′′, . . .) is of logical complexity Σ0

n.
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The first condition says that F preserves approximation: if we provide more
information to start off with (a rather than a′) then we get more back at the end.
Alternatively, F only uses positive information about its arguments.

The second states continuity:

F (a) =
⋃↑{F (a◦) : a◦ ⊂ a, a◦ finite}

This special case of (ii) is in fact equivalent to it.

Considering a coherence space as a category in which the morphisms from a′

to a are inclusions a′ ⊂ a, the first condition states that a stable function is a
functor and the second that this preserves filtered colimits. These two conditions
are entirely familiar from the topological setting; this is no longer true of the
last condition — the stability property itself — which has no obvious topological
significance. It looks a bit peculiar at first sight, but in terms of categories it just
says that the pullback

a1 ∪ a2

a1 a2

a1 ∩ a2
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must be preserved. The intention is that this should hold for any set {a1, a2, . . .}
which is bounded above, not just finite ones, but in the context of strongly finite
approximation (i.e. the fact that the approximating elements have only finitely
many elements below them, which is not in general true in Scott’s theory) we
don’t need to say this.

Let us give an example to show that the hypothesis of coherence between a1

and a2 cannot be lifted. We want to be able to represent all functions from N to
N as stable functions from Int to Int , in particular f(0) = f(1) = 0, f(n+ 2) = 1.
This forces F ({0}) = F ({1}) = {0}, F ({n+ 2}) = {1}, and by monotonicity,
F (∅) = ∅. Now, F ({0} ∩ {1}) = F (∅) = ∅ 6= F ({0}) ∩ F ({1}); we are saved by
the incoherence of 0 and 1, which makes {0} ∪ {1} /∈ Int .

We shall see that this property forces the existence of a least approximant in
certain cases, simply by taking the intersection of a set which is bounded above.



8.3. STABLE FUNCTIONS 59

8.3.1 Stable functions on a flat space

Let us look at the stable functions F from Int to Int :

• If F (∅) = {n}, then F (a) = {n} for all a ∈ Int .

• Otherwise, F (∅) = ∅: we consider the partial function f , defined exactly on
the integers n such that F ({n}) 6= ∅, in which case we put {f(n)} = F ({n}),
and we write F = f̃ .

So we have found:

• the constants “by vocation” ṅ: ṅ(a) = {n};

• the functions f̃ , amongst which are the “constants” f̃(∅) = ∅, f̃({m}) = {n},
which only differ from the first by the value at ∅.

8.3.2 Parallel Or

Let us look for all the stable functions of two arguments from Bool , Bool to Bool
which represent the disjunction in the sense that F ({α}, {β}) = {α ∨ β} for every
substitution of t and f for α and β.

We must have F (a′, b′) ⊂ F (a, b) when a′ ⊂ a and b′ ⊂ b. In particular,
if F (∅,∅) = {t} (or {f}), then F takes constantly the value t (or f),
which is impossible. Similarly we have F ({f},∅) = F (∅, {f}) = ∅ because
F ({f},∅) ⊂ F ({f}, {t}) = {t} and F ({f},∅) ⊂ F ({f}, {f}) = {f}.

F ({t},∅) = {t} is possible, but then F (∅, {t}) = ∅: indeed, if we write the
third condition for two arguments:

a1 ∪ a2 ∈ Bool ∧ b1 ∪ b2 ∈ Bool ⇒ F (a1 ∩ a2, b1 ∩ b2) = F (a1, b1) ∩ F (a2, b2)

and apply it for a1 = {t}, a2 = ∅, b1 = ∅, b2 = {t}, then F (∅, {t}) = {t} would
give us F (∅,∅) = {t}.

By symmetry, we have obtained two functions:

• F1({t},∅) = F1({t}, {t}) = F1({t}, {f}) = F1({f}, {t}) = {t}

• F1({f}, {f}) = {f}

• F1(∅,∅) = F1({f},∅) = F1(∅, {t}) = F1(∅, {f}) = ∅

and F2(a, b) = F1(b, a).
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There remains another solution:

• F3({t}, {t}) = F3({f}, {t}) = F3({t}, {f}) = {t}

• F3({f}, {f}) = {f}

• ∅ otherwise.

The stability condition was used to eliminate the case of:

• F0({t},∅) = F0(∅, {t}) = {t}
What have we got against this example? It violates a principle of least data:

we have F0({t}, {t}) = {t}; we seek to find a least approximant to the pair of
arguments {t}, {t} which already gives {t}; now we have at our disposal ∅, {t}
and {t},∅ which are minimal (∅,∅ does not work) and distinct.

Of course, knowing that we always have a distinguished (least) solution (rather
than many minimal solutions) for a problem of this kind radically simplifies a lot
of calculations.

8.4 Direct product of two coherence spaces

A function F of two arguments, mapping A,B to C is stable when:

i) a′ ⊂ a ∈ A ∧ b′ ⊂ b ∈ B ⇒ F (a′, b′) ⊂ F (a, b)

ii) F (
⋃↑
i∈I ai,

⋃↑
j∈J bj) =

⋃↑
(i,j)∈I×J F (ai, bj) (directed union)

iii) a1 ∪ a2 ∈ A ∧ b1 ∪ b2 ∈ B ⇒ F (a1 ∩ a2, b ∩ b2) = F (a1, b1) ∩ F (a2, b2)

Likewise we define stability in any number of arguments. Observe that,
whereas separate continuity suffices for joint continuity, stability in two arguments
is equivalent to stability in each separately, together with the additional condition
that the pullback

(a, b)

(a, b′) (a′, b)

(a′, b′)
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(where a′ ⊂ a ∈ A and b′ ⊂ b ∈ B) be preserved.

We would like to avoid studying stable functions of two (or more) variables
and so reduce them to the unary case. For this we shall introduce the (direct)
product AN B of two coherence spaces. The notation comes from linear logic.
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If A and B are two coherence spaces, we define AN B by:

|AN B| = |A|+ |B| = {1} × |A| ∪ {2} × |B|

(1, α) _^ (1, α′) (mod AN B) iff α _^ α′ (mod A)

(2, β) _^ (2, β′) (mod AN B) iff β _^ β′ (mod B)

(1, α) _^ (2, β) (mod AN B) for all α ∈ |A| and β ∈ |B|

In particular, the points of A N B (coherent subsets of |AN B|) can be written
uniquely as {1} × a ∪ {2} × b with a ∈ A, b ∈ B. The reader is invited to show
that this is the product in the categorical sense (we shall return to this in the
next chapter when we define the interpretation).

Given a stable function F from A,B to C, we define a function G from AN B
to C by:

G({1} × a ∪ {2} × b) = F (a, b)

It is immediate that G is stable; conversely the same formula defines, from a
stable unary function G, a stable binary function F , and the two transformations
are inverse.

8.5 The Function-Space

We started with the idea that “type = coherence space”. The previous section
defines a product of coherence spaces corresponding to the product of types, but
what do we do with the arrow? We would like to define A→ B as the set of
stable functions from A to B, but this is not presented as a coherence space.
So we shall give a particular representation of the set of stable functions in such
a way as to make it a coherence space.

8.5.1 The trace of a stable function

Lemma Let F be a stable function from A to B, and let a ∈ A, β ∈ F (a); then

i) it is possible to find a◦ ⊂ a finite such that β ∈ F (a◦).

ii) if a◦ is chosen minimal for the inclusion among the solutions to (i), then a◦
is least, and is in particular unique.
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Proof

i) Write a =
⋃↑
i∈I ai, where the ai are the finite subsets of a. Then

F (a) =
⋃↑
i∈I F (ai), and if β ∈ F (a), β ∈ F (ai0) for some i0 ∈ I.

ii) Suppose a◦ is minimal, and let a′ ⊂ a such that β ∈ F (a′). Then
a◦ ∪ a′ ⊂ a ∈ A, so a◦ ∪ a′ ∈ A and β ∈ F (a◦) ∩ F (a′) = F (a◦ ∩ a′). As
a◦ is minimal, this forces a◦ ⊂ a◦ ∪ a′, so a◦ ⊂ a′, and a◦ is indeed least.
To put this another way, we have said that we intend stability to mean the
intersection of an arbitrary family which is bounded above, and here we are
just taking the intersection of the finite a′ ⊂ a such that β ∈ F (a′). �

The trace Tr(F ) is the set of pairs (a◦, β) such that:

i) a◦ is a finite point of A and β ∈ |B|

ii) β ∈ F (a◦)

iii) if a′ ⊂ a◦ and β ∈ F (a′) then a′ = a◦.

Tr(F ) determines F uniquely by the formula

(App) F (a) = {β : ∃a◦ ⊂ a (a◦, β) ∈ Tr(F )}

which results immediately from the lemma. In particular the function F 7→ Tr(F )
is 1–1.

Consider for example the stable function F1 from BoolNBool to Bool introduced
in 8.3.2. The elements of its trace Tr(F1) are:

({(1, t)}, t) ({(1, f), (2, t)}, t) ({(1, f), (2, f)}, f)

We can read this as the specification:

• if the first argument is true, the result is true;

• if the first argument is false and the second true, the result is true;

• if the first argument is false and the second false, the result is false.
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8.5.2 Representation of the function space

Proposition As F varies over the stable functions from A to B, their traces give
the points of a coherence space, written A→B.

Proof Let us define the coherence space C by |C| = Afin × |B| (Afin is the set of
finite points of A) where (a1, β1) _^ (a2, β2) (mod C) if

i) a1 ∪ a2 ∈ A ⇒ β1
_
^ β2 (mod B)

ii) a1 ∪ a2 ∈ A ∧ a1 6= a2 ⇒ β1 6= β2 (mod B)

In 12.3, we shall see a more symmetrical way of writing this.

If F is stable, then Tr(F ) is a subset of |C| by construction. We verify the
coherence modulo C of (a1, β1) and (a2, β2) ∈ Tr(F ):

i) If a1 ∪ a2 ∈ A then {β1, β2} ⊂ F (a1 ∪ a2) so β1
_
^ β2 (mod B).

ii) If β1 = β2 and a1 ∪ a2 ∈ A, then the lemma applied to β1 ∈ F (a1 ∪ a2) gives
us a1 = a2.

Conversely, let f be a point of C. We define a function from A to B by the
formula:

(App) F (a) = {β : ∃a◦ ⊂ a (a◦, β) ∈ f}

i) F is monotone: immediate.

ii) If a =
⋃↑
i∈I ai, then

⋃↑
i∈I F (ai) ⊂ F (a) by monotonicity. Conversely, if

β ∈ F (a), this means there is an a′ finite, a′ ⊂ a, such that β ∈ F (a′); but
since a′ ⊂

⋃↑
i∈I ai, we have a′ ⊂ ak for some k (that is why I was chosen

directed!) so β ∈ F (ak) and the converse inclusion is established.

iii) If a1 ∪ a2 ∈ A, then F (a1 ∩ a2) ⊂ F (a1) ∩ F (a2) by monotonicity. Conversely,
if β ∈ F (a1) ∩ F (a2), this means that (a′1, β), (a′2, β) ∈ f for some
appropriate a′1 ⊂ a1 and a′2 ⊂ a2. But (a′1, β) and (a′2, β) are coherent
and a′1 ∪ a′2 ⊂ a1 ∪ a2 ∈ A, so a′1 = a′2, a′1 ⊂ a1 ∩ a2 and β ∈ F (a1 ∩ a2).

iv) We nearly forgot to show that F maps A into B: F (a), for a ∈ A, is a
subset of |B|, of which it is again necessary to show coherence! Now, if
β′, β′′ ∈ F (a), this means that (a′, β′), (a′′, β′′) ∈ f for appropriate a′, a′′ ⊂ a;
but then a′ ∪ a′′ ⊂ a ∈ A, so, as (a′, β′) and (a′′, β′′) are coherent, β′ _^ β′′

(mod B).

Finally, it is easy to check that these constructions are mutually inverse. �

In fact, the same application formula occurs in Scott’s domain theory [Scott76],
but the corresponding notion of “trace” is more complicated.
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8.5.3 The Berry order

Being a coherence space, A→B is naturally ordered by inclusion. The bijection
between A→ B and the stable functions from A to B then induces an order
relation:

F ≤B G iff Tr(F ) ⊂ Tr(G)

In fact ≤B, the Berry order, is given by:

F ≤B G iff ∀a′, a ∈ A (a′ ⊂ a⇒ F (a′) = F (a) ∩G(a′))

Proof If F ≤B G then F (a) ⊂ G(a) for all a (take a = a′). Let (a, β) ∈ Tr(F );
then β ∈ F (a) ⊂ G(a). We seek to show that (a, β) ∈ Tr(G). Let a′ ⊂ a such that
β ∈ G(a′); then β ∈ F (a) ∩G(a′) = F (a′), which forces a′ = a.

Conversely, if Tr(F ) ⊂ Tr(G), it is easy to see that F (a) ⊂ G(a) for all a. In
particular if a′ ⊂ a, then F (a′) ⊂ F (a) ∩G(a′). Now, if β ∈ F (a) ∩G(a′), one can
find a◦ ⊂ a, a′◦ ⊂ a′ such that

(a◦, β) ∈ Tr(F ) ⊂ Tr(G) 3 (a′◦, β)

so (a◦, β) and (a′◦, β) are coherent, and since a◦ ∪ a′◦ ⊂ a ∈ A, we have a◦ = a′◦,
and β ∈ F (a′◦) = F (a◦) ⊂ F (a′). �

As an example, it is easy to see (using one of the characterisations of ≤B) that
F3 6≤B F1 (see 8.3.2) although F3(a, b) ⊂ F1(a, b) for all a, b ∈ Bool . The reader is
also invited to show that the identity is maximal.

The Berry order says that evaluation preserves the pullback (cf. the one in
section 8.4)

(G, a)

(G, a′) (F, a)

(F, a′)
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for a′ ⊂ a in (A→B)NA, so this is exactly the order relation we need on A→B
to make evaluation stable.
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8.5.4 Partial functions

Let us see how this construction works by calculating Int → Int . We have
Intfin ' N ∪ {∅} and |Int | = N, so |Int →Int | ' (N ∪ {∅})× N where

i) (n,m) _^ (n′,m′) if n = n′ ⇒ m = m′

ii) (∅,m) _^ (∅,m)

with incoherence otherwise. This is the direct sum (see section 12.1) of the
coherence space which represents partial functions with the space which represents
the constants “by vocation”. Let us ignore the latter part and concentrate on the
space PF defined on the web N× N by condition (i).

What is the order relation on PF? Well f ∈ PF is a set of pairs (n,m)
such that if (n,m), (n,m′) ∈ f then m = m′, which is just the usual “graph”
representation of a partial function. Since the Berry order corresponds simply to
containment, it is the usual extension order on partial functions.

In the Berry order, the partial functions f̃ and the constants by vocation
ṅ are incomparable. However pointwise we have f̃ < 0̇ for any partial function
which takes no other value than zero, of which there are infinitely many. One
advantage of our semantics is that it avoids this phenomenon of compact5 objects
with infinitely many objects below them.

Another consequence of the Berry order arises at an even simpler type: in
the function-space Sgl → Sgl , where Sgl is the coherence space with just one
token (section 12.6). In the pointwise (Scott) order, the identity function is below
the constant “by vocation” {•}, whilst in the Berry order they are incomparable.
This means that in the stable semantics, unlike the Scott semantics, it is possible
for a test program to succeed on the identity (which reads its input) but fail on
the constant (which does not).

5The notion of compactness in topology is purely order-theoretic: if a ≤
⋃↑

I for some
directed set I then a ≤ b for some b ∈ I. Besides Scott’s domain theory, this also arises in
ring theory as Noetherianness and in universal algebra as finite presentability.



Chapter 9

Denotational Semantics of T

The constructions of chapter 8 provide a nice denotational semantics of the
systems we have already considered.

9.1 Simple typed calculus

We propose here to interpret the simple typed calculus, based on → and ×. The
essential idea is that:

• λ-abstraction turns a function (x 7→ t[x]) into an object;

• application associates to an object t of type U→V a function u 7→ t u.

In other words, application and λ-abstraction are two mutually inverse
operations which identify objects of type U→V and functions from U to V .

So we shall interpret them as follows:

• λ-abstraction by the operation which maps a stable function from A to B
to its trace, a point of A→B;

• application by the operation which maps a point of A→B to the function
of which it is the trace.

9.1.1 Types

Suppose we have fixed for each atomic type Si a coherence space [[Si]]; then we
define [[T ]] for each type T by:

[[U×V ]] = [[U ]] N [[V ]] [[U→V ]] = [[U ]]→ [[V ]]

66
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9.1.2 Terms

If t[x1, . . . , xn] is a term of type T depending on free variables xi of type Si (some
of the xi may not actually occur in t), we associate to it a stable function [[t]] of
n arguments from [[S1]], . . . , [[Sn]] to [[T ]]:

1. t[x1, . . . , xn] = xi: then [[t]](a1, . . . , an) = ai; the stability of this function is
immediate.

2. t = 〈u, v〉; we have at our disposal functions [[u]] and [[v]] from [[S1]], . . . , [[Sn]]
to [[U ]] and [[V ]] respectively. Consider the stable binary function Pair , from
[[U ]], [[V ]] to [[U ]] N [[V ]], defined by:

Pair(a, b) = {1} × a ∪ {2} × b

We put [[t]](a1, . . . , an) = Pair([[u]](a1, . . . , an), [[v]](b1, . . . , bn)); this function is
still stable.

3. t = π1w or t = π2w. Here again we compose with one of the following two
stable functions:

Π1(c) = {α : (1, α) ∈ c} Π2(c) = {β : (2, β) ∈ c}

4. t = λx. v; by hypothesis we already have a (n + 1)-ary stable function [[v]]
from [[S]], [[U ]] to [[V ]]; in particular, for a fixed, the function b 7→ [[v]](a, b) is
stable from [[U ]] to [[V ]] and so one can define [[t]](a) = Tr(b 7→ [[v]](a, b)).

Checking that [[t]] is stable is a boring but straightforward exercise. For
example, in the case where n = 1, we have to show that if F is a stable
function from AN B to C, it induces a stable function G from A to B → C,
by

G(a) = Tr(b 7→ F (Pair(a, b)))

Then G itself has a trace, for which we shall just give the formula:

Tr(G) = {(a, (b, γ)) : (Pair(a, b), γ) ∈ Tr(F )}

It is not a proof, but it should be enough to convince us!
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5. t = w u with w of type U→V , u of type U ; we define the function App from
[[U→V ]], [[U ]] to [[V ]] by:

App(f, a) = {β : ∃a◦ ⊂ a (a◦, β) ∈ f}

It is immediate that App is stable; so we define [[t]](s) = App([[w]](s), [[u]](s))

As an exercise, one can calculate the traces of Pair , Π1, Π2, App and the
function in 4 which takes F to G.

9.2 Properties of the interpretation

Essentially, as we have said, conversion becomes denotational equality: if t  u
then [[t]] = [[u]]. To show this, we use:

Π1(Pair(a, b)) = a Π2(Pair(a, b)) = b App(Tr(F ), a) = F (a)

The last formula is to be used in conjunction with a substitution property:
consider v[x, u[x]/y]; one can associate to this two stable functions:

• by calculating the interpretation of this term;

• by forming the (n + 1)-ary function [[v]](a, b), the n-ary function [[u]](a) and
then [[v]](a, [[u]](a)).

The two functions so obtained are equal, as can be shown without difficulty (but
what a bore!) by induction on v.

This property is used thus (omitting the auxiliary variables):

[[(λx. v)u]] = App(Tr(a 7→ [[v]](a)), [[u]]) = [[v]]([[u]]) = [[v[u/x]]]

In fact, the secondary equations, which we keep meeting but have not taken
seriously, are also satisfied:

Pair(Π1(c),Π2(c)) = c Tr(a 7→ App(f, a)) = f

Categorically, what we have shown is that N and → are the product and
exponential for a Cartesian closed category whose objects are coherence spaces
and whose morphisms are stable maps. However, we have forgotten one thing:
composition! But it is easy to show that the trace of G ◦ F is

{(a1 ∪ ... ∪ ak, γ) : ({β1, ..., βk}, γ) ∈ Tr(F ), (a1, β1), ..., (ak, βk) ∈ Tr(G)}

where F and G are stable functions from A to B and from B to C respectively.
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9.3 Gödel’s system

9.3.1 Booleans

We shall interpret the type Bool by Bool :

[[T]] = T def
= {t} [[F]] = F def

= {f}

Du v t is interpreted using a ternary stable function D from A, A, Bool to A,
defined by

D(a, b,∅) = ∅ D(a, b, {t}) = a D(a, b, {f}) = b

and so we put [[Du v t]] = D([[u]], [[v]], [[t]]).

In particular, the fact that terms of Gödel’s system can be interpreted by
stable functions makes it impossible to define parallel or. Indeed, if the equations

t 〈T, x〉 T t 〈x,T〉 T t 〈F,F〉 F

had a solution in T, we would have

[[t]](T ,∅) = T [[t]](∅, T ) = T [[t]](F ,F) = F

which corresponds to the non-stable function called F0 in 8.3.2.

9.3.2 Integers

The obvious idea for interpreting Int is the coherence space Int introduced in the
previous chapter:

[[O]] = O def
= {0} [[S t]] = S([[t]]) with S(∅) = ∅, S({n}) = {n+ 1}

This interpretation works only by values; indeed, it is easy to find u and v
such that

Ru vO T R u v (Sx) F

If F is the function which interprets x 7→ Ru v x, this forces

F (O) = {t} F (S(∅)) = {f}

but S(∅) = ∅ ⊂ O, contradiction.
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What is wrong with Int? If we apply S to ∅ (empty information), we obtain
∅ again, whereas we know something more, namely that we have a successor —
a piece of information which may well be sufficient for a recursion step.

Therefore, we must revise our interpretation, adding 0+ for the information
“being a successor”, i.e. something > 0, and more generally, p+ for something
greater than p. Let us define1 Int+ by |Int+| = {0, 0+, 1, 1+, . . .} with:

p _^ q iff p = q p+ _
^ q iff p < q p+ _

^ q+ for all p, q

To see how it all works out, let us look for the maximal points. If a ∈ Int+ is
maximal, either:

• some p ∈ a; then a contains no other q, nor does it contain any q+ with

p ≤ q. So a ⊂ p̃
def
= {0+, . . . , (p− 1)+, p}; but this set is coherent, and as a is

maximal it must be equal to p̃.

• a contains no p; then a ⊂ ∞̃ def
= {0+, 1+, 2+, . . .} which is coherent, so a is

equal to this infinite set.

The interpretation is as follows:

O = {0} S(a) = {0+} ∪ {i+ 1 : i ∈ a} ∪ {(i+ 1)+ : i+ ∈ a}

In particular the numeral p = Sp O will be interpreted by p̃.

It remains to interpret recursion: given a coherence space A, a point o ∈ A
and a stable function F from A, Int+ to A, we shall construct a stable function
G from Int+ to A which satisfies:

G(O) = o G(S(a)) = F (G(a), a) G(a) = ∅ if 0, 0+ /∈ a

G is actually well-defined on the finite points of Int+; it is easily shown to
be monotone and hence extends to a continuous, and indeed stable, function on
infinite points. In particular, G(∞̃) =

⋃↑{G(Sn(∅)) : n ∈ N}.
1These lazy natural numbers are rather more complicated than the usual ones, which do

not form a coherence space but a dI-domain (section 12.2.1). The difference is that we admit
the token 1+ in the absence of 0+, although it is difficult to see what this might mean.
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In fact, if a′ ⊂ a is the largest subset of the form

• p̃ = {0+, . . . , (p− 1)+, p} = SpO, or

• p̊ def
= {0+, 1+, ..., (p− 1)+} = Sp∅

then G(a′) = G(a) (assuming F has this property), so (by induction) no term of
T involves p or p+ in its semantics without {0+, . . . (p− 1)+} as well.

As an exercise, one can try to calculate directly a stable function from Int+

to Int+ which represents the predecessor.

9.3.3 Infinity and fixed point

What is the rôle of the object ∞̃? We see that it is a fixed point of the successor:
S(∞̃) = ∞̃. One could try to add it to the syntax of T, with the nonconvergent
rewriting rule ∞ S∞. We see, by using the iterator, that

Itu v∞ v (Itu v∞)

and so ∞, combined with recursion, gives us access to the fixed point, Y.

In the denotational semantics, the token α occurs in the interpretation of Yf
whenever 〈a, α〉 occurs in the trace of (the interpretation of) f and the clique
a occurs in the interpretation of Yf . Hardly surprisingly, this is a recursive
definition, and it is obtained by repeatedly applying f to ∅. The tokens of the
interpretation of Y itself can therefore be described in terms of finite trees.

It is not our purpose here to discuss the programming applications of the
fixed point (general recursion), an idea which is currently rather alien to type
systems, although the denotational semantics accommodates it very well. But
fundamentally, what does this mean?



Chapter 10

Sums in Natural Deduction

This chapter gives a brief description of those parts of natural deduction whose
behaviour is not so pretty, although they show precisely the features which are
most typical of intuitionism. For this fragment, our syntactic methods are frankly
inadequate, and only a complete recasting of the ideas could allow us to progress.
In terms of syntax, there are three connectors to put back: ¬ , ∨ and ∃. For ¬ ,
it is common to add a symbol ⊥ (absurdity) and interpet ¬A as A⇒ ⊥.

The rules are:

···
A
∨1I

A ∨B

···
B

∨2I
A ∨B

···
A ∨B

[A]
···
C

[B]
···
C
∨E

C

···
⊥
⊥E

C

···
A[a/ξ]

∃I
∃ξ. A

···
∃ξ. A

[A]
···
C
∃E

C

The variable ξ must no longer be free in the hypotheses or the conclusion after
use of the rule ∃E . There is, of course, no rule ⊥I.

10.1 Defects of the system

The introduction rules (two for ∨, none for ⊥ and one for ∃) are excellent!
Moreover, if you mentally turn them upside-down, you will find the same structure
as ∧1E , ∧2E , ∀E (in linear logic, there is only one rule in each case, since they
are actually turned over).
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The elimination rules are very bad. What is catastrophic about them is the
parasitic presence of a formula C which has no structural link with the formula
which is eliminated. C plays the rôle of a context, and the writing of these rules
is a concession to sequent calculus.

In fact, the adoption of these rules (and let us repeat that there is currently
no alternative) contradicts the idea that natural deductions are the “real objects”
behind the proofs. Indeed, we cannot decently work with the full fragment
without identifying a priori different deductions, for example:

···
A ∨B

[A]
···
C

[B]
···
C
∨E

C
r

D

and ···
A ∨B

[A]
···
C

r
D

[B]
···
C

r
D
∨E

D

Fortunately, this kind of identification can be written in an asymmetrical form
as a “commuting conversion”, satisfying Church-Rosser and strong normalisation.
Nevertheless, even though the damage is limited, the need to add these
supplementary rules reveals an inadequacy of the syntax. The true deductions are
nothing more than equivalence classes of deductions modulo commutation rules.

What we would like to write in the case of ∨E for example, is

A ∨B

A B

with two conclusions. Later, these two conclusions would have to be brought back
together into one. But we have no way of bringing them back together, apart
from writing ∨E as we did, which forces us to choose the moment of reunification.
The commutation rules express the fact that this moment can fundamentally be
postponed.

10.2 Standard conversions

These are redexes of type introduction/elimination:
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···
A
∨1I

A ∨B

[A]
···
C

[B]
···
C
∨E

C

converts to
···
A···
C

···
B

∨2I
A ∨B

[A]
···
C

[B]
···
C
∨E

C

converts to
···
B···
C

···
A[a/ξ]

∃I
∃ξ. A

[A]
···
C
∃E

C

converts to

···
A[a/ξ]
···
C

Note that, since there is no introduction rule for ⊥, there is no standard
conversion for this symbol.

Let us just think for a moment about the structure of redexes: on the one
hand there is an introduction, on the other an elimination, and the elimination
follows the introduction. But there are some eliminations (⇒, ∨, ∃) with more
premises and we only consider as redexes the case where the introduction ends
in the principal premise of the elimination, namely the one which carries the
eliminated symbol. For example

[A]
···
B

⇒I
A⇒ B

···
(A⇒ B)⇒ C

⇒E
C

is not considered as a redex. This is fortunate, as we would have trouble
converting it!

10.3 The need for extra conversions

To understand how we are naturally led to introducing extra conversions, let
us examine the proof of the Subformula Property in the case of the (∧,⇒,∀)
fragment in such a way as to see the obstacles to generalising it.
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10.3.1 Subformula Property

Theorem Let δ be a normal deduction in the (∧ ⇒ ∀) fragment. Then

i) every formula in δ is a subformula of a conclusion or a hypothesis of δ;

ii) if δ ends in an elimination, it has a principal branch, i.e. a sequence of
formulae A0, A1, . . . , An such that:

• A0 is an (undischarged) hypothesis;

• An is the conclusion;

• Ai is the principal premise of an elimination of which the conclusion is
Ai+1 (for i = 0, . . . , n− 1).

In particular An is a subformula of A0.

Proof We have three cases to consider:

1. If δ consists of a hypothesis, there is nothing to do.

2. If δ ends in an introduction, for example

A B
∧I

A ∧B

then it suffices to apply the induction hypothesis above A and B.

3. If δ ends in an elimination, for example

A⇒ B A
⇒E

B

it is not possible that the proof above the principal premise ends in an
introduction, so it ends in an elimination and has a principal branch, which
can be extended to a principal branch of δ. �
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10.3.2 Extension to the full fragment

For the full calculus, we come against an enormous difficulty: it is no longer true
that the conclusion of an elimination is a subformula of its principal premise: the
“C” of the three elimination rules has nothing to do with the eliminated formula.
So we are led to restricting the notion of principal branch to those eliminations
which are well-behaved (∧1E , ∧2E , ⇒E and ∀E) and we can try to extend our
theorem. Of course it will be necessary to restrict part (ii) to the case where δ
ends in a “good” elimination.

The theorem is proved as before in the case of introductions, but the case of
eliminations is more complex:

• If δ ends in a good elimination, look at its principal premise A: we shall
be embarrassed in the case where A is the conclusion of a bad elimination.
Otherwise we conclude the existence of a principal branch.

• If δ ends in a bad elimination, look again at its principal premise A: it is not
the conclusion of an introduction. If A is a hypothesis or the conclusion of
a good elimination, it is a subformula of a hypothesis, and the result follows
easily. There still remains the case where A comes from a bad elimination.

To sum up, it would be necessary to get rid of configurations formed from
a succession of two rules: a bad elimination of which the conclusion C is the
principal premise of an elimination, good or bad. Once we have done this, we can
recover the Subformula Property. A quick calculation shows that the number of
configurations is 3× 7 = 21 and there is no question of considering them one by
one. In any case, the removal of these configurations is certainly necessary, as the
following example shows:

A ∨ A

[A] [A]
∧I

A ∧ A

[A] [A]
∧I

A ∧ A
∨E

A ∧ A
∧1E

A

which does not satisfy the Subformula Property.

10.4 Commuting conversions

In what follows, C
...

r
D

denotes an elimination of the principal premise C, the

conclusion is D and the ellipsis represents some possible secondary premises with
the corresponding deductions. This symbolic notation covers the seven cases of
elimination.
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1. commutation of ⊥E :

···
⊥
⊥E

C
...

r
D

converts to
···
⊥
⊥E

D

2. commutation of ∨E :

···
A ∨B

[A]
···
C

[B]
···
C
∨E

C
...

r
D

converts to ···
A ∨B

[A]
···
C

...
r

D

[B]
···
C

...
r

D
∨E

D

3. commutation of ∃E :

···
∃ξ. A

[A]
···
C
∃E

C
...

r
D

converts to ···
∃ξ. A

[A]
···
C

...
r

D
∃E

D

Example The most complicated situation is:

···
A ∨B

[A]
···

C ∨D

[B]
···

C ∨D
∨E

C ∨D

[C]
···
E

[D]
···
E
∨E

E

converts to
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···
A ∨B

[A]
···

C ∨D

[C]
···
E

[D]
···
E
∨E

E

[B]
···

C ∨D

[C]
···
E

[D]
···
E
∨E

E
∨E

E

We see in particular that the general case (with an unspecified elimination r) is
more intelligible than its 21 specialisations.

10.5 Properties of conversion

First of all, the normal form, if it exists, is unique: that follows again from a
Church-Rosser property. The result remains true in this case, since the conflicts
of the kind

···
A
∨1I

A ∨B

[A]
···
C

[B]
···
C
∨E

C
...

r
D

which converts in two different ways, namely

[A]
···
C

...
r

D

and
···
A
∨1I

A ∨B

[A]
···
C

...
r

D

[B]
···
C

...
r

D
∨E

D

are easily resolved, because the second deduction converts to the first.

It is possible to extend the results obtained for the (∧,⇒,∀) fragment to the
full calculus, at the price of boring complications. [Prawitz] gives all the technical
details for doing this. The abstract properties of reducibility for this case are
in [Gir72], and there are no real problems when we extend this to existential
quantification over types.



10.6. THE ASSOCIATED FUNCTIONAL CALCULUS 79

Having said this, we shall give no proof, because the theoretical interest is
limited. One tends to think that natural deduction should be modified to correct
such atrocities: if a connector has such bad rules, one ignores it (a very common
attitude) or one tries to change the very spirit of natural deduction in order to
be able to integrate it harmoniously with the others. It does not seem that the
(⊥,∨,∃) fragment of the calculus is etched on tablets of stone.

Moreover, the extensions are long and difficult, and for all that you will not
learn anything new apart from technical variations on reducibility. So it will suffice
to know that the strong normalisation theorem also holds in this case. In the
unlikely event that you want to see the proof, you may consult the references
above.

10.6 The associated functional calculus

Returning to the idea of Heyting, it is possible to understand the Curry-Howard
isomorphism in the case of ⊥ and ∨ (the case of ∃ will receive no more
consideration than did that of ∀).

10.6.1 Empty type

Emp is considered to be the empty type. For this reason, there will be a canonical
function εU from Emp to any type U : if t is of type Emp, them εU t is of type U .
The commutation for εU is set out in five cases:

π1(εU×V t)  εU t
π2(εU×V t)  εV t

(εU→V t)u  εV t

εU (εEmp t)  εU t

δ x. u y. v (εR+S t)  εU t

In the last case (δ x. u y. v t is introduced below) U is the common type of
u and v. It is easy to see that εU corresponds exactly to ⊥E and the five
conversions above to the five commutations of ⊥.
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10.6.2 Sum type

For U + V , we have the following schemes:

1. If u is of type U , then ι1u is of type U + V .

2. If v is of type V , then ι2v is of type U + V .

3. If x, y are variables of respective types R, S, and u, v, t are of respective
types U , U , R + S, then

δ x. u y. v t

is a term of type U . Furthermore, the occurrences of x in u are bound by
this construction, as are those of y in v. This corresponds to the pattern
matching

match t with inl x→ u | inr y → v

in a functional programming language like CAML.

Obviously the ι1, ι2 and δ schemes interpret ∨1I, ∨2I and ∨E . The standard
conversions are:

δ x. u y. v (ι1r) u[r/x] δ x. u y. v (ι2s) v[s/y]

The commuting conversions are

π1(δ x. u y. v t)  δ x. (π1u) y. (π1v) t U = V×W
π2(δ x. u y. v t)  δ x. (π2u) y. (π2v) t U = V×W
(δ x. u y. v t)w  δ x. (uw) y. (v w) t U = V→W
εW (δ x. u y. v t)  (δ x. (εW u) y. (εW v) t) U = Emp

δ x′. u′ y′. v′ (δ x. u y. v t)  δ x. (δ x′. u′ y′. v′ u) y. (δ x′. u′ y′. v′ v) t
U = V +W

which correspond exactly to the rules of natural deduction.

10.6.3 Additional conversions

Let us note for the record the analogues of 〈π1t, π2t〉 t and λx. t x t:

εEmp t t δ x. (ι1x) y. (ι2y) t t

Clearly the terms on both sides of the “ ” are denotationally equal. However
the direction in which the conversion should work is not very clear: the opposite
one is in fact much more natural.
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System F

System F [Gir71] arises as an extension of the simple typed calculus, obtained by
adding an operation of abstraction on types. This operation is extremely powerful
and in particular all the usual data-types (integers, lists, etc.) are definable.
The system was introduced in the context of proof theory [Gir71], but it was
independently discovered in computer science [Reynolds].

The most primitive version of the system is set out here: it is based on
implication and universal quantification. We shall content ourselves with defining
the system and giving some illustrations of its expressive power.

11.1 The calculus

Types are defined starting from type variables X, Y, Z, . . . by means of two
operations:

1. if U and V are types, then U→V is a type.

2. if V is a type, and X a type variable, then ΠX.V is a type.

There are five schemes for forming terms :

1. variables: xT , yT , zT , . . . of type T ,

2. application: tu of type V , where t is of type U→V and u is of type U ,

3. λ-abstraction: λxU . v of type U→V , where xU is a variable of type U and v
is of type V ,

4. universal abstraction: if v is a term of type V , then we can form ΛX. v
of type ΠX.V , so long as the variable X is not free in the type of a free
variable of v.
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5. universal application (sometimes called extraction): if t is a term of type
ΠX.V and U is a type, then t U is a term of type V [U/X].

As well as the usual conversions for application/λ-abstraction, there is one for
the other pair of schemes:

(ΛX. v)U  v[U/X]

Convention We shall write U1→U2→ . . . Un→V , without parentheses, for

U1→(U2→ . . . (Un→V ) . . .)

and similarly, f u1 u2 . . . un for (. . . ((f u1)u2) . . .)un.

11.2 Comments

First let us illustrate the restriction on variables in universal abstraction: if we
could form ΛX. xX , what would then be the type of the free variable x in this
expression? On the other hand, we can form ΛX.λxX . xX of type ΠX.X→X,
which is the identity of any type.

The näıve interpretation of the “Π” type is that an object of type ΠX.V is a
function which, to every type U , associates an object of type V [U/X].

This interpretation runs up against a problem of size: in order to understand
ΠX.V , it is necessary to know all the V [U/X]. But among all the V [U/X]
there are some which are (in general) more complex than the type which we
seek to model, for example V [ΠX.V /X]. So there is a circularity in the näıve
interpretation, and one can expect the worst to happen. In fact it all works out,
but the system is extremely sensitive to modifications which are not of a logical
nature.

We can nevertheless make (a bit) more precise the idea of a function defined
on all types: in some sense, a function of universal type must be “uniform”,
i.e. do the same thing on all types. λ-abstraction accommodates a certain dose
of non-uniformity, for example we can define a function by cases (if . . . then
. . . else). Such a kind of definition is inconceivable for universal abstraction:
the values taken by an object of universal type on differents types have to be
essentially “the same” (see A.1.3). It still remains to make this vague intuition
precise by appropriate semantic considerations.
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11.3 Representation of simple types

A large part of the interest in F is in the possibility of defining commonly used
types in it; we shall devote the rest of the chapter to this.

11.3.1 Booleans

We define Bool (not the one of system T) as ΠX.X→X→X with

T
def
= ΛX.λxX . λyX . x F

def
= ΛX.λxX . λyX . y

and if u, v, t are of respective types U,U,Bool we define Du v t of type U by

Du v t
def
= t U u v

Let us calculate Du v T and Du v F:

Du v T = (ΛX.λxX . λyX . x)U u v
 (λxU . λyU . x)u v
 (λyU . u) v
 u

Du v F = (ΛX.λxX . λyX . y)U u v
 (λxU . λyU . y)u v
 (λyU . yU) v
 v

11.3.2 Product of types

We define U×V def
= ΠX. (U→V→X)→X with

〈u, v〉 def
= ΛX.λxU→V→X . x u v

The projections are defined as follows:

π1t
def
= t U (λxU . λyV . x) π2t

def
= t V (λxU . λyV . y)
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Let us calculate π1〈u, v〉 and π2〈u, v〉:

π1〈u, v〉 = (ΛX.λxU→V→X . x u v)U (λxU . λyV . x)
 (λxU→V→U . x u v) (λxU . λyV . x)
 (λxU . λyV . x)u v
 (λyV . u) v
 u

π2〈u, v〉 = (ΛX.λxU→V→X . x u v)V (λxU . λyV . yV )
 (λxU→V→V . x u v) (λxU . λyV . y)
 (λxU . λyV . y)u v
 (λyV . y) v
 v

Note that 〈π1t, π2t〉  t does not hold, even if we allow λxU . t x  t and
ΛX. tX  t.

11.3.3 Empty type

We can define Emp
def
= ΠX.X with εU t

def
= t U .

11.3.4 Sum type

If U, V are types, we can define U + V
def
= ΠX. (U→X)→(V→X)→X.

If u, v are of types U, V we define ι1u and ι2v of type U + V by

ι1u
def
= ΛX.λxU→X . λyV→X . x u ι2v

def
= ΛX.λxU→X . λyV→X . y v

If u, v, t are of respective types U,U,R+ S, we define δ x. u y. v t of type U by

δ x. u y. v t
def
= t U (λxU . u) (λyV . v)

Let us calculate δ x. u y. v (ι1r):

δ x. u y. v (ι1r) = (ΛX.λxR→X . λyS→X . x r)U (λxR. u) (λyS. v)
 (λxR→U . λyS→U . x r) (λxR. u) (λyS. v)
 (λyS→U . (λxR. u) r) (λyS. v)
 (λxR. u) r
 u[r/x]

and similarly δ x. u y. v (ι2s) v[s/y].



11.4. REPRESENTATION OF A FREE STRUCTURE 85

On the other hand, the translation does not interpret the commuting or
secondary conversions associated with the sum type; the same remark applies to
the type Emp and also to the type Bool which has a sum structure and for which
it is possible to write commutation rules.

11.3.5 Existential type

If V is a type and X a type variable, then one can define

ΣX.V
def
= ΠY. (ΠX. (V→Y ))→Y

If U is a type and v a term of type V [U/X], then we define 〈U, v〉 of type
ΣX.V by

〈U, v〉 def
= ΛY. λxΠX.V→Y . x U v

Corresponding to the introduction of Σ, there is an elimination: if w is of
type W and t of type ΣX.V , X is a type variable, x a variable of type V and
the only free occurrences of X in the type of a free variable of w are in the type
of x, one can form ∇X. x. w t of type W (the occurrences of X and x in w are
bound by this construction):

∇X. x. w t
def
= tW (ΛX.λxV . w)

Let us calculate (∇X. x. w ) 〈U, v〉:

(∇X. x. w ) 〈U, v〉 = (ΛY. λxΠX.V→Y . x U v)W (ΛX.λxV . w)
 (λxΠX.V→W . x U v) (ΛX.λxV . w)
 (ΛX.λxV . w)U v
 (λxV [U/X]. w[U/X]) v
 w[U/X][v/xV [U/X]]

This gives a conversion rule which was for example in the original version of the
system.

11.4 Representation of a free structure

We have translated some simple types; we shall continue with some inductive
types: integers, trees, lists, etc. Undoubtedly the possibilities are endless and we
shall give the general solution to this kind of question before specialising to more
concrete situations.
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11.4.1 Free structure

Let Θ be a collection of formal expressions generated by

• some atoms c1, . . . , ck to start off with;

• some functions which allow us to build new Θ-terms from old. The most
simple case is that of unary functions from Θ to Θ, but we can also imagine
functions of several arguments from Θ,Θ, . . . ,Θ to Θ. These functions then
have types Θ→Θ→ . . .→Θ→Θ. Including the 0-ary case (constants), we
then have functions of n arguments, with possibly n = 0.

Θ may also make use of auxiliary types in its constructions; for example one
might embed a type U into Θ, which will give a function from U to Θ. There
could be even more complex situations. Take for example the case of lists formed
from objects of type U . We have a constant (the empty list) and we can build
lists by the following operation: if u is an object of type U and t a list, then
cons u t is a list. We have here a function from U,Θ to Θ.

But there are even more dramatic possibilities. Take the case of well-founded
trees with branching type U . Such a structure is a leaf or is composed from a
U -indexed family of trees: so, in this case, we have to consider a function of type
(U→Θ)→Θ.

Now let us turn to the general case. The structure Θ will be described by
means of a finite number of functions (constructors) f1, . . . , fn respectively of type
S1, . . . , Sn. The type Si must itself be of the particular form

Si = T i1→T i2→ . . . T iki→Θ

with Θ occurring only positively (in the sense of 5.2.3) in the T ij .

We shall implicitly require that Θ be the free structure generated by the fi,
which is to say that every element of Θ is represented in a unique way by a
succession of applications of the fi.

For this purpose, we replace Θ by a variable X (we shall continue to write Si
for Si[X/Θ]) and we introduce:

T = ΠX.S1→S2→ . . . Sn→X

We shall see that T has a good claim to represent Θ.
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11.4.2 Representation of the constructors

We have to find an object fi for each type Si[T/X]. In other words, we are
looking for a function fi which takes ki arguments of types T ij [T/X] and returns
a value of type T .

Let x1, . . . , xki be the arguments of fi. As X occurs positively in T ij , the
canonical function hi of type T→X defined by

hi x = xX yS1
1 . . . ySnn (where X, y1, . . . , yn are parameters)

induces a function T ij [hi] from T ij [T/X] to T ij depending on X, y1, . . . , yn. This
function could be defined formally, but we shall see it much better with examples.

Finally we put tj = T ij [hi]xj for j = 1, . . . , ki and we define

fi x1 . . . xki = ΛX.λyS1
1 . . . . λySnn . yi t1 . . . tki

11.4.3 Induction

The question of knowing whether the only objects of type T which one can
construct are indeed those generated from the fi is hard; the answer is yes,
almost! We shall come back to this in 15.1.1.

A preliminary indication of this fact is the possibility of defining a function
by induction on the construction of Θ. We start off with a type U and functions
g1, . . . , gn of types Si[U/X] (i = 1, . . . , n). We would like to define a function h of
type T→U satisfying:

h (fi x1 . . . xki) = gi u1 . . . uki where uj = T ij [h]xj for j = 1, . . . , ki

For this we put hx = xU g1 . . . gn and the previous equation is clearly satisfied.

This representation of inductive types was inspired by a 1970 manuscript of
Martin-Löf.
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11.5 Representation of inductive types

All the definitions given in 11.3 (except the existential type) are particular cases
of what we describe in 11.4: they do not come out of a hat.

1. The boolean type has two constants, which will then give f1 and f2 of type
boolean: so S1 = S2 = X and Bool = ΠX.X→X→X. It is easy to show
that T and F are indeed the 0-ary functions defined in 11.4 and that the
induction operation is nothing other than D.

2. The product type has a function f1 of two arguments, one of type U and
one of type V . So we have S1 = U→V→X, which explains the translation.
The pairing function fits in well with the general case of 11.4, but the two
projections go outside this treatment: they are in fact more easy to handle
than the indirect scheme resulting from a mechanical application of 11.4.

3. The sum type has two functions (the canonical injections), so S1 = U→X
and S2 = V→X. The interpretation of 11.3.4 matches faithfully the general
scheme.

4. The empty type has nothing, so n = 0. The function εU is indeed its
induction operator.

Let us now turn to some more complex examples.

11.5.1 Integers

The integer type has two functions: O of type integer and S from integers to
integers, which gives S1 = X and S2 = X→X, so

Int
def
= ΠX.X→(X→X)→X

In the type Int, the integer n will be represented by

n = ΛX.λxX . λyX→X . y (y (y . . . (y︸ ︷︷ ︸
n occurrences

x) . . .))

By interchanging S1 and S2, one could represent Int by the variant

ΠX. (X→X)→(X→X)

which gives essentially the same thing. In this case, the interpretation of n is
immediate: it is the function which to any type U and function f of type U→U
associates the function fn, i.e. f iterated n times.
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Let us write the basic functions:

O
def
= ΛX.λxX . λyX→X . x S t

def
= ΛX.λxX . λyX→X . y (tX x y)

Of course, we have O = 0 and Sn n+1.

As to the induction operator, it is in fact the iterator It, which takes an object
of type U , a function of type U→U and returns a result of type U :

Itu f t = t U u f

Itu f O = (ΛX.λxX . λyX→X . x)U u f
 (λxU . λyU→U . x)u f
 (λyU→U . u) f
 u

Itu f (S t) = (ΛX.λxX . λyX→X . y (tX x y))U u f
 (λxU . λyU→U . y (t U x y))u f
 (λyU→U . y (t U u y)) f
 f (t U u f)
= f (Itu f t)

It is not true that Itu f n+1 f (Itu f n), but both terms reduce to

f (f (f . . . (f︸ ︷︷ ︸
n+1 occurrences

u) . . .))

so at least Itu f n+1 ∼ f (Itu f n) , where “∼” is the equivalence closure of “ ”.
In fact, “ ” satisfies the Church-Rosser property, so that two terms are equivalent
iff they reduce to a common one.

While we are on the subject, let us show how recursion can be defined in
terms of iteration. Let u be of type U , f of type U→Int→U . We construct g of
type U×Int→U×Int by

g = λxU×Int. 〈f (π1x) (π2x), S π2x〉

In particular, g 〈u, n〉 〈f u n, n+1〉. So if It 〈u, 0〉 g n ∼ 〈tn, n〉 then:

It 〈u, 0〉 g n+1 ∼ g (It 〈u, 0〉 g n) ∼ g 〈tn, n〉 ∼ 〈f tn n, n+1〉
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Finally, consider Ru f t
def
= π1(It 〈u, 0〉 g t). We have:

Ru f 0 ∼ u Ru f n+1 ∼ f (Ru f n)n

The second equation for recursion is satisfied by values only, i.e. for each n
separately. We make no secret of the fact that this is a defect of system F.
Indeed, if we program the predecessor function

pred O = O pred (Sx) = x

the second equation will only be satisfied for x of the form n, which means
that the program decomposes the argument x completely into S S S . . . S O, then
reconstructs it leaving out the last symbol S. Of course it would be more
economical to remove the first instead!

11.5.2 Lists

U being a type, we want to form the type ListU , whose objects are finite sequences
(u1, . . . , un) of type U . We have two functions:

• the sequence () of type ListU , and hence S1 = X;

• the function which maps an object u of type U and a sequence (u1, . . . , un)
to (u, u1, . . . , un). So S2 = U→X→X.

Mechanically applying the general scheme, we get

ListU
def
= ΠX.X→(U→X→X)→X

nil
def
= ΛX.λxX . λyU→X→X . x

consu t
def
= ΛX.λxX . λyU→X→X . y u (tX x y)

So the sequence (u1, . . . , un) is represented by

ΛX.λxX . λyU→X→X . y u1 (y u2 . . . (y un x) . . .)

which we recognise, replacing y by cons and x by nil, as

consu1 (consu2 . . . (cons un nil) . . .)

This last term could be obtained by reducing (u1, . . . , un) (ListU) nil cons.
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The behaviour of lists is very similar to that of integers. We have in particular
an iteration on lists: if W is a type, w is of type W , f is of type U→W→W , one
can define for t of type ListU the term Itw f t of type W by

Itw f t
def
= tW w f

which satisfies

Itw f nil w Itw f (cons u t) f u (Itw f t)

Examples

• It nil cons t t for all t of the form (u1, . . . , un).

• If W = ListV where V is another type, and f = λxU . λyListW . cons (g x) y
where g is of type U→V , it is easy to see that

It nil f (u1, . . . , un) (g u1, . . . , g un)

Using a product type, we can obtain a recursion operator (by values):

R v f nil ∼ v
R v f (u1, . . . , un) ∼ f u1 (u2, . . . , un) (R v f (u2, . . . , un))

with v of type V and f of type U→ListU→V→V . This enables us to define, for
example, the truncation of a list by removal of its first element (if any), in an
analogous way to the predecessor:

tail nil = nil tail(cons u t) = t

where the second equation is only satisfied for t of the form (u1, . . . , un).

As an exercise, define by iteration:

• concatenation: (u1, . . . , un) @ (v1, . . . , vm) = (u1, . . . , un, v1, . . . , vm)

• reversal : reverse (u1, . . . , un) = (un, . . . , u1)

ListU depends on U , but the definition we have given is in fact uniform in it,
so we can define

Nil = ΛX. nil[X] of type ΠX. ListX
Cons = ΛX. cons[X] of type ΠX.X→ListX→ListX
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11.5.3 Binary trees

We are interested in finite binary trees. For this, we have two functions:

• the tree consisting only of its root, so S1 = X;

• the construction of a tree from two trees, so S2 = X→X→X.

Bintree
def
= ΠX.X→(X→X→X)→X

nil
def
= ΛX.λxX . λyX→X→X . x

couple u v
def
= ΛX.λxX . λyX→X→X . y (uX x y) (v X x y)

Iteration on trees is then defined by Itw f t
def
= tW w f when W is a type, w of

type W , f of type W→W→W and t of type Bintree. It satisfies:

Itw f nil w Itw f (couple u v) f (Itw f u) (Itw f v)

11.5.4 Trees of branching type U

There are two functions:

• the tree consisting only of its root, so S1 = X;

• the construction of a tree from a family (tu)u∈U of trees, so S2 = (U→X)→X.

TreeU
def
= ΠX.X→((U→X)→X)→X

nil
def
= ΛX.λxX . λy(U→X)→X . x

collect f
def
= ΛX.λxX . λy(U→X)→X . y (λzU . f z X x y)

The (transfinite) iteration is defined by Itw h t
def
= tW w h when W is a type,

w of type W , f of type (U→W )→W and t of type Bintree. It satisfies:

Itw h nil w Itw h (collect f) h (λxU . Itw h (f x))

Notice that Bintree could be treated as the type of trees with boolean branching
type, without substantial alteration.
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Just as we can abstract on U in ListU , the same thing is possible with trees.
This potential for abstraction shows up the modularity of F very well: for example,
one can define the module Collect = ΛX. collect[X], which can subsequently be
used by specifying the type X. Of course, we see the value of this in more
complicated cases: we only write the program once, but it can be applied (plugged
into other modules) in a great variety of situations.

11.6 The Curry-Howard Isomorphism

The types in F are nothing other than propositions quantified at the second order,
and the isomorphism we have already established for the arrow extends to these
quantifiers:

···
A
∀2I

∀X.A

···
∀X.A

∀2E
A[B/X]

which correspond exactly to universal abstraction and application.

If t of type A represents the part of the deduction above ∀2I, then ΛX. t
represents the whole deduction. The usual restriction on variables in natural
deduction (X not free in the hypotheses) corresponds exactly, as we can see here,
to the restriction on the formation of universal abstraction.

Likewise, ∀2E corresponds to an application to type B. To be completely
precise, in the case where X does not appear in A, one should specify what B
has been substituted.

The conversion rule (ΛX. v)U  v[U/X] corresponds exactly to what we want
for natural deduction:

···
A
∀2I

∀X.A
∀2E

A[B/X]

converts to ···
A[B/X]



Chapter 12

Coherence Semantics of the Sum

Here we consider the denotational semantics of Emp and + (corresponding to ⊥
and ∨) introduced in chapter 10.

Emp is naturally interpreted as the coherence space Emp whose web is empty,
and the interpretation of εU follows immediately1.

The sum, on the other hand, poses some delicate problems. When A and B
are two coherence spaces, there is just one obvious notion of sum, namely the
direct sum introduced below. Unfortunately, the δ scheme is not interpreted. This
objection also holds for other kinds of semantics, for example Scott domains.

After examining and rejecting a certain number of fudged alternatives, we
are led back to the original solution, which would work with linear functions
(i.e. preserving unions), and we arrive at a representation of the sum type as:

!A⊕ !B

It is this decomposition which is the origin of linear logic: the operations ⊕ (direct
sum) and ! (linearisation) are in fact logical operations in their own right.

1The reader familiar with category theory should notice that Emp is not an initial object.
This is to be expected in any reasonable category of domains, because there can be no initial
object in a non-degenerate Cartesian closed category where every object is inhabited (as it
will be if there are fixpoints). With linear logic, the problem vanishes because we do not
require a Cartesian closed category.

94
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12.1 Direct sum

The problem with sum types arises from the impossibility of defining the
interpretation by means of the direct sum:

|A ⊕ B| = |A|+ |B| = {1} × |A| ∪ {2} × |B|

(1, α) _^ (1, α′) (mod A⊕ B) if α _^ α′ (mod A)

(2, β) _^ (2, β′) (mod A⊕ B) if β _^ β′ (mod B)

with incoherence otherwise.

Domain-theoretically, this amounts to taking the disjoint union with the ∅
element identified, so it is sometimes called an amalgamated sum.

If we define the (stable) functions Inj 1 from A to A⊕ B and Inj 2 from B to
A⊕ B by

Inj 1(a) = {1} × a Inj 2(b) = {2} × b

every object of the coherence space A⊕B can be written Inj 1(a) for some a ∈ A
or Inj 2(b) for some b ∈ B. This expression is unique, except in the case of the
empty set: ∅ = Inj 1

∅ = Inj 2
∅. This non-uniqueness of the decomposition makes

it impossible to define a function casewise

H(Inj 1(a)) = F (a) H(Inj 2(b)) = G(b)

from two stable functions F from A to C and G from B to C. Indeed this fails
for the argument ∅, since F (∅) has no reason to be equal to G(∅).

12.2 Lifted sum

A first solution is given by adding two tags 1 and 2 to |A ⊕ B| to form A q B:
1 is coherent with the (1, α) but not with the (2, β) and likewise 2 with the (2, β)
but not with the (1, α).

We can then define:

q1(a) = {1} ∪ Inj 1(a) q2(b) = {2} ∪ Inj 2(b)
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Now, from F and G, the casewise definition is possible:

H(q1(a)) = F (a) H(q2(b)) = G(b)

H(c) = ∅ if c ∩ {1, 2} = ∅

In other words, in order to know whether γ ∈ H(c), we look inside c for a tag
1 or 2, then if we find one (say 1), we write c = q1(a) and ask whether γ ∈ G(a).

This solution interprets the standard conversion schemes:

δ x. u y. v (ι1r) u[r/x] δ x. u y. v (ι2s) v[s/y]

However the interpretation H of the term δ x. (ι1x) y. (ι2y) z, which is defined by

H(q1(a)) = q1(a) H(q2(b)) = q2(b)

H(c) = ∅ if c ∩ {1, 2} = ∅

does not always satisfy H(c) = c. In fact this equation is satisfied only for c of
the form q1(a), q2(b) or ∅.

On the other hand, the commuting conversions do hold: let t 7→ E t be an
elimination of the form π1t, or π2t, or t w, or εU t, or δ x′. u′ y′. v′ t. We want
to check that E (δ x. u y. v t) and δ x. (Eu) y. (E v) t have the same interpretation.
In the case where (semantically) t is q1a, the two expressions give [[Eu]](a). In
the case where c ∩ {1, 2} = ∅, we get on the one hand E(∅) where E is the
stable function corresponding to E, and on the other ∅; but it is easy to see that
E(∅) = ∅ (E is strict) in all the cases in question.

Having said this, the presence of an equation (however minor) which is not
interpreted means we must reject the semantics. Even if we are unsure how to
use it, the equation

δ x. (ι1x) y. (ι2y) t = t

plays a part in the implicit symmetries of the disjunction. Once again, we are not
looking for a model at any price, but for a convincing one. For that, even the
secondary connectors (such as ∨) and the marginal equations are precious, because
they show up some points of discord between syntax and semantics. By trying to
analyse this discord, one can hope to find some properties hidden in the syntax.
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12.2.1 dI-domains

There is a simple solution, but it requires the abandonment of coherence spaces:
let us simply say that in A q B, we only consider such objects as q1a, q2b
and ∅. As a result of what has gone before, everything will work properly, but
the structure so obtained is no longer a coherence space: indeed, if α ∈ |A|, then
q1α = {1, (1, α)} appears in Aq B, but not its subset {(1, α)}.

In fact, we see that it is necessary to add to the idea of coherence a partial
order relation, here 1 < (1, α), 2 < (2, β). We are interested in coherent subsets
of the space which are downwards-closed : if α′ < α ∈ a, then α′ ∈ a. According
to [Winskel], the tokens should be regarded as “events”, where coherence specifies
when two events may co-exist and the partial order α′ < α says that if the event
α is present then the event α′ must also be present. This is called an event
structure; [CGW86] characterises the resulting spaces, which are exactly [Berry]’s
original dI-domains.

As an example, one can re-define the lazy natural numbers, Int+, which we
met in section 9.3.2. Clearly we want p+ < q and p+ < q+ for p < q; one may
then show that the points of the corresponding dI-domain Int< are just the p̃, p̊,
∅ and ∞̃. The three spaces satisfy the domain equations

Int ' Sgl ⊕ Int Int+ ' Sgl ⊕ (Sgl N Int+) Int< ' Emp q Int<

where Sgl is the coherence space with just one token (section 12.6). This may be
used as an alternative way of defining inductive data types.

The damage caused by this interpretation is limited, because one can require
that for all α ∈ |A|, the set of α′ < α be finite, which ensures that the down-closure
of a finite set is always finite, and so we are saved from one of our objections to
Scott domains.

Semantically, there is nothing else to quarrel with about this interpretation,
which accounts for all reasonable constructions. But on the other hand, it forces
us to leave the class of coherence spaces, and uses an order relation which
compromises the conceptual simplicity of the system.

This leads us to look for something else, which does preserve this class. The
price will be a more complicated interpretation of the sum (although we are
basically only interested in the sum as a test for our semantic ideas) but we shall
be rewarded with a novel idea: linearity.

The interpretation we shall give is manifestly not associative. It is interesting
to remark that Winskel’s interpretation is not either: indeed, if A,B, C are
coherence spaces considered as event structures (with a trivial order relation) then
(Aq B)q C and Aq (B q C) are not the same:
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(1, (1, α)) (1, (2, β))

(1, 1) (1, 2) (2, γ)

1 2

@@ ��

(Aq B)q C

(2, (2, γ))(2, (1, β))

(2, 2)(2, 1)(1, α)

21

��@@

Aq (B q C)

12.3 Linearity

We have already remarked that the operation t 7→ t u is strict, i.e. preserves ∅.
Better than this it is linear. Let us look now at what that can mean. Let E be
the function from A→B to B defined by

E(f) = f(a) where a is a given object of A.

Let us work out Tr(E): we have to find all the β ∈ E(f) with f minimal.
Now β ∈ E(f) = f(a) iff there exists some a◦ ⊂ a such that (a◦, β) ∈ f . So the
minimal f are the singletons {(a◦, β)} with a◦ ⊂ a, a◦ finite, and the objects of
Tr(E) are of the form

({(a◦, β)}, β) with β ∈ |B|, a◦ ⊂ a, a◦ finite.

A stable function F from A to B is linear precisely when Tr(F ) consists of
pairs ({α}, β) with α ∈ |A| and β ∈ |B|.

12.3.1 Characterisation in terms of preservation

Let us look at some of the properties of linear functions.

i) F (∅) = ∅. Indeed, to have β ∈ F (∅), we need a◦ ⊂ ∅ such that
(a◦, β) ∈ Tr(F ); but a◦ = ∅ and so cannot be a singleton.

ii) If a1 ∪ a2 ∈ A, then F (a1 ∪ a2) = F (a1) ∪ F (a2). Clearly
F (a1) ∪ F (a2) ⊂ F (a1 ∪ a2). Conversely, if β ∈ F (a1 ∪ a2), that means
there is some a′ ⊂ a1 ∪ a2 such that (a′, β) ∈ Tr(F ); but a′ is a singleton, so
a′ ⊂ a1, in which case β ∈ F (a1), or a′ ⊂ a2, in which case β ∈ F (a2).
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These properties characterise the stable functions which are linear; indeed,
if β ∈ F (a) with a minimal, a must be a singleton:

i) F (∅) = ∅, so a 6= ∅.

ii) if a = a′ ∪ a′′, then F (a) = F (a′) ∪ F (a′′), so β ∈ F (a′) or β ∈ F (a′′); so, if a
is not a singleton, we can find a decomposition a = a′ ∪ a′′ which contradicts
the minimality of a.

Properties (i) and (ii) combine with preservation of filtered unions (Lin):

if A ⊂ A, and for all a1, a2 ∈ A, a1 ∪ a2 ∈ A,
then F (

⋃
A) =

⋃
{F (a) : a ∈ A}

Observe that this condition is in the spirit of coherence spaces, which must be
closed under pairwise-bounded unions. So we can define linear stable functions
from A to B by (Lin) and (St):

if a1 ∪ a2 ∈ A then F (a1 ∩ a2) = F (a1) ∩ F (a2)

the monotonicity of F being a consequence of (Lin).

12.3.2 Linear implication

We strayed from the trace to give a characterisation in terms of preservation.
Returning to it, if we know that F is linear, we can discard the singleton symbols
in Tr(F ):

Trlin(F ) = {(α, β) : β ∈ F (α)}

The set of all the Trlin(F ) as F varies over stable linear functions from A to
B forms a coherence space A( B (linear implication), with |A( B| = |A| × |B|
and (α, β) _^ (α′, β′) (mod A( B) if

i) α _^ α′ (mod A)⇒ β _^ β′ (mod B)

ii) β ^_ β′ (mod B)⇒ α ^_ α′ (mod A)

in which we introduce the abbreviation:

α ^_ α′ (mod A) for ¬(α _^ α′) or α = α′

for incoherence.
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Immediately we can see the essential property of linear implication:
antisymmetry. If we define, for a coherence space A, the space A⊥ (linear
negation) by

|A⊥| = |A|

α _^ α′ (mod A⊥) iff α ^_ α′ (mod A)

then the map (α, β) 7→ (β, α) is an isomorphism from A(B to B⊥(A⊥. In other
words, (α, β) _^ (α′, β′) (mod A( B) iff (β, α) _^ (β′, α′) (mod B⊥(A⊥).

What is the meaning of this? A stable function takes an input of A and
returns an output of B. When the function is linear, this process can be seen
dually as returning an input of A (i.e. an output of A⊥) from an output of B
(i.e. an input of B⊥). So the linear implication introduces a symmetrical form of
functional dependence, the duality of rôles of the argument and the result being
expressed by the linear negation A 7→ A⊥. This is analogous to transposition (not
inversion) in Linear Algebra.

To make this relevant, we have to show that linearity is not an exceptional
phenomenon, and we shall be able to symmetrise the functional situations.

12.4 Linearisation

Let A be a coherence space. We can define the space !A (“of course A”) by

|!A| = Afin = {a ∈ A : a finite}

a1
_
^ a2 (mod !A) iff a1 ∪ a2 ∈ A

The basic function associated with !A is

a 7→ !a = {a◦ : a◦ ⊂ a, a◦ finite}

from A to !A. This function is stable, but far from being linear!

The interesting point about !A is that A→B is equal to (!A)(B as one can
easily show. In other words, provided we change the source space, every stable
function is linear!
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Let us make this precise by introducing some notation:

• If F is stable from A to B, we define a linear stable function Lin(F ) from
!A to B by Trlin(Lin(F )) = Tr(F ). We have:

Lin(F )(!a) = F (a)

Indeed, if β ∈ F (a), then for some a◦ ⊂ a, we have (a◦, β) ∈ Tr(F ) =
Trlin(Lin(F )); but a◦ ∈ !a, so β ∈ Lin(F )(!a). Similarly, if β ∈ Lin(F )(!a),
we see that β ∈ F (a).

• If G is linear from !A to B, we define a stable function Delin(G) from A to
B by:

Delin(G)(a) = G(!a)

It is easy to see that Lin and Delin are mutually inverse operations2, and in
particular the equation Lin(F )(!a) = F (a) characterises Lin(F ).

We can now see very well how the reversibility works for ordinary implication:

A→B = !A( B ' B⊥( (!A)⊥ = B⊥( ?(A⊥)

where ?C def
= (!(C⊥))

⊥

In other words the (non-linear) implication is reversible, but this requires some
complicated constructions which have no connection with the functional intuition
we started off with.

All this is side-tracking us, towards linear logic, and we shall stick to concluding
the interpretation of the sum.

2Categorically, this says that ! is the left adjoint to the forgetful functor from coherence
spaces and linear maps to coherence spaces and stable maps.
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12.5 Linearised sum

We define Aq B = !A⊕ !B and in the obvious way:

q1a = {1} × !a q2b = {2} × !b

Casewise definition is no longer a problem: if F is stable from A to C and G
is stable from B to C, define H from Aq B to C by

H({1} × A) = Lin(F )(A) H({2} ×B) = Lin(G)(B)

without conflict at ∅, since Lin(F ) and Lin(G) are linear and so H(∅) = ∅.

The interpretation is not particularly economical but it has the merit of
making use of the direct sum, and not any less intelligible considerations. Above
all, it suggests a decomposition of the sum which shows up the more primitive
operations: “!” which we found in the decomposition of the arrow, and “⊕” which
is the truly disjunctive part of the sum.

Let us check the equations we want to interpret.

If F , G and a are the interpretations of u[x], v[y] and r, then the interpretation
of δ x. u y. v (ι1r) is Lin(F )(!a), which is equal to the interpretation F (a) of
u[r/x]. Similarly, we shall interpret the conversion δ x. u y. v (ι2s) v[s/y].

Now we shall turn to the equation δ x. (ι1x) y. (ι2y) t = t. First, we see that
Lin(q1)(A) = {1}×A, because it is the unique linear solution F of F (!a) = {1}×!a.
In particular, if t is interpreted by {1} ×A, then δ x. (ι1x) y. (ι2y) t is interpreted
by Lin(q1)(A) = {1} × A, and similarly, if t is interpreted by {2} × B, then
δ x. (ι1x) y. (ι2y) t is interpreted by Lin(q2)(B) = {2} ×B.

Finally, the commuting conversions are of the form

E (δ x. u y. v t) δ x. (Eu) y. (E v) t

where E is an elimination. In every case, it is easy to see that the corresponding
function E is linear. So it is enough to prove that, if E is linear, the function
defined casewise from E ◦F and E ◦G is E ◦H, where H is defined casewise from
F and G. But this is a consequence of

Lin(E ◦ F ) = E ◦ Lin(F )

(and likewise Lin(E ◦ G) = E ◦ Lin(G)) which follows immediately from the
characterisation of Lin(E ◦ F ).
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In the interpretation of the commuting conversions, it is of course crucial that
the eliminations be linear.

The direct sum is the dual of the direct product:

(AN B)⊥ = A⊥ ⊕ B⊥

It is of course more interesting to work with ⊕, which has a simple relationship
with N, than with q, which behaves quite badly.

12.6 Tensor product and units

The direct sum forms the disjoint union of the webs of two coherence spaces, so
what is the meaning of the graph product?

We define A⊗ B to be the coherence space whose tokens are the pairs 〈α, β〉,
where α ∈ |A| and β ∈ |B|, with the coherence relation

〈α, β〉_^ 〈α′, β′〉 (mod A⊗ B) iff α _^ α′ (mod A) and β _^ β′ (mod B)

This is called the tensor product. The dual (linear negation) of the tensor product
is called the par or tensor sum:

(A⊗ B)⊥ = A⊥ O B⊥

Comparing this with the linear implication we have

A( B = A⊥ O B = (A⊗ B⊥)
⊥

Finally, each of the four associative binary opertions ⊕, N, ⊗ and O has a
unit, respectively called 0, >, 1 and ⊥ (see section B.2). However for coherence
spaces they coincide in pairs:

• 0 = > = Emp, where |Emp| = ∅

• 1 = ⊥ = Sgl , where |Sgl | = {•}.

Which of these is the terminal object for coherence spaces and stable maps?
For linear maps? How do these types relate to absurdity and tautology in natural
deduction?



Chapter 13

Cut Elimination (Hauptsatz)

Gentzen’s theorem, one of the most important in logic, is not very far removed
from normalisation in natural deduction, which is to a large extent inspired by it.
In a slightly modified form, it is at the root of languages such as PROLOG. In other
words, it is a result which everyone should see proved at least once. However the
proof is very delicate and fiddly. So we shall begin by pointing out the key cases
which it is important to understand. Afterwards we shall develop the detailed
proof, whose intricacies are less interesting.

13.1 The key cases

The aim is to eliminate cuts of the special form

A ` C,B A′, C ` B′
Cut

A,A′ ` B,B′

where the left premise is a right logical rule and the right premise a left logical
rule, so that both introduce the main symbol of C. These cases enlighten the
deep symmetries of logical rules, which match each other exactly.

1. R∧ and L1∧

A ` C,B A′ ` D,B′
R∧

A,A′ ` C ∧D,B,B′
A′′, C ` B′′

L1∧
A′′, C ∧D ` B′′

Cut
A,A′, A′′ ` B,B′, B′′

is replaced by

104
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A ` C,B A′′, C ` B′′
Cut

A,A′′ ` B,B′′
================
A,A′, A′′ ` B,B′, B′′

where the double bar denotes a certain number of structural rules, in this
case weakening and exchange.

2. R∧ and L2∧

A ` C,B A′ ` D,B′
R∧

A,A′ ` C ∧D,B,B′
A′′, D ` B′′

L2∧
A′′, C ∧D ` B′′

Cut
A,A′, A′′ ` B,B′, B′′

is replaced similarly by

A′ ` D,B′ A′′, D ` B′′
Cut

A′, A′′ ` B′, B′′
================
A,A′, A′′ ` B,B′, B′′

3. R1∨ and L∨

A ` C,B
R1∨

A ` C ∨D,B

A′, C ` B′ A′′, D ` B′′
L∨

A′, A′′, C ∨D ` B′, B′′
Cut

A,A′, A′′ ` B,B′, B′′

is replaced by

A ` C,B A′, C ` B′
Cut

A,A′ ` B,B′
================
A,A′, A′′ ` B,B′, B′′

This is the dual of case 1.
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4. R2∨ and L∨

A ` D,B
R2∨

A ` C ∨D,B

A′, C ` B′ A′′, D ` B′′
L∨

A′, A′′, C ∨D ` B′, B′′
Cut

A,A′, A′′ ` B,B′, B′′

is replaced by

A ` D,B A′′, D ` B′′
Cut

A,A′′ ` B,B′′
================
A,A′, A′′ ` B,B′, B′′

This is the dual of case 2.

5. R¬ and L¬

A,C ` B
R¬

A ` ¬C,B

A′ ` C,B′
L¬

A′,¬C ` B′
Cut

A,A′ ` B,B′

is replaced by

A′ ` C,B′ A,C ` B
Cut

A′, A ` B′, B
==========
A,A′ ` B,B′

Note the switch.

6. R⇒ and L⇒

A,C ` D,B
R⇒

A ` C ⇒ D,B

A′ ` C,B′ A′′, D ` B′′
L⇒

A′, A′′, C ⇒ D ` B′, B′′
Cut

A,A′, A′′ ` B,B′, B′′

is replaced by
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A′ ` C,B′ A,C ` D,B
Cut

A′, A ` B′, D,B
=============
A,A′ ` D,B,B′ A′′, D ` B′′

Cut
A,A′, A′′ ` B,B′, B′′

So the problem is solved by two cuts.

7. R∀ and L∀

A ` C,B
R∀

A ` ∀ξ. C,B

A′, C[a/ξ] ` B′
L∀

A′,∀ξ. C ` B′
Cut

A,A′ ` B,B′

is replaced by

A ` C[a/ξ], B A′, C[a/ξ] ` B′
Cut

A,A′ ` B,B′

where a is substituted for ξ throughout the left-hand sub-proof.

8. R∃ and L∃

A ` C[a/ξ], B
R∃

A ` ∃ξ. C,B

A′, C ` B′
L∃

A′,∃ξ. C ` B′
Cut

A,A′ ` B,B′

is replaced by

A ` C[a/ξ], B A′, C[a/ξ] ` B′
Cut

A,A′ ` B,B′

This is the dual of case 7.
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13.2 The principal lemma

The degree ∂(A) of a formula is defined by:

• ∂(A) = 1 for A atomic

• ∂(A ∧B) = ∂(A ∨B) = ∂(A⇒ B) = max(∂(A), ∂(B)) + 1

• ∂(¬A) = ∂(∀ξ. A) = ∂(∃ξ. A) = ∂(A) + 1

so that ∂(A[a/ξ]) = ∂(A).

The degree of a cut rule is defined to be the degree of the formula which it
eliminates. The key cases considered above replace a cut by one or two cuts of
lower degree.

The degree d(π) of a proof is the sup of the degrees of its cut rules, so d(π) = 0
iff π is cut-free.

The height h(π) of a proof is that of its associated tree: if π ends in a rule
whose premises are proved by π1, . . . , πn (n = 0, 1 or 2) then h(π) = sup(h(πi))+1.

The principal lemma says that the final cut rule can be eliminated. Its complex
formulation takes account of the structural rules which interfere with cuts.

Notation If A is a sequence of formulae, then A− C denotes A where an
arbitrary number of occurrences of the formula C have been deleted.

Lemma Let C be a formula of degree d, and π, π′ proofs of A ` B and A′ ` B′
of degrees less than d. Then we can make a proof1 $ of A,A′−C ` B−C,B′ of
degree less than d.

Proof $ is constructed by induction on h(π) + h(π′), but unfortunately not
symmetrically in π and π′: at some stages preference is given to π, or to π′, and
$ is irreversibly affected by this choice.

To simplify matters, we shall suppose that in A′− C and B− C we have
removed all the occurrences of C. This allows us to avoid lengthy circumlocutions
without making any essential difference to the proof.

1$ is a variant of π, not of ω.
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The last rule r of π has premises Ai ` Bi
proved by πi, and the last rule r′

of π′ has premises A′j ` B
′
j

proved by π′j. There are several cases to consider:

1. π is an axiom. There are two subcases:

• π proves C ` C . Then a proof $ of C,A′− C ` B′ is obtained from
π′ by means of structural rules.

• π proves D ` D . Then a proof $ of D,A′− C ` D,B′ is obtained
from π by means of structural rules.

2. π′ is an axiom. This case is handled as 1; but notice that if π and π′ are
both axioms, we have arbitrarily privileged π.

3. r is a structural rule. The induction hypothesis for π1 and π′ gives a proof
$1 of A1

, A′− C ` B1
− C,B′ . Then $ is obtained from $1 by means of

structural rules. Notice that in the case where the last rule of π is RC on
C, we have more occurrences of C in B1 than in B.

4. r′ is a structural rule (dual of 3).

5. r is a logical rule, other than a right one with principal formula C. The
induction hypothesis for πi and π′ gives a proof $i of Ai, A

′−C ` Bi
−C,B′.

The same rule r is applicable to the $i, and since r does not create any new
occurrence of C on the right side, this gives a proof $ of A,A′−C ` B−C,B′.

6. r′ is a logical rule, other than a left one principal formula C (dual of 5).

7. Both r and r′ are logical rules, r a right one and r′ a left one, of principal
formula C. This is the only important case, and it is symmetrical.

First, apply the induction hypothesis to

• πi and π′, giving a proof $i of Ai, A
′− C ` Bi

− C,B′ ;
• π and π′j, giving a proof $′j of A,A′j− C ` B− C,B

′
j

.

Second apply r (and some structural rules) to the $i to give a proof ρ of
A,A′− C ` C,B− C,B′ . Likewise apply r′ (and some structural rules) to
the $′j to give a proof ρ′ of A,A′− C,C ` B− C,B′ .

There is one occurrence of C too many on the right of the conclusion to
ρ and on the left of that to ρ′. Using the cut rule we have a proof of
A,A′− C,A,A′− C ` B− C,B′, B− C,B′.

However the degree of this cut is d, which is too much. But we observe
that this is precisely one of the key cases presented in 13.1, so we can
replace this cut by others of degree < d. Finally $ is obtained by structural
manipulations. �
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13.3 The Hauptsatz

Proposition If π is a proof of a sequent of degree d > 0 then a proof $ of the
same sequent can be constructed with lower degree.

Proof By induction on h(π). Let r be the last rule of π and πi the subproofs
corresponding to the premises of r. We have two cases:

1. r is not a cut of degree d. The induction hypothesis gives $i of degree < d,
to which we apply r to give $.

2. r is a cut of degree d:

A ` C,B A′, C ` B′
Cut

A,A′ ` B,B′

The induction hypothesis provides $i of degree < d. This is the situation
to which the principal lemma applies, giving a proof $ of A,A′ ` B,B′ of
degree < d. �

By iterating the proposition, we obtain:

Theorem (Gentzen, 1934) The cut rule is redundant in sequent calculus. �

One should have some idea of how the process of eliminating cuts explodes
the height of proofs. We shall just give an overall estimate which does not take
into account the structural rules.

The principal lemma is linear: the elimination of a cut at worst multiplies the
height by the constant k = 4.

The proposition is exponential: reducing the degree by 1 increases the height
from h to 4h at worst, since in using the lemma we multiply by 4 for each unit of
height.

Altogether, the Hauptsatz is hyperexponential: a proof of height h and degree d
becomes, at worst, one of height H(d, h), where:

H(0, h) = h H(d+ 1, h) = 4H(d,h)

Consequently we have the all too common situation of an algorithm which
is effective but not feasible, in general, since we do not need to iterate the
exponential very often before we exceed all conceivable measures of the size of the
universe!
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13.4 Resolution

Gentzen’s result does not say anything about the case where we have non-trivial
axioms. Nevertheless, by close examination of the proof, we can see that the only
case in which we would be unable to eliminate a cut is that in which one of
the two premises is an axiom, and that it is necessary to extend the axioms by
substitution.

In other words, the Hauptsatz remains applicable, but in the form of a
restriction of the cut rule to those sequents which are obtained from proper
axioms by substitution.

As a consequence, if we confine ourselves to atomic sequents (built from atomic
formulae) as proper axioms, and as the conclusion, there is no need for the logical
rules.

Let us turn straight to the case of PROLOG. The axioms are of a very special
form, namely atomic intuitionistic sequents (also called Horn clauses) A ` B .
The aim is to prove goals, i.e. atomic sequents of the form ` B . In doing this
we have at our disposal

• instances (by substitution) A ` B of the proper axioms,

• identity axioms A ` A with A atomic,

• cut, and

• the structural rules.

But the contraction and weakening are redundant:

Lemma If the atomic sequent A ` B is provable using these rules, there is an
intuitionistic sequent A′ ` B′ provable without weakening or contraction, such
that:

• A′ is built from formulae of A;

• B′ is in B.

Proof By induction on the proof π of A ` B .

1. If π is an axiom the result is immediate, as the axioms, proper or identity,
are intuitionistic.

2. If π ends in a structural rule applied to A1
` B1 , the induction hypothesis

gives an intuitionistic sequent A′1 ` B
′
1 and we put A′ = A′1, B′ = B′1.
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3. If π ends in a cut

A1
` C,B1 A2

, C ` B2
Cut

A1
, A2
` B1

, B2

then the induction hypothesis provides A′1 ` B
′
1 and A′2 ` B

′
2 and two

cases arise:

• B′1 6= C: we can take A′ = A′1 and B′ = B′1;

• B′1 = C, which occurs, say, n times in A2: by making exchanges and
n cuts with A′1 ` C we obtain the result with A′ = A′1, . . . , A

′
1
, A′2− C

and B′ = B′2. �

This lemma is immediately applicable to a goal ` B , which gives A′ empty
and B′ = B. Notice that the deduction necessarily lies in the intuitionistic
fragment. But in this case, it is possible to eliminate exchange too, by permuting
the order of application of cuts. Furthermore, cut with an identity axiom

A ` C C ` C
Cut

A ` C

is useless, so we have:

Proposition In order to prove a goal, we only need to use cut with instances (by
substitution) of proper axioms.

Robinson’s resolution method (1965) gives a reasonable strategy for finding
such proofs. The idea is to try all possible combinations of cuts and substitutions,
the latter being limited by unification. However that would lead us too far afield.



Chapter 14

Strong Normalisation for F

The aim of this chapter is to prove:

Theorem All terms of F are strongly normalisable, and the normal form is
unique.

The uniqueness is not problematic: it comes from an extension of the
Church-Rosser theorem. Existence is much more delicate; in fact, we shall see
in chapter 15 that the normalisation theorem for F implies the consistency of
second order arithmetic PA2. The classic result of logic, if anything deserves that
name, is Gödel’s second incompleteness theorem, which says (assuming that it
is not contradictory) that the consistency of PA2 cannot be proved within PA2.
Consequently, since consistency can be deduced from normalisation within PA2, the
normalisation theorem cannot be proved within PA2. That gives us an essential
piece of information for the proof: we must look for a strategy which goes outside
PA2.

Essentially, PA2 contains the Axiom (scheme) of comprehension

∃X.∀ξ. (ξ ∈ X ⇔ A[ξ])

where A is a formula in which the variable X does not occur free. A may contain
first order (∀ξ. , ∃ξ. ) and second order (∀X. , ∃X. ) quantification. Intuitively,
the first order variables range over integers and the second order ones over sets
of integers. This system suffices for everyday mathematics: for instance, real
numbers may be coded as sets of integers.

So we seek to use “all possible” axioms of comprehension, or at least a large
class of them. For this, we shall look back at Tait’s proof (using reducibility) and
try to extend it to system F.
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14.1 Idea of the proof

We would like to say that t of type ΠX.T is reducible iff for all types U , t U is
reducible (of type T [U/X]). For example, t of type ΠX.X would be reducible iff
t U is reducible for all U . But U is arbitrary — it may be ΠX.X — and we need
to know the meaning of reducibility of type U before we can define it! We shall
never get anywhere like this. Moreover, if this method were practicable, it would
be applicable to variants of system F for which normalisation fails.

14.1.1 Reducibility candidates

To solve this problem, we shall introduce reducibility candidates. A reducibility
candidate of type U is an arbitrary reducibility predicate (set of terms of type U)
satisfying the conditions (CR 1-3) of chapter 6. Among all the “candidates”, the
“true” reducibility predicate for U is to be found.

A term of type ΠX.T is reducible when, for every type U and every reducibility
candidate R of type U , the term t U is reducible of type T [U/X], where reducibility
for this type is defined taking R as the definition of reducibility for U . Of course,
if R is the “true” reducibility of type U , then the definition we shall be using
for T [U/X] will also be the “true” one. In other words, everything works as
if the rule of universal abstraction (which forms functions defined for arbitrary
types) were so uniform that it operates without any information at all about its
arguments.

Before going on with the details, let us look informally at how the universal
identity ΛX.λxX . x will be reducible. It is of type ΠX.X→X, and a term t
of this type is reducible iff whatever reducibility candidate R we take for U ,
the term t U is reducible of type U→U , this reducibility being defined by means
of R. Now, t U is reducible of type U→U if for all u reducible of type U
(i.e. u ∈ R) t Uu is reducible of type U (i.e. t Uu ∈ R). We are led to showing
that u ∈ R ⇒ t Uu ∈ R; but R satisfies (CR 1-3) and t Uu is neutral, so this
implication follows from manipulation with (CR 3).

14.1.2 Remarks

The choice of (CR 1-3) is crucial. We need to identify some useful induction
hypotheses on a set of terms which is otherwise arbitrary, and they must be
preserved by the construction of the “true reducibility”. These conditions were
originally found by trial and error. In linear logic, reducibility candidates appear
much more naturally, from a notion of orthogonality on terms [Gir87].
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The case of the universal type ΠX.V introduces a quantification over sets of
terms (in fact over all reducibility candidates). Thus we make more and more
complex definitions of reducibility, and there is no second order formula RED(T, t)
which says “t is reducible of type T”. This is completely analogous to what
happens at the first order, with system T.

But the main point is that, in order to interpret the universal application
scheme t U , we have to substitute in the definition of reducibility for t, not an
arbitrary candidate, but the one we get by induction on the construction of U .
So we must be able to define a set of terms of type U by a formula, and this uses
the comprehension scheme in an essential way.

For second order systems, unlike the simpler ones, there is no known alternative
proof. For example, normalisation for the Theory of Constructions [Coquand]
— an even stronger system — can be shown by an adaptation of the method
presented here.

14.1.3 Definitions

A term t is neutral if it does not start with an abstraction symbol, i.e. if it has
one of the following forms:

x t u t U

A reducibility candidate of type U is a set R of terms of type U such that:

(CR 1) If t ∈ R, then t is strongly normalisable.

(CR 2) If t ∈ R and t t′, then t′ ∈ R.

(CR 3) If t is neutral, and whenever we convert a redex of t we obtain a term
t′ ∈ R, then t ∈ R.

From (CR 3) we have in particular:

(CR 4) If t is neutral and normal, then t ∈ R.

This shows that R is never empty, because it always contains the variables of
type U .

For example, the set of strongly normalisable terms of type U is a reducibility
candidate (see 6.2.1).
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If R and S are reducibility candidates of types U and V , we can define a set
R→S of terms of type U→V by:

t ∈ R→S iff ∀u (u ∈ R ⇒ t u ∈ S)

By 6.2.3, we know that R→S is a reducibility candidate of type U→V .

14.2 Reducibility with parameters

Let T [X] be a type, where we understand that X contains (at least) all the
free variables of T . Let U be a sequence of types, of the same length; then
we can define by simultaneous substitution a type T [U/X]. Now let R be a
sequence of reducibility candidates of corresponding types; then we can define a
set REDT [R/X] (parametric reducibility) of terms of type T [U/X] as follows:

1. If T = Xi, then REDT [R/X] = Ri;

2. If T = V→W , then REDT [R/X] = REDV [R/X]→ REDW [R/X];

3. If T = ΠY.W then REDT [R/X] is the set of terms t of type T [U/X] such
that, for every type V and reducibility candidate S of this type, then
t V ∈ REDW [R/X,S/Y ].

Lemma REDT [R/X] is a reducibility candidate of type T [U/X].

Proof By induction on T : the only case to consider is T = ΠY.W .

(CR 1) If t ∈ REDT [R/X], take an arbitrary type V and an arbitrary candidate
S of type V (for example, the strongly normalisable terms of type V ).
Then t V ∈ REDW [R/X,S/Y ], and so, by induction hypothesis (CR 1), we
know that t V is strongly normalisable. But ν(t) ≤ ν(t V ), so t is strongly
normalisable.

(CR 2) If t ∈ REDT [R/X] and t  t′ then for all types V and candidate S,
we have t V ∈ REDW [R/X,S/Y ] and t V  t′ V . By induction hypothesis
(CR 2) we know that t′ V ∈ REDW [R/X,S/Y ]. So t′ ∈ REDT [R/X].

(CR 3) Let t be neutral and suppose all the t′ one step from t are in REDT [R/X].
Take V and S: applying a conversion inside t V , the result is a t′ V since t is
neutral, and t′ V is in REDW [R/X,S/Y ] since t′ is. By induction hypothesis
(CR 3) we see that t V ∈ REDW [R/X,S/Y ], and so t ∈ REDT [R/X]. �
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14.2.1 Substitution

The following lemma says that parametric reducibility behaves well with respect
to substitution:

Lemma REDT [V/Y ][R/X] = REDT [R/X,REDV [R/X]/Y ]

Here we make hidden use of the comprehension scheme, since, in order to be
able to use the predicate REDV [R/X] as a parameter, it is necessary to know that
it is a set.

This lemma is proved by a straightforward induction on T . The only difficulty
was to formulate it precisely!

14.2.2 Universal abstraction

Lemma If for every type V and candidate S, w[V/Y ] ∈ REDW [R/X,S/Y ], then
ΛY.w ∈ REDΠY.W [R/X].

Proof We have to show that (ΛY.w)V ∈ REDW [R/X,S/Y ] for every type V
and candidate S of type V . We argue by induction on ν(w). Converting a redex
of (ΛY.w)V gives:

• (ΛY.w′)V with ν(w′) < ν(w), which is in REDW [R/X,S/Y ] by the induction
hypothesis.

• w[V/Y ] which is in REDW [R/X,S/Y ] by assumption.

So the result follows from (CR 3). �

14.2.3 Universal application

Lemma If t ∈ REDΠY.W [R/X], then t V ∈ REDW [V/Y ][R/X] for every type V .

Proof By hypothesis t V ∈ REDW [R/X,S/Y ] for every candidate S. We just
take S = REDV [R/X] and the result follows from lemma 14.2.1. �



118 CHAPTER 14. STRONG NORMALISATION FOR F

14.3 Reducibility theorem

A term t of type T is said reducible if it is in REDT [SN /X], where X1, . . . , Xm

are the free type variables of T , and SN i is the set of strongly normalisable terms
of type Xi.

As in chapter 6 we can prove the

Theorem All terms of F are reducible.

and hence, by (CR 1), the

Corollary All terms of F are strongly normalisable.

We need a more general result, which uses substitution twice (once for types,
and again for terms) and from which the theorem follows by putting Ri = SN i

and uj = xj:

Proposition Let t be a term of type T . Suppose all the free variables of
t are among x1, . . . , xn of types U1, . . . , Un, and all the free type variables of
T, U1, . . . , Un are among X1, . . . , Xm. If R1, . . . ,Rm are reducibility candidates of
types V1, . . . , Vm and u1, . . . , un are terms of types U1[V /X], . . . , Un[V /X] which
are in REDU1 [R/X], . . . ,REDUn [R/X] then t[V /X][u/x] ∈ REDT [R/X].

The proof is similar to 6.3.3. The new cases are handled using 14.2.2
and 14.2.3.



Chapter 15

Representation Theorem

In this chapter we aim to study the “strength” of system F with a view to
identifying the class of algorithms which are representable. For example, if f is a
closed term of type Int→Int, it gives rise to a function (in the set-theoretic sense)
|f | from N to N by

f(n) |f |(n)

The function |f | is recursive, indeed we have a procedure for calculating it,
namely:

• write the term f(n);

• normalise it: any normalisation strategy will do this, since the strong
normalisation theorem says that all reduction paths lead to the (same)
normal form;

• observe that the normal form is a numeral m: we have seen that this is true
for system T, and this is also valid for system F, as we shall show next;

• put |f |(n) = m.

In the first part, we shall show that |f | is provably total in second order
Peano arithmetic, by close examination of the proof of strong normalisation in
the previous chapter.

In the second part, we shall use Heyting’s ideas once again, essentially in the
form of the realisability method due to Martin-Löf, to show the converse of this,
that if a function is provably total then it is representable.
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15.1 Representable functions

15.1.1 Numerals

Proposition Any closed normal term t of type Int = ΠX.X→(X→X)→X is a
numeral n for some n ∈ N.

Proof The notion of head normal form (section 3.4) is applicable to system F,
and from it we deduce that t must be of the form

ΛX.λxX . λyX→X . v

where v is of type X, and so cannot be an abstraction. We prove by induction
that v is of the form

y (y (y . . . (y︸ ︷︷ ︸
n occurrences

x) . . .))

where n is an integer.

Suppose that v is w u or wU , where w 6= y. Since v is normal, w must be of
the form w′ u′ or w′ U ′. But the types of x and y are simpler than that of w′, so
w′ is an abstraction and w is a redex: contradiction. So v is x, in which case our
result holds with n = 0, or v is y v′ and we apply the induction hypothesis to v′

of type X. �

Remark If we had taken the variant ΠX. (X→X)→(X→X) we would have
obtained almost the same result, but in addition there is a variant for 1:

ΛX.λyX→X . y

This phenomenon is one of the little imperfections of the syntax. Similar
features arise with inductive data types, i.e. the closed normal forms of type T
are “almost” the terms obtained by combining the functions fi, but in general
only “almost”.

Having said this, the recursion scheme for inductive types, defined (morally) in
terms of the fi, shows that (in a sense to be made precise) the terms constructed
from the fi are “dense” among the others. To return to our pet subject, the
syntax seems to be too rigid and much too artificial to allow a satisfactory study
of such difficulties. Undoubtedly they cannot be resolved otherwise than by
means of an operational semantics which would allow us to identify (or distinguish
between) algorithms beyond what can be done with normalisation, which is only
an approximation to that semantics.
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15.1.2 Total recursive functions

Let us return to the original question, which was to characterise the functions
which are representable in F. We have seen that such functions are recursive,
i.e. calculable.

Proposition There is a total recursive function which is not representable in F.

Proof The function which we shall take is the normalisation operation. We
represent terms in a formal language as a string of symbols from a fixed finite
alphabet and hence as an integer. Then this function takes one term (represented
by an integer) and yields another. This function is universal (in the sense of
Turing) with respect to the functions representable in F, and so cannot itself be
represented in F.

More precisely:

• N(n) = m if n codes the term t, m codes u and u is the normal form of t.

• N(n) = 0 if n does not code any term of F.

On the other hand we have the functions:

• A(m,n) = p if m,n, p are the codes of t, u, v such that v = t u, with
A(m,n) = 0 otherwise.

• ](n) = m if m codes n.

• [(m) = n if m is the code of the numeral n, with [(m) = 0 otherwise.

Now consider:

D(n) = [(N(A(n, ](n)))) + 1

This is certainly a total recursive function, but it cannot be represented
in F. Indeed, suppose that t of type Int→Int represents D and let n be the
code of t. Then A(n, ](n)) is the code of t n, and N(A(n, ](n))) that of its
normal form. But by definition of t, t n D(n), so N(A(n, ](n))) = ](D(n)) and
[(N(A(n, ](n)))) = D(n) whence D(n) = D(n) + 1: contradiction.

For any reasonable coding, A, ] and [ are obviously representable in F,
so N itself is not representable in F. �

This result is of course a variant of a very famous result in Recursion Theory
(due to Turing), namely that the set of total recursive functions cannot be
enumerated by a single total recursive function. In particular it applies to all
sorts of calculi, typed or untyped, which satisfy the normalisation theorem.
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15.1.3 Provably total functions

A recursive function f which is total from N to N is called provably total in a
system of arithmetic A if A proves the formula which expresses “for all n, the
program e, with input n, terminates and returns an integer” for some algorithm
e representing f . The precise formulation depends on how we write programs
formally in A. For example, with the Kleene notation:

A proves ∀n. ∃m.T1(e, n,m)

where T1(e, n,m) means that the program e terminates with output m if given
input n. This may itself be expressed as ∃m′. P (n,m,m′) where P is a primitive
recursive predicate and m′ is the “transcript” of the computation. The two
quantifiers ∃m. ∃m′. can be replaced by a single one ∃p. using some (primitive
recursive) coding of pairs. We prefer to be no more specific about this precise
formulation, but we notice that termination is expressed by a Π0

2 formula1.

In 7.4, we saw that the functions representable in T are provably total in
Peano arithmetic PA, and the converse is also true. Here we have:

Proposition The functions representable in F are provably total in second order
Peano arithmetic PA2.

Proof An object f of type Int→Int gives rise to an algorithm which, given an
integer n, returns |f |(n); we have described how to do this already. Now we want
to show that this program terminates. We make use of the strong normalisation
theorem, and by examining the mathematical principles employed in the proof we
obtain the result.

What matters is essentially the reducibility of f alone (together with that
of the numerals, which is immediate). We only use finitely many reducibilities,
which saves us from the fact that (as in T) reducibility is not globally definable.
The reducibility predicates are definable by second order quantification over sets
of (terms coded as) integers. The mathematical principles we have used are:

• induction on the reducibility predicates for the types involved in f ,

• the comprehension scheme and second order quantification, which allow us
to define a reducibility candidate from a parametrised reducibility.

But PA2 is precisely the system of arithmetic with induction, comprehension and
second order quantification. �

1See footnote page 57.
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Remark Let us point out briefly the status of functions which are provably total
in a system of arithmetic which is not too weak:

• If A is 1-consistent, i.e. proves no false Σ0
1 formula (as we hope is the

case for PA, PA2 and the axiomatic set theory of Zermelo-Fraenkel) then
a diagonalisation argument shows that there are total recursive functions
which are not provably total in A.

• Otherwise (and notice that A can be consistent without being 1-consistent,
e.g. A = PA + ¬consis(PA)) A proves the totality of recursive functions
which are in fact partial. It can even prove the totality of all recursive
functions (but for wrong reasons, and after modification of the programs).

15.2 Proofs into programs

The converse of the proposition is also true, so we have:

Theorem The functions representable in F are exactly those which are provably
total in PA2.

The original proof in [Gir71] uses an argument of functional interpretation
which is technical and of limited interest. We shall give here a much simpler one,
inspired by [ML70].

First we replace PA2 by its intuitionistic version HA2 (Heyting second order
arithmetic), which is closer to system F. This is possible because HA2 is as
strong as PA2 in proving totality of algorithms.

Indeed, there is the so called “Gödel translation” which consists of putting ¬¬
at “enough places” so that: if A is provable in PA2 then A¬¬ is provable in HA2.

The ¬¬-translation of a Π0
2 formula, say ∀n. ∃m.T1(e, n,m), is

∀n.¬¬∃m.T1(e, n,m)

up to trivial equivalences, and standard proof-theoretic considerations show that
the second one is provable in HA2 if and only if the first is.



124 CHAPTER 15. REPRESENTATION THEOREM

15.2.1 Formulation of HA2

There are two kinds of variables:

• ξ, η, ζ, . . . (for integers)

• X, Y, Z, . . . (for sets of integers)

We could have n-ary predicate variables for arbitrary n, but we assume them to
be unary for the sake of exposition. We quite deliberately use X as a second-order
variable both for HA2 and for F.

We shall also have basic function symbols, namely O (0-ary) and S (unary).
The formulae will be built from atoms

• a ∈ X, where a is a term (i.e. a SnO or a Snξ) and X a set variable,

• a = b, where a and b are terms,

by means of ⇒, ∀ξ. , ∃ξ. and ∀X. It is possible to define the other connectors ∧,
∨, ⊥ and ∃X. in the same way as in 11.3, and ¬A as A ⇒ ⊥. In fact ∃ξ. is
definable too, but it is more convenient to have it as a primitive connector.

There are obvious (quantifier free) axioms for equality, and for S we have:

¬ S ξ = O S ξ = S η ⇒ ξ = η

The connectors ⇒, ∀ξ. and ∃ξ. are handled by the usual rules of natural
deduction (chapters 2 and 10) and ∀X. by:

···
A
∀2I

∀X.A

···
∀X.A

∀2E
A[{ξ. C}/X]

In the last rule, A[{ξ. C}/X] means that we replace all the atoms a ∈ X by
C[a/ξ] (so {ξ. C} is not part of the syntax).

To illustrate the strength of this formalism (second order à la Takeuti) observe
that ∀2E is nothing but the principle

∀X.A⇒ A[{ξ. C}/X]

and in particular, with A the provable formula
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∃Y.∀ξ. (ξ ∈ X ⇔ ξ ∈ Y )

we get ∃Y.∀ξ. (C ⇔ ξ ∈ Y ). Therefore ∀2E appears as a variant of the
Comprehension Scheme.

Notice that there is no induction scheme. However if we define

Nat(ξ)
def
= ∀X. (O ∈ X ⇒ ∀η. (η ∈ X ⇒ S η ∈ X)⇒ ξ ∈ X)

then it is easy to prove that

A[O/ξ] ∧ ∀η. (Nat(η)⇒ A[η/ξ]⇒ A[S η/ξ]) ⇒ ∀η. (Nat(η)⇒ A[η/ξ])

In other words, the induction scheme holds provided all first order quantifiers are
relativised to Nat.

15.2.2 Translation of HA2 into F

To each formula A of HA2 we associate a type [[A ]] of F as follows:

1. [[ a = b ]] = S where S is any fixed type of F with at least one closed term,
e.g. S = ΠX.X→X. This simply says that equality has no algorithmic
content.

2. [[ a ∈ X ]] = X (considered as a type variable of F)

3. [[A⇒ B ]] = [[A ]]→[[B ]]

4. [[∀ξ. A ]] = [[∃ξ. A ]] = [[A ]]

5. [[∀X.A ]] = ΠX. [[A ]]

As we have said, we can define the other connectives, so for example

[[A ∧B ]] = ΠX. ([[A ]]→[[B ]]→X)→A

where X is not free in A or B.

Notice that the first order variables ξ, η, ... completely disappear in the
translation, and so we have [[A[a/ξ] ]] = [[A ]].

The reader is invited to verify that:

[[ Nat(ξ) ]] = ΠX.X→(X→X)→X = Int
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Next we have to give a similar translation of the deduction δ of an HA2-formula
A from (parcels of) hypotheses Ai into a term [[ δ ]] of F-type [[A ]], depending
on free first-order F-variables xi of types [[Ai ]]. Moreover this translation must
respect the conversion rules.

1. If δ is just the hypothesis Ai then [[ δ ]] = xi.

2. The axioms are translated into dummy terms.

3. The rules for → are translated into abstraction and application in F. If the
variable y is chosen to correspond to the parcel of hypotheses C and δ is
a deduction of B from (Ai and) C, then when we add ⇒I the translation
becomes λy. [[ δ ]]. Conversely, modus ponens (⇒E) applied to δ proving C
and ε proving C→B gives [[ ε ]][[ δ ]]. Clearly, the conversion rule is respected.

4. ∀I, ∀E and ∃I are translated into nothing, because [[A[a/ξ] ]] = [[A ]]. For ∃E ,
if δ proves ∃ξ. C and ε proves D from C then the full proof translates to
[[ ε ]][[[ δ ]]/y], where y corresponds to the parcel C and again conversion is
respected.

5. Finally, for ∀2 we note first that

[[A[{ξ. C}/X] ]] = [[A ]][[[C ]]/X]

and so we may translate ∀2I into ΛX. [[ δ ]] and ∀2E into [[ δ ]][[C ]], respecting
conversion.

15.2.3 Representation of provably total functions

In HA2, the formula Nat(SnO) admits a (normal) deduction n̆, namely

[O ∈ X]
···

Sn−1O ∈ X

[∀η. (η ∈ X ⇒ S η ∈ X)]
∀E

Sn−1O ∈ X ⇒ SnO ∈ X
⇒E

SnO ∈ X
⇒I

∀η. (η ∈ X ⇒ S η ∈ X)⇒ SnO ∈ X
⇒I

O ∈ X ⇒ ∀η. (η ∈ X ⇒ S η ∈ X)⇒ SnO ∈ X
∀2I

∀X. (O ∈ X ⇒ ∀η. (η ∈ X ⇒ S η ∈ X)⇒ SnO ∈ X)

whose translation into system F is n.

The reader is invited to prove the following:

Lemma n̆ is the only normal deduction of Nat(SnO). �
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This fact is similar to 15.1.1, but the proof is more delicate, because of the
axioms (especially the negative one ¬ S ξ = O) which, a priori, could appear in
the deduction. The fact that S a = O is not provable (consistency of HA2) must
be exploited.

Now let A[n,m] be a formula expressing the fact that an algorithm, if given
input n, terminates with output m = f(n). Suppose we have can prove

∀n ∈ N.∃m ∈ N. A[n,m]

by means of a deduction δ in HA2 of

∀ξ. (Nat(ξ)⇒ ∃η. (Nat(η) ∧ A[ξ, η]))

Then we get a term [[ δ ]] of type

[[ ∀ξ. (Nat(ξ)⇒ ∃η. (Nat(η) ∧ A[ξ, η])) ]] = Int→(Int×[[A ]])

and the term t = λx. π1([[ δ ]] x) of type Int→Int yields an object that keeps the
algorithmic content of the theorem:

∀n ∈ N.∃m ∈ N. A[n,m]

Indeed, for any n ∈ N, the normal form of the deduction

n̆···
Nat(SnO)

δ···
∀ξ. (Nat(ξ)⇒ ∃η. (Nat(η) ∧ A[ξ, η]))

∀E
Nat(SnO)⇒ ∃η. (Nat(η) ∧ A[SnO, η])

⇒E
∃η. (Nat(η) ∧ A[SnO, η])

must end with an introduction:

δn···
Nat(SmO) ∧ A[SnO, SmO]

∃I
∃η. (Nat(η) ∧ A[SnO, η])
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Now, applying ∧1E to δn, we get a deduction of Nat(SmO) whose translation is
(equivalent to) t n. By the lemma, this deduction normalises to m̆, and so t n
normalises to m. But A[SnO, SmO] is provable in HA2, so it is true in the standard
model, which means that m = f(n). So we have proved that f is representable in
system F.

Unfortunately our proof is erroneous: it is impossible to interpret the
axiom ¬ S ξ = O in 15.2.2, simply because there is no closed term of type
[[¬ S ξ = O ]] = S→Emp.

Everything works perfectly if we add to system F a junk term Ω of type
Emp = ΠX.X, interpreting the problematic axiom by λxS.Ω (the semantic
analogue of Ω is ∅). This junk term disappears in the normalisation of t n, since
we proved that the result is an m, but this is not very beautiful: it would be nicer
to remain in pure system F. We shall see that it is indeed possible to eliminate
junk from t.

15.2.4 Proof without undefined objects

Instead of adding this junk term, we can interpret it into pure system F, by a
coding which maps every type to an inhabited one while preserving normalisation.

Proposition For any (closed) term t of type Int→Int in system F with junk,
there is a (closed) term t′ of pure system F such that, if t n normalises to m, then
t′ n normalises to m.

In particular, if t represents a function f , so does t′, and the representation
theorem is (correctly) proved.

Proof By induction, we define:

• 〈〈X〉〉 = X

• 〈〈U→V 〉〉 = 〈〈U〉〉→〈〈V 〉〉

• 〈〈ΠX.V 〉〉 = ΠX.X→〈〈V 〉〉

so that:

〈〈T [U/X]〉〉 = 〈〈T 〉〉[〈〈U〉〉/X]
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If T is a type with free variables X1, . . . , Xp we define inductively a term ιT
of type 〈〈T 〉〉 with free first order variables x1, . . . , xp of types X1, . . . , Xp:

• ιX = xX

• ιU→V = λy〈〈U〉〉. ιV (note that y does not occur in ιV )

• ιΠX.V = ΛX.λxX . ιV (where x may occur in ιV )

In particular, if T is closed, 〈〈T 〉〉 is inhabited by the closed term ιT , for instance

〈〈ΠX.X〉〉 = ΠX.X→X and ιΠX.X = ΛX.λxX . x

If t is term of type T with free type variables X1, . . . , Xp and free first order
variables y1, . . . , yq of types U1, . . . , Uq we define inductively a term 〈〈t〉〉 (without
junk) of type 〈〈T 〉〉 with free type variables X1, . . . , Xp and free first order variables
x1, . . . , xp, y1, . . . , yq of types X1, . . . , Xp, 〈〈U1〉〉, . . . , 〈〈Uq〉〉:

• 〈〈yT 〉〉 = y〈〈T 〉〉

• 〈〈λyU . v〉〉 = λy〈〈U〉〉. 〈〈v〉〉

• 〈〈t u〉〉 = 〈〈t〉〉 〈〈u〉〉

• 〈〈ΛX. v〉〉 = ΛX.λxX . 〈〈v〉〉 (note that x may occur in 〈〈v〉〉)

• 〈〈t U〉〉 = 〈〈t〉〉 〈〈U〉〉 ιU

• 〈〈Ω〉〉 = ιEmp = ΛX.λxX . x

Again the reader can check the following properties

〈〈t[u/yU ]〉〉 = 〈〈t〉〉[〈〈u〉〉/y〈〈U〉〉]

ιT [U/X] = ιT [〈〈U〉〉/X][ιU/x
〈〈U〉〉]

〈〈t[U/X]〉〉 = 〈〈t〉〉[〈〈U〉〉/X][ιU/x
〈〈U〉〉]

which are needed for the preservation of conversions:

if t u then 〈〈t〉〉 〈〈u〉〉
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Now we see that

〈〈Int〉〉 = ΠX.X→X→(X→X)→X

〈〈n〉〉 = ΛX.λxX . λyX . λzX→X . zn y

weakenn 〈〈n〉〉 and contract 〈〈n〉〉 n

Finally, a term t of type Int→Int with junk can be replaced by

t′ = λzInt. contract(〈〈t〉〉(weaken z))

without junk. �



Appendix A

Semantics of System F

by Paul Taylor

In this appendix we shall give a semantics for system F in terms of coherence
spaces. In particular we shall interpret universal abstraction by means of a kind of
“trace”, showing that the primary and secondary equations hold. We shall examine
the way in which its terms are “uniform” over all types. Finally we shall attempt
to calculate some universal types such as Emp = ΠX.X, Sgl = ΠX.X → X,
Bool = ΠX.X →X →X and Int = ΠX.X → (X →X)→X.

A.1 Terms of universal type

A.1.1 Finite approximation

We have already said in section 11.2 that a term ΛX. t of universal type ΠX.T
is intended to be a function which assigns to any type U a term t[U/X] of type
T [U/X]. In particular, the interpretation of ΛX.λx. x is to be the function which
assigns to any coherence space A (the trace of) the identity function, i.e.

IdA = {({α}, α) : α ∈ |A|}

But we have a problem of size: there is a proper class of coherence spaces, so
how can this be a legitimate function?

We can solve this problem in the same way as we did for functions, by
requiring that every domain be expressible as a “limit” of finite domains. Then
by continuity we can derive the value of a universal term at an arbitrary domain
from its values at finite domains. Since there are only countably many finite
domains up to isomorphism, the function is defined by a set — so long as we
ensure that its values at isomorphic domains are equal (along the isomorphisms).

131
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A.1.2 Saturated domains

There is a common but misleading alternative solution. We choose a “big” domain
Ω which is saturated under all the relevant operations on types, and restrict our
notion of domain A to “subdomains” of Ω. Thus for instance if A is such a
subdomain then we require A→A to be one also; in particular Ω→ Ω is one.
Then the identity, being an element of Ω→Ω, which is identified with a subspace
of Ω, is an element of Ω. Scott’s Pω model [Scott76] is a well-known example of
this approach, and [Koymans] examined this in detail as a notion of model of the
untyped lambda calculus1.

However, besides the fact that not all domains are represented, this approach
has several pitfalls.

• Whereas in set theory the notions of element and type are confused, here
we have to distinguish between Ω as the “universe of elements” and some
domain V whose elements may serve as names of types — a “universe of
types”.

• It is not good enough to construct such a V with the property that every
domain be named by a point of V : this is like the “by values” interpretation
of recursive functions. We need that every variable domain be named by a
term (with the same free variables) of type V . The obvious choice is the
category of domains and embeddings, but this is not one of our domains. It
is, however, possible to “cover” it with a domain, although the techniques
required for this, which are set out in [Tay86], §5.6, are much more difficult
than the construction of Ω.

• Isomorphic types may be represented by different elements of V , and there is
nothing to force the values of universal terms at such elements to be equal.
This means that the condition at the end of A.1.1 for finite approximation
is violated, there are far more points of universal types than corresponding
terms in the syntax, and the interpretation of simple terms such as ΛX.λx. x
is very uneconomical.

• It is possible to model system F, and more generally the Theory of
Constructions, using the category of embeddings for V , as has been done in
[CGW87] and [HylPit], but Jung has shown that this is not possible for all
categories of domains in current use.

What really fails in the third remark is the “uniformity” of terms over all types.

1As an exercise, the reader is invited to construct a countable coherence space into which
any other can be rigidly embedded (A.3.1).
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A.1.3 Uniformity

It is as a result of “uniformity” that the model we present has its remarkably
economical form. We shall have to treat this in detail relative to “subspaces”, but
first consider the consequences of requiring a construction on a type to be uniform
with respect to all isomorphisms of the type with itself, i.e. permutations. Taking
common geometrical notions, the construction must be the centre of a sphere, the
axis of a cone, and so on. A subgroup of a group which is (setwise) invariant
under automorphisms is called characteristic. The more automorphisms there
are, the more highly constrained a “uniform” construction has to be. Generally,
something is uniform if it is “peculiar” — described by some property which it
alone satisfies. In our case we want it to be definable by a term of the syntax (cf.
section 11.2), and in the last section of this appendix we shall examine to what
extent this is true.

We obtain power from this condition by manufacturing automorphisms to
order. One very crude construction suffices: we take the sum of a domain with
itself (either lifted or amalgamated on some subdomain), which obviously has a
“left-right” symmetry. (We shall say what we mean by a subdomain in the next
section.) Given a subspace inclusion A ⊂ B, a “uniform” element of B +A B
cannot be in either the left or the right parts of the sum — it has to be in the
common subspace A. This is the conundrum of the donkey which starves to death
because it cannot choose between two equally inviting piles of hay, equidistant to
its left and right.

There is a similar property (separability) for fields which underlies Galois
Theory: given a subfield inclusion K ⊂ L, there is a bigger field L ⊂M such that
the automorphisms of M fixing K (pointwise) fix only K. For fields, M is the
normal closure — a more complex construction than our B +A B.

Uniformity with respect to automorphisms is a feature of any functorial theory,
including Scott’s. However for such theories we only have a subuniformity with
respect to subdomains: the value of a universal term at A need only be less
than that at B (where A ⊂ B). It is the stability condition which puts the above
separability property to use: A is the intersection of the two copies of B in
B+A B, and so by stability the value of the universal term at it must be equal to
(the intersection of) the projection(s) of its value(s) at B. Hence the coherence
space model is uniform.

We make this vague argument precise in A.4.1.
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A.2 Rigid Embeddings

In order to make sense of the idea of “finite approximation” we have to formalise
the notion of subdomain or approximation of domains.

The idea used in Scott’s domain theory is that of an embedding-projection pair,
e : A� B and p : B −. A, satisfying2 1A = pe and ep ≤ 1B. The latter composite
is idempotent and is called a coclosure on B.

We may use these functions to define when an element a of A is “less than”
an element b of B (but not vice versa), namely if a ≤ pb in A, or equivalently
ea ≤ b in B3.

For coherence spaces we shall use the same idea, except that e now has to be
stable (p is already) and the inequality ep ≤B 1B must hold in the Berry order.
Now e is linear and identifies A with a down-closed subset of B; it also preserves
and reflects atoms and the coherence relation. Consequently we may represent it
by its restriction to the web, which is a graph embedding. This justifies the abuse
of notation eα for the unique token β such that e{α} = {β}, and so enables us
to regard e as a function between webs.

The traces of e and p are

Tr(e) = {〈{α}, eα〉 : α ∈ |A|}
Tr(p) = {〈{eα}, α〉 : α ∈ |A|}

We shall often write e : A → B as e+ and p : B → A as e− for a graph embedding
e : |A|� |B|.

For pedagogical purposes it is often easier to see a 1–1 function (such as a
rigid embedding) as an isomorphism followed by an inclusion: the isomorphism
changes the name of the datum to its value in the target and the inclusion is that
of the set of represented values. In our case we may do this with either points
a ∈ A or tokens α ∈ |A|.

2There are reasons for weakening this to 1A ≤ pe. We may consider that a domain is
a better approximation than another if it can express more data, and this gives rise to an
embedding. However we may also consider that a domain is inferior if its representation makes
“a priori” distinctions between things which subsequently turn out to be the same, and such
a comparison is of this more general form. On the other hand the limit-colimit coincidence
and other important constructions such as Π and Σ types remain valid. However for rigid
adjunctions 1A = pe is forced because the identity is maximal in the Berry order.

3In fact ≤ is not a partial order but a category, because it depends on e. Applying this to
a functor T , we obtain a category with objects the pairs (A, b) for b ∈ T (A) and morphisms
given in this way by embeddings; this is called the total category or Grothendieck fibration of
T and is written Σ◦X. T .
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Observe then that for inclusions the embedding is just the identity and the
projection is the restriction:

e(a) = a p(b) = b ∩ |A|

A.2.1 Functoriality of arrow

The reason for using pairs of maps for approximations is that we need to make
the function-space functorial (positive) in its first argument: if A′ approximates
A then we need A′→B to approximate A→B and not vice versa.

Indeed if e : A′� A and f : B′� B then we have e→f : (A′→B′)� (A→B)
by

(e→ f)+(t′)(a) = f+(t′(e−a))
(e→ f)−(t)(a′) = f−(t(e+a′))

for a ∈ A, a′ ∈ A′, t : A→B and t′ : A′→B′. (We leave the reader to check the
inequalities.)

Recall that the tokens of A→ B are of the form (a, β) where a is a clique
(finite coherent subset) of |A| and β is a token of |B|. If e : |A′| � |A| and
f : |B′|� |B| are rigid embeddings then the effect on the token (a′, β′) of A′→B′
is simply the corresponding renaming throughout, i.e. (e+a′, fβ′).

In particular the token ({α′}, α′) of IdA′ is mapped to ({eα′}, eα′), so the
identity is uniform in the sense that

IdA′ = IdA ∩ |A′→A′|

where A′� A is a subspace.

Coherence spaces and rigid embeddings — or equivalently Graphs and
embeddings — form a category Gem, and we have shown that → is a covariant
functor of two arguments from Gem,Gem to Gem.
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A.3 Interpretation of Types

We can use this to express any type T of F with n free type variables X1, ..., Xn

as a functor [[T ]] : Gemn → Gem as follows:

1. If T is a constant type then we assign to it a coherence space T and

[[T ]](A1, ...,An) = T

Any morphism is mapped to the identity on T .

2. If T is the variable Xi then the functor is the ith projection

[[Xi]](A1, ...,An) = Ai

and similarly on morphisms.

3. If T is U→ V , and U and V have been interpreted by the functors [[U ]] and
[[V ]] then

[[U → V ]](A1, ...,An) = [[U ]](A1, ...,An)→ [[V ]](A1, ...,An)

Its value on morphisms is as given at the end of the previous section.

This definition respects substitution of types U1, ..., Un for the variables X1, ..., Xn:
[[T [Ui/Xi]]] = [[T ]]([[U1]], ..., [[Un]]).

Because of functoriality, we immediately know that if A′ ' A then
[[T ]](A′) ' [[T ]](A). It is convenient to assume for pedagogical reasons that
if A′ ⊂ A is a subspace then the induced embedding [[T ]](A′)� [[T ]](A) is also a
subspace inclusion.
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A.3.1 Tokens for universal types

The interpretation is continuous: if β ∈ |[[T ]](A)| then there is a finite subspace
A′ � A such that β ∈ |[[T ]](A′)|. (Categorically, we would say that the functor
preserves filtered colimits.) This means that, as in section A.1.1, we may restrict
attention to finite coherence spaces. For an arbitrary coherence space A,

|[[T ]](A)| =
⋃↑{|[[T ]](A′)| : A′� A finite}

But more than this, it is stable:

if A′,A′′ ⊂ A and β ∈ |[[T ]](A′)|, |[[T ]](A′′)| then β ∈ |[[T ]](A′ ∩ A′′)|

i.e. the functor preserves pullbacks4. For a stable function, if we know β ∈ f(a),
then there is a least a′ ⊂ a such that β ∈ f(a′). We have a similar5 property here:
if β ∈ |[[T ]](A)| then there is a least subspace A′� A with β ∈ |[[T ]](A′)|.

The token β of [[T ]](A) therefore intrinsically carries with it a particular finite
subspace A′ ⊂ A, namely the least subspace on which it can be defined. It is
not difficult to see that, in terms of the web, this is simply the set of tokens α
which occur in the expression for β. Thus for instance the only token occurring
in β = ({α}, α) is α, and the corresponding finite space is Sgl , whose web is a
singleton, {•}.

We shall see later that the pairs 〈A, β〉, where β ∈ |[[T ]](A)| and no proper
A′� A has β ∈ |[[T ]](A′)|, serve as (potential) tokens for [[ΠX.T ]]. If A ' A′
then the token 〈A′, β′〉, where β′ is the image of β under the induced isomorphism
[[T ]](A) ' [[T ]](A′), is equivalent to 〈A, β〉. These tokens involve pairs, finite
(enumerated) sets and finite graphs, and so there are at most countably many of
them altogether; consequently it will be possible to denote any type of F by a
countable coherence space.

We may calculate |[[T ]](A)| from these tokens as follows. For every embedding
e : A′� A and every token β ∈ |[[T ]](A′)|, we have a token [[T ]](e)(β) ∈ |[[T ]](A)|.
However the fact that there may be several such embeddings (and hence several
copies of the token, which must be coherent) gives rise to additional (uniformity)
conditions on the tokens of |[[ΠX.T ]]|. For instance we shall see that 〈Sgl , •〉 is
not a token for [[ΠX.X]].

4As with continuity of →, this follows from a limit-colimit coincidence: for a pullback of
rigid embeddings, the corresponding projections form a pushout, and if this occurs on the left
of an → it is turned back into a pullback of embeddings. This does not, however, hold for
equalisers.

5The argument by analogy is in some ways misleading, because even for a continuous
functor T the fibration Σ◦X. T → Gem is stable.



138 APPENDIX A. SEMANTICS OF SYSTEM F

A.3.2 Linear notation for tokens

We can use the linear logic introduced in chapter 12 to choose a good notation
for the tokens β and express the conditions on them. Recall that

A→B ' !A( B ' (!A⊗ B⊥)
⊥

where

• The tokens of !A are the cliques (finite complete subgraphs) of |A|, and two
cliques are coherent iff their union is a clique; we write cliques as enumerated
sets.

• B⊥ is the linear negation of B, whose web is the complementary graph to
that of B; it is convenient to write its tokens as β. Then β _^ β′ iff β ^_ β′;
this avoids saying “mod B” or “mod B⊥”.

• |C ⊗ D| is the graph product of |C| and |D|; its tokens are pairs 〈γ, δ〉 and
this is coherent with 〈γ′, δ′〉 iff γ _^ γ′ and δ _^ δ′.

The token of the identity, ΛX.λxX . x, is therefore written

〈Sgl , 〈{•}, •〉〉

In this notation it is easy to see how we can ascribe a meaning to the phrase
“α occurs positively (or negatively) in β”. Informally, a particular occurrence is
positive or negative according as it is over-lined evenly or oddly.

We can obtain a very useful criterion for whether a potential token can actually
occur.

Lemma Let α ∈ |A| and β ∈ |[[T ]](A)|. Define a coherence space A+ by adjoining
an additional token α′ to |A| which bears the same coherence relation to the
other tokens (besides α) as does α, and is coherent with α. There are two rigid
embeddings A � A+ (in which α is taken to respectively α and α′), so write
β, β′ ∈ |A|+ for the images of β under these embeddings. Similarly we have
A� A−, in which α′ ^_ α. Then

• if α does not occur in β then β = β′ in both [[T ]](A+) and [[T ]](A−).

• if α occurs positively but not negatively then β _^ β′ in [[T ]](A+) and β ^_ β′

in [[T ]](A−).

• if it occurs negatively but not positively then the reverse holds.

Proof Induction on the type T . �
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We shall see that uniformity of the universal term ΛX. t forces e1β and e2β
to be both present in (and hence coherent) or both absent from |[[t]](A)|, where
〈A′, β〉 is a token for T and e1, e2 : A′ � A are two embeddings. In fact 〈A′, β〉
is a token iff this holds. From this we have the simple

Corollary If 〈A, β〉 is a token of [[ΠX.T ]] and α ∈ |A| then α occurs both
positively and negatively in β. �

The corollary is not a sufficient condition on 〈A, β〉 for it to be a token of
[[ΠX.T ]], but it is very a useful criterion to determine some simple universal types.

A.3.3 The three simplest types

Any token for X→X is of the form 〈A, 〈a, α〉〉, in which only the token α appears
positively, so a = {α}. Hence the only token for this type is the one given, and
[[ΠX.X→X]] ' Sgl . This means that the only uniform functions of type X→X
are the identity and the undefined function.

The case of T = X is even simpler. No token of A can appear negatively,
and so there is no token at all: [[ΠX.X]] ' Emp has the empty web and only
the totally undefined term, ∅. The reason for this is that if a term is defined
uniformly for all types then it must be coherent with any term; since there are
incoherent terms this must be trivial.

It is clear that no model of F of a domain-theoretic nature can exclude the
undefined function, simply because ∅ is semantically definable. For higher types
this leads to the same logical complexities as in section 8.2.2.

Unfortunately, even accepting partiality, coherence spaces do not behave as we
might wish. The tokens for the interpretation of

Bool = ΠX.X→X →X

are of the form 〈Sgl , 〈a, 〈b, •〉〉〉 such that a ∪ b = {•}. This admits not two but
three (incoherent) solutions:

〈Sgl , 〈{•}, 〈∅, •〉〉〉 〈Sgl , 〈{•}, 〈{•}, •〉〉〉 〈Sgl , 〈∅, 〈{•}, •〉〉〉

of which the first and last represent t and f .

The middle one is intersection. Although it is not definable in System F, it
may be thought of as the program which reads two streams of tokens and outputs
those common to both of them. It is a uniform linear function X ⊗ X ( X,
whereas t and f are linear X N X ( X because they only use one of their
arguments. Consequently we may eliminate intersection by considering the “linear
booleans”
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ΠX.X NX(X

Semantically, this bi linear function is just binary intersection, which is
uniformly definable in our domains because they are boundedly complete (have
joins of sets of points which are bounded above). One might imagine, therefore,
that it would cease to be definable if we extended our class of domains to include
Jung’s “L-domains”, in which for every point a ∈ A the set ↓ a def

= {a′ : a′ ≤ a}
is a complete lattice. Unfortunately, like the Hydra the “intersection” function
just becomes more complicated: we can define m(a, b) to be the join in ↓ a of
the set {c : c ≤ a, c ≤ b}. So long as we only consider domains for which in the
lattices ↓ a binary meet distributes over arbitrary joins, m : A⊗A(A is bilinear
and uniform in the sense we have defined. By iterating it, we would obtain
infinitely many additional points of ΠX.X→X→X — except that it’s worse than
this, because the original size problems recur and we can no longer even form
polymorphic types in the semantics!6

A.4 Interpretation of terms

Having sketched the notation we shall now interpret terms and give the formal
semantics of F using coherence spaces.

Recall that a type T with n free type variables X1, ..., Xn is interpreted by a
stable functor [[T ]] : Gemn → Gem. Let t be a term of type T with free variables
x1, ..., xm of types U1, ..., Um, where the free variables of the U are included among
the X. Then t likewise assigns to every n-tuple A in Gemn and every m-tuple
bj ∈ [[Uj]](A) a point c ∈ [[T ]](A). Of course the function b 7→ c must be stable,
and we may simplify matters by replacing t by λx. t and T by U1→ ...→Um→ T
to make m = 0. We must consider what happens when we vary the Ai.

A.4.1 Variable coherence spaces

Let T : Gem→ Gem be any stable functor and τ(A) ∈ T (A) a choice of points.
Let e : A′ � A be a rigid embedding; we want to make τ “monotone” with
respect to it. We can use the idea from section A.3.1 to do this: we want

τ(A′) ≤ T (e)−(τ(A))

which becomes, when the embeddings are subspace inclusions,

τ(A′) ⊂ τ(A) ∩ |T (A′)|
6These two hitherto unpublished observations have been made by the author of this

appendix since the original edition of this book.
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We shall use the separability property to show that stability forces equality here.
The following is due to Eugenio Moggi.

Lemma Let e : A′ � A be a rigid embedding. Let A +A′ A be the coherence
space whose web consists of two incoherent copies of |A| with the subgraphs |A′|
identified. Then A has two canonical rigid embeddings into A +A′ A and their
intersection is A′. �

What does it mean for τ to be a stable function from Gem? We have not
given the codomain7, but we can still work out intersections using the definition
of a ≤ b as a ≤ e−b for e : A � B. Write A1 and A2 for the two copies of A
inside A+A′ A, whose intersection is A′.

Using the “projection” form of the inequality, 〈A′′, β〉 is in the intersection iff

A′′ ⊂ A1 ∩ A2

β ∈ τ(A1) ∩ |T (A′′)| = τ(A) ∩ |T (A′′)|
β ∈ τ(A2) ∩ |T (A′′)| = τ(A) ∩ |T (A′′)|

The intersection of the values at A1 and A2 is therefore just

τ(A) ∩ |T (A′)|

By stability this must be the value at A′. This proves the

Proposition Let τ be an object of the variable coherence space T (X1, ..., Xn),
and ei : A′i� Ai be rigid embeddings. Then8

τ(A′) = τ(A) ∩ |T (A′)|

and indeed if τ satisfies this condition then it is stable. �

A.4.2 Coherence of tokens

In fact the lemma tells us slightly more. B = A +A′ A has an automorphism e
exchanging the two copies of A. This must fix τ(B), so if β ∈ Tr(τ(B)) then also
eβ is in this trace and consequently must be coherent with β. So,

Lemma Let β ∈ |T (A)| and e1, e2 : A� B be two embeddings. Then e1β _^ e2β
in B. �

7It is the total category Σ◦X. T (X) which we met in section A.3.1.
8Note that this equality only holds for type variables and not for dependency over ordinary

domains.
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The converse holds:

Lemma Let β ∈ |T (A)| be such that (i) A is minimal for β and (ii) β has
coherent images under any pair of embeddings of A into another domain. Then
there is an object τ〈A,β〉 of type T whose value at T (B) is

{T (e)(β) : e : A� B}

and moreover this is atomic, i.e. has no nontrivial subobject. �

To test this condition we only need to consider graphs up to twice the size of
|A|, and so it is a finite9 calculation to determine whether 〈A, β〉 satisfies it. For
any given type these tokens are recursively enumerable. Because τ〈A,β〉 is atomic,
we must have just one token for ΠX. T (X), so 〈A, β〉 and 〈A′, β′〉 are identified
for any e : A ' A′ with eβ = β′.

We still have to say when these tokens are coherent.

Lemma Let β1 ∈ |T (A1)| and β2 ∈ |T (A2)| each satisfy these conditions. Then
τ〈A1,β1〉(B) _^ τ〈A2,β2〉(B) at every coherence space B iff for every pair of embeddings
e1 : A1 � C, e2 : A2 � C, we have T (e1)(β) _^ T (e2)(β). �

Finally this enables us to calculate the universal abstraction of any variable
coherence space.

Proposition Let T : Gem → Gem be a stable functor. Then its universal
abstraction, ΠX. T (X), is the coherence space whose tokens are equivalence classes
of pairs 〈A, β〉 such that

• β ∈ |T (A)|

• A is minimal for this, i.e. if A′ ⊂ A and β ∈ |T (A′)| then A′ = A (so A is
finite).

• for any two rigid embeddings e1, e2 : A� B, we have

T (e1)(β) _^ T (e2)(β)

in T (B).

• 〈A, β〉 is identified with 〈A′, β′〉 iff e : A ' A′ and T (e)(β) = β′ (so |A| may
be taken to be a subset of N).

9Though it would appear to be exponential in |A|2.
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• 〈A, β〉 is coherent with 〈A′, β′〉 iff for every pair of embeddings e : A� B
and e′ : A′� B we have T (e)(β) _^ T (e′)(β′).

Proof ΠX. T (X) is a coherence space because if any 〈A, β〉 occurs in a point
then so does the whole of τ〈A,β〉, and any coherent union of these gives rise to a
uniform element. �

One ought to prove that if T : Gem × Gem → Gem is stable then so is
ΠX. T : Gem → Gem, and also check that the positive and negative criterion
remains valid.

A.4.3 Interpretation of F

Let us sum up by setting out in full the coherence space semantics of F. The type
U in n free variables X is interpreted as a stable functor [[U ]] : Gemn → Gem as
in §A.3, with the additional clause

4. If U = ΠX.T then the web of [[U ]](A) is given as in the preceding proposition,
where T (X) = [[T ]](A, X). The embedding induced by e : A′ � A is takes
tokens of [[U ]](A′) to the corresponding tokens with α′i replaced by eiα

′
i.

The term t of type T with m free variables x of types U (the free type
variables of T, U being X) is interpreted as an assignment to each A of a stable
function

[[t]](A) : [[U1]](A) N ...N [[Um]](A)→ [[T ]](A)

such that for e : A′� A and bj ∈ [[Uj]](A) the uniformity equation holds:

[[T ]](e)−([[t]](A)(b)) = [[t]](A′)([[U ]](e)−(b))

In detail,

1. The variable xj is interpreted by the jth product projection.

[[xj]](A)(b) = bj

2. The interpretation of λ-abstraction λx. u is given in terms of that of u by
the trace

[[λx. u]](A)(b) = {〈c, δ〉 : δ ∈ [[u]](A)(b, c), with c minimal}
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3. The application uv is interpreted using the formula (App) of section 8.5.2:

[[uv]](A)(b) = {δ : ∃c ⊂ [[v]](A)(b). 〈c, δ〉 ∈ [[u]](A)(b)}

4. The universal abstraction, ΛX. v, is also given by a “trace”:

[[ΛX. v]](A)(b) = {[〈C, δ〉] : δ ∈ [[v]](A, C)(b), with C minimal}

where [〈C, δ〉] denotes the equivalence class: 〈C, δ〉 is identified with 〈C ′, δ′〉
whenever e : C ' C ′ and [[v]](A, e)(b)(δ) = δ′.

5. The universal application, tU , is given by an application formula

[[tU ]](A)(b) = {δ : ∃e : C � [[U ]](A). [〈C, δ〉] ∈ [[t]](A)(b)}

The conversion rules are satisfied because they amount to the bijection between
objects of ΠX. T (X) and variable objects of T (we need to prove a substitution
lemma similar to that in section 9.2).

A.5 Examples

A.5.1 Of course

We aim to calculate the coherence space denotations of the simple types we
interpreted using system F in section 11.3, which were product, sum and existential
types. These are all essentially derived10 from ΠX. (U → X)→ X, so we shall
consider this in detail and simply state the other results afterwards.

The positive and negative criterion remains valid even with constants like U ,
and so a token for this type is of the form

〈Sgl , 〈{〈ui, •〉 : i = 1, ..., k}, •〉〉
10[[Bool]] is also a special case if we admit the two-element discrete poset (not a coherence

space) for the domain U , in a category with coproducts. The other three examples which
we are about to consider are derived by means of the identities U → V →X ' (U×V)→X,
(A→X)×(B →X) ' (A+ B)→X and ΠX. (V(X)→ Y ) ' (Σ◦X.V(X))→ Y .
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where ui range over finite cliques of U , i.e. tokens of !U . However although there
is only one token, namely •, available to tag the uis, it may occur repeatedly; the
token is therefore given by a finite (pairwise incoherent) set of tokens of !U .

In other words, denotationally,

ΠX. (U →X)→X ' (!((!U)⊥))
⊥

= ?!U

which (by a slight abuse) we shall call ¬¬U .

The effect of the program

〈Sgl , 〈{〈u1, •〉, 〈u2, •〉}, •〉〉

at the type A and given the stable function f : U → A is to examine the trace
Tr(f) and output those tokens α for which both 〈u1, α〉 and 〈u2, α〉 lie in it. This
generalises the intersection we found in [[Bool]].

It is clearly an inevitable feature of domain models of system F that ∅ be
added to U , since a program of type ¬¬U is under no obligation to terminate.

What seems slightly peculiar is that we may have u1 ≤ u2, two finite points (or
cliques) of U , which give rise to atomic tokens of type ¬¬U (on some functions one
will output α and the other not, and on others the reverse). This is a consequence
of the stable interpretation and the Berry order, which is much weaker than the
pointwise order, since the test on the function is not just whether the datum u
is sufficient for output α (as it would be with Scott’s domain theory), but also
whether it is necessary we have already remarked on this in section 8.5.4.

We can now easily calculate the product, sum and existential types.

ΠX. (U → V →X)→X ' ¬¬(U N V) ' ?(!U ⊗ !V)

where we see ⊗ as “linear conjunction”.

ΠX. (U →X)→ (V →X)→X ' ¬¬(U + V) ' ?(!U ⊕ !V)

Note that (apart from the “?”) this is the kind of sum we settled on in chapter 12.

ΠY. (ΠX. (V → Y ))→ Y ' ¬¬(Σ◦X.V)

where for a variable type T : Gem → Gem, Σ◦X. T (X) is the total category
which we met in section A.3.1.
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A.5.2 Natural Numbers

Finally let us apply our techniques to calculating the denotation of

Int = ΠX.X → (X →X)→X

Recall that besides the terms of F we have already met the undefined term ⊥
and the binary intersection ∧. We shall see that linear logic arises again when we
try to classify the tokens for this type.

In terms of the “linear” type constructors, we must consider

(!A⊗ !((!A⊗A⊥)
⊥

)⊗A⊥)
⊥

whose tokens are of the form

〈a, 〈{〈bi, γi〉 : i = 1, ..., k}, δ〉〉

Using the “positive and negative” criterion we must have

|A| = {δ} ∪
k⋃
i=1

bi = a ∪ {γ1, ..., γk}

The simplest case is k = 0, so a = {δ}. This gives the numeral 0, interpreted as
the program which copies the starting value to the output, ignoring the transition
function. The corresponding token for Int is just

〈Sgl , 〈{•}, 〈∅, •〉〉〉

The intersection phenomenon manifests itself (in the simplest case) as the token

〈Sgl , 〈{α}, 〈{〈{α}, α〉}, α〉〉〉

but the similar potential token

〈α _^ β, 〈{α}, 〈{〈{β}, β〉}, α〉〉〉

(although it passes the positive and negative criterion) is not actually a valid
token of this type.
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It is more enlightening to turn to the syntax and find the tokens of the
numeral 1. Calculating [[ΛX.λx. λy. yx]] using section A.4.3, we get tokens of the
form

〈A, 〈a, 〈{〈a, γ〉}, γ〉〉〉

where |A| consists of the clique a and the token γ.

• If a = ∅ we have the program which ignores the starting value stream and
everything on the transition function stream apart from the “constant” part
of its value, which is copied to the output.

• If a has m elements, the program reads that part of the transition function
which reads its input exactly m times, and applies this to the starting value
(which it reads m times). But,

• If γ ∈ a then the program outputs only that part of the result of the
transition function which is contained in the input.

• If γ 6∈ a then it only outputs that part which is not contained in the input.
But,

• If γ _^ α, where α ranges over r of the m tokens of the clique a, then γ is
only output in those cases where the input and output are coherent in this
way.

So even the numeral 1 is a very complex beast: it amounts to a resolution
of the transition function into a “polynomial”, the mth term of which reads its
input exactly m times. It further resolves the terms according to the relationship
between the input and output.

Clearly these complications multiply as we consider larger numerals. Along
with ∅ and intersection, do they provide a complete classification of the tokens
of Int? What does Int→ Int look like?

A.5.3 Linear numerals

We can try to bring some order to this chaos by considering a linear version of
the natural numbers analogous to the linear booleans.

LInt = ΠX.X( ((X(X)→X)

(we leave one classical implication behind!) The effect of this is to replace a by
{α} and bi by {βi}, and then the positive and negative criterion gives
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|A| = {α, γ1, ..., γk} = {β1, ..., βk, δ}

which are not necessarily distinct. Besides the undirected graph structure given
by coherence, the pairing 〈βi, γi〉 induces a “transition relation” on A.

The linear numeral k consists of the tokens of the form

α = γ1, β1 = γ2, ..., βk−1 = γk, βk = δ

subject only to αi _^ αj ⇐⇒ αi+1
_
^ αj+1 — so there are still quite a lot of them!

More generally, the transition relation preserves coherence, reflects incoherence,
and contains a path from α to δ via any given token. The reader is invited to
verify this characterisation and also determine when two such tokens are coherent.

A.6 Total domains

Domain-theoretic interpretations, as we have said, necessarily introduce partial
elements such as ∅, and in the case of coherence spaces also the “intersection”
operation. However we may use a method similar to the one we used for
reducibility and realisability to attempt to get rid of these.

As with the two previous cases, we allow any subset R ⊂ A to be a totality
candidate for the coherence space A. Then

1. If R is a totality candidate for A and S for B then we write R→S for the
set of objects f of type A→B such that a ∈ R ⇒ fa ∈ S

2. If T [X,Y ] is a type with free variables X and Y and S are totality candidates
for coherence spaces B then f ∈ ΠX.T [S], i.e. f is total for the coherence
space [[ΠX.T ]](B) if for every space A and candidate R for [[T ]](A,B) we
have f(A) ∈ T [R,S].

As with reducibility and realisability, no parametricity remains for closed types.

This topic is discussed more extensively in [Gir85], from which we merely
quote the following results:

Proposition If t is a closed term of closed type T , then [[t]] is total. �

Proposition The total objects in the denotation of Bool and Int are exactly the
truth values and the numerals. �



Appendix B

What is Linear Logic?

by Yves Lafont

Linear logic was originally discovered in coherence semantics (see chapter 12). It
appears now as a promising approach to fundamental questions arising in proof
theory and in computer science.

In ordinary (classical or intuitionistic) logic, you can use an hypothesis as
many times as you want: this feature is expressed by the rules of weakening and
contraction of Sequent Calculus. There are good reasons for considering a logic
without those rules:

• From the viewpoint of proof theory, it removes pathological situations from
classical logic (see next section) and introduces a new kind of invariant
(proof nets).

• From the viewpoint of computer science, it gives a new approach to questions
of laziness, side effects and memory allocation [GirLaf, Laf87, Laf88] with
promising applications to parallelism.

B.1 Classical logic is not constructive

Intuitionistic logic is called constructive because of the correspondence between
proofs and algorithms (the Curry-Howard isomorphism, chapter 3). So, for
example, if we prove a formula ∃n ∈ N. P (n), we can exhibit an integer n which
satisfies the property P .

Such an interpretation is not possible with classical logic: there is no sensible
way of considering proofs as algorithms. In fact, classical logic has no denotational
semantics, except the trivial one which identifies all the proofs of the same type.
This is related to the nondeterministic behaviour of cut elimination (chapter 13).
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Indeed, we have two different ways of reducing a cut

A ` C,B D,C ` E
Cut

A,D ` B,E

when the formula C is introduced by weakenings (or contractions) on both sides.
For example, a proof

···
A ` B

RW
A ` C,B

···
D ` E

LW
D,C ` E

Cut
A,D ` B,E

reduces to

···
A ` B

==========
A,D ` B,E

or to
···

D ` E
==========
A,D ` B,E

(where the double bar is a succession of weakenings and exchanges) depending on
whether we look at the left or at the right side first.

In particular, if we have two proofs π and π′ of the same formula B, and C is
any formula, the proof

π···
` B

RW
` C,B

π′···
` B

LW
C ` B

Cut
` B,B

RC
` B

reduces to

π···
` B
===
` B

or to
π′···
` B
===
` B

where the double bar is a weakening (with an exchange in the first case) followed
by a contraction.
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But you will certainly admit that in both cases,

` B
===
` B

is essentially nothing. So π and π′ are obtained by reducing the same proof, and
they must be denotationally equal.

More generally, all the proofs of a given sequent A ` B are identified. So
classical logic is inconsistent, not from a logical viewpoint (⊥ is not provable), but
from an algorithmic one. This is also expressed by the fact (noticed by Joyal)
that any Cartesian closed category with an initial object 0 such that 00A ' A is a
poset (see [LamSco] page 67).

Of course, our example shows that cut elimination in sequent calculus does
not satisfy the Church-Rosser property: it even diverges in the worst way! There
are two options to eliminate this pathology:

• making the calculus asymmetric: this leads to intuitionistic logic;

• forbidding structural rules, except the exchange which is harmless: this leads
to linear logic.

B.2 Linear Sequent Calculus

We simply discard weakening and contraction. Exchange, identity and cut are left
unchanged, but logical rules need some adjustments: for example, the rules for ∧
are now inadequate (since cut elimination in 13.1 requires weakenings). In fact,
we need two conjunctions: a tensor product (or cumulative conjunction)

A,C,D ` B
L⊗

A,C ⊗D ` B
A ` C,B A′ ` D,B′

R⊗
A,A′ ` C ⊗D,B,B′

and a direct product (or alternative conjunction):

A,C ` B
L1N

A,C ND ` B

A,D ` B
L2N

A,C ND ` B

A ` C,B A ` D,B
RN

A ` C ND,B

Dually, we shall have a tensor sum O (dual of ⊗) and a direct sum ⊕ (dual
of N), with symmetrical rules: left becoming right and vice versa. There is an
easy way to avoid this boring repetition, by using asymmetrical sequents.
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For this, we introduce the linear negation:

• Each atomic formula is given in two forms: positive (A) and negative (A⊥).
By definition, the linear negation of A is A⊥, and vice versa.

• Linear negation is extended to composed formulae by de Morgan laws:

(A⊗B)⊥ = A⊥ OB⊥ (ANB)⊥ = A⊥ ⊕B⊥
(AOB)⊥ = A⊥ ⊗B⊥ (A⊕B)⊥ = A⊥ NB⊥

Linear negation is not itself a connector: for example, if A and B are
atomic formulae, (A ⊗ B⊥)⊥ is just a meta-notation for A⊥ O B, which is also
conventionally written as A( B (linear implication). Note that A⊥⊥ is always
equal to A.

A two-sided sequent

A1, . . . , An ` B1, . . . , Bm

is replaced by:

` A⊥1 , . . . , A⊥n , B1, . . . , Bm

In particular, the identity axiom becomes ` A⊥, A and the cut:

` C,A ` C⊥, B
Cut

` A,B

Of course, the only structural rule is

` A,C,D,B
X

` A,D,C,B

and the logical rules are now expressed by:

` C,A ` D,B
⊗

` C ⊗D,A,B

` C,D,A
O

` C OD,A

` C,A ` D,A
N

` C ND,A

` C,A
1⊕

` C ⊕D,A

` D,A
2⊕

` C ⊕D,A

There is nothing deep in this convention: it is just a matter of economy!
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Units (1 for ⊗, ⊥ for O, > for N and 0 for ⊕) are also introduced:

1⊥ = ⊥ ⊥⊥ = 1 >⊥ = 0 0⊥ = >

1
` 1

` A
⊥

` ⊥, A
>

` >, A
(no rule for 0)

Finally, the lost structural rules come back with a logical dressing, via the
modalities !A (of course A) and ?A (why not A):

( !A)⊥ = ?A⊥ ( ?A)⊥ = !A⊥

` B, ?A
!

` !B, ?A

` A
W?

` ?B,A

` ?B, ?B,A
C?

` ?B,A

` B,A
D?

` ?B,A

The last is called dereliction: it is equivalent to the axiom B( ?B, or dually
!B(B.

This allows us to represent intuitionistic formulae in linear logic, via the
following definitions

A ∧B = ANB A ∨B = !A⊕ !B A⇒ B = !A(B ¬A = !A( 0

in such a way that an intuitionistic formula is valid iff its translation is provable
in Linear Sequent Calculus (so, for example, dereliction expresses that B ⇒ B).
This translation is in fact used for the coherence semantics of typed lambda
calculus (chapters 8, 9, 12 and appendix A).

It is also possible to add (first and second order) quantifiers, but the main
features of linear logic are already contained in the propositional fragment.
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B.3 Proof nets

Here, we shall concentrate on the so-called multiplicative fragment of linear logic,
i.e. the connectors ⊗, 1, O and ⊥. In this fragment, rules are conservative
over contexts: the context in the conclusion is the disjoint union of those of the
premises. The rules for N and > are not, and if we renounce these connectors,
we must renounce their duals ⊕ and 0.

From an algorithmic viewpoint, this fragment is very unexpressive, but this
restriction is necessary if we want to tackle problems progressively. Furthermore,
multiplicative connectors and rules can be generalised to make a genuine
programming language1.

Sequent proofs contain a lot of redundancy: in a rule such as

` C,D,A
O

` C OD,A

the context A, which plays a passive rôle, is rewritten without any change. By
expelling all those boring contexts, we obtain the substantifique moelle of the
proof, called the proof net.

For example, the proof

` A,A⊥ ` B,B⊥
⊗

` A⊗B,A⊥, B⊥ ` C,C⊥
⊗

` (A⊗B)⊗ C,A⊥, B⊥, C⊥
======================
` A⊥, B⊥, (A⊗B)⊗ C,C⊥

O
` A⊥ OB⊥, (A⊗B)⊗ C,C⊥

becomes

A B

A⊗B C

(A⊗B)⊗ C C⊥

A⊥ B⊥

A⊥ OB⊥

1The idea is to use, not a fixed logic, but an extensible one. The program declares its own
connectors (i.e. polymorphic types) and rules (i.e. constructors and destructors), and describes
the conversions (i.e. the program). Cut elimination is in fact parallel communication between
processes. In this language, logic does not ensure termination, but absence of deadlock.
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which could also come from:

` A,A⊥ ` B,B⊥
⊗

` A⊗B,A⊥, B⊥
=============
` A⊥, B⊥, A⊗B

O
` A⊥ OB⊥, A⊗B
===============
` A⊗B,A⊥ OB⊥ ` C,C⊥

⊗
` (A⊗B)⊗ C,A⊥ OB⊥, C⊥

Essentially, we lose the (inessential) application order of rules.

At this point, precise definitions are needed. A proof structure is just a graph
built from the following components:

• link :

A A⊥

• cut :

A A⊥

• logical rules :

A B

A⊗B

A B

AOB 1 ⊥

Each formula must be the conclusion of exactly one rule and a premise of at
most one rule. Formulae which are not premises are called conclusions of the proof
structure: these conclusions are not ordered. Links and cuts are symmetrical.



156 APPENDIX B. WHAT IS LINEAR LOGIC?

Proof nets are proof structures which are constructed according to the rules of
Linear Sequent Calculus:

• Links are proof nets.

• If A is a conclusion of a proof net ν and A⊥ is a conclusion of a proof net ν ′,

ν···
A

ν ′···
A⊥

is a proof net.

• If A is a conclusion of a proof net ν and B is a conclusion of a proof net ν ′,

ν···
A

ν ′···
B

A⊗B

is a proof net.

• If A and B are conclusions of the same proof net ν,

ν
···
A

···
B

AOB

is a proof net.

•
1

is a proof net.

• If ν is a proof net,

ν

⊥

is a proof net.
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There is a funny correctness criterion (the long trip condition, see [Gir87]) to
characterise proof nets among proof structures. For example, the following proof
structure

A B

AOBA⊥ B⊥

is not a proof net, and indeed, does not satisfy the long trip condition.
Unfortunately, this criterion works only for the (⊗,O,1) fragment of the logic
(not ⊥).

B.4 Cut elimination

Proofs nets provide a very nice framework for describing cut elimination.

Conversions are purely local:

A A⊥

···
A···

 

···
A···

···
A

···
B

A⊗B

···
A⊥

···
B⊥

A⊥ OB⊥
 

···
A

···
A⊥

···
B

···
B⊥

1 ⊥  (nothing)

Proposition The conversions preserve the property of being a proof net.

To prove this, you show that conversions of proof nets reflect conversions of
sequent proofs, or alternatively, you make use of the long trip condition. �

Proposition Any proof net reduces to a (unique) cut free one.
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For example, the proof net

A B

A⊗B C

(A⊗B)⊗ C C⊥ A⊥ OB⊥ A⊗B B⊥ A⊥

reduces (in three steps) to

A B

A⊗B C

(A⊗B)⊗ C C⊥ B⊥ A⊥

To prove the proposition, it is enough to see that  defines a terminating and
confluent relation, and a normal form is necessarily cut free, unless it contains

A⊥ A

which is impossible in a proof net. Termination is obvious (the size decreases at
each step) and confluence comes from the fact that conversions are purely local,
the only possible conflicts being:

A A⊥ A A⊥ and

···
A⊥ A A⊥

···
A

The reader can easily check the confluence in both cases. �

It is important to notice that cuts are eliminated in arbitrary order: cut
elimination is a parallel process.

A link

A⊗B A⊥ OB⊥

can always be replaced by
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A B

A⊗B
A⊥ B⊥

A⊥ OB⊥

and similarly for 1 and ⊥. So we can also restrict links to atomic formulae.

Consider now a cut free proof net with fixed conclusions. Since the logical rules
follow faithfully the structure of these conclusions, our proof net is completely
determined by its (atomic) links. So our first example comes to

(A⊗B)⊗ C C⊥ A⊥ OB⊥

which is just an involutive permutation, sending an (occurrence of) atom to (an
occurrence of) its negation.

The cut itself has a natural interpretation in terms of those permutations.
Instead of eliminating it in

A B

A⊗B C

(A⊗B)⊗ C C⊥ A⊥ OB⊥ A⊗B B⊥ A⊥

you connect the permutations

(A⊗B)⊗ C C⊥ A⊥ OB⊥ A⊗B B⊥ A⊥

to obtain the normal form by iteration:

(A⊗B)⊗ C C⊥ B⊥ A⊥
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This turbo cut elimination mechanism is the basic idea for generalising proof
nets to non-multiplicative connectives (geometry of interaction).

B.5 Proof nets and natural deduction

It is fair to say that proof nets are the natural deductions of linear logic, but with
two notable differences:

• Thanks to linearity, there is no need for parcels of hypotheses.

• Thanks to linear negation, there is no need for discharge or for elimination
rules.

For example, if we follow the obvious analogy between the intuitionistic
implication A⇒ B and the linear one A(B = A⊥ OB, the introduction

[A]
···
B

⇒I
A⇒ B

corresponds to

A⊥

A···
B

A⊥ OB

and the elimination (modus ponens)

···
A⇒ B

···
A
⇒E

B

to

···
A⊥ OB

···
A B⊥

A⊗B⊥ B

which shows that modus ponens is written upside down!

So linear logic is not just another exotic logic: it gives new insight into basic
notions which had seemed to be fixed forever.
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son application à l’élimination des coupures dans l’analyse et la théorie
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Notation
variables, x, y, z

object language, ξ, η
second order, X, Y , Z

terms, t, u, v, w
object language, a, b

types, S, T , U , V , W
propositions, A, B, C, D
coherence spaces, A, B, C

points, a, b, c
tokens, α, β, γ

numbers, m, n, p, q
Brackets

denotation, [[T ]], [[t]]
pairing, (a, b) and 〈a, b〉
set, {n : P [n]}
substitution, t[u/x]
web, |A|

Connectives on types
conjunction, ∧
direct product, N
direct sum, ⊕
disjunction, ∨
function-space, →
implication, ⇒
linear implication, (
product, ×
sum, +,

∐
tensor product, ⊗
tensor sum or par, O

Quantifiers
existential, ∃
existential type, Σ, Σ◦ , ∇
universal, ∀

universal type, Π
Relations

coherence, _
^

definitional equality,
def
=

embedding and projection, �, −.
if and only if (iff), ⇐⇒
incoherence, ^

_
interconvertible with, ∼
isomorphism, '
reduces (converts) to,  
result of function, 7→
sequent, `

Miscellaneous
composition, ◦
directed union and join,

⋃↑, ∨↑
negation, ¬ (linear, ⊥)
of course and why not, !, ?
sequence, A

Abramsky, i, 55
abstraction (λ)

conversion, 13
introduction, 12, 20
realisability, 127
reducibility, 45
semantics, 68, 144
syntax, 15, 82

absurdity (⊥), 6, 95
commuting conversion, 78
denotation (f), see booleans and

undefined object (∅)
empty type (Emp and εU), 80
linear logic (⊥ and 0), 154
natural deduction (⊥E), 73
realisability, 129
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sequent calculus (∅ ` ∅), 29
Ackermann’s function, 51
algebraic domain, 56
alive hypothesis, 9
all (∀), see universal quantifier
alternations of quantifiers, 58, 124
alternative conjunction (N), see

direct product
amalgamated sum, 96, 134
analysis (second order arithmetic),

114
and, see conjunction
application

conversion, 13
elimination, 12, 20
realisability, 127
reducibility, 43
semantics (App), 69
stability=Berry order, 65
syntax, 15, 82
trace formula (App), 63, 64, 144

approximation of points and domains,
57, 134

arrow type, see implication and
function-space

associativity of sum type, 98
asymmetrical interpretation, 34
atomic formulae, 4, 5, 30, 112, 160
atomic points, see tokens
atomic sequents, 112
atomic types, 15, 48
automated deduction, 28, 34
automorphisms, 134
axiom

comprehension, 114, 118, 123
excluded middle, 6, 156
hypothesis, 10
identity, 30
link, 156
proper, 112

Bad elimination, 77

Barendregt, 22
Berry, 54
Berry order (≤B), 65, 66, 135, 146
beta (β) rule, see conversion
binary completeness, 56
binary trees (Bintree), 93
binding variables, 5, 12, 15, 83, 161
Boole, 3
booleans, 4

coherence space
Bool , 56, 60, 70
[[ΠX.X→X→X]], 140

commuting conversion, 86
conversion, 48
denotation (t and f), 4
in F (ΠX.X→X→X), 84, 140
in T (Bool, T, F), 48, 50, 70
in system F, 84
totality, 149

bounded meet, see pullback
boundedly complete domains, 140
Brouwer, 6
by values, 51, 70, 91, 133

C, C?, see contraction
camembert, 3
CAML, 81
candidate

reducibility, 43, 115, 116
totality, 58, 149

Cantor, 1
Cartesian closed category, 54, 62, 67,

69, 95, 152
Cartesian natural transformation, see

Berry order
Cartesian product, see product
casewise definition (D), 48, 83, 97
category, 59, 95, 133, 135
characteristic subgroup, 134
Church-Rosser property, 16, 22, 49,

74, 79, 90, 114, 152, 159
clique, 57, 62, 101, 138
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closed normal form, 19, 52, 121
coclosure, 135
coherence space, 56

booleans
Bool , 56, 60, 70
[[ΠX.X→X→X]], 140

coherence relation ( _^ ), 56
direct product (N), 62
direct sum (⊕), 96, 103
empty type (Emp), 104, 139
function space (→), 64, 102, 138
integers

flat (Int), 56, 60, 66, 70
lazy (Int+), 71, 98
[[ΠX.X→(X→X)→X)]], 147

linear implication ((), 100, 104,
138

linear negation (A⊥), 100, 138
of course (!), 101, 138, 145
Pair , Π1, Π2, 68
partial functions (PF), 66
Π types, 143
semantics, 67, 132
singleton (Sgl), 104, 139
tensor product (⊗), 104, 138
tensor sum or par (O), 104
tokens and web, 56

coherent or spectral space, 56
collect (forming trees), 94
communicating processes, 155
commutativity of logic, 29
commuting conversion of sum, see

conversion
compact, 59, 66
compact-open topology, 55
complementary graph, see linear

negation
complete subgraph, see clique
complexity

algorithmic, 53, 111, 143
logical, 42, 58, 114, 122, 124, 140

components (π1 and π2)

elimination, 19
reducibility, 43

composition
stable functions, 69

comprehension scheme, 114, 118, 123,
126

computational significance, 1, 11, 17,
112, 120

confluent relation, see Church-Rosser
property

conjunction, 5
and product, 11, 15, 19
conj in Bool, 50
conversion, 13
cut elimination, 105
in F: ΠX. (U→V→X)→X, 84
linear logic, 152
natural deduction
∧I, ∧1E and ∧2E , 10

realisability, 126
sequent calculus
L1∧, L2∧ and R∧, 31

cons (add to list), 91
consistency

equational, 16, 23, 152
logical (consis), 42, 114, 124

constants by vocation, 60, 66
constructors, see data types in F
continuity, 54, 59, 137
contraction
LC and RC, 29
linear logic (C?), 154

contractum, 18, see redex
control features of PROLOG, 28
conversion ( ), 18

bogus example, 75
booleans (D), 48
commuting, 74, 78, 85, 97, 103
conjunction (∧), 13
degree, 25
denotational equality, 69, 132
disjunction (∨), 75, 97
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existential quantifier (∃), 75
conversion ( )

implication (⇒), 13
in F, 83, 94
infinity (∞), 72
integers (R, It), 48, 51
λ-calculus, 11, 16, 18, 69
linear logic (proof nets), 158
natural deduction, 13, 20
reducibility, 43, 116
rewrite rules, 14
second order, 94

Coquand, 116, 133
correctness criterion

for proof nets, 158
for tokens of Π types, 139, 142

couple (forming trees), 93
(CR 1−3), see reducibility
cumulative conjunction, see tensor

product
Curry-Howard isomorphism, 5, 150

conjunction and product, 14
disjunction and sum, 80
implication and functions, 14
none in sequent calculus, 28
second order, 94

cut rule
Cut, 30
elimination of, 3, 105, 151, 158
linear logic, 153, 156, 158
natural deduction, 35, 40
not Church-Rosser, 150
proofs without, 33, 159
restriction of, 112

D, D, see casewise definition
data types in F, 87, 89
dead hypothesis, 9
deadlock, 155
deduction (natural), 9
degree, 24, 109

∂(), of formula or type

d(), of cut or redex
Delin, see linearisation
denotation, 1
denotational semantics, 14, 54, 67,

95, 132
dereliction (D?), 154
dI-domains, 71, 98
direct product (N)

coherence space, 61, 67
linear logic, 152

direct sum (⊕)
coherence space, 96, 103, 146

example, 66
linear logic, 152

directed joins, 57, 59, 66
discharge, 9, 12, 37, 73, 161
discrete graph, see flat domain
disjunction, 5, 6, 95

and sum, 81
commuting conversion, 78
conversion, 75
cut elimination, 106
disj in Bool, 50
intuitionistic property, 8, 33
linear logic (⊕ and O), 152
natural deduction
∨1I, ∨2I and ∨E , 73

sequent calculus
L∨, R1∨ and R2∨, 31
intuitionistic L∨, 32

domain theory, 56, 132
dI-domains, 71, 98
domain equations, 98
Girard versus Scott, 54, 66, 98
L-domains, 140
lifted sum, 96

donkey, 134
dynamic, 2, 14, 54

∃, see existential quantifier
elimination, 8, 48
∧1E , ∧2E , ⇒E and ∀E , 10
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R and D in T, 48

elimination

∨E , ⊥E and ∃E , 73

∀2E , 94, 125

application and components, 19

good and bad, 77

left logical rules, 37, 40

linear logic, 161

linearity of, 99, 103

embedding-projection pair, 133, 134

empty type

and absurdity, 80

coherence space (Emp), 95, 104,
139

Emp and εU , 80

in F: Emp = ΠX.X, 85, 139

linear logic (⊥ and 0), 154

realisability, 129

equalisers, 137

equations between terms and proofs,
see conversion

espace cohérent, 56

eta rule, see secondary equations

evaluation, see application

event structures, 98

exchange

LX and RX, 29

linear logic (X), 153

existential quantifier, 5, 6

commuting conversion, 78

conversion, 75

cut elimination, 108

intuitionistic property, 8, 33

natural deduction

∃I and ∃E , 73

sequent calculus

L∃ and R∃, 32

existential type in F (Σ, ∇), 86, 145

exponential

object, see implication and
function-space

process, see complexity,
algorithmic

expressive power, 50, 89, 155
extraction, see universal application

F (Girard-Reynolds system)
representable functions, 120
semantics, 132
strong normalisation, 42, 114
syntax, 82

F0 (parallel or), 61, 70
false

denotation (f , F , F), see booleans
proposition (⊥), see absurdity

feasible, see complexity, algorithmic
fields of numbers, 134
filtered colimits, 59, 137
finite

approximation, 57, 66, 132, 134
branching tree, 27
normalisation, 24
points (Afin), 57
presentability, 66
sense and denotation, 2
very, 59, 66

fixed point, 72, 95
flat domain, 57, 60, 66, 70, 140
for all (∀), see universal quantifier
for some (∃), see existential quantifier
Frege, 1, 2
function, 1, 17

Berry order (≤B), 65
composition, 69
continuous, 55, 58
fixed point, 72
graph, 1, 66
linear, 99, 148
not representable, 122
on proofs, 6, 11
on types, 83, 132, 136
partial, 60, 66
partial recursive, 55
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function
pointwise order, 66
polynomial resolution, 147
provably total, 52, 123
recursion, 50, 90, 120
representable, 52, 121
sequential, 54
stable, 58, 62, 68
total recursive, 122
trace (Tr), 62
two arguments, 61

function-space
and implication, 12, 15, 20
in F, 82
λ-calculus, 12, 15
linear decomposition, 101
semantics, 54, 62, 64, 67, 136

functor, 59, 134, 136, 141

Gallier, 28
Galois Theory, 134
Gandy, 27
garbage collection, 150
Gem, 136
general recursion, 72
Gentzen, 3, 28, 105
geometry of interaction, 4, 160
Girard, 30, 42, 80, 82, 114, 124, 150
goals in PROLOG, 112
Gödel, 1, 6, 47, 54

incompleteness theorem, 42, 114
numbering, 53
¬¬-translation, 124

good elimination, 77
graph

embedding, 133, 134
function, 1, 66
product, 104, 138
web, 56

Grothendieck fibration (Σ◦ ), 135, 137,
141

Hauptsatz (cut elimination), 3, 105,
151, 158

head normal form, 19, 52, 76, 121
height of a proof (h), 109
Herbrand, 4
hereditarily effective operations, 55
Heyting, 5, 15, 80, 120

arithmetic (HA2), 124
Horn clause, see intuitionistic sequent
Howard, see Curry-Howard

isomorphism
Hyland, 133
hyperexponential function, 111
hypotheses, 9

discharge, 9, 161
parcels of, 11, 36, 40, 161
subformula property, 76
variables, 11

I, see introduction
idempotence of logic, 29
identification of terms and proofs, see

conversion
identity

axiom, 30, 112, 156
hypothesis, 10
maximal in Berry order, 65, 135
polymorphic, 83, 132, 136, 138
proof of A⇒ A, 6

if, see casewise definition
implication, 5

and function-space, 12, 15, 20
conversion, 13
cut elimination, 107
linear ((), 100, 153
natural deduction
⇒I and ⇒E , 10

realisability, 127
semantics, 54
sequent calculus
L⇒ and R⇒, 32

inclusion order, 56
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incoherence ( ^_ ), 100
incompleteness theorem, 6, 42, 114,

124
inductive data types, 87, 121
inductive definition of +, ×, etc., 50
infinite static denotation, 2
infinity (∞̃ and ∞), 71
initial object, 95, 152
input, 1, 17
integers, 1

coherence space
flat (Int), 56, 60, 66, 70
lazy (Int+), 71, 98
[[ΠX.X→(X→X)→X)]], 147

conversion, 48
dI-domain (Int<), 98
in F, 89, 121, 147
in HA2, 125
in T (Int, O, S, R), 48, 70
iteration (It), 51, 70, 90
linear type (LInt), 148
normal form, 52, 121
realisability (Nat), 126, 127
recursor (R), 48, 91
totality, 149

internalisation, 27
intersection, see conjunction

bounded above, see pullback
in [[Bool]], 140

introduction, 8, 48
∧I, ⇒I and ∀I, 10
O, S, T and F in T, 48
∨1I, ∨2I and ∃I, 73
∀2I, 94, 125
linear logic, 161
pairing and λ-abstraction, 11, 12,

19
right logical rules, 37, 40
sums, 81

intuitionism, 6, 150
intuitionistic sequent, 8, 30, 32, 33,

112, 152

inversion in linear algebra, 101
isomorphisms, 132–134
iteration (It), 51, 70, 90

Join, see disjunction
preservation (linearity), 99

joint continuity and stability, 61
Jung, 133, 140

Kleene, 123
König’s lemma, 27
Koymans, 133
Kreisel, 55

L, see asymmetrical interpretation
L (left logical rules), see sequent

calculus
`(t), length of normal form, 49
Lafont, 150
λ, see abstraction
Λ, see universal abstraction
λ-calculus, 12, 15

Church-Rosser property, 22
conversion, 18
head normal form, 19
natural deduction, 11, 19
normalisation, 24, 42
second order polymorphic, 82
semantics, 54, 67
untyped, 19, 22, 133

last rule of a proof, 8, 33
lazy evaluation, 150
lazy natural numbers, 71, 98
L-domains, 140
least approximant, 59, 137
left logical rules, see sequent calculus
lifted sum, 96
limit-colimit coincidence, 137
linear algebra, 101
linear logic, 30, 35, 74, 161

Church-Rosser property, 159
cut rule, 153, 156, 158

linear logic
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direct product (N), 61, 104, 152
direct sum (⊕), 96, 103, 146, 152
implication ((), 100, 104, 153
integers (LInt), 148
intuitionistic logic, 154
linear maps, 99, 101
link rule, 156
natural deduction, 161
negation (⊥), 100, 138, 153
notation for tokens, 138
of course (!), 101, 145, 154
polynomial resolution, 147
proof nets, 155
reducibility, 115
semantics, 95
sequent calculus, 152
sum decomposition, 95, 103, 146
syntax, 150
tensor product (⊗), 104, 146, 152,

156
tensor sum or par (O), 104, 152,

156
trace (Trlin), 100
units (1, ⊥, > and 0), 104, 154
why not (?), 102, 154

link axiom, 156
lists, 47, 91
locally compact space, 55
logical rules, 31

cut elimination, 105, 112
linear logic, 153, 156
natural deduction, 37

logical view of topology, 55
long trip condition, 158
Löwenheim, 1, 3

Martin-Löf, 88
match (patterns), 81
maximally consistent extensions, 54
meet, see conjunction

bounded above, see pullback
memory allocation, 150

mod, coherence relation, 56
modalities, 101, 154
model theory, 3
modules, 17, 47
modus ponens (⇒E), see elimination
Moggi, 141

N = {0, 1, 2, ...}, set of integers
Nat predicate in HA2, 126
natural deduction, 8
∧, ⇒ and ∀, 10
∨, ⊥ and ∃, 73
conversion, 13, 20, 75, 78
λ-calculus, 11, 19
linear logic, 161
normalisation, 24, 42
second order, 94, 125
sequent calculus, 35
subformula property, 76

natural numbers, see integers
negation, 5

A ∨ ¬A, 6

¬A def
= A⇒ ⊥, 6, 73

cut elimination, 107
linear (⊥), 100, 138, 153
neg in Bool, 50
sequent calculus (L¬, R¬), 31

neutrality, 43, 49, 116
nil (empty tree or list), 91
NJ (Prawitz’ system), see natural

deduction
Noetherian, 66
nonconvergent rewriting, 72
nondeterminism, 150
normal closure of a field, 134
normal form, 18, 76

cut-free, 41
existence, 24
head normal form, 19
integers, 52, 121
linear logic, 159

normal form
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uniqueness, 22
normalisation theorem

for F, 114
for T, 49
length of process (ν), 27, 43, 49
linear logic, 155
strong, 42
weak, 22, 24

not (¬), see negation

O, O (zero), see integers
object language, 10
Ockham’s razor, 3
of course (!), 101, 138, 145, 154
operational semantics, 14, 121
or, see disjunction and parallel or
orthogonal (⊥), see linear negation
output, 17

PA, PA2, see Peano arithmetic
pairing

conjunction, 11
in F, 84
introduction, 19
semantics (Pair), 61, 68

par (O), see tensor sum
parallel or, 50, 60, 70, 81
parallel process, 150, 159
parcels of hypotheses, 11, 36, 40, 161
partial equivalence relation, 55
partial function, 60

coherence space (PF), 66
recursive, 55

partial objects, 57
PASCAL, 47
pattern matching, 81
Peano arithmetic (PA), 42, 53

second order (PA2), 114, 123
peculiar, 134
permutations, 134
Π, see system F
π1, π2, Π1, Π2, see components
Pitts, 133

Plotkin, 56
plugging, 17
polynomial, 148
Pω, see Scott
positive negative, 34, 87, 139, 142
potential tokens, 138
Prawitz, 8, 80
predecessor (pred), 51, 72, 91
preservation of joins (linearity), 99
primary equations, see conversion
principal branch or premise, 75, 76
product

and conjunction, 11, 15, 19
coherence space (N), 61, 68
in F, 84, 145
linear logic (⊗ and N), 152
projection, 11, 61, 68, 84

programs, 17, 53, 72, 84, 124
projection (embedding), 135, 142
PROLOG, 28, 105, 112
proof, 5
proof net, 155
proof of program, 53
proof structure, 156
provably total, 53, 124
Ptolomeic astronomy, 1
pullback, 54, 59, 61, 65, 137, 141

Quantifiers, see universal, existential
and second order

R (right logical rules), see sequent
calculus

R, see asymmetrical interpretation
real numbers, 114
realisability, 7
recursion

and iteration, 51, 70, 90
recurrence relation, 50
recursor (R), 48
semantics, 70

redex, 18, 24, 48
reducibility, 27, 58, 123
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in F, 115
in T, 49
λ-calculus, 42

reduction, 18
reflexive symmetric relation, 57
representable functions, 52, 120
resolution method, 112
rewrite rules, see conversion
Reynolds, 82
right logical rules, see sequent

calculus
rigid embeddings, 134
ring theory, 66
Robinson, 112
Rosser, see Church-Rosser property

S, S (successor), see integers
saturated domains, 133
Scott, 54, 55, 64, 66, 133
second incompleteness theorem, 42
second order logic, 94, 114, 123
secondary equations, 16, 69, 81, 85,

97, 132
semantic definability, 140
sense, 1
separability, 134
sequent calculus, 28

Cut rule, 30
linear logic, 150
logical rules, 31
natural deduction, 35
PROLOG, 112
structural rules, 29

sequential algorithm, 54
side effects, 150
Σ (existential type) in F, 86, 145
Σ◦ (total category), 135
signature, 34, 87, 139
simple types, 84, 139, 145
singleton type (Sgl), 104, 139
size problem, 83, 112, 132
Smyth, 55

SN (strongly normalisable terms),
119

specification, 17
spectral space, 56
stability, 54, 134, 137

definition (St), 58, 100
static, 2, 14, 54
strict (preserve ∅), 97
strong finiteness, 59, 66
strong normalisation, 26, 42, 114
structural rules

cut elimination, 106, 112
linear logic, 152, 153
natural deduction, 36
sequent calculus, 29

subdomain, 134
subformula property

λ-calculus, 19
natural deduction, 76
sequent calculus, 33

substantifique moelle, 155
substitution, 5, 25, 69, 112, 118
subuniformity, 134
successor (S and S), see integers
sum type, 95

+, ι1, ι2 and δ, 81
and disjunction, 81
coherence space, 103, 146
linear decomposition, 96, 103
linear logic (⊕ and O), 152

symmetry, 10, 18, 28, 30, 31, 97, 105,
134

T, t, T , see true
T (Gödel’s system), 47, 67, 70, 123
tableaux, 28
Tait, 42, 49, 114
Takeuti, 125
Tarski, 4
tautology

linear logic (1 and >), 154
Taylor, 133
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tensor product (⊗)
coherence space, 104, 138, 146
linear logic, 152

tensor sum or par (O)
coherence space, 104
linear logic, 152

terminal object, 104
terminating relation, see

normalisation
terms

in F, 82
in HA2, 125
in T, 68
λ-calculus, 15
object language, 5

theory of constructions, 116, 133
token, 56, 64, 137
topological space, 55
total category (Σ◦ ), 135, 137, 141, 146
total objects, 57, 149
total recursive function, 53, 122
trace (Tr), 62, 67, 144

linear (Trlin), 100
transposition in linear algebra, 101
trees, 8, 47, 93
true

denotation (t, T , T), see
booleans

proposition (>), see tautology
turbo cut elimination, 160
Turing, 122
type variables, 82
types, 15, 54, 67

Undefined object (∅), 56, 96, 129,
139, 146, 149

unification, 113
uniform continuity, 55
uniformity of Π types, 83, 132, 134,

143
units (0, >, 1 and ⊥), 104
universal algebra, 66

universal domain, 133
universal program (Turing), 122
universal quantifier, 5, 6

cut elimination, 108
natural deduction
∀I and ∀E , 10

sequent calculus
L∀ and R∀, 32

universal quantifier (second order),
82, 126

∀2I and ∀2E , 94, 125
reducibility, 118
semantics, 132, 143, 149

Variable coherence spaces, 141
variables

hypotheses, 11, 15, 19
object language, 10, 125
type, 82, 125

very finite, 59, 66
Vickers, 55

Weak normalisation, 24
weakening
LW and RW, 29
linear logic (W?), 154

web, 56, 135
why not (?), 102, 154
Winskel, 98, 133

X, LX, RX (exchange), 29, 153

Y (fixed point), 72

Zero
0, unit of ⊕, 154
O and O, see integers
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