
Quantitative Domains, Groupoids and Linear Logic

Paul Taylor

1989

Abstract

We introduce the notion of a candidate for “multiple valued universal constructions” and
define stable functors (which generalise functors with left adjoints) in terms of factorisation
through candidates. There are many mathematical examples, including the Zariski spectrum
of a ring (as shown by Diers [81]) and the Galois group of a polynomial, but we are mainly
interested in Berry’s [78] minimum data property . In fact we begin with a completely non-
mathematical example.

The aim is to find domain models in which terms of the typed or polymorphic λ-calculus
are interpreted as stable functors. We study Girard’s quantitative domains [85], in which
information is represented by a collection of tokens from a universe of tokens for a particular
type, and there is no restriction on the ability of different tokens to co-exist or on the number
of occurrences of a particular token. This idea may be used to code parallelism (with no
suppression of duplicated output) or accounted resources.

Unfortunately Girard did not fully describe the function-spaces, which should be equipped
with the “Berry order”; this turns out to mean that function-tokens must have “internal
symmetries”. It is our purpose to describe the smallest cartesian closed category with these
function-spaces which contains Set (the simplest non-trivial quantitative domain, with one
token which may appear arbitrarily often) as an object.

The natural way of presenting this is as a new interpretation of Linear Logic given by
group (and more generally groupoid) actions. These stand in the same relation to quantita-
tive domains as coherence spaces do to qualitative domains, and there is a kind of coherence
between group(oid) elements. By a similar analysis of stable functors we obtain an of course
operation. Finally, our (generalised) quantitative domains themselves form a domain of this
kind with rigid comparisons as morphisms, and hence we have a type of types.

Presented at Category Theory and Computer Science 3 (Manchester); published in the pro-
ceedings, edited by David Pitt, Springer-Verlag Lecture Notes in Computer Science 389 (1989)
155–181.

1 Stable Functors

1.1 The Minimum Data Property

Imagine marking examination scripts in history, the question set being

What were the causes of the Second World War?

Of course it is not our business to pass judgement on this question ourselves, but merely to imagine
the process whereby the examiner awards marks for what the student has written. In programming
terms, she executes a function from scripts to numbers which is defined by her mark-sheet .

This is what a typical student wrote:

The Germans invaded Poland.
The Japanese invaded Manchuria.
The Italian sbombed Pearl Harbor.

1

Marie-Antoinnette said “let them eat cake.”

He obviously gets marks for the first two assertions but not the last two: the third because it is
false (or a confusion) and the last because it is irrelevant (noise).

Perhaps the examiner had the following mark-sheet:

Japanese invaded Manchuria. 10 marks
Japanese bombed PearlHarbor. 5 marks
Germans invaded Poland. 5 marks
Germans invaded Czechoslovakia. 10 marks
Italians invaded Abyssinia. 10 marks

and so she gave this student 15 marks.
Suppose our student had just written

Germans invaded Poland.

and so got 5 marks. Obviously writing less than this (i.e. omitting any of these three words)
would have got him none at all, and adding comments about Marie-Antoinette, King Canute or
his history teacher would only have wasted time. So these three words are the least part of the
script which would gain these marks. The same is true of each of the other four lines of the mark-
sheet. Observe that (i) although the Polish marks and those for Pearl Harbor are interchangeable
for the purpose of awarding the final grade, they accumulate rather than become identified, and
(ii) it’s no good trying to match half of one pattern (Pearl Harbor) with half of another (the
Italians).

Now let us formalise this a bit1. The marking process is a function S which takes a script X
and returns a number of marks SX. Suppose that the script X includes the assertion that the
Germans invaded Poland; then five marks Y = 5 are distinguishably included in the total SX, by
a function w : Y → SX. (If it also included the assertion about Pearl Harbor there would be a
different function w′ : Y → SX.) Let X◦ be the one-line script containing just this assertion, then
again u : Y → SX◦, and since this is a sub-script, f : X◦ → X. We don’t write X◦ ⊂ X because
parts of the pattern X◦ might be counted twice, for instance if

X◦ =
Germans invaded Poland.
Germans invaded Czechoslovakia.

and
X = The Germans invaded Poland and Czechoslovakia.

then the function is not mono on “Germans invaded”.
The minimal sub-script X◦ has a certain “universal property”. Suppose g : X ′ → X is another

sub-script which also wins these same marks, so that v : Y → SX ′ and Sg ◦ v = Sf ◦ u, then X ′

contained the one-line script X◦, i.e. h : X◦ → X ′ such that2 v = Sh ◦ u and g ◦ h = f . (h is not
mono, for the same reason as f).

Let us write this definition in its general form.

Definition 1.1 Let S : X → Y be a functor. Then the map u : Y → SX◦ in Y is said to be
a candidate for [a universal map from the object Y to the functor] S if for any triple of maps
v : Y → SX ′ in Y and f : X◦ → X and g : X ′ → X in X , such that the square

1The reader with little mathematical background should concentrate on section 2 and ignore the remainder of
the paper.

2This is left handed composition, contrary to my personal habits, so that later A ` B will be a left action of A
and a right action of B, not vice versa.

2

Y
u - SX◦

SX ′

v

? Sg- SX

Sf

?

commutes, there is a unique h : X◦ → X ′ such that both triangles

Y
u - SX◦

SX ′

v

?�
Sh

and

X◦

X ′
g
-

�

h

X

f

?

commute. Note that X◦, as well as u, Y and SX◦, is part of the data defining the candidate.
The word candidate is used to signify that this is one of many (for given Y), and derives from the
special case of coproduct candidates (this term appears in [Lamarche 88]).

There are numerous mathematical3 examples of this idea, and we only give a few representa-
tives; the first is typical of the special case of functors with left adjoint.

Example 1.2 Let S be the forgetful functor from X = Gp to Y = Set and Y ∈ Y. Then
u : Y → SX◦ is a candidate iff X◦ is the free group on Y and u is the inclusion of generators. In
this case, there is only one candidate (up to unique isomorphism) for S for given Y . �

Example 1.3 Let X = IntDom, the category of integral domains and monomorphisms, and
Y = CRng, the category of commutative rings and homomorphisms. Then u : Y → SX◦ is
a (quotient) candidate iff X◦ is the quotient of Y by a prime ideal ; any particular ring Y may
have many quotient candidates. In this case (as in the previous one) f = g ◦ h is a corollary of
Sh ◦ u = v. �

Example 1.4 Let p be a polynomial with integer coefficients. Let X = Fld[p] be the category
of fields in which p splits into linear factors and S be its inclusion in Y = Fld, the category of
all fields (and homomorphisms). Then u : Y → SX◦ is a candidate iff X◦ is the splitting field for
p over Y . In this case there is only one candidate for given Y , but it has many automorphisms;
indeed they form the Galois group of p over Y . �

Example 1.5 Consider a program S consisting of several parallel processes which merge their
output indiscriminantly without suppression of duplication; for instance “parallel or” would out-
put t twice on input 〈t, t〉. Suppose that on input X (a bag of tokens from A) its output includes
an instance Y = {j} of a token4 j ∈ B. This has come from a particular process, which itself has
pursued a sequential execution path, involving certain “hurdles” which amount to reading and
matching a pattern X◦ in X; moreover if X had contained only this pattern, Y would still have
been output. The candidate is the function u : Y → SX◦ which identifies this instance of the
token j in the output, but there may have been many other ways in which this or other parallel
processes could have generated j, but identified by different u’s.

3All prerequisites from mainstream pure mathematics will be found in, for example, [Cohn 77] or [Lang 65].
4The reason for the convention j ∈ B will become clear in section 2.3.

3

1.2 Factorisation

Stable functors generalise functors with left adjoints, and can be characterised as functors which
acquire adjoints whenever they are restricted to slices (down-sets or principal lower sets). The
following definition is, however, the most useful.

Definition 1.6 A functor S : X → Y is stable if every map w : Y → SX factors as Sf ◦ u with
u : Y → SX◦ a candidate and f : X◦ → X. By definition of candidacy, it is immediate that this
factorisation is unique up to unique isomorphism.

Example 1.7 (Vickers) Let X be the category of complete Boolean algebras and frame monomor-
phisms and Y be the category of frames and homomorphisms, with S : X → Y the forgetful functor.
Then S is stable.

Definition 1.8 A wide pullback is a diagram d : I → X (or its limit, according to context) such
that I has a terminal vertex (and has a set rather than a proper class of vertices and edges). Thus
ordinary (binary) pullbacks are wide pullbacks, and any cofiltered limit diagram is equivalent to
a wide pullback, but equalisers, binary products and terminal objects are not.

Exercise 1.9 Show that stable functors preserve wide pullbacks and monos. �
Suppose we are given a functor S : X → Y; how might we prove that it is stable? We may

consider all possible factorisations w = Sf ′ ◦ u′; these form a category whose morphisms are as
illustrated:

SX ′ X ′

Y

u
′ -

X

f ′
-

SX ′′

Sh

?
u ′′ -

X ′′

h

? f
′′
-

Clearly the factorisation is through a candidate iff the corresponding object of this category is
initial . We know that stable functors must preserve wide pullbacks, and the idea of the converse
is to take the wide pullback of all possible factorisations. The problem is that we are only allowed
to do this with a set of them, and so we need the following:

Definition 1.10 S : X → Y satisfies the solution set condition if for every w : Y → SX the
(possibly large) category of factorisations has a small full cofinal subcategory. This means that
for any given factorisation Sf ′′ ◦ u′′ there is a factorisation Sf ′ ◦ u′ in the subcategory and a
morphism h with Sh ◦ u′ = u′′ and f ′′ ◦ h = f ′, and that between any two factorisations in the
subcategory there is only a set of morphisms h.

There are important examples where this condition fails, but in the cases which are of interest
to us in this paper it will hold automatically (essentially because we shall be using toposes).

Theorem 1.11 Let S : X → Y be any functor, where the category X has wide pullbacks. Then
the following are equivalent:

(α) S is stable, i.e. the factorisation property holds;

(β) S has a left adjoint on each slice;

(γ) S preserves wide pullbacks and satisfies the solution set condition. �

4

We’re going to be interested in stable functors in this paper, but we want to assume something
else of them (and will modify the terminology accordingly).

Definition 1.12 A functor is continuous if it preserves filtered colimits.

Definition 1.13 An object X ∈ X is finitely presentable if the functor HomX (X,−) : X → Set
is continuous. This means that if we have f : X → colim↑ Y (r) then for some (non-unique) r◦ and
g : X → Y (r◦) we have f = ν(r◦) ◦ g, where ν(r◦) : Y (r◦) → colim↑ Y (r) belongs to the colimiting
cocone. The corresponding property for lattices is called compactness.

The following exercise serves as a good test of the reader’s understanding of the important
concepts of candidates, continuity and finite presentability, although it doesn’t use stability.

Exercise 1.14 Suppose u : Y → SX◦ is a candidate, where S is continuous, and Y is finitely
presentable. Then X◦ is also finitely presentable. �

1.3 Bags and Power Series

Now we shall turn our attention to the domains of specific interest to us.

Definition 1.15 Let A be a set. A bag of elements of A is an assignment of an abstract set Xi

(its multiplicity) to each element i ∈ A. Abstractly, a bag is represented by a multiplicity function
X− : A→ Set or by a display x : X = (

⋃
i∈AXi)→ A. Hence a finite bag may be written as an

unordered list (with repetition) whose terms are from A.

Definition 1.16 SetA denotes the category of bags of elements of A. There are three ways of
seeing its morphisms: (α) as an A-indexed family of functions fi : Xi → Yi; (β) as a natural
transformation f : X− → Y− between functors A⇒ Set, or (γ) as functions f : X → Y such that
y ◦ f = x.

Exercise 1.17 Show that a bag is finitely presentable (Definition 1.2.9) iff it is finite, i.e. all
elements of A have finite multiplicity and all but finitely many of them have zero multiplicity. The
notation ~n will be used for a finite bag, where ni is the multiplicity of i ∈ A. �

Girard’s quantitative domains were the categories of the form SetA; we shall begin by inves-
tigating stable functors between these, but will find that more complicated categories are needed
for functor-spaces.

Lemma 1.18 Let ~n be a finite bag. The representable functor

(−)~n : SetA → Set by X 7→ SetA(~n,X) =
∏
i

(Xi)ni

(which acts on morphisms by composition) is stable and continuous.
Proof Continuity is immediate from the Exercise, and actually there is a left adjoint. I claim
that u : Y → (X◦)~n is a candidate iff its exponential transpose5 e : Y ×~n→ X◦ is an isomorphism.
For in

Y
u = peq- (~n)~n

(X ′)~n

v = ph ◦ eq

?

g ◦ −
-

�

h
◦ −

(X)~n

f ◦ −
?

5Actually Y × ~n is a copower , i.e. Y -fold coproduct, not a product.

5

it is clear that h exists and is uniquely determined by v iff e is invertible. The factorisation of
w : Y → X~n is (f ◦ −) ◦ u where u = pidq and f is the exponential transpose of w. �

Girard’s power-series expansion amounts to a sum of representable functors (“monomials”), so
we have to show that we can compute sums pointwise. For coherence spaces this is not possible
(directly resulting in the non-representability of parallel or) and so we have to make crucial use
of the idea that quantitative domains admit arbitrary sums without suppression of duplication.
Categorically, this amounts to the following two properties:

Proposition 1.19 Sums in SetA are disjoint and universal.

0 - X(r′)

X(r′′)

?
ν(r′′)
-
∑
r

X(r)

ν(r′)

?

Y (r◦) - X(r◦)

Y
? f-

∑
r

X(r)

ν(r◦)

?

Disjoint means that when we form the intersection of different inclusions (r′ 6= r′′) we get the
initial object 0. Universal means that when we form the pullback of the coproduct diagram against
an arbitrary map f , we get another coproduct diagram: Y ∼=

∑
r Y

(r). In the special case of the
empty coproduct (the initial object) this is equivalent to strictness, i.e. any map Y → 0 is an
isomorphism. �

We defer to section 1.5 the proof that we may compute sums pointwise, and merely state that
any bag (c~n) of finite bags gives rise to a stable functor:

SX =
∑
~n

c~n ×X~n

Now we shall prove the converse: every stable functor SetA → Set is (isomorphic to one) of this
form. The following lemma will be the source of the complication (creeds) which we shall meet
later.

Lemma 1.20 Let S : SetA → Set be a continuous stable functor and u : 1→ S~n be a candidate.
Suppose that h : ~n→ ~n in SetA is such that Sh ◦ u = u. Then h = id.
Proof The notation ~n is justified because we know that it is finite. Let X = A be the bag in
which each element of A occurs just once (so Xi = 1); there is a unique map f : ~n→ X in SetA,
i.e. X is the terminal object . Then Sf ◦ u = Sf ◦ u, so there is a unique h : ~n→ ~n in SetA with
Sh ◦ u = u and f ◦ h = f ; clearly both the given h and also the identity will do, so by uniqueness
h = id. �

Theorem 1.21 Every stable functor SetA → Set is a power-series.
Proof For each [isomorphism class of] finite bag ~n, let c~n be the set of equivalence classes of
candidates u : 1→ S~n, where we identify u with Sh ◦ u for automorphisms h : ~n ∼= ~n. If w ∈ SX,
then this is a map w : 1 → SX, which factorises as Sf ◦ u, and isomorphic factorisations belong
to the same equivalence class; hence w corresponds to a unique element of c~n together with a
function f ∈ X~n. �

Girard proved this result on the additional assumption that stable functors are to preserve
equalisers; but by Lemma 1.3.6 this assumption is actually a consequence of having a terminal
object. However Lamarche has shown (privately) that evaluation does not preserve equalisers, and
so this stronger notion of stability does not lead to a cartesian closed category. We shall in fact
see that for higher types there is no terminal object, and so this lemma breaks down.

Exercise 1.22 Let S : X → Y be a stable functor between categories with equalisers. Show that S
preserves equalisers iff Lemma 1.3.6 holds, i.e. for every candidate u : Y → SX and automorphism
h : X ∼= X, we have Sh ◦ u = u⇒ h = id.

6

In this case, commutativity of the second triangle in Definition 1.1.1 is automatic, and we are
reduced to Diers’ original definition of diagonal universality (candidacy); cf. Example 1.1.3.

The power-series expansion was really as far as Girard developed this topic. We shall proceed
by insisting on the notion of stable functor, but one may alternatively take the point of view
that the power-series is itself the essential feature. This is the subject of work in progress by
Lamarche [89] on polynomial algebras, which is also the idea behind [Joyal 87].

1.4 Cartesian Transformations

Morphisms between bags (in the category SetA) are “colour-preserving” (1.3.2γ) functionsX → Y ,
i.e. the set Xi of elements of kind i is taken to the set Yi. Although the copies of i are regarded
as being alike, we nevertheless consider as different functions which affect them differently; in
particular the “switch” function on the bag {•, •} is not the same as the identity.

With this in mind we look for the morphisms of the stable function-space, which we call

[X → Y]

If S, T : SetA ⇒ SetB are two stable functors, for each A-bag X there are B-bags SX and TX,
and a morphism φ : S → T (in particular) gives functions φX : SX → TX. In the special case
where A = B = 1 and S = T = (−)2, the identity and switch functions (−)2 → (−)2 are regarded
as being different.

Recall that stable functors preserve (wide) pullbacks. Since we’re aiming to describe a cartesian
closed category, we need in particular that the evaluation functor ev : [X → Y]×X → Y be stable.
There is a particular pullback square which it must preserve, for any given morphisms φ : S → T
in [X → Y] and f : X ′ → X in X , namely

〈S,X ′〉
〈φ, id〉- 〈T,X ′〉

〈S,X〉

〈id, f〉

? 〈φ, id〉- 〈T,X〉

〈id, f〉

?

SX ′
φX ′- TX ′

SX

Sf

? φX- TX

Tf

?

giving the square on the right. This leads to the

Definition 1.23 A cartesian transformation φ : S → T is an assignment of a function φX : SX →
TX in Y to each X ∈ X making the right-hand square above a pullback for each f : X ′ → X. If
the square merely commutes for each f , we say φ is natural .

Our main concern is to investigate the relationship between cartesian transformations and
functions between bags of finite bags. This relationship is a close one, but it is not as direct as
Girard would have us believe, as the following example shows:

Example 1.24 The squaring functor (−)2 : Set → Set is stable, being represented by the
singleton bag {p2q}. The identity and switch functions (−)2 → (−)2 are distinct cartesian trans-
formations from this functor to itself, whereas a singleton bag has only one endofunction (the
identity). �

This shows that the token ~n which stands for the representable functor has “internal structure”
which we must take into account. This becomes relevant when we consider higher-order functions.
For instance, in a large public examination, many examiners must be employed to mark the
scripts, and so there must be an “examiner of examiners” (moderator) to ensure fairness. The
moderator would observe the behaviour of the examiners on typical scripts (say on the minimal
ones we discussed). Instead of searching for particular words in scripts, the moderator would test
for the inclination of the examiner to award marks for particular phrases. This has two important
consequences.

7

First, the stable order is capable of detecting lazy behaviour, i.e. when the process outputs
without reading its input. For instance there may be “free marks” awarded to all candidates
irrespective of performance; one marker may award these marks automatically, even to students
who failed to return scripts, whilst another may require to see a (blank) sheet of paper before
giving the marks. The moderator, of course, will detect this behaviour. Phrasing this more
computationally, the stable order can detect that a process has read its input, whilst the pointwise
order can only detect that it has not.

Second, although this is not something we can see in the examples given, there are “internal
symmetries” of tokens at higher order. A first order function may be searching for two occurrences
of a (zero-order) token x in its input; its output will then be the square of the number of occurrences
(this is a representable functor). Multiples of this functor are also stable, but the functor “ 1

2X
2”

(which returns the set6 of unordered pairs, or two-element bags) is not (by Lemma 1.3.6). However
if we test this functor, we can look for occurrences of the pattern “match x(1), x(2)”, which is
isomorphic to the pattern “match x(2), x(1)”, and we are permitted to count these two patterns
(which necessarily occur together) as one if we wish. This illustrates that higher-order pattern-
matching is inherently more complicated, and may help the reader to grasp the behaviour of creeds
in section 3.

Returning to candidates and cartesian transformations the correspondence is summed up ab-
stractly by the following result:

Lemma 1.25 Let S, T : X → Y be functors and φ : S → T a cartesian transformation. Then
u′ : Y → SX in Y is a candidate for S iff u = φX ◦u′ : Y → TX is a candidate for T . Conversely,
if S is stable and postcomposition with the natural transformation φ preserves candidates then φ
is cartesian.
Proof The following diagram was discovered independently by Lamarche (with Y atomic); we
shall use it three times.

Y
u′ - SX

SX ′′
Sg -

�

Sh
t

-

SX ′

Sf

-

TX

φX

?

TX ′′

φX ′′

?

Tg
-

v

-

�

T
h

TX ′

φX ′

?

T
f

-

We are given f , g and either t or v.

[⇒] Given v, let t mediate the pullback and define h by candidacy of u′; then it mediates for u.
Conversely h determines t = Sh ◦ u′.

[⇐] Given t, put v = φX ′′◦t and define h by candidacy of u, so that f = g◦h. Then t and Sh◦u′
both mediate for the pullback. But any h which makes the diagram commute mediates for
u.

6“ 1
2

” does not mean numerical division here, but quotient by the natural action of the group of order 2.

8

[converse] Use stability of S to factorise one of the sides of an arbitrary commutative square as Sf ◦u′.
Define h by candidacy of u and put t = Sh ◦ u′; conversely t determines h by candidacy of
u′.

In all three parts we have to use naturality of φ, i.e. the commutation of the square faces of the
prism. �

Cartesian transformations therefore correspond to functions between sets of candidates. In
the examination example, the candidates correspond to items in the mark-sheet, i.e. pairings of a
minimal answer with the number of marks it gains. A cartesian transformation φ : S → T from
one examiner S to another T is determined by a function which assigns to each line of the first
mark-sheet a line of the second. In particular T gives marks for at least as many things as S does,
whatever the nature of φ; however some of the marks which S gave might become collapsed. Thus
S might end up giving fewer marks than T , unless φ is mono.

However although T may be more willing to award marks than S, she never awards the same
marks for less information. (This is the effect of cartesianness.)

Exercise 1.26 Show that every cartesian transformation into a representable functor S → (−)~n

is an isomorphism, so that representables are atomic. Moreover the automorphisms of (−)~n are
given by composition with an automorphism of ~n [Hint: Yoneda]. �

Remark 1.27 Lamarche has studied the similar situation with M, the category of sets and
monomorphisms, instead of Set. In this case, the representable functors, M(~n,−), are still
atomic, but they are not the same as the powering functors (−)~n = SetA(~n,−). Indeed as
functors M → M, X × X ∼= M(1, X) + M(2, X), where the first inclusion is the diagonal
∆ : X = M(1, X) → X × X, which is not cartesian as a transformation between functors
Set→ Set. The second component consists of the (ordered) unequal pairs.

1.5 Power Series Revised

We shall now reformulate Girard’s result to give a precise characterisation of the stable function-
space [SetA → Set]. First we show that we can form sums of stable functors.

Proposition 1.28 Suppose (X and) Y have disjoint universal coproducts, and let S(r) : X → Y
be stable functors. Then the pointwise coproduct S : X 7→

∑
r S

(r)X is a stable functor, the
inclusion ν(r◦) : S(r◦) →

∑
r S

(r) is cartesian and this is the coproduct in [X → Y].
Proof We use the diagram to show (a) that ν(r) is cartesian, (b) how to factorise maps using
(c) “sums” of candidates, and (d) that

∑
r S

(r) is the coproduct in [X → Y].

9

Y (r◦)
u(r◦)

- S(r◦)X(r◦)

Y =
∑
r

Y (r) u -

-
S(r◦)f (r◦)

∑
r

S(r)
(∑

s

X(s)
)-

S(r◦)X ′

v(r◦)

?
S(r◦)g - S(r◦)X

?

∑
r

S(r)X ′

v

? ∑
r S

(r)g
-

ν (r◦)
X ′

- ∑
r

S(r)X

∑
r S

(r)[f (s)]

?

ν (r◦)
X -

TX ′

τX ′

? Tg - TX

τX

?

(a) Suppose ν(r◦)X ◦ t =
∑
r S

(r)g ◦ v. Define Y (r) by making the left face a pullback. Then we
have Y (r) → S(r)X and Y (r) → Y

t→ S(r◦)X, so this factors through the intersection, which
(for r 6= r◦) is 0 by disjointness. Then Y (r) ∼= 0 by strictness and Y ∼= Y (r◦) by universality,
so v(r◦) is (essentially) the required mediator. Uniqueness is easy.

(b) Given w : Y →
∑
r S

(r)X, factorise its pullback (ν(r)X)∗w = S(r)f (r) ◦ u(r) : Y (r) → S(r)X
with u(r) : Y (r) → S(r)X(r) a candidate for S(r) and f (r) : X(r) → X. Define v(r) using
cartesianness and u out of the coproduct (by universality).

(c) Using candidacy of u(r) we have diagonal fill-ins h(r) : S(r)X(r) → S(r)X ′ at the back, and
the required fill-in is their sum h =

∑
r h

(r) at the front.

(d) Given a cocone S(r) → T over the diagram, there is a unique natural mediator τ : we have
to show it’s cartesian. If w : Y →

∑
r S

(r)X and Y → TX ′ make the diagram commute, we
find v(r) by cartesianness of the cocone and v =

∑
r v

(r) as their sum, using universality of
sums again. �

To explain this result in the terms of the original example, suppose S′ is the behaviour of the
history examiner and S′′ that of the geography examiner. The function w : Y → S′X + S′′X
means that certain specific marks were awarded in the two examinations, Y ′ ⊂ Y of them in
history and Y ′′ ⊂ Y in geography. Only the part X ′ → X of the script was actually considered
worthwhile history (and this got the Y ′ marks), and similarly X ′′ → X in geography, so altogether
X ′ +X ′′ → X was what earned the student the Y marks.

Exercise 1.29 Suppose X has binary coproducts and that S : X → Y and T : X → Z are stable.
Show that 〈S, T 〉 : X → Y ×Z is stable. In what sense are binary coproducts necessary? �

We can now characterise cartesian transformations between stable functors SetA → Set pre-
cisely, but to describe this we have to modify the power-series representation. First we reformulate
Lemma 1.3.6.

Lemma 1.30 Let S : SetA → Set be a stable functor. For each finite bag ~n, let σ~n be the set of
candidates u : 1→ S~n. This carries a locally faithful action of the group Aut(~n) on the left, by

h · u = Sh ◦ u

10

whilst the representable X~n carries an action on the right:

f · h = f ◦ h
Proof We shall discuss group actions at length in section 2. An action is locally faithful if
∀h, u.(h · u = u⇒ h = 1): this property was shown in Lemma 1.3.6. �

Definition 1.31 Suppose the group Aut(~n) acts on the left of σ~n and the right of X~n. Then we
can form their tensor product , X~n ⊗Aut(~n) σ~n, which consists of set of pairs 〈f, u〉 with f ∈ X~n

and u ∈ σ~n subject to the equivalence relation that 〈f ◦ h−1, Sh ◦ u〉 = 〈f, u〉.

Theorem 1.32 Let S : SetA → Set be a stable functor and σ~n be the set of candidates u : 1→ S~n.
Then

SX ∼=
∑
~n

X~n ⊗Aut(~n) σ~n

Let T : SetA → Set be another stable functor corresponding to (τ~n). Then cartesian transforma-
tions φ : S → T correspond bijectively to families of functions

φ~n : σ~n → τ~n

which respect the action of Aut(~n). Hence the stable function-space [SetA → Set] is equivalent to
the category of locally faithful actions of the groupoid whose components are Aut(~n).
Proof

[∼=] The proof of the isomorphism runs the same as Theorem 1.3.7, except that we have taken
the quotient by the equivalence relation at a later stage. Notice we have also swapped the
order of the product.

[⇒] By Lemma 1.4.3, every cartesian transformation φ restricts to a function on candidates which
we may write as φ~n (in fact this is the restriction of the component φ~n of φ to the subset
σ~n ⊂ S~n). Moreover naturality of φ with respect to automorphisms h : ~n ∼= ~n implies that
the action is respected.

[⇐] For 〈f, u〉 ∈ SX, so that u : 1→ S~n is a candidate and f : ~n→ X, put φX〈f, u〉 = 〈f, φ~n(u)〉.
This is independent of the choice from the equivalence class because φ~n respects the action
of Aut(~n). We have to show that φ is natural: let g : X → X1; then Sg〈f, u〉 = 〈g ◦ f, u〉, so

φX1

(
Sg〈f, u〉

)
=
〈
g ◦ f, φ~n(u)

〉
= Tg

〈
f, φ~n(u)

〉
= Tg

(
φX〈f, u〉

)
as required. Cartesianness then follows from the converse of Lemma 1.4.3. �

Corollary 1.33 [SetA → Set] does not have a terminal object (unless A = 0). �
Clearly we must study actions of groups and groupoids in detail, replacing Girard’s set

Int(A) = Int(SetA)f

with the groupoid whose components are Aut(~n) for ~n ∈ Int(A). Moreover these actions must, it
would appear, be locally faithful. However, as this was the result of Lemma 1.3.6, which depended
on the existence of a terminal object, this is invalidated (for higher types) by the Corollary, and
so we have to introduce a more flexible concept (creeds).

11

2 Groups and Linear Logic

2.1 Group Actions and the Multiplicative Fragment

This section describes the groupoid interpretation of linear logic in an informal way. We leave the
reader to work out the interpretation of the linear λ-calculus [Lafont]; this is more or less obvious,
but inadequate as it involves equations between terms which are objects of categories. We shall
concentrate on group theory and use the characterisation of stable functors as our correctness
criterion.

Let us say a word here about cardinality. In everything we do the groups are finite, but the
groupoids will be countable (but recursively enumerable): infinitely many distinct finite groups
may occur, each infinitely often, and different occurrences of the same group may carry different
creeds. It doesn’t really harm matters to assume that the actions are also countable, but on the
other hand it doesn’t help either.

One of the virtues of category theory is that it describes not only collections of mathematical
objects (and their morphisms), but also in many cases the objects themselves. In particular, a
group, which is of course a set with an associative binary operation (◦), an identity and inverses7,
is (the morphism-set of) a category with one object in which every morphism is invertible. For
purposes of calculation, the classical definition is more appropriate, but for theoretical use the
abstract version simplifies matters, as we shall see. In fact we shall find it convenient to use both
definitions interchangeably.

Definition 2.1 Let A be a group and X a set. A right action A on X is a function · : X×A→ X
such that

x · id = x and x · (a ◦ b) = (x · a) · b

for all x ∈ X and a, b ∈ A. Suppose Y also carries an action of A; then a function f : X → Y
respects the action of A, or is equivariant , if

f(x · a) = (fx) · a

for all x ∈ X and a ∈ A (where · on the left is the action on X and on the right is that on Y).
Similarly left action.

Lemma 2.2 Right actions of A are isomorphic to left actions of Aop (the group with the same
elements as A — written â for clarity — but the opposite composition: âb̂ = b̂a).
Proof Exercise. [Hint: â · x = x · a] �

The value of the categorical definition lies in the following:

Proposition 2.3 The category of right A-actions and equivariant functions is isomorphic to the
functor-category SetA

op
, whose objects are functors Aop → Set (presheaves on A) and whose

morphisms are natural transformations. Similarly the category of left A-actions is isomorphic to
SetA.
Proof The “single object” is taken by the functor to the set X; what’s interesting is what
happens to the morphisms: they are taken to the corresponding automorphisms of the set. That
naturality and equivariance are the same is an elementary (but important) exercise. �

We shall introduce a few more classical ideas about permutation actions later, but our main
point is to show how we can use groups to interpret the multiplicative fragment of linear logic,
i.e. that involving only ⊗, O and ⊥, together with the identity (axiom) and the cut rule. In fact in
this interpretation, ⊗ =O. The interpretation will be in some ways similar to Girard’s coherence
space interpretation; in particular neither of them has any obvious direct connection with logic
(“linear logic is not necessarily logic”).

7The inverses are a bit misleading as part of the exposition, and produce red herrings like A ∼= Aop by a 7→ â−1.
In fact the strictly linear parts (i.e. this section) can be done with general categories, but when we return to stable
functors in the next section, we shall need invertibility (but see Proposition 3.5.4).

12

The notation
A(1), A(2), ..., A(k) ` B(1), B(2), ..., B(l)

informally means that we can deduce at least one of the conclusions B(j) using some of the
hypotheses A(i). Better, it means that we have a particular proof, not specified in the notation.
In these non-logical interpretations, there is usually at least one “proof” for any hypotheses and
conclusions, so it is really a specific “proof-object” (whatever that is) that we’re interested in.

In classical logic, the A(i)’s may be permuted (the technical word is exchanged) and if two
hypotheses are actually (different occurrences of) the same formula we may identify them (con-
traction). This means that the string A(1), A(2), ..., A(k) is a (finite) set . The same holds for the
B(j)’s, and in fact there is a further possibility (structural rule), namely to add further hypotheses
to the set (weakening).

The point of linear logic is to forbid contraction and weakening, so that we have a proof which
uses the hypotheses exactly once each. The set {A(1), A(2), ..., A(k)} now becomes a bag since
we may now have duplicates but may still exchange. The effect of this is that there are now
two different conjunctions (⊗ and N) and two different disjunctions (O and ⊕). The power of
intuitionistic logic is regained by the “of course” operator !A, which manufactures as many copies
of the hypothesis A as we need. The reader is referred to any of the recent work of Girard or
Lafont for further descriptions of the system.

When we say that linear logic is not necessarily logic we mean that what we call “proofs” may
bear no resemblance to ordinary deduction. This is the case with the group-action interpretation.

Definition 2.4 A proof of

A(1), A(2), ..., A(k) ` B(1), B(2), ..., B(l)

is a set P together with an action of each A(i) on the left, and each B(j) on the right, i.e.

a(i) · p and p · b(j)

for each p ∈ P , a(i) ∈ A(i) and b(j) ∈ B(j), which commute, i.e.

a(i) · (a(i′) · p) = a(i) · (a(i′) · p)
(a(i) · p) · b(j) = a(i) · (p · b(j))
(p · b(j)) · b(j′) = (p · b(j)) · b(j′)

for i 6= i′ and j 6= j′.
When k = l = 1, a proof of A ` B is a functor P : A × Bop → Set, which also called a

profunctor from A to B. This numerical restriction is unimportant because of the

Exercise 2.5 A simultaneous action of A(1), ..., A(k) on the left and B(1), ..., B(l) on the right of
X is the same as an action of Aop

(1) × ...×A
op
(k) ×B(1) × ...×B(l) on the right. �

What justifies the use of the word “proof” for these very un-proof-like objects is the fact that
the sequent rules for the (linear) logical connectives are sound, although with (single) groups we
shall only be able to interpret ⊗, O and ⊥.

Proposition 2.6 For groups C and D, let C ⊗D = COD = C ×D, the cartesian product. Also,
let C⊥ = Cop, the opposite group. Then the rules

~A,C,D ` ~B
~A,C ⊗D ` ~B

L⊗ RO
~A ` C,D, ~B
~A ` COD, ~B

and
~A ` C, ~B
~A,C⊥ ` ~B

L⊥ R⊥
~A,C ` ~B
~A ` ⊥C, ~B

13

are interpreted as isomorphisms. The rules

~A,C ` ~B ~A′, D ` ~B′
~A, ~A′, COD ` ~B, ~B′

LO R⊗
~A ` C, ~B ~A′ ` D, ~B′
~A, ~A′ ` C ⊗D, ~B, ~B′

are interpreted by a product.
Proof We have dealt with the first four rules in the Exercise. For the last two, if P and Q
are the actions corresponding to the proofs above the line, P ×Q corresponds to that below; the
action is

a(i)·〈p, q〉 = 〈a(i)·p, q〉, a(i′)·〈p, q〉 = 〈p, a(i′)·q〉, 〈p, q〉·b(j) = 〈p·b(j), q〉, 〈p, q〉·b(j′) = 〈p, q·b(j′)〉

and
〈c, d〉 · 〈p, q〉 = 〈c · p, d · q〉 or 〈p, q〉 · 〈c, d〉 = 〈p · c, q · d〉

for LO and R⊗ respectively. �

2.2 Identity and Cut

So far we have given definitions and constructions but no concrete examples of actions. The most
important example was found by Cayley, and we shall use it to interpret the identity (axiom)
A ` A: we take P = A, i.e. just the set of elements of the group, where a ·p = a◦p and p ·a = p◦a.
(This same idea occurs in category theory as the Yoneda lemma.) We take this opportunity to
introduce some more general notation; we shall also often drop the ◦ when composing group
elements.

Definition 2.7 Let A be a group and H any subgroup, written H ≤ A. For x ∈ A, xH = {xh :
h ∈ H} is a left coset and Hx = {hx : h ∈ H} is a right coset . Write A/H for the set of left
cosets and H\A for the set of right cosets.

Definition 2.8 Let X carry a right action of A and x ∈ X. Then the orbit of x is the set

x ·A = {x · a : a ∈ A}

and if this is the whole of X we call the action transitive. The stabiliser of x is the subgroup

Stab
A

(x) = {a ∈ A : x · a = x}

The action of A on X is called faithful if

∀a ∈ A.(∀x ∈ X.x · a = x)⇒ a = id

but the condition we had in Lemma 1.5.4 was

∀a ∈ A.(∃x ∈ X.x · a = x)⇒ a = id i.e. ∀a ∈ A.∀x ∈ X.(x · a = x⇒ a = id)

which we call locally faithful8. Alternatively, the action is locally faithful at x iff StabA(x) = {id};
of course if StabA(x) = A then x is a fixed point .

Proposition 2.9 Let A be a group. Then

(a) For any subgroup H, H\A carries a transitive right action given by Hx · a = H(xa) and
A/H carries a transitive left action given by a · xH = (ax)H.

(b) Every action of A on a set X is uniquely expressible as the disjoint union of actions on cosets.
8The term semi-regular is used in group theory: Cayley’s action is the regular one: cf. simple and semi-simple

in ring theory. I am grateful to Steve Linton for his remarks on standard terminology.

14

Proof Checking that [a] is well-defined is an easy standard exercise. For [b] we decompose X
as a disjoint union of orbits, on each of which the action is transitive. With H = StabA(x), the
right action of A on H\A is isomorphic to that on x ·A by Ha↔ x · a. �

This gives us a concrete representation of actions.

Exercise 2.10 Show that StabA(x · a) = a−1 StabA(x) a; this is called a conjugate subgroup.

Notation 2.11 Write Conj(A) for the set of conjugacy classes of subgroups of a group A. For an
action of A on X and [H] ∈ Conj(A), write X [H] for the number (set) of orbits whose stabiliser
belongs to the conjugacy class [H], so that

X ∼=
∑

[H]∈Conj(A)

X [H] × H\A

We also need two-sided cosets:9 if H ≤ Aop × B we write A/H\B for the set of objects
aHb ≡ H〈â, b〉 with a ∈ A and b ∈ B. This has left action of A and right action of B by

a′ · aHb = a′aHb and aHb · b′ = aHbb′

and so is an (atomic) proof of A ` B. As a special case of this, write

∆ = {〈â−1, a〉 : a ∈ A} ≤ Aop ×A

for the diagonal subgroup; then A/∆\A is (isomorphic to) the set A with its obvious (regular)
two-sided action.

Proposition 2.12

(a) For a group A,
A/∆\A is a proof of A ` A

(b) The rule
~A ` C, ~B ~A′, C ` ~B′

~A, ~A′ ` ~B, ~B′
Cut

is interpreted by
P, Q 7→ P ⊗C Q

where P ⊗C Q is the set of pairs 〈p, q〉 with p ∈ P and q ∈ Q subject to the equivalence
relation 〈p · c, q〉 = 〈p, c · q〉 (Definition 1.5.4), and the action of ~A etc. is as in Proposition
2.1.5.

Proof It is an exercise to show that the actions respect the equivalence relation. �
Observe that this rule is the same as R⊗ (and LO) but with C ⊗ C⊥ (respectively C⊥OC)

deleted. In simpler terms, this amounts to the rule

C ` C
`

which, semantically, turns an action of C on both sides of P into a set without any action, using
the condensation

p 7→ [p] = {c−1 · p · c : c ∈ C}

which forms the quotient by an equivalence relation. With linear (now in the traditional sense
of Linear Algebra) instead of permutation representations of groups, we may express [p] as an
“average”

[p] =
1
|C|

∑
c∈C

c−1 · p · c

9In computational group theory, a double coset is of the form HaK.

15

(cf. Maschke’s theorem; [Lang] Theorem 18.1.1). This is essentially what Girard does in his
“C∗-algebra” interpretation of linear logic [89].

Exercise 2.13 Show that every equivariant function f : H\A → J\A is onto, and is of the
form Hx 7→ Jfx where H ⊂ f−1Jf . Suppose that K : Q is a normal field extension with
Galois group A; show that the category of intermediate fields and homomorphisms (not necessarily
commuting with the inclusion in K) is dual to this category of transitive actions.

2.3 Groupoids and the Additive Fragment

The multiplicative fragment of Linear Logic is very inexpressive: we need to extend it with the
additive connectives, N and ⊕. In our interpretation, they become identified, and in fact are
interpreted as a disjoint sum of groups.

But what is a disjoint sum of groups? Just what it says, and certainly not their coproduct in
Gp. It is at this point that we see the value of the abstract (categorical) definition of a group.

Definition 2.14 A groupoid is a category in which every morphism is invertible.

Lemma 2.15 Every groupoid is equivalent to a unique bag of groups.
Proof A bag of groups is a skeletal groupoid, i.e. one in which if two objects are isomorphic
(quâ objects of the category, not just that their automorphism groups are isomorphic in Gp)
then they are equal. Given any groupoid, we choose (arbitrarily) one object in each component
and form the full subcategory; this is a skeletal groupoid. Any object is isomorphic to a unique
chosen object, but not uniquely so, hence we have also to choose a particular isomorphism. By
pre-composing morphisms with this chosen isomorphism and post-composing with its inverse, we
can define a functor from the whole groupoid to its skeleton, and this provides an equivalence.
The bag of groups is easily seen to be unique up to isomorphism, although (the pair of functors
defining) the equivalence is certainly not unique. �

As we said, both the abstract and the concrete definitions are useful, even for connected
groupoids. A good example is the Fundamental Group of a (path-connected) topological space,
which consists of the loops at a given basepoint under concatenation. The abstract version of
this is the groupoid of paths between any two points, which enables us to extend the definition
to the non-connected case. The functoriality of this construction is more easily seen abstractly,
whereas for calculations in algebraic topology the additional copies of the same group serve no
useful purpose. The same will apply in our case.

We shall in future use A to denote a groupoid and write Ai for a typical component, which
we shall consider to be a group (skeletal). Note that the i ∈ I correspond to components and not
objects of the groupoid. We shall also drop the usual shorthand X ∈ C for an object of a category,
instead using a ∈ A to mean that a is a morphism of A; this generalises a ∈ Ai for an element
of a group. This is consistent with seeing a skeletal groupoid as its set of morphisms with partial
composition.

Just as a groupoid is a bag of groups, Ai, so a groupoid action is a bag of sets, Xi (one for each
group). The elements a ∈ Ai act on the x ∈ Xi in the corresponding set, and local faithfulness is
defined in the obvious way. (Contrast this with Definition 2.1.4, in which all the A(i) acted on the
same set X.) Moreover an equivariant function f : X → Y is a bag of functions f i : Xi → Y i each
respecting the action of the Ai. The abstract definition proves its worth in the following result,
which unifies 1.3.2 and 2.1.3.

Lemma 2.16 Let A be a groupoid. The category of right A-actions is isomorphic to the category
SetA

op
of functors from Aop to Set (or presheaves on A) and natural transformations between

them. Similarly left actions form the category SetA. �
If we add groups to a bag, it can still act on the same family of sets, on the understanding

that the missing sets are empty. Thus if X carries an action of C then X + 0 carries an action of
C +D. This is “vectorial addition” in the sense that the set Xi is “oriented” by the group Ai. In

16

particular we shall write H\Ai for the “unit vector”, i.e. action of the groupoid A on the family
of sets which are empty in all components except i, where it is the set of right cosets of H ≤ Ai.

Lemma 2.17 H\Ai is atomic: it has no proper subobject as an object of SetA
op

. Every object
of this category may be expressed uniquely as a coproduct of atoms.
Proof Clearly

X ∼=
∑
i∈I

∑
[H]∈

Conj(Ai)

Xi,[H] × H\Ai

whilst it is an exercise to show that if f : X → Y is an equivariant function between two such
decompositions, each component of X is mapped onto some unique component of Y . �

Of course we shall now interpret CND = C⊕D = C+D as the disjoint union of groupoids, but
certain other things have to be generalised about the earlier interpretation. We have to replace
the product of groups and of sets by the product of groupoids and families of sets; this means
that we form the product of the indexing sets, I × J , and for each 〈i, j〉 form the product of the
groups, Ai × Bj , or sets, Xi × Y j . Observe that the sum and product of skeletal groupoids are
again skeletal.

Proposition 2.18 The rules

~A,C ` ~B
~A,CND ` ~B

L1N L2N
~A,D ` ~B

~A,CND ` ~B

and
~A ` ~B,C

~A ` ~B,C ⊕D
R1⊕ R2⊕

~A ` ~B,D
~A ` ~B,C ⊕D

are interpreted by X 7→ X + 0 or X 7→ 0 +X, whilst the rules

~A,C ` ~B ~A,D ` ~B
~A,C ⊕D ` ~B

L⊕ and RN
~A ` C, ~B ~A ` D, ~B

~A ` CND, ~B

are interpreted by X,Y 7→ X + Y . �
The interpretation of Cut is also more complicated: if X is a proof of ` C and Y of C ` then

we have to reinterpret
X ⊗C Y =

∑
i

Xi ⊗Ci Yi

which is already reminiscent of Theorem 1.5.5. The categorically-minded will observe that this is
a colimit or coend over a diagram whose type is a groupoid (namely C).

Before we return to our discussion of stable functors, let us first complete the interpretation of
the linear connectives by giving the units.

Exercise 2.19 Show that with 1 = ⊥ interpreted as the one-element group and 0 = > as the
empty groupoid, the rules

L⊥
⊥ `

=
` 1
R1 L1

~A ` ~B
~A,1 ` ~B

=
~A ` ~B
~A ` ⊥, ~B

R⊥

L0
~A,0 ` ~B

=
~A ` >, ~B

R> (no rule L> = R0)

are sound. [Hint: use a singleton singleton for the first two, and an empty bag for the third.] �

17

3 Quantitative Domains

3.1 Linear Functors

We have already defined a proof of ` A to be an object of SetA
op

, so more generally what is the
relationship between proofs (actions)

A(1), ..., A(k) ` B(1), ..., B(l)

and stable functors
SetA

op
(1)×...×A

op
(k) → SetB

op
(1)×...×B

op
(l)

(without loss of generality, k = l = 1)? Suppose that P is a proof of A ` B, i.e. an action of A on
the left and B on the right, and let X ∈ SetA

op
, i.e. an action of A on the right. We may form

the tensor product

SX = X ⊗A P i.e. (SX)j =
∑
i

Xi ⊗Ai P
j
i

and hence define a functor S : SetA
op
→ SetB

op
.

Now S is not stable, but Sop :
(
SetA

op)op →
(
SetB

op)op is!

Lemma 3.1 S has a right adjoint and preserves cofiltered limits.
Proof The right adjoint is given by

Y 7→ Y/AP ≡ {x : P →B Y } with x · a : p 7→ x · (a · p)

Preservation of cofiltered limits uses the fact that the intersection of a descending sequence of
non-empty finite sets is non-empty, which depends on our use of finite groups. �

Exercise 3.2 Show that if S : SetA
op
→ SetB

op
has a right adjoint then S ∼= − ⊗A P for some

P : A ` B. �
The problem is that S does not preserve pullbacks (we already have the counterexample 1

2X
2),

but it does preserve a wider class of squares:

Definition 3.3 A square in SetA
op

is called sur-cartesian if it commutes and the mediator to the
pullback is an epimorphism.

Exercise 3.4 By considering the decomposition in Lemma 2.3.4, show that a commutative square
is sur-cartesian iff the underlying square of atoms is a pullback. Hence show that S preserves
sur-cartesian squares. �

Since not every two-sided action (profunctor) gives rise to a stable functor, we have to modify
the theory. We have (at least) three options:

(a) Replace stability with this weaker notion of preserving sur-cartesian squares. Joyal [87] has
studied this, proving similar results to ours (in particular uniqueness in the definition of
candidacy is dropped) but unfortunately not quite in sufficient generality to give a cartesian
closed category. However he does also develop a theory with vector spaces instead of sets,
to which we have only alluded.

(b) Restrict the morphisms to monos, forcing sur-cartesian=cartesian to restore stability: Lamarche
has shown (privately) that domains of the form M(A) and stable functors form a cartesian
closed category, where M(A) is the category of locally faithful A-actions and monomor-
phisms.

(c) Restrict the objects to those for which the functor does preserve pullbacks: this is what we
choose to do.

18

The interested reader should be able to adapt our results to cases (a) and (b), which are somewhat
simpler. Joyal’s ideas probably lead to other models of Linear Logic worthy of study.

Definition 3.5 A functor is linear if its restriction to slices has adjoints on both sides; we write
S : X (Y.

The term is justified semantically by the representation S ∼= −⊗A P , which says that a linear
functor performs “matrix multiplication” on atoms. The syntactic justification lies in the proof-
theoretic principle of using each hypothesis exactly once. We cannot say that S has a (global)
right adjoint, because Y/AP may not lie in the chosen full subcategory.

What help is this in classifying stable functors? As Girard put it, it is that every stable functor
can be made linear if only we change the domain. Indeed, comparing

SX = X ⊗A P =
∑
i

Xi ⊗Ai P
j
i with SX ∼=

∑
~n

X~n ⊗Aut(~n) σ~n

we see that we can write
SX ∼= !X ⊗!A σ

if we make the following

Definition 3.6

(a) !A is the groupoid of finiteA-actions (~n) and isomorphisms; as a bag of groups its components
are Aut(~n).

(b) !X is the right !A-action with (!X)~n = X~n (i.e. Hom(~n,X), cf. Lemma 1.5.3).

In the language of category theory [Mac Lane, Chapter VI], !− is a comonoid in the monoidal
category with linear functors as morphisms, and the category with stable functors is the coKleisli
category [Lafont]. The fact that

[X → Y] ' [!X (Y]

is a non-trivial achievement, because we have reduced a complex binary operator → to a simple
binary operator [−(−] (the linear function-space) and a complex unary operator ! .

Observe that evaluation is linear in the functor . This means that although a process may have
to read its input many times to match the parts of a pattern, the pattern (a token of the function)
need itself only be read once. Girard noticed that many λ-definable operations are actually linear.

3.2 Creeds

We have already seen that for a set (or groupoid) A, the groupoid of all finite objects of SetA
op

is involved in !A, but this is further complicated by local faithfulness. In order to state and
prove the theorem correctly, we must therefore make a definition of quantitative domains which
is sufficiently complex to account for these phenomena.

Definition 3.7 A creed on a group A is a subset Γ ⊂ A which is closed under inverses, powers
and conjugation (not multiplication: that would make it a normal subgroup, which is too strong).
A creed on a groupoid is a creed on each component group. An action of A on X is locally faithful
to Γ if ∀x ∈ X.StabA(x) ⊂ Γ, or equivalently ∀x ∈ X, a ∈ A.(a · x = x⇒ a ∈ Γ).

Exercises 3.8

(a) Let A be a groupoid equivalent to the bag of groups (Ai) (cf. Lemma 2.3.2), and let Γi ⊂ Ai
be a family of subsets. Using the chosen isomorphisms this can be extended to a family of
subsets of the automorphisms of the other objects. Show that this extension is independent
of the choice of isomorphisms iff each Γi is closed under conjugation by elements of Ai.
[Hint: cf. Exercise 2.2.4.]

19

(b) Show that every subset of a group contains a largest creed, to which it is equivalent as a
way of defining local faithfulness. [Hint: StabA(x) might be a cyclic subgroup.] �

Definition 3.9 A quantitative type is a groupoid A equipped with a creed Γ, i.e. a creed Γi on
each component group Ai. The corresponding quantitative domain, QD(A,Γ), is the category of
locally Γ-faithful right A-actions and equivariant functions. Note that QD(A,Γ) does not have a
terminal object unless Γ = A, so Lemma 1.3.6 fails, but everything else carries over.

Lemma 3.10 X = QD(A,Γ) ⊂ SetA
op

is closed under

(i) backwards-arrows (isotomic): if Y ∈ X and f : X → Y in SetA
op

then X ∈ X ,

(ii) morphisms (full): if X,Y ∈ X and f : X → Y in SetA
op

then f ∈ X ,

(iii) isomorphisms (replete): special case of (i) with f : Y ∼= X,

(iv) coproducts: if X,Y ∈ X and Z = X + Y in SetA
op

then Z ∈ X ,

(v) filtered colimits: if X = colim↑X(r) in SetA
op

with X(r) ∈ X then X ∈ X .

(vi) representable objects: 1\Ai ∈ X (in fact H\Ai ∈ X iff H ⊂ Γ).

Conversely, if X ⊂ SetA
op

is a subcategory with these closure conditions then there is a unique
creed Γ with QD(A,Γ) = X .
Proof [i] If f : X → Y then the stabilisers of points of X are no bigger than those in Y .
[ii] Definition. [iv] Lemma 2.3.4. [v] Exercise. [vi] The representable objects are locally faithful
actions because their stabilisers are {1} ⊂ Γ. [⇐] Let Γi =

⋃
{H ≤ Ai : H\Ai ∈ X}. �

Corollary 3.11 QD(A,Γ) ⊂ SetA
op

is also closed under binary products with, and exponentiation
by, arbitrary objects of SetA

op
. Also equalisers, but not coequalisers. �

We have chosen a definition in terms of a unary predicate on group(oid) elements, viz. mem-
bership of a creed. One could alternatively define a (reflexive, symmetric) binary predicate

a _^ b ⇐⇒ ∃i.a, b ∈ Ai ∧ ab−1 ∈ Γi

making an analogy with coherence spaces [GLT, chapter 8]. We recover the creed by Γ = {a ∈
A : id _

^ a}. A pairwise coherent subset of a groupoid which is also closed under the (partial)
Mal’cev operation

µ(a, b, c) = ab−1c

is the same thing as a right coset of a subgroup H ⊂ Γi, and this is a token of a locally Γ-faithful
A-action. An object of a quantitative domain is a set of coherent Mal’cev-closed sets. In contrast,
an object of a qualitative domain is just a coherent set. The reason is that in qualitative domains
we are controlling sums, whilst in quantitative domains we need to control quotients.

We have to generalise the power-series expansion and the interpretation of linear logic. We
shall abuse notation by writing

(A,Γ)N(B,∆) as (ANB,ΓN∆)

and similarly for the other connectives. This is an abuse, because !A (in particular) depends on
Γ as well as A, because its objects are locally Γ-faithful finite right actions. Obviously ! Γ depends
on A.

Exercise 3.12 Every stable functor S : QD(A,Γ) → QD(B,∆) has a power-series expansion
similar to Theorem 1.4.9, except for the local faithfulness condition, and so extends to a functor
(not necessarily stable) SetA

op
→ SetB

op
. �

20

The units are given by

QD(⊥) = Set = QD(1) QD(>) = 1 = QD(0)

whilst the additives are both given as before by disjoint unions:

(A,Γ)N(B,∆) = (A,Γ)⊕ (B,∆) = (A+B,Γ + ∆)

where A+B is the disjoint union and Γ + ∆ is similarly the family in which Γi corresponds to Ai
and ∆j to Bj .

Exercise 3.13 Show that[
QD(A,Γ)(QD(B1,∆1)× QD(B2,∆2)

]
'
[

QD(A,Γ)(QD(B1NB2,∆1N∆2)
]

and [
QD(A1,Γ1)× QD(A2,Γ2)(QD(B,∆)

]
'
[

QD(A1 ⊕A2,Γ1 ⊕ Γ2)(QD(B,∆)
]

where [X (Y] is the linear function-space: we have yet to define the linear connective (A,Γ)(
(B,∆). Show also that Proposition 2.3.5 remains valid. �

Recall that in coherence spaces, ⊕ and ⊗ have simple descriptions as sums and products of
graphs, whereas N and O are defined via linear negation. In our case, linear negation commutes
with ⊕, so N= ⊕, but (unlike for groups) it does not commute with ⊗. We define

(A,Γ)⊗ (B,∆) = (A×B,Γ×∆)

in the obvious way, and it is easy to check this gives a creed.

Exercise 3.14 Describe QD
(
(A,Γ)⊗ (B,∆)

)
and show that it is a topological product.

3.3 Creeds and Negation

Now it was Lemma 1.3.6 which was the source of our difficulties, so let us look carefully at how
the problem arose. Because of the existence of the terminal object, it was possible to satisfy

∃X, f : ~n→ X . f ◦ h = f

for arbitrary h ∈ Aut(~n). In general, if h satisfies this property, we call it an annihilable automor-
phism. (In the study of linear functors, we shall just have h = a ∈ Ai ∼= 1\Aut(Ai) .)

Lemma 3.15 a ∈ Ai is annihilable iff a ∈ Γi.
Proof [⇐] Put X = 〈a〉\Ai where 〈a〉 ≤ Ai is the cyclic subgroup generated by a. [⇒] Any
annihilating f factors through this. �

It is then clear that we must let ! Γ~n ⊂ Aut(~n) be the set of annihilable automorphisms. We
shall see shortly that !(A,Γ) ((B,∆) gives the function-space. However the basic difficulty
actually lies in the linear negation, which we want to satisfy

[QD(A,Γ)(Set] ' QD(A⊥,Γ⊥)

since Set = QD(⊥) and A(⊥ = A⊥.

Lemma 3.16 A⊥ = Aop and Γ⊥ = {â : ∀k.ak ∈ Γ⇒ ak = 1}.
Proof The question is when SX = X ⊗A P is stable, for a left action of A on P ; without loss
of generality this is atomic, so P = Ai/H where H ≤ Ai. An element of X ⊗A P is then a pair
〈x, aH〉 where x ∈ Xi and aH ∈ Ai/H ; but this is identified with 〈x ◦ a,H〉, so we may write

21

it as xaH. The (potential) candidate is H = idH ∈ 1\Ai ⊗Ai Ai/H and the factorisation is
xH = Sx ◦H.

The problem is uniqueness of the diagonal a in the definition of the candidacy of H.

1
H -

1\Ai ⊗Ai Ai/H

1\Ai ⊗Ai Ai/H

H

? Sx -
�

Sa

H\Ai ⊗Ai Xi

Sx

?

1
H -

1\Ai ⊗Ai Ai/H

X ′ ⊗Ai Ai/H

x′H

? Sf -
�

Sh

Xi ⊗Ai Ai/H

Sx

?

If a = id is to be the unique diagonal in the diagram on the left for all x, we must have

a ∈ H ∃x ∈ X.x ◦ a = x

a = id

Conversely, if the right-hand square commutes then xH = fx′H and so there is some a1 ∈ H with
x = fx′a1; in fact h1 = x′a1 is a typical diagonal. If a2 = a1a also satisfies this then the rule
makes a1 = a2. So we have shown that the rule is necessary and sufficient.

By lemma 3.3.1, the rule says that

H ⊂ {a ∈ Ai : a ∈ Γi ⇒ a = id}

However H, being a subgroup, is closed under powers, so we can strengthen this to the given
definition of Γ⊥i. On the other hand, cyclic subgroups show that this is the most we can do. It is
also easy to show that Γ⊥ is closed under inverses and conjugation. �

We do not in general have (A,Γ)⊥
⊥

= (A,Γ) (Exercise 3.6.4). The other two binary connec-
tives, O and (, are related by

(A,Γ)⊥ ⊗ (B,∆)⊥ = ((A,Γ)O(B,∆))⊥ and (A,Γ)((B,∆) = (A,Γ)⊥O(B,∆)

where

(ΓO∆)ij = {〈a, b〉 : ∀k.(ak ∈ Γi ∧ bk ∈ ∆j) ∨ (id 6= ak ∈ Γi) ∨ (id 6= bk ∈ ∆j)}

and
(Γ(∆)ij = {〈â, b〉 : ∀k.(ak ∈ Γi ⇒ bk ∈ ∆j) ∧ (ak ∈ Γi ∧ bk = id⇒ ak = id)}

so (
(C,Θ)⊗ (A,Γ)

)
((B,∆) = (C,Θ)(

(
(A,Γ)((B,∆)

)
Lemma 3.17 With this definition we have[

QD(A,Γ)(QD(B,∆)
]
' QD

(
(A,Γ)((B,∆)

)
Proof Put SX = X ⊗ P with P = Ai/K\Bj for some subgroup K ≤ Ai

op × Bj . We have
to show that the action of B on SX is locally faithful to ∆ and the diagonals for the potential
candidate K ∈ 1\Ai ⊗ Ai/K\Bj are unique. A typical element of SX is xKb where x ∈ Xi and
b ∈ Bj , but since b is an isomorphism we may assume b = id. Local faithfulness to ∆ amounts to
the rule

〈â, b〉 ∈ K ∃x ∈ X.x ◦ a = x

b ∈ ∆j

and candidacy, as before, to the rule

〈â, id〉 ∈ K ∃x ∈ X.x ◦ a = x

a = id

22

Again ∃x ∈ X.x ◦ a = x ⇐⇒ a ∈ Γi and the rules may be strengthened to 〈â, b〉k. These two
rules correspond exactly to the two parts of the expression for

(
(A,Γ)((B,∆)

)
. �

Finally, we leave the identity[
QD(A,Γ)→ QD(B,∆)

]
' QD

(
!(A,Γ)((B,∆)

)
as an exercise: the argument is exactly analogous to Lemmas 3.3.2&3. We have already shown
that evaluation is not just stable but linear, so we have completed the proof of the

Theorem 3.18 Quantitative types model linear logic, and quantitative domains and stable func-
tors form a cartesian closed category. �

Exercise 3.19 State and prove the adjunctions between ⊗ and (and between N and →.

3.4 Rigid Adjunctions and the Type of Types

Following standard practice with domain models of polymorphism, we shall use the following to
interpret dependent types:

Definition 3.20 Φ : X → Y is a rigid comparison if it has a right adjoint Θ : Y → X and the
unit η : idX → ΘΦ and counit ε : ΦΘ→ idY are cartesian.

Theorem 3.21 Rigid comparisons are comonadic.
Proof Suppose α : Y → ΦΘY is a coalgebra, so εY ◦ α = id — we don’t even need the other
equation ΦΘα ◦ α = νY ◦ α because it will follow automatically! Form the pullback

X
β - ΘY

ΘY

β′

? ηΘY- ΘΦΘY

Θα

? ΘεY- ΘY

and since ΘεY ◦Θα = id = ΘεY ◦ ηΘY we have β = β′. We shall show that its adjoint transpose,
β̃ = εY ◦Φβ : ΦX → Y , is a coalgebra isomorphism. Since Φ preserves pullbacks and ε is cartesian,
the left-hand diagram below is a pullback:

ΦX
Φβ - ΦΘY

εY - Y

ΦΘY

Φβ

? ΦηΘY- ΦΘΦΘY

ΦΘα

? εΦΘY- ΦΘY

α

?

ΦX
β̃ - Y

ΦΘΦX

ΦηX

?

ΦΘβ̃
- ΦΘY

α

?

Φ
β

-

The lower composite is an identity, so β̃ is an isomorphism of objects. However the right-hand
diagram now commutes, so in fact it is a coalgebra isomorphism. In categorical jargon we have
now shown that the Eilenberg-Moore comparison functor (which is always full and faithful) is
essentially surjective. �

Definition 3.22 A local isomorphism θ : (A,Γ) → (B,∆) between quantitative types is a full
and faithful functor θ : A → B which preserves and reflects creeds. In terms of bags of groups,
θ = (f, θi) where f : I → J is an arbitrary function and θi : Ai ∼= Bf(i) are group isomorphisms

23

such that θi(Γi) = ∆f(i). An automorphism θ : B ∼= B is called inner if there is some family
bj ∈ Bj such that θj : B 7→ b−1

j b bj .

Proposition 3.23 Each local isomorphism θ : A → B gives rise to a rigid comparison Φ :
QD(A,Γ)→ QD(B,∆) by

Φ(X)j =
∑
f(i)=j

Xi

Θ(Y)i = Y f(i)

Ψ(X)j =
∏

f(i)=j

Xi

where the actions are translated via θi and Φ a Θ a Ψ. Conversely, every rigid comparison
arises uniquely up to isomorphism in this way, where θ = εB. Moreover cartesian transformations
between rigid comparisons correspond to postcomposition with inner automorphisms and so are
invertible.
Proof By B ∈ QD(B,∆) we mean the right action on itself, i.e. Bj = 1\Bj . Since any
equivariant function into Bj is invertible (Exercise 1.4.4), εB : Â ≡ ΦΘB → B must be of the
form of a local isomorphism, where Â ∼=

∑
iB

f(j) is naturally a groupoid and Γ̂ is induced in
the obvious way. We have to show that QD(A,Γ), which we already know to be equivalent to the
category of coalgebras, is equivalent to QD(Â, Γ̂). But if α : Y → ΦΘY is a coalgebra, the elements
y ∈ Y j already carry an action of Bj , whilst the function α (where εY ◦ α = id) corresponds to a
choice of i ∈ f−1(j). The remaining details are left to the reader. �

Notice that the 2-structure is induced in some way by 1-automorphisms. This is in contrast
to the continuous analogue, cf. [Hyland-Pitts], where it corresponds to homomorphisms of models
of theories and is therefore essential. If we ignore it, it not difficult to see that the category
of quantitative domains and rigid comparisons (or quantitative types and local isomorphisms) is
equivalent to a quantitative domain of the form QD(V, 1). The wastage committed by this, though
less, still seems comparable to our original complaint against Girard (Example 1.4.2), but we shall
indicate later what the effect actually is (Remark 3.5.3).

Definition 3.24 V denotes the groupoid of finite groups with creeds (G,∆) and group isomor-
phisms θ : G ∼= G′ which preserve and reflect creeds, i.e. θ(∆) = ∆′. As a bag of groups, V has
one component for each isomorphism class of finite groups with creeds, and the component group
is the group of creed-preserving automorphisms.

Corollary 3.25 (V, 1) is a quantitative type of types. �
For T ∈ QD(V, 1) we shall write [[T]] for the corresponding quantitative type, i.e. groupoid

with creed. Since the action of V on T is locally faithful, the components of T are of the form
1\Aut(G,∆) and correspond to components (G,∆) of [[T]].

It is now easy to code the quantifier-free types of the Girard & Reynolds’ System F and of
Coquand & Huet’s Theory of Constructions (for details of the method, see [Hyland-Pitts]). Indeed
we have

Exercise 3.26 Show that the following are linear functors:

⊕,N : (V, 1)⊕ (V, 1)((V, 1) ⊗,O,(: (V, 1)⊗ (V, 1)((V, 1)

⊥ : (V, 1)((V, 1) ! : ! (V, 1)((V, 1) �

24

3.5 Dependent Sums and Products

Before attempting to compute dependent (sums and) products of quantitative domains we need a
more explicit description of dependent types. Fix a domain of variation X = QD(A,Γ) and write
Q for a functor which to each object X ∈ X assigns a quantitative domain Q(X) and to each
morphism f : X ′ → X of X a rigid comparison Q(f)! : Q(X ′) → Q(X) with Q(f)! a Q(f)∗ a
Q(f)∗ . Using the “type of types”, Q corresponds to a stable functor QD(A,Γ) → QD(V, 1) and
hence to a proof Q : ! (A,Γ) ` (V, 1) such that

Q(X) ' QD
(
[[!X ⊗!A Q]]

)
Such a proof is a sum of atoms, and so we shall concentrate on the case where it is the atom Q =
Aut(~m)/K\Aut(G,∆) . More generally, we shall abuse notation by using K to index components
of Q.

Exercise 3.27 Let K ≤ Aop × B. Show that the action of B on A/K\B is locally faithful iff
K → Aop ×B → Aop is mono; we write K◦ ≤ A for the image, so K◦ ∼= Kop. This means that K
defines a partial homomorphism κ : Aop ⇀ B with support K◦. Then if B has a right action on
an object G, there is an induced left action of A on G× A/K . �

Lemma 3.28 [[!X ⊗!A Q]] is the (non-skeletal) groupoid with

(i) objects ~xKθ for ~x : ~m→ X and θ ∈ Aut(G,∆),

(ii) morphisms 〈φ, g〉 : ~xKθ → ~x′Kθ′ where ~xKθφ = ~x′Kθ′ and

(iii) composition 〈φ, g〉〈φ′, g′〉 = 〈φφ′, φ′(g)g′〉.

If f : X ′ → X in QD(A,Γ),

(iv) the local isomorphism [[! f ⊗Q]] is given by precomposition with f , i.e. ~xKθ 7→ f~xKθ and
〈φ, g〉 7→ 〈φ, g〉.

Equivalently, the component groups are G with creed ∆ and are indexed by a choice of represen-
tatives for the classes ~xK◦ but [[! f ⊗Q]] involves a renormalisation of this choice, which gives an
element of K and hence an automorphism of G. �

Remark 3.29 This action of K◦ ≤ Aut(~m) on G gives rise to a (split) group extension G : K
which is the set of pairs 〈k, g〉 with 〈k, g〉〈k′, g′〉 = 〈kk′, φ′(g)g′〉 where 〈k̂, φ〉, 〈k̂′, φ′〉 ∈ K. Observe
that K◦ is a subgroup of G :K (this is the meaning of “split”), but in the more general case where
we take account of the 2-structure of the category of domains by admitting pseudofunctors and
general (non-split) fibrations, we obtain general group extensions where G is a kernel and K◦ is
only a quotient. Alternatively the data may be coded as an arbitrary (creed-preserving) groupoid
homomorphism.

If we attempt to perform the Grothendieck construction to interpret dependent sums, we find
that we never get a quantitative domain (except in the constant case: the binary product).

Proposition 3.30 Let C be the category obtained by adding to the groupoid A the group G :K
for each atom of Q and the hom-set Hom(Ai, G : K) = mi, where mi is the i-component of ~m
and carries the obvious left action of G : K (via Aut(~m)) and right action of Ai. Then the total
category ΣX : X .Q(X) is embedded as a subcategory of SetC

op
with the same closure properties

as in Lemma 3.2.4.
Proof Corresponding to 〈X,Y 〉 is a presheaf on C which extends that (viz. X) on A. The value
at G : K is Σ~x : X ~m.Y ~xK with 〈~x, y〉 · 〈k, g〉 = 〈~x · k, y · g〉, and for r ∈ mi in the other hom-set,
r : 〈~x, y〉 7→ xr. Verification is left to the reader. �

We chose not to develop this paper with general presheaf categories because the action of non-
invertible C-maps on candidates is not defined. Nevertheless we only need to consider candidates

25

u : Y → SX where Y is a generator . Corresponding to the two kinds of generator for the total
category are two essential kinds of candidate for sections of the display map, but the first is useless
because we always have the unique candidate 〈id, ?〉 : 〈 1\Ai , 0〉 → 〈 1\Ai , S(1\Ai)〉. The other
kind is of the form

u : 〈~m, 1\G[K] 〉 → 〈~n, S(~n)〉

where ~n is finite by Exercise 1.2.9.

Notation 3.31 ~µ : ~m→ ~n denotes the underlying map of u in X . For ~x : ~m→ X, we write

~x~µ = {f : ~n→ X : f ◦ ~µ ∈ ~xK◦}

In particular for ~x = ~µ, Aut(~µ) = ~µ~µ = {f : f ◦ ~µ ∈ ~µK◦} ⊂ Aut(~n); this carries the creed
Γ~µ = Γ~n ∩ Aut(~µ).

Lemma 3.32 The set σ[K]
~µ of candidates of the above form carries an action of Aut(~µ) on the

left which is locally faithful to Γ~µ, and an action of G on the right which is locally faithful to ∆.
Likewise ~x~µ carries a right action of Aut(~µ). �

Proposition 3.33 Every object S of the dependent product ΠX : QD(A,Γ).Q(X) is of the form

(SX)~xK ∼=
∑
~µ

~x~µ ⊗Aut(~µ) σ
[K]
~µ

where K ranges over the copies of subgroups corresponding to atoms of Q and ~x : ~m → X.
Conversely every such power series is an object of the product.
Proof As in Lemma 1.3.7 and Theorem 1.5.4, an element of (SX)~xK is a (vertical) map
〈X, 1\G~xK 〉 → 〈X,SX〉. By the ophorizontal-vertical factorisation, this corresponds to a map
〈~m, 1\GK 〉 → 〈X,SX〉 over ~x′ : ~m→ X (for any ~x′ ∈ ~xK). Using stability of X 7→ 〈X,SX〉, we
factorise this into a candidate u : 〈~m, 1\GK 〉 → 〈~n, S(~n)〉 and 〈f, Sf〉 for f : ~n→ X. Considering
alternative factorisations yields the given tensor product. The converse is an exercise. �

Theorem 3.34 Quantitative domains admit dependent products and hence model System F and
the Theory of Constructions.
Proof The components of the quantitative type are of the form(

Aut(~µ), ! Γ~µ
)
((G,∆)

and there is such a component for each component K of Q and each ~µ : ~m→ ~n. �

3.6 Some Calculations

We have not described ! Γ explicitly, but the following sketch should serve as a guide to the serious
group theory addict.

Exercises 3.35

(a) Write ~n =
∑
i,[H] H\Ai × ni,[H], where H ranges over the conjugacy classes of subgroups of

Ai contained in Γi.

(b) Show that
Aut(~n) =

∏
i,[H]

(
Ai/

⋂
[H]) o Symm (ni,[H])

where P oQ denotes the wreath product , which is the split extension of BN by the implicit
action of Q on the set N .

26

(c) Hence h ∈ Aut(~n) can be written as h = h◦ ◦ π, where π is a permutation of isomorphic
atoms and h◦ acts on individual atoms.

(d) Hence h can be written as a product of commuting terms each of the form h◦ ◦ π in which
π = (12...k) is a cycle (possibly k = 1) of atoms with the same i and [H].

(e) Suppose ~n = H\Ai × k and h = 〈h1, h2, ..., hk〉 ◦ (12...k). Then there is an object X =
K\Ai ∈ QD(A,Γ) and a map f : ~n→ X with f ◦ h = f iff the subgroup of Ai generated by
H and the product h1h2...hk (is contained in K which) is contained in Γi.

(f) Hence (! Γ)~n ⊂ Aut(~n) consists of those h = h◦◦π such that for every cycle of π, the subgroup
of Ai generated by H and the product of the hx in the cycle is contained in Γi. �

From this we may recover our preliminary results.

Example 3.36 ! 1⊥ is the groupoid consisting of the finite permutation groups Symm (n) once
each, with the creed {1} ⊂ Symm (n). (cf. Lemmas 1.3.6 and 1.5.4) �

Example 3.37 ! ! 1⊥
⊥

is the groupoid with components∏
n

Symm (n) o Symm (mn) for (mn) finite

with the creed
∏
n Symm (n)mn . (cf. Corollary 1.5.6) �

Example 3.38 Let A = 2 o 2 (the dihedral group of order eight) and Γ = 22; this is for instance
one of the components of ! ! 1⊥

⊥
. Let ~n = {A/1 }, so Aut(~n) = A. Then {1} ∪ A \ (! Γ)~n has five

elements, but is not closed under powers. The creed ! Γ⊥ has three elements and is not closed
under multiplication. Finally, Γ⊥⊥ has six elements. �

Exercise 3.39 Show that Aut(A,Γ) ≤ Aut(A⊥,Γ⊥), but the inclusion may be strict.
Since the formula 3.6.1b involves quotients and not subgroups, the groups generated from Set

using ! and ⊥ involve only the symmetric groups with binary and wreath product (because the
alternating groups are simple). This means that our original claim to have found the smallest
cartesian closed category including Set as an object is false. However from 3.5.5, we construct
Aut(~µ) using subgroups, so it seems reasonable to suppose that the following is true (but only
group junkies should attempt to prove it).

Conjecture 3.40 Every quantitative type is a subtype (in the sense implicit in Definition 3.4.3)
of the interpretation of some type of System F or the Theory of Constructions.

Conclusions
Finally we might ask about polymorphic types such as Πα.α. This is very disappointing,

because it involves the group G : Aut(G,∆) for each isomorphism class of finite groups and creeds.
Moggi’s “uniformity property” (which holds for the coherence space model) also fails. It seems
that Stable Domain Theory has not lived up to its early promise of giving “minimal” models
of polymorphism, but we should not therefore consider it to have been a dead end: we have
profited by the discovery of Linear Logic, which has shown that (and how) Intuitionistic Logic
and Cartesian Closed Categories are not as simple as we once thought.

I would like to express my appreciation for the deep interest shown in this work by Steven
Vickers and François Lamarche. John Horton Conway was the source of my amateur fascination
for Finite Group Theory.

27

4 Bibliography

M. Barr and R. Diaconescu

[80] Atomic toposes, Journal of Pure and Applied Algebra 17 (1980) 1–24

M. Barr and C. Wells

[85] Toposes, triples and theories, Springer Gr. d. math. W. 278

G. Berry

[78] Stable models of typed lambda calculi, Automata, Languages and Programming (Udine, July
1978), Springer Lecture Notes in Computer Science 62, 62–90

P.M. Cohn

[77] Algebra, Wiley, 2 vols (frequently reprinted)

Y. Diers

[81] Some spectra relative to functors, JPAA 22 (1981) 57–74

J.Y. Girard

[85] Normal functors, power series and lambda calculus, Ann. P.&A. Logic, 1986

[86] The system F of variable types, fifteen years later, Theoretical Computer Science 45 (1986)
159–192

[87] Linear Logic, TCS 50 (1987) 1–102

[88] Towards a geometry of interaction, in [Gray & Scedrov]

[89] Geometry of interaction I: interpretation of system F, ASL meeting (Padova, August 1988),
to appear

J.Y. Girard and Y. Lafont

[87] Linear logic and lazy computation, TAPSOFT ’87 (Pisa), Springer LNCS 250 (1987) II 52–
66

J.Y. Girard, translated and with appendices by Y. Lafont and P. Taylor

[89] Proofs and Types, CUP Cambridge Tracts in Theoretical Computer Science 7

J.W. Gray and A. Scedrov, editors

[89] Categories in computer science and logic (Boulder, June 1987), American Mathematical
Society Contemporary Mathematics, to appear

J.M.E. Hyland and A.M. Pitts

[87] The theory of constructions: categorical semantics and topos-theoretic models, in [Gray &
Scedrov]

A. Joyal

[87] Foncteurs analytiques et espèces de structures, Combinatoire énumérative (Montréal, 1986),
Springer L.N. Mathematics 1234 (1987) 126–159

Y. Lafont

[88] The linear abstract machine, TCS 59 (1988) 157–180

28

F. Lamarche

[87] A simple model of the theory of constructions, in [Gray & Scedrov]

[88] Modelling polymorphism with categories, Ph.D. thesis, McGill University.

[89] Domains and infinitary algebras, seminar

S. Lang

[65] Algebra, Addison-Wesley (frequently reprinted)

R.A.G. Seely

[87] Linear logic, *-autonomous categories and co-free alebras, in [Gray & Scedrov]

P. Taylor

[85] Internal completeness of categories of domains, Category Theory and Computer Programming
(Guildford, September 1985), Springer LNCS 240 (1986) 449–465

[88] An algebraic approach to stable domains, submitted to JPAA

[89] The trace factorisation and cartesian closure for stable categories, manuscript 70pp.

29

