
Interval Analysis Without Intervals

Paul Taylor

20 February 2006

Abstract
We argue that Dedekind completeness and the Heine–Borel property should be seen as part

of the “algebraic” structure of the real line, along with the usual arithmetic operations and

relations. Dedekind cuts provide a uniform and natural way of formulating differentiation,

integration and limits. They and these examples also generalise to intervals. Together with the

arithmetic order, cuts enjoy proof-theoretic introduction and elimination rules similar to those

for lambda abstraction and application. This system completely axiomatises computably

continuous functions on the real line.

We show how this calculus (of “single” points) can be translated formally into Interval

Analysis, interpreting the arithmetic operations a la Moore, and compactness as optimisation

under constraints. Notice that interval computation is the conclusion and not the starting

point.

This calculus for the real line is part of a more general recursive axiomatisation of general

topology called Abstract Stone Duality.

1 Introduction

Reliable computation gives the authority of a theorem to the results of numerical computations,
by setting interval bounds on each step of the calculation. This may be done either within the
fixed precision of machine arithmetic, or by allowing this to extend to as many digits as may be
required. In either form, this discipline usually fits into the bigger picture of continuous-valued
computation by adapting techniques from numerical analysis. It often does this by giving them
“double vision”, i.e. computing upper and lower bounds where standard methods would just take
whatever rounded value the machine arithmetic provides.

The phrase “without intervals” in the title of this paper signifies that it is part of a programme
whose long term motivation is to connect directly with theoretical analysis. In this, the basic
entities are single, exact, real numbers. We begin by introducing a calculus for these, called
Abstract Stone Duality (ASD), together with some examples to show that this is adequate for
analysis and not merely arithmetic. We then define a formal translation that turns the ASD
calculus into one involving machine-representable intervals.

The theoretical benefit of (the availability of) this translation is that it eliminates the dou-
ble vision of interval analysis, in which interval analogues of single-valued concepts (arithmetic,
trigonometry, differentiation, Banach spaces ...) have to be devised ad hoc, one at a time, in a
fashion that gets increasingly estranged from any theoretical roots. Real analysis can be developed
within ASD in a single-valued style that is very similar to the traditional one, and then translated
into intervals. Intervals are therefore the outcome and not the starting point of the method.

This paper advocates some very heretical views about the foundations of real and interval
analysis. You can either burn me at the stake for blasphemy, or open your mind to the very
simple and natural arguments that I give here. It is true that these benefit from the enlightenment
that was provided in the 20th century by proof theory, lambda calculus, category theory, domain
theory, denotational semantics and the theory of continuous lattices. These disciplines are now
practised in computer science departments, but most of the mathematics that appears here was
already familiar in the 19th century.

1

The widely made assertion that mathematics is founded on set theory blatantly disregards the
historical evidence. This is particularly so in the case of the aspects of “infinitesimal calculus”
that underlie the vast majority of numerical techniques. The Fourier representation of reasonably
well behaved functions, for example, was developed by Dirichlet and others in the early 19th
century. It was only Cantor’s subsequent discovery that some extremely unpleasant “functions”
could also be represented pointwise by trigonometric series that led him to the invention of set
theory. Along with this came fantastical infinities, on which subject he felt moved to offer advice
to the Vatican [Dau79]. Besides generating well known paradoxes during its history, set theory is
computationally meaningless.

Euclidean geometry was axiomatised using natural ideas such as lines and circles, so topology
should also treat such things as open and compact subspaces as its primitives. Then, of course, we
must not fall into the trap of referring to a set or collection [Fef77] of open subspaces: Marshall
Stone advised us “always topologize”, so these too form a space, whose (non-Hausdorff) topology
is now called after Dana Scott. Carrying out this plan, we obtain an axiomatisation of locally com-
pact spaces that, since it was never polluted by set-theoretic ingredients, is inherently computable
[G]. Curiously, the description of open and closed subspaces using continuous functions, rather
than as set-theoretic complements, leads to a very strong duality between them that pervades the
theory. It also makes the arguments look more similar to classical ones than to intuitionistic but
set-based theories [J].

2 Natural axioms for the real line

We shall concentrate on the part of the theory that applies to the real line. The arguments that
equality of arbitrary real numbers can never the proved computationally have been well rehearsed.
Inequality and the strict arithmetical ordering of numbers, on the other hand, can be witnessed
by computing them sufficiently precisely.

Therefore, besides the usual arithmetic operations +, −, × and ÷,
• real numbers admit the observable relations <, > and 6= but not ≥, ≤ or =,
•whereas integers and rational numbers admit all six of them.

Topologically, this is because R is Hausdorff but not discrete, whereas N and Q have both prop-
erties.

Notice that there is an asymmetry between things that are classically negatives of one another.
Indeed, logical negation (¬) will not be allowed in our calculus. It does permit conjunction (∧)
and disjunction (∨) of properties, since these may be understood in terms of running processes
serially or in parallel. In this setting,
• “truth” of a proposition (>) amounts to termination of a program, which is observable,
• and “falsity” (⊥) to divergence, which is not.

Negation (interchanging > with ⊥) is forbidden computationally. This is because it would solve the
halting problem, which Alan Turing taught us was impossible [Tur35]. An excellent introduction
to the kind of logic conflated with topology and computation that we’re using was given in [Vic88],
though this point of view has moved on somewhat since that book was written.

Since we intend to manipulate logical expressions in the same way as arithmetical ones, we need
to give a name to their type: Σ. Topologically, this is called the Sierpiński space and (classically) it

looks like
(
�
•
)

, with one open point > and one closed one ⊥. To C, C++ and Java programmers,

Σ is known as void, whereas it is called unit in ML. Functional programs of this type can either
terminate or diverge: they do not return any “value”. It is therefore imperative not to confuse
Σ with bool, which has two different positive values.

Existential quantification over natural, rational or real numbers is allowed. For ∃N, we can
set off parallel processes φ0, φ1, ... on successive days, and need only observe that one of them
terminates. Any observable or open property that holds of a real number also holds of some nearby
rational, and Q is enumerable, so ∃Q and ∃R are allowed.

2

Universal quantification over infinite sets may seem to be computationally impossible. But
R is not a set. In fact, as we shall explain later, we can universally quantify over any compact
subspace, such as the closed interval [0, 1]. However, annoyingly for analysis, we cannot write ∀n
or ∀ε > 0, because N and (0,∞) ⊂ R are not compact. Instead, n and ε may be free variables or
parameters in an argument [J].

The integers as numbers will not play any role in this paper. We do, however, need them for
(primitive) recursive definitions, for example to index the terms of power series. For this reason,
we only define “logician’s arithmetic” for them: zero and successor.

Since we intend to perform a syntactic translation of the calculus, it is useful to summarise the
operations and variable conventions in a table:

arguments: N R N&Σ R&Σ N&? Σ

results: N k, n,m 0 succ rec the

R a, b, x, y, z 0, 1 n +−×÷ rec cut

Σ δ, υ, φ, ψ >,⊥ =≤≥<>6= <>6= ∃n ∃x : R,∀x : [a, b] rec ∧,∨

Notice that there is no operation that turns real numbers into integers, and nor can there be,
since R is connected [J]. However, the Archimedean axiom says (parametrically in x : R) that
∃n:Z. n− 1 < x < n+ 1.

The general theory of topology of which this is a part (ASD) includes function-spaces of the
form ΣX , whose terms denote open subspaces of X. They are written in the notation of the
λ-calculus rather than set theory, so we write λx:X. φ instead of {x ∈ X | φ(x)}, and φa in place
of a ∈ U . There is also a way of constructing (some) subspaces, but we shall make very little use
of this or λ-notation in this paper. The reason why we can avoid these parts of the calculus is
that they strongly normalise [A, B].

Any expression in this calculus denotes a continuous function that can be computed by a
parallel machine. That is, in principle: one objective of this paper is to give an (incomplete)
explanation of how to do it. Conversely, any totally defined function that is continuous and
computable on the reals may be expressed in the calculus [G].

It is important to appreciate, however, that, when we say that we may only define continuous
functions, these may nevertheless be morphisms amongst many different objects in our category.
In particular, many of the “discontinuous” functions that are traditionally defined on the reals
may still be expressed in our calculus. We just have to use other types besides R itself. For
example:
•The space of ascending reals, which is classically the set of real numbers together with ±∞

and the Scott topology, allows us to define lower semicontinuous functions.
•The interval domain [Sco70, EL04] provides a continuous meaning to some common kinds of

discontinuity, such as that of the sign function. It also presents the Lipschitz property as a
generalisation of differentiability that is enjoyed by any (definable, continuous) function.

Like Σ, these spaces carry non-Hausdorff topologies, and they are familiar in domain theory. But
we concentrate on R because it is more familiar, important and challenging.

Two operations in the final column of the table may be unfamiliar. These define integers by
description and real numbers as Dedekind cuts. Given that we are looking for numerical results (of
either kind), these operations are how we derive benefit from logical computations. A description
is a predicate with an integer argument that is (provably) uniquely satisfied: we obtain the integer
in question by manipulating the description into the form “then. n = 5”. We may obtain general
from primitive recursion using definition by description [A, D]. We devote the next three sections
to Dedekind cuts.

3

3 Dedekind cuts and intervals

How can we use the “observable logic” of the previous section to specify a real number x? The
only symbols that make logical sub-formulae directly from a number are

d < x, a 6= x and x < u,

but we may discount a 6= x, as it is the same as x < a∨a < x. The others state lower (downwards)
and upper bounds on the unknown value x.

Richard Dedekind [Ded72] used this idea to define the real numbers from the rationals: the
Dedekind cut (D,U) corresponding to a real number x consists of the sets D and U of all possible
lower and upper bounds. He required them to partition the rationals, so D ∪ U = Q, but then
each rational has two different representations. So subsequent authors have modified the definition,
omitting the rational number in question, if that’s what the cut defines. Then D and U are open
subspaces, which we represent as predicates δ and υ, where

δd means d < x and υu means x < u.

These predicates are expressed in the language of the previous section, which only uses the strict
inequalities < and >.

Now, the point is to derive x from δ and υ, so we have to characterise those pairs of open
subspaces that can be cuts. Of course, they are disjoint, extend respectively towards −∞ and
+∞ and “touch” in the middle, like this:

−∞ d x u +∞� ← δ → ← υ → -

Formally, we write these conditions as

(d < e) ∧ δe ⇒ δd υt ∧ (t < u) ⇒ υu
∃e. (d < e) ∧ δe ⇐ δd ∃t. υt ∧ (t < u) ⇐ υu

∃d. δd ⇔ > ∃u. υu ⇔ >
(δd ∧ υu) ⇒ (d < u) (δd ∨ υu) ⇐ (d < u),

where the ⇐ conditions are how we express the idea of an open subset of rationals in an order-
theoretic way; these conditions hold automatically for predicates on the reals.

Beware that ⇒ is not another logical connective that we forgot to include in the table in the
previous section: it is not observable, for the same reason as ¬ is not. We write φ ⇒ φ to mean
that whenever φ is observed, so is ψ. We prove such implications mathematically, but cannot
observe them computationally.

There are rather a lot of things here to prove, before we can claim that the pair [δ, υ] defines
a real number! In practice, however, the first four conditions are trivial consequences of the
transitivity and interpolation properties of <, whilst the seventh (disjointness) holds so long as
there is some intuitive sense in which there is something in between δ and υ.

For this reason, it is useful to consider pseudo-cuts that satisfy (at least) these five out of eight
conditions. In particular, if (just) ∃u. υu fails, so there is no upper bound, the pseudo-cut defines
+∞, and similarly failure of ∃d. δd indicates −∞. For some purposes it is also useful to drop the
disjointness requirement, so that the empty interval (δd ≡ υu ≡ >) becomes the top element of a
lattice.

The final condition is called locatedness, and is often stated as

ε > 0 ⇒ ∃du. δd ∧ υu ∧ (u− d < ε).

It expresses the idea that, whilst we can only work with approximations, they can be made
arbitrarily precise, i.e. to within ε ≡ 10−k, where k is the number of digits required.

We see the meaning of a pseudo-cut more clearly when we consider its complement, which is
convex closed subspace of R, i.e. an interval that is closed but possibly unbounded. So we seem

4

to have arrived on familiar territory. Indeed, it’s an easy but valuable exercise to check that any
interval [e, t] defines a pseudo-cut [δ, υ] by

δd ≡ (d < e) and υu ≡ (t < u),

which is why we have written square brackets around the pair [δ, υ]. Conversely, in classical
analysis, we may recover [e, t] from [δ, υ] by defining

e ≡ sup {d | δd} and t ≡ inf {u | υu}.

However, sup and inf were not defined in the previous section, and indeed they do not exist in
our or any competing brand of constructive analysis, such as those of Brouwer [TvD88] or Bishop
[Bis67].

Now, we want to do computation and not philosophy, so as our first example of a Dedekind
cut, let’s try to compute the supremum of a subset K ⊂ R. We define

δ′d ≡ ∃x ∈ K. d < x and υ′u ≡ ∀x ∈ K. x < u,

and can show that they satisfy all eight conditions for a cut, so long as K is bounded and non-
empty and the quantifiers ∃x ∈ K and ∀x ∈ K are meaningful [J].

Of course, we’ve just fallen into the set-theoretic trap again. To pull ourselves out, we have to
forget about the “set” K, and instead give meanings to these “quantifiers”. Notice that they are
applied to open sets or predicates, which we represent as functions of type ΣR, and yield truth
values, of type Σ. Hence the quantifiers themselves are functionals of type ΣΣR or, if you prefer,
(R → Σ) → Σ. In [J] we explain how ∀x ∈ K captures the properties of an abstract compact
subspace K.

One situation where the quantifiers are easily defined is when K has just two (not necessarily
distinct) elements, a, b : R, and then ∀ ≡ ∧ and ∃ ≡ ∨. These may be used to define max(a, b),
min(a, b) and |a| ≡ max(a,−a) as Dedekind cuts [I]. Other functions may then be defined piecewise,
so long as the pieces agree at their changeover points.

Returning to the interval [e, t] above, with e ≤ t, the calculus of the previous section allows us
to define

∀x ∈ [e, t]. φx ≡ ∀y :[0, 1]. φ
(
ey + t(1− y)

)
∃x ∈ [e, t]. φx ≡ φe ∨ φt ∨ ∃x:R. (e < x < t) ∧ φx,

where the second may be simplified if either e = t or e < t. It’s another useful exercise to show
that our definition of sup[e, t] as a Dedekind cut does yield t, as we would expect.

Similarly, if the pseudo-cut [δ, υ] is bounded, i.e. we have δd0 and υu0 for some d0, u0, we may
also define

∀x ∈ [δ, υ]. φx ≡ ∀x ∈ [d0, u0]. δx ∨ φx ∨ υx,

but δ and υ do not supply enough information to define the other quantifier. Hardly surprisingly,
∃x ∈ K tells us what’s inside K, whereas the pseudo-cut [δ, υ] was defined in terms of what lies
outside it, namely its lower and upper bounds. This is why we cannot locate the endpoints.

Indeed, we have shown that an interval (i.e. a convex closed subspace) K has endpoints if and
only if we can say what’s inside it, by defining ∃x ∈ K, cf. the definition of an interval as a subset
of R. In ASD, a subspace with ∃ is called overt. The theorem in interval analysis that the direct
image of an interval (with endpoints) is another such follows from the fact that overt subspaces
behave in a formally similar way to compact ones. That is,
• the direct image of an overt subspace under a continuous map is overt (cf. compact);
• any open subspace of an overt space is overt (cf. closed);
• any overt subspace of a discrete space is open (cf. Hausdorff).

Constructive analysts, like classical ones, have their own collection of bizarre counterexamples.
These are usually based on famous unsolved conjectures such as that of Goldbach (2n = p +

5

q), about which no sane person cares. Since we can prove classically that all pseudo-cuts have
endpoints, and “just want to do something simple”, why don’t we just define an “interval” to have
endpoints, i.e. as [e, t]?

One reason is that such a definition would be “analysis with double vision” again, on which
we have already made a conceptual advance: The examples in the next section illustrate that the
definition that is more general with respect to constructive logic, i.e. the weakening of the notion
of Dedekind cut, arises entirely naturally in traditional analysis.

Requiring endpoints is also mathematically wrong.
The calculus that we introduced in the previous section was intended to reflect what we under-

stand about both the topology on the real line and computing with real numbers. In particular,
we only make assertions that are computationally observable. The principal example of something
that is not observable is the halting problem, i.e. the situation when a program runs forever,
failing to terminate.

Consider any program you please. Maybe it tests the Goldbach conjecture. Maybe it prevents
a nuclear missile from being fired this second. Let an ≡ 1 if the program is still running at time n,
but 0 if it has terminated. What is inf an? What are the endpoints of the interval

⋂
[−an,+an]?

What is
∑

2−nan? In my second example, can you afford the price of knowing the answer?
Abbas Edelat [EL04] has demonstrated that the interval domain [Sco70] is a useful theoret-

ical and computational tool for understanding convergence. It links the metrical Banach fixed
point theorem in analysis with the order-theoretic one that underlies the semantics of higher-type
recursive programs. In a domain we must be able to compute least upper bounds of ascending
sequences, which we can quite do simply for pseudo-cuts using (set-theoretic unions of open sub-
sets or) the existential quantifier. This corresponds to intersection of the complementary closed
subspaces. It is not difficult to see that any pseudo-cut may be expressed as such an intersection
of a nested sequence of closed intervals with rational endpoints. In other words, rational intervals
provide a basis for the interval domain.

There is actually a constructive sense in which any pseudo-cut [δ, υ] does have endpoints,
namely δ and υ. However, these are not real numbers, i.e. members of R. They belong to
the non-Hausdorff spaces of ascending and descending reals respectively, for which topological
continuity is known as semi-continuity.

The way in which classical logic wrecks the system is this: It is one thing to expect that
the “simple” mathematical questions that we happen to ask will probably always be decidable.
It is quite another matter to introduce an axiom into the system that guarantees this in all
circumstances. This is the difference between paying your debts and giving away your credit card.

Finally, you may be worried that pseudo-cuts make computation with intervals vastly more
complicated than it was. It would, in fact, be possible to represent Dedekind cuts and intervals as
pairs 〈δ, υ〉 of λ-terms with higher types, but we shall not do so. We shall show how expressions
that involve them may be translated into a form that uses intervals with rational or machine-
representable endpoints. Now we have three kinds of intervals, which are quite different things,
related in the way that rational, real and ascending or descending real numbers are. In particular,
we can compute directly with rational numbers and rational intervals, but only indirectly with
real numbers and general intervals.

4 Cuts and intervals in analysis

Dedekind cuts, if they feature at all, are usually dropped very quickly in favour of limits in the
analysis textbooks. Being numbers, limits are considered to be serious scientific computation,
whereas logical predicates are idle philosophical speculation. We, on the other hand, will calculate
with both arithmetical and logical formulae on an equal footing.

In this section we examine three of the most important examples of limits. Our purpose is to
demonstrate that Dedekind cuts provide a uniform and straightforward way of formulating these
concepts. Also, when we weaken cuts to intervals, the generalisations are themselves familiar ideas

6

(albeit footnotes) in analysis. Recall that we just have to say when d and u are strict lower and
upper bounds of the unknown value x.

Historically,the first theorem of interval-valued computation was proved by Archimedes. He
gave the famous estimate 3 10

71 < π < 3 1
7 for the area of a circle by inscribing and circumscribing

regular 96-gons. As is usual in ancient Greek mathematics, the generalisation to 3 · 2n-gons is
implicit, for lack of suitable notation (it was even necessary for Archimedes to invent ways of
writing large and fractional numbers). It is also accompanied by a Euclidean proof that relates
the area to the circumference (“πr2 = 1

2r(2πr)”), by bounding them both with polygons [Dij87,
Chapter VI].

In this and modern accounts of Riemann integration, it is usual but unnecessary to slice the
inner and outer approximants in the same way. We just have to define

∫ b
a
fx dx by the cut [δ, υ],

where δd and υu hold when

∃f−f+. d <
∑b
a f
−x dx ∧ ∀x ∈ [a, b]. f−x < fx < f+x ∧

∑b
a f

+x dx < u,

in which f− and f+ are functions whose integrals
∑b
a f
±x dx can be computed in some elementary

way. For Archimedes and Riemann, these elementarily integrable functions were polygons and
piecewise constant functions respectively, whose integrals are the sums of areas of triangles or
rectangles. Piecewise constant “functions” involve steps, so for us they are interval- rather than
real-valued maps, but this is a red herring: (continuous) piecewise linear (“sawtooth”) functions
would do just as well.

A more important issue for both foundations and computation is the meaning of ∃f−f+.
Just as ∃R is equivalent to ∃Q, these quantifiers involve a search of the encodings of elementarily
integrable functions f− and f+. This encoding usually consists of a finite list of argument–value
pairs, where the arguments partition the interval [a, b]. (Notice for future reference that such
partitions of intervals have been used in computational analysis since ancient times.)

Now, the function f : [a, b]→ R is integrable so long as the [δ, υ] that results from this process
is a Dedekind cut. As we commented in the previous section, it is easy to show that it is a
bounded pseudo-cut or interval. The most difficult question is whether there are inner and outer
approximations d and u with u − d < (b − a)ε for arbitrarily small ε > 0. This follows from the
fact that all real-valued functions that are definable in our calculus are uniformly continuous [J].
That is, that the upper and lower rectangular slices are within ε of one another vertically so long
as their width is less than a suitable δ > 0 that depends on ε (with apologies for the clash of
notation).

Textbook accounts of Riemann integration that are anxious to get hold of numbers as soon
as possible define the integral as a limit of sums that are defined as functions of the width of the
slices. Then one must check that different methods of slicing yield the same final result. For us,
none of this is necessary: the uniqueness question is resolved by showing that any outer estimate
exceeds any inner one, irrespectively of the slicing.

We barely have to make any change at all to this definition of integral to allow f to be an
interval -valued function, x 7→ [δx, υx], such as the piecewise constant (step) functions that we
thought might be problematic. We just

replace f−x < fx < f+x by δx(f−x) ∧ υx(f+x).

Such a function has an interval-valued integral, unless it is itself is single-valued almost everywhere,
in a sense that I leave you to formulate.

Turning to our second example, limits of sequences, the various brands of constructive analysis
are at pains to emphasise that Dedekind cuts are more general than Cauchy sequences, because
subsets are more general than sequences. The classical definition is that

∀ε > 0. ∃nε. ∀n,m ≥ nε. |an − am| < ε,

7

but constructive analysts require the modulus of convergence nε and its inverse εn to be specified
as functions (such as εn ≡ 1

n or 2−n) that satisfy εn → 0. Then the sequence is Cauchy if

n,m : N, ε > 0 ` n < nε ∨ m < nε ∨ |an − am| < ε,

or, more simply, |an − am| < εmin(n,m).

Notice that the second and third definitions eliminate the (inner) quantifiers, and so are admissible
as formulae in our calculus, whereas the classical one isn’t.

Even though they are both more complicated to define and more restricted in their logical
generality than Dedekind cuts, Cauchy sequences are usually preferred in theoretical and auto-
mated approaches to constructive analysis. This is because their advocates claim that cuts involve
an impredicative notion of subset. In fact, our cuts are much less general than the subsets or
predicates of constructive set- and type theories, and are therefore (almost) interdefinable with
Cauchy sequences.

We see why the explicit modulus of convergence εn of a Cauchy sequence is needed as soon as
we write down the corresponding Dedekind cut,

δd ≡ ∃n:N. (d < an − εn) υu ≡ ∃n:N. (an + εn < u).

If you try to do the same thing with the classical definition, you will find that it requires all of the
(infinitely many) terms to be known, so there is no computational meaning. The explicit modulus
of convergence gives a guarantee in advance of the future behaviour of the sequence. From this it
is provable, though not computationally observable, that ∀m > n. d < an − εn < am.

From the way in which we use the terms (an) of the sequence here, we see that they may as well
be intervals [an− εn, an+ εn] themselves. Therefore the precision to which we need to compute an
is prescribed by its position in the sequence. Instead of isolated numbers, the sequence becomes a
nest of intervals, whose limit is their intersection, which is the directed join in the interval domain.

For the crucial locatedness property of the cut [δ, υ], we need εn → 0, without which we obtain
an interval as the limit, instead of a point. Classically, any sequence is “interval-Cauchy” in this
sense, with εn ≡ sup {|am − am′ | | n < m < m′}, and the endpoints of its interval-limit are — you
guessed it — the lim inf and lim sup. Constructively, since we have to specify εn “in advance”, but
not tightly, the lim inf and lim sup have weaker properties, and it is doubtful whether they are of
much use any more.

A more formal proof that [δ, υ] is a cut, in the case where εn ≡ 2−n is given in [J].
Because of the way in which we envisage using Dedekind cuts for computation in our calculus,

it will not be necessary to translate them “back” into Cauchy sequences. However, in order to
output the results of computations to the user, we are required to turn a cut into an arbitrarily
narrow interval with decimal endpoints, for which we just need the metrical form of the locatedness
property. This amounts to the same thing as a Cauchy sequence, with εn ≡ 10−n, except that
n takes a particular value (the number of digits requested by the user), rather than being the
subscript variable of a sequence. Dependant Choice is needed to generate a sequence.

Our third example is the derivative of a function. Numerical differentiation — as the name
itself should warn us — is notoriously unstable, whilst other constructive authors have found
that the best definition of a differentiable function is as a pair, combining the function with its
derivative. Even classical accounts that (go on to) treat partial differentiation, i.e. of functions of
vectors, recognise that the two-term Taylor series

f(x+ h) = f(x) + hf ′(x) + o(h)

is a better formulation than the limit of the quotient δf
δx as δx→ 0.

In order to give a definition using Dedekind cuts, we must therefore bound both the derivative
and the original function,

e0 < f(x) < t0 and e1 < f ′(x) < t1.

8

We can express this using bounds on the function over some interval around x,

∃δ > 0. ∀h:[0, δ]. e1 + e1h < f(x+ h) < t0 + t1h

∧ e1 − t1h < f(x− h) < t0 − e1h,

which confines the function to a region in the shape of a bow tie [EL04].
This formula
• defines a Dedekind cut in (e0, t0) since f : R→ R was assumed to be a function;
• is a Dedekind cut in (e1, t1) if f is differentiable at x; but
• is a bounded interval in (e1, t1) if f is Lipschitz at x.
In principle, it is possible for an interval-valued function to have a single-valued derivative,

although not in a very interesting way. By the “fundamental theorem of calculus”, integration
and differentiation are inverse, except that the integral needs to be given an initial value. A
single-valued integrand may therefore be recovered as the derivative of an interval-valued integral
if the initial value is itself an interval.

Uncertainty in both the function and its derivative is, recall, an important principle in physics,
called after Heisenberg. In this case, the function is position and its derivative is velocity or
momentum, for which the two-dimensional pseudo-cut is a rectangle whose area is at least Planck’s
constant.

We can set up the fundamental theorem of calculus as an isomorphism C1 ∼= R × C0 that
involves the spaces C1 of (continuously) differentiable functions and C0 of (continuous) functions.
Alternatively, instead of restricting the derivatives to being single-valued, we may generalise the
integrands to those interval-valued functions (such as steps) that have single-valued integrals.
Repeating this, we obtain the Dirac delta-function δ(x) as the interval-valued second derivative of
the absolute value function, |x|. However, we cannot re-integrate that, as we cannot distinguish
between δ(x) and 2δ(x) as intervals.

Notice that arbitrary interval-valued functions have interval-valued derivatives, and “calculat-
ing” them amounts to writing down the formula above. If we can evaluate this formula, even
to give an order-of-magnitude Lipschitz bound, we have a way of estimating what (additional)
precision is required of an input to yield the desired precision of the output. This gives some
quantitative basis to the ε–δ definition of continuity.

5 Type theory for Dedekind cuts

Now that we have shown that Dedekind cuts provide a versatile way of expressing the familiar
ideas in Real Analysis, we devote the rest of the paper to a syntactic analysis of the structure
that we defined in Section 2. This treats Dedekind completeness and the Heine–Borel property as
additional “algebraic operations”.

The methods that we shall use are quite basic ones in Proof Theory and Type Theory. That
is to say, from the same disciplines that have previously chosen to define the real line in terms
of Cauchy sequences. The key proof-theoretic observation is that Dedekind completeness is the
introduction rule corresponding to the arithmetic order relations as elimination rules.

This syntactic symmetry was originally formulated by Gerhard Gentzen [Gen35]. For each
connective and quantifier there is
• an introduction rule whose conclusion is a formula that uses the new symbol,
• an elimination rule whose main premise uses it,
• a β-rule that says how to simplify a proof that contains an introduction rule followed by the

corresponding elimination rule, and
• an η-rule that simplifies things the other way round.

9

For example, the introduction and elimination rules for P ⇒ Q are

[P]
···
Q

P ⇒ Q

P P ⇒ Q

Q

where [P] means that the formula P is discharged, i.e. it is no longer an assumption on which
P ⇒ Q depends.

Outside Proof Theory, proofs are not usually regarded as mathematical objects themselves,
and one proof of a theorem is as good as another. However, there is a very important formal
analogy, known as the Curry–Howard isomorphism, between proofs and programs. Under this
analogy, P ⇒ Q corresponds to the function-space P → Q or QP , and proofs of P ⇒ Q to
functions P → Q.

Since we do distinguish between functions, and manipulate them as objects, we need a notation
for them, called the λ-calculus. We define or abstract a function using its introduction rule, and
apply it using the elimination rule:

[x : P]
···

f(x) : Q

λx. f(x) : P ⇒ Q

a : P f : P ⇒ Q

f(a) : Q

where x is a bound variable. The β- and η-rules simplify things as follows:(
λx. f(x)

)
(a) = f(a) and λx. f(x) = f.

The β-rule involves substitution of the expression a for the variable x, and may be seen as computa-
tion. Indeed, functional programming is precisely the development of this idea into a practical tool.
This can nowadays compete with imperative programming languages like C in all but the most
intensive numerical or communications applications, and is far superior for conceptual applications
such as compilers.

There are certain important technical caveats about variables and substitution, which we
shall overlook in this rhetorical treatment. You can find them in any textbook on the subject;
for example, the proof theory and λ-calculus that we need is amply covered by [GLT89] in an
elementary way.

In certain calculi of logic or types, repeated use of the β-rules eventually leads to a normal
form. In the case of λ-terms, this looks like

λx1x2 . . . xn. y(a1)(a2) · · · (am),

where y is a variable that may be free or one of the x1x2 . . . xn, and a1 . . . am are also normal forms.
In proof theory, β-rules are known (confusingly for us) as cuts (they “cut” out substitutions), and
normalisation is called cut-elimination or the Hauptsatz (because it was the “main theorem” of
Gentzen’s paper).

It is now a standard procedure to present the connectives of any syntactic calculus as families
of introduction, elimination, β- and η-rules. Moreover, Bill Lawvere observed (in the case of the
quantifiers) that such families amount to an adjunction between functors between categories. For
a comprehensive categorical treatment, see [Tay99].

The rules for the various connectives do not have exactly the same pattern — to expect them
to do so would be to make the same mistake that Peacock, Boole and others made in the 19th
century, compelling logic to obey the axioms of arithmetic. Indeed, the patterns are fundamental,
the connectives being merely the names that we give to them. For example, implication and
function-abstraction involve discharged hypotheses and bound variables. Conjunction has two
premises in its introduction rule and two elimination rules, whilst disjunction combines both

10

of these complications. The introduction rule for comprehension (subset abstraction) has one
“substantive” premise (an element of the ambient set) and one logical one (the predicate that
determines membership of the subset).

Before we apply these ideas to Dedekind cuts, let’s formulate the rules for definition by de-
scription.1 We say that a predicate φn with an integral argument is a description if we can prove
that it can be satisfied by exactly one number:

[n : N]
···

φn : Σ ∃n. φn⇔ >

[n,m : N, φn⇔ φm⇔ >]
···

n = m

(then. φn) : N

This allows us to introduce (then. φn) as a number. Conversely, if this is a validly formed ex-
pression, we may use this premise to eliminate the description operator and deduce certain things
about φ:

(then. φn) : N

∃n. φn⇔ >
(then. φn) : N φm1 ⇔ φm2 ⇔ >

m1 = m2

The two β-rules say that (then. φn) deserves its name.

(then. φn) : N

φ(then. φn)⇔ >

(then. φn) : N φm

(then. φn) = m

As is commonly the case, the η-rule is the trivial way of making a description, namely to provide
the actual number, m, and define φn as n = m:

(then. n = m) = m.

It’s easy to overlook the role of equality (=) in this, but it is very important:

equality : description :: application : abstraction.

The purpose of the foregoing lesson in proof theory was to observe that the real line enjoys the
same analogy,

order : Dedekind completeness.

So here are the rules. We may use a Dedekind cut [δ, υ] to introduce a real number,

[d : R]
···

δd : Σ

[u : R]
···

υu : Σ axioms of Section 3

(cut du. δd ∧ υu) : R,

which we may read as, “the unique real number for which d and u are bounds exactly when
δd ∧ υu”. Conversely, if this is a validly formed expression, we may use this premise to eliminate
the cut operator, and deduce certain things about δ and υ, namely the axioms of Section 3.

The β-rule says that (cut du. δd ∧ υu) obeys the order relations that δ and υ specify:

e < (cut du. δd ∧ υu) < t ⇐⇒ δe ∧ υt.

Notice that, as for the λ-calculus and descriptions, this simply substitutes part of the context for
the bound variables. The η-rule says that any real number a defines a Dedekind cut in the obvious
way:

δd ≡ (d < a), and υu ≡ (a < u).
1See [A] for the relationship amongst descriptions, sobriety and general recursion and a brief historical survey. I

am grateful to Claus-Peter Wirth for bringing [Pea97, §22] to my attention, in which Giuseppe Peano sets out the
rules for descriptions in a way that differs very little from that here.

11

Returning to the general theory, we have said that it sometimes provides a normal form. In
calculi that allow primitive recursion, the proof ranges from being delicate in simple cases [GLT89,
Chapter 6], via being the subject of thèses d’état, to being impossible. However, if we consider
individual connectives instead of the whole system, some useful simplification can still be made.

Recall that, if there is a normal form, its outermost connective or last rule is an introduction
rule. In our examples, this is
• introduction of P ⇒ Q,
• λ-abstraction,
• definition of (the n. φn) by description, or
• definition of a real number by a Dedekind cut.

We don’t need a full normalisation theorem to obtain this — just the relavant η-rule. So, without
loss of generality, we may assume that
• any function f : P → Q is of the form λx:P . fx, where fx : Q is of base type,
• in particular, any predicate φ : ΣX1×···×Xn in ASD is of the form λx1 . . . xn. φx1 . . . xn, where
φx1 . . . xn is of the one base type, Σ;
• any integral expression a : N is of the form then. φn, where φn ≡ (n = a) : Σ; and
• any real-valued expression a : R is of the form (cut du. δd ∧ υu), where δd ≡ (d < a) and
υu ≡ (a < u) : Σ.

Therefore, we only need to handle logical terms, those of type Σ. Numerical terms are represented
by logical ones enclosed in description or Dedekind cut operations.

So long as we avoid those connectives (recursion and λ-application) that can make terms
longer, we can normalise everything else. In particular, definition of integers and real numbers by
(the introduction rules for) descriptions and Dedekind cuts can be eliminated from expressions by
simple and terminating syntactic translations such as

ψ(then. φn) ⇐⇒ ∃n. φn ∧ ψn.

So, whereas analysts have traditionally manipulated real numbers or, where necessary, sets of
them, and have treated logical formulae in a very casual way, we have found that the logic is the
central arena of computation, and the other types are side shows.

Before we proceed to the actual syntactic translation, we need to consider what happens if
we manipulate formulae that purport to be descriptions or Dedekind cuts, but actually fail the
relevant premises. Notice that these premises involve implications, so they are not computationally
observable, i.e. they cannot be verified by a “run-time system”. This simply has to go on with
the computation somehow, on the implicit assumption that the expressions have been correctly
formed.

Of course, we have already discussed the failure of Dedekind’s axioms in Section 3 — we
obtain intervals instead of numbers, and Ramon Moore defined the corresponding generalisation
of arithmetic. The nonsense to which ill formed descriptions lead was amply discussed by Bertrand
Russell in [RW13, Introduction, Chapter III(1)].

6 The translation

In this section we shall describe the translation that replaces
• continuous variables and terms (written with italic letters) that denote real numbers or vectors,

about which we reason using pure mathematics,
• by cellular variables and terms (in sans serif) whose values are intervals, cubes, etc. with

machine-representable coordinates, with which we may compute directly.
As you see, we have switched notation from the separate bounds d and u considered earlier to
a machine-representable interval a ≡ [d, u], where a ≡ d and a ≡ u. The cellular notation can
be generalised straightforwardly to Rn, in which the cells could be close-packed spheres [CS88]
instead of cubes.

12

We shall view the cell a through Euclid’s eyes, not Cantor’s. It is either an open or a closed
subspace, according to context — since it is a regular figure, we may pass back and forth between
the interior (a) and the closure [a]. In particular,

x ∈ a means x ∈ (a) or a < x < a

but ∀x ∈ a means ∀x ∈ [a] or ∀x ∈ [a, a],

whilst ∃x ∈ a means both ∃x ∈ (a) and ∃x ∈ [a], as these are equivalent, so long as a < a.
The interval analogues of the relations ∈, <, > and 6= are respectively

a b b ≡ [a] ⊂ (b) or (b < a) ∧ (a < b)
a < b ≡ a < b ≡ b = a

a t b ≡ [a] ∩ [b] = ∅ or (a < b) ∨ (b < a),

which are all computationally observable relations. Notice that x b w means that x is “strictly” or
well contained in w; the symbol is borrowed from the way below relation� for continuous lattices
[GHK+80].

We shall also need ordinary (reflexive) containment,

a ⊂ b ≡ b ≤ a ≤ a ≤ b,

although, like ≤, it only occurs in the theory, not the computation. The intersection, a ∩ b, will
be needed for the translation of ∧, the arithmetic operations and repeated variables. It satisfies

x ∈ a ∩ b ⇐⇒ x ∈ a ∧ x ∈ b,

where the former is defined by

a, b ≤ max(a, b) ≡ a ∩ b < x < a ∩ b ≡ min(a, b) ≤ a, b.

Finally, the translation uses ∃x. This indicates quantification or search over the possible
machine representations of intervals, just as we had it previously over rational numbers and el-
ementarily integrable numbers. However, since these representations are essentially integers, the
space of them is not compact, so we do not have ∀x.

The fundamental principle of interval analysis is that Moore’s operations compute the direct
images of intervals under functions — exactly, in the case of single arithmetic operations, and by
overestimation in more complex cases. Indeed, their definitions are commonly given in this form,
although we prefer to see this as a theorem that is deduced from purely arithmetical definitions.

As we did for integrals and limits, we calculate the direct image {fx | x ∈ [a, b]} of an interval
[a, b] under a function f by characterising its lower and upper bounds,

d < {fx | x ∈ [a, b]} < u iff ∀x ∈ [a, b]. (d < fx < u).

In the notation that we have just introduced, this is

{fx | x ∈ a} b b iff ∀x ∈ x. fx ∈ b.

Notice that, for general f , this uses ∀, which we consider in the next section. When f is a single
arithmetical operation or some other simple expression, it is sufficient to replace the continuous
variable x by the interval [a, b], and the usual arithmetic operations by their interval counterparts.
We write

d < {fx | x ∈ [a, b]} < u ≡ |∀|x ∈ [a, b]. (d < fx < u) ≡ d < (|∀|x ∈ [a, b]. fx) < u

or {fx | x ∈ a} b b ≡ |∀|x ∈ a. (fx ∈ b) ≡ (|∀|x ∈ a. fx) b b

13

in these cases, to exploit the analogy with the universal quantifier. Notice that we define |∀| for
both arithmetic and logical expressions, where |∀| gives the (Moore) direct image in the arithmetical
case.

Whilst the notation |∀|x ∈ x was chosen to look like a quantifier, it is actually the syntactic
translation that substitutes x for x and Moore’s interval operations ⊕	⊗�b<=t for their sin-
gleton counterparts +−×÷∈<>6=. It is therefore accompanied by the same caveats that apply
to substitution in the λ-calculus, in particular concerning its interaction with variable-binding
operations such as ∃. We may substitute for a free continuous variable y under |∀|x ∈ x, so long as
we also apply |∀| to the substituand.

It is well known that the Moore interpretations of the operations of arithmetic do not obey their
usual laws, in particular distributivity. There are various techniques for manipulating arithmetic
expressions (such as trying to reduce the number of occurrences of each variable) in order to
narrow the overestimation of the image. For example, the cognoscenti will already have noticed
that it would be quite hopeless to compute the derivative of a function using the formula that we
gave in Section 4. We therefore understand that terms of the ASD calculus must be transformed
in this way before undergoing the translation that we are considering here.

The failure of the arithmetical laws also means that, when we reason with expressions, we are
not allowed to apply the rules of arithmetic or logic within the scope of the “quantifier” |∀|. We
can only use the clauses of its definition, together with the main induction hypothesis of the proof.
On the other hand, outside |∀| we may use all of the logical and arithmetical equivalences in the
usual way, although we shall point them out, as they are the axioms of ASD.

Now we can state the central proposition that underlies the meaning of the translation: For
each free variable x of a logical formula φ,

φx ⇒ ∃x. x ∈ x ∧ |∀|x′ ∈ x. φx′ ⇒ ∃x. x ∈ x ∧ ∀x′ ∈ x. φx′ ⇒ φx.

The proof, which proceeds by induction on the syntactic structure of φ, is given in Section 8. Here
we shall discuss its consequences.

We focus on how to compute (an ε-approximation to) the value f(a) of a function f : R→ R

at (a δ-approximation to) an argument a : R. As we said in the previous section, we treat the
output, i.e. real number f(a), as a Dedekind cut. The central proposition concerns the input, a.
Using various notations for the input and output intervals, it says that

f(a) = cut et. ∃du. (d < a < u) ∧ |∀|x ∈ [d, u]. (e < fx < t)
≡ cut y. ∃x. a ∈ x ∧ |∀|x ∈ x. fx ∈ y

≡ cut [y ± ε]. ∃δ > 0. |∀|x ∈ [a± δ]. |fx− y| < ε.

The last of these is essentially the statement of continuity of f at a,

a : R, ε > 0 ` ∃δ > 0. ∀x ∈ [a± δ]. |fx− fa| < ε,

which is provable in ASD [J], as of course was our intention.

Now let’s substitute this formula into a similar one for g(b).

g
(
f(a)

)
= cut z. ∃y. cut y′.

(
∃x. a ∈ x ∧ |∀|x ∈ x. fx ∈ y′

)
∈ y ∧ |∀|y ∈ y. gy ∈ z

= cut z.
(
∃y. ∃x. a ∈ x ∧ |∀|x ∈ x. fx ∈ y

)
∧ |∀|y ∈ y. gy ∈ z

We have used the β-rule for cuts in the new form, i.e. where the bound variable y′ is a rational
interval — notice that this swallows part of the context, namely “∈ y”, treating it in the same
way that the β-rule of the λ-calculus does the argument of a function.

The corresponding rule for composition of functions in differential calculus is known as the
chain rule. In our case, we obtain a chain of conjuncts. But notice also the “flow of information”

14

from the argument a to its interval x, to the Moore image y of f(x), to the Moore image z of f(y).
It goes in this direction because, when we ask for a witness of ∃y, the obvious choice is (slightly
wider than) the Moore image f(x).

We have a similar result for a function of two variables,

f(a, b) = cut z. ∃xy. a ∈ x ∧ b ∈ y ∧ |∀|x ∈ x. |∀|y ∈ y. f(x, y) ∈ z.

If, however, we wish to substitute the same argument in both positions, we have to form the
intersection of the input intervals:

f(a, a) = cut z. ∃x1x2. a ∈ x1 ∧ a ∈ x2 ∧ |∀|x ∈ x1. |∀|y ∈ x2. f(x, y) ∈ z

= cut z. ∃x1x2. a ∈ x1 ∩ x2 ∧ |∀|x ∈ x1. |∀|y ∈ x2. f(x, y) ∈ z

= cut z. ∃x. a ∈ x ∧ |∀|x ∈ x. |∀|y ∈ x. f(x, y) ∈ z.

The last equality depends on proving ⇒ and ⇐ for the logical sub-formulae. For ⇐, we just put
x1 ≡ x2 ≡ x. Similarly for ⇒, we put x ≡ x1 ∩ x2 and rely on monotonicity of |∀|.

Using these transformations, we may simplify complicated arithmetic expressions that involve
Dedekind cuts as well as the usual four operations. Moreover, despite the symmetry of the logical
connectives, the way in which the cellular variables occur begins to suggest an order of execution.
Not surprisingly, this is the usual one, from variables to expressions.

The consequence of this is that the bound variable of the Dedekind cut construction is treated
as a receptacle into which we deposit the cellular value that results from the computation. The
user may, however, have specified a particular output precision, ε. If the cellular value that we
obtain is wider than this, we have to pass the demand for greater precision down to our own
arguments, and then repeat the computation.

That, however, is still arithmetic. We wanted to do analysis, and have shown that for this we
need the quantifiers ∃x ∈ R and ∀x ∈ [0, 1]. These bind the continuous variable x, whereas the
central proposition itself only treats it as a free variable. In fact, the result can easily be adapted
to eliminate x when it is bound by an existential quantifier:

∃x. φx ⇔ ∃x. ∃x. x ∈ x ∧ |∀|x′ ∈ x. φx′

⇔ ∃x. (∃x. x ∈ x) ∧ |∀|x′ ∈ x. φx′

⇔ ∃x. |∀|x′ ∈ x. φx′.

The sub-formula ∃x. x ∈ x is redundant (true) because the interval x is required to be non-trivial.
Notice that we have used the logical axioms that

∃u. ∃v. ψuv ⇔ ∃v. ∃u. ψuv and ∃u. σ ∧ ψu ⇔ σ ∧ ∃u. ψu,

where the variables u and v may be n, x or x.
Observe that, when we bind the variable like this, we lose control of it and the information

that flows through it. In particular, in the formula ∃x. φx ∧ ψx, we have no idea of whether φ is
the producer and ψ the consumer of this information or vice versa. Indeed, they may conduct a
lengthy negotiation over it.

We cannot eliminate the universal quantifier quite so easily: as we shall see, it requires the
Heine–Borel theorem.

7 The Heine–Borel property

For all the careful consideration that we have put into motivating and proving the translation in
the previous section, at the symbolic level it is no more than a change of typeface. That is, until
we come to ∀, which cannot be applied to cellular variables. In this case, we have to provide an

15

algorithm that computes ∀x ∈ a, using |∀|x ∈ a′ and recursion. However, whereas we offer here
one non-trivial way doing something, other people may have other ways of doing the same thing
more efficiently: the problem is known as optimisation under constraints.

Applying the same idea as we used for ∃, we need to simplify the expression

∀x ∈ a. φx ≡ ∀x ∈ a. ∃x. x ∈ x ∧ |∀|x′ ∈ x. φx′.

Classically, this says that, in the closed bounded interval a, each point x lies in some open interval
x for which |∀|x′ ∈ x. φx′ holds, so the xs provide an open cover of a.

Now, the Heine–Borel property says that there is a finite sub-cover.
We shall show how this contributes to our translation before we ask what kind of “set” of

intervals we mean, or whether Heine–Borel is a theorem or an axiom.

In our simplest application, just one open interval is needed. If the collection of intervals is
totally ordered by inclusion, the finite sub-cover has a greatest member. This happens for the
predicates φ(x, y) on intervals that arise in the translation, where we have

y1 ⊂ y2 ` φ(x, y1) ⇐ φ(x, y2),

and then ∀x ∈ a. ∃y. y ∈ y ∧ φ(x, y) ⇐⇒ ∃y. y ∈ y ∧ ∀x ∈ a. φ(x, y).

Another common case of this is φn(x) with φn(x)⇒ φn+1(x), when

∀x ∈ a. ∃n. φn(x) ⇐⇒ ∃n. ∀x ∈ a. φn(x).

In analysis, the situations in which we can interchange quantifiers in this way are called uniform
— continuity, convergence, differentiability. Uniformity is needed for Riemann integration, for
integrating or differentiating power series term-by-term, for interchanging integrals, and so on. It
is a pity that the textbooks are uniformly so casual in their use of logical formulae, where formal
use of the quantifiers would make this issue so much clearer for students. For the proof in ASD
that every function is uniformly continuous on any compact domain, see [J].

In general, the sub-formula that ∀ encloses is built up using ∧, ∨ and ∃. Of course, ∀ commutes
with ∧, whilst we may encode ∨ as a special case of ∃. Incorporating the problem that arose from
the translation, we may then state the Heine–Borel property in the form

∀x ∈ [0, 1]. ∃n. φnx ⇐⇒ ∃k.
2k−1∧
j=0

∃n. |∀|x ∈ [j · 2−k, (j + 1) · 2−k]. φnx,

using a sufficiently fine binary subdivision of the interval.
How can we read this as a program? We compute

θ[a, b] ≡ ∀x ∈ [a, b]. ∃n. φnx

recursively in terms of subintervals. The Heine–Borel property says that, when these get smaller
than 2−k(b− a), we may use |∀| instead of deeper recursion. So,

θ[a, b] ⇐⇒ ∃k.
(
∃n. |∀|x ∈ [a, a+ 2−k(b− a)]. φnx

)
∧ θ[a+ 2−k(b− a), b].

The idea is to bite off as much of the left-hand end of the interval as we can chew, and then eat
the rest in the same way. In each bite, we taste each of the disjuncts on the menu in turn, the
point being that the whole meal will consist of several different courses.

This procedure raises a number of computational questions that are beyond the scope of this
paper.
•We have just interpreted ∧ and ∃ in a sequential way, whereas in logic they are commutative.
•At what point do we give up on the nth disjunct or the kth subdivision and try the next one

instead?

16

We would like, notwithstanding the halting problem, to have some kind of negative information
that can tell us when the current sub-goal is hopeless. Obviously we can’t expect the exact logical
negation, since we can’t test for a ≥ b or a = b, but if we know that a > b then there’s no point
in trying to prove a < b.

We can make a simpler but extremely important short cut if we don’t have to subdivide at all,
i.e. if

∀x ∈ a.φx ⇐⇒ |∀|x ∈ a. φx.

This happens when either
• the interval a can be made arbitrarily narrow, as was the case for the intervals that arose in

the translation, but not when we specify two endpoints; or
• the formula φx is sufficiently simple, and in particular the variable x only occurs once in it

(in a sense that needs to be formalised).
If we can rely on this short cut, we may use ∀x ∈ [a, b]. φx as a sub-formula that requires the open
subspace φ to contain an interval [a, b] connecting two points that have particular properties. This
idiom is crucial to the proof of the intermediate value theorem in [J]. It may be enough to do
this when φ is itself an open interval (a′, b′), so we want to simplify the quantified sub-formula to
(a′ < a) ∧ (b < b′).

Having gone as far as we can with the computational interpretation, let us tidy up some
theoretical loose ends. First, the program appears to make ∀ logically redundant. Have we not
proved the Heine–Borel theorem?

In fact, no. As [I] explains, there are several models of the rest of our calculus (based on domain
theory, recursive set theory and other systems) in which the Heine–Borel property fails. Indeed,
for exactly this reason, Errett Bishop developed constructive analysis using totally bounded closed
subspaces, without ever mentioning compactness in the Heine–Borel sense [Bis67].

The impact of this on our program is that we use the Heine–Borel property to prove termina-
tion, i.e. that the ∃k side really is observable when the ∀x side is.

In ASD, therefore, this property must be an axiom for the real line, if we consider this as a
base type. If instead we construct R à la Dedekind from Q, the property is an instance of a more
fundamental axiom of ASD, called the monadicity principle [I].

We also need to explain what we mean by “sets” in situations such as an open cover and its
finite sub-cover, since we are not talking about open or compact subspaces of R. As always in
computation, we may resort to numerical encodings, using N and its RE subsets for our “sets”.
A less clumsy way of doing the same thing, which is standard in functional and logic programming,
is to replace numbers and their successors by binary trees and pairing. Then we hang a list of
trees along the hereditarily rightmost branch of a tree.

But ASD is a theory of general topology, and one of its aims is to eliminate ad hoc codings
such as this. These “sets” are topological spaces of a special kind, namely those that are discrete
(having =) and overt (with ∃). It can be shown that these form a model of the näıve set theory
that we teach to undergraduates, including a finite powerset. Specifically, they admit products,
disjoint sums, equalisers (subsets defined by equations), quotients by equivalence relations [C] and
free commutative monoids (sets of lists) [E]. This structure was introduced by André Joyal in
1973 as a way of proving Gödel’s incompleteness theorems categorically, but unfortunately neither
this work nor much else on the subject has ever actually appeared in print.

Finally, how do I justify the claim that any computably continuous function is representable
in my calculus?

On the face of it, you are allowed to choose any of the thousands of extant programming
languages as your notion of “computability”. Indeed you can, if it has the right features, and
omits the wrong ones: its denotational semantics provides a translation of your program into
domain theory, which may in turn be formulated in ASD. For example, Gordon Plotkin considered
a simply typed λ-calculus with conditional execution, recursion and a specified order of evaluation,

17

which may be extended with “parallel or” and a sort of existential quantifier [Plo77]. The domain-
theoretic interpretation of a program of type nat is a continuous function into the space N⊥, which
is like the Sierpiński space Σ (with a closed point ⊥), except that it has an open point for each
integer. Plotkin showed that the program terminates iff its denotation is a number, and not ⊥.

Since the same theory can be set up in ASD, we may understand “computable functions” to be
terms of the ASD calculus (with all of its types, not just N and R). Now suppose that you have a
continuous function f : R→ R that is defined in whatever mathematical world you prefer (maybe
the classical one), along with a program P (d, q, u) in your choice of programming language that
accepts rational numbers d, q, u as arguments and terminates iff d < f(q) < u. Let φ : Q3 → Σ
be the denotational semantics of P in ASD. Now, if you’ve given me consistent data, this φ may
be used to define a morphism g : R → R in the full ASD calculus, whose interpretation in your
mathematical world agrees with f [G]. The final piece in the jig-saw is that the structure that we
described in Section 2 has exactly one model in ASD, up to unique isomorphism [I].

8 Proof of the central proposition

This final section is an “appendix” that, in a strictly logical development, would be inserted in
Section 6. We prove the central proposition, that

φx ⇐⇒ ∃x. x ∈ x ∧ |∀|x ∈ x. φx,

by structural induction on φ, starting from the leaves, i.e. occurrences of x. If you prefer, this is
the same as induction on the depth of the expression tree for φ. We have to consider each of the
connectives in the table in Section 2.

Since |∀| leaves the logical operations untouched, it is not surprising that the most difficult
cases are those involving the arithmetical connectives. The key property is known as roundedness
or interpolation. It should be proved for each Moore operation ~ ≡ ⊕,	,⊗,� (corresponding to
the ordinary ? ≡ +,−,×,÷) in turn, although we shall take it as known. It says that, for intervals
a, b and w (that we may assume to have machine-representable endpoints),

a~ b b w ⇐⇒ ∃yz. a b y ∧ b b z ∧ y ~ z b w.

It will be convenient to include the case where a and b are singletons, i.e.

a ? b ∈ w ⇐⇒ ∃yz. a ∈ y ∧ b ∈ z ∧ y ~ z b w,

and also that where w is infinite.
In fact, this lemma is the concrete manifestation of the continuous lattices with the Scott

topology [GHK+80] that underly the theory of (non-Hausdorff) locally compact spaces, and hence
(the classical interpretation of) ASD.

The induction step for each arithmetic operation ? in an expression proceeds from the induction
hypothesis for a ∈ y and b ∈ z to the result for a ? b ∈ w. The hypothesis for a ∈ y and the
corresponding cases in the definition of |∀| give

a ∈ y ⇔ ∃x1. x ∈ x1 ∧ |∀|x ∈ x1. (a ∈ y)
⇔ ∃x1. x ∈ x1 ∧ (|∀|x ∈ x1. a) b y

≡ ∃x1. x ∈ x1 ∧ a1 b y,

where a1 is a convenient abbreviation for |∀|x ∈ x1. a, the subscript being inherited from that on x1.
Notice that if x ⊂ x1 then a ⊃ a1.

Putting all of these lemmas together, along with those for manipulating ∃ and ∧, we have

a ? b ∈ w ⇔ ∃yz. a ∈ y ∧ b ∈ z ∧ y ~ z b w

18

⇔ ∃yz. (∃x1. x ∈ x1 ∧ a1 b y)
∧ (∃x2. x ∈ x2 ∧ b2 b z) ∧ (y ~ z b w)

⇔ ∃x1x2. x ∈ x1 ∩ x2

∧ ∃yz. (a1 b y) ∧ (b2 b z) ∧ (y ~ z b w)
⇔ ∃x. x ∈ x ∧ ∃yz. (a b y) ∧ (b b z) ∧ (y ~ z b w) monot
⇔ ∃x. x ∈ x ∧ a~ b b w.

The bases cases of the induction for arithmetic expressions are of course the constants (0 and
1) and the variables (x and some other y). The cases c ≡ 0, 1, y are all the same:

c ∈ w ⇔ ∃x. x ∈ x ∧ c ∈ w ⇔ ∃x. x ∈ x ∧ |∀|x ∈ x. c ∈ w,

whilst x ∈ w ⇔ ∃x. x ∈ x ∧ x b w ⇔ ∃x. x ∈ x ∧ |∀|x ∈ x. x ∈ w,

where w < x < x < x < w.

This establishes the inductive claim when φx is of the form a ∈ w, if a is a purely arithmetic
expression. We shall consider recursion and Dedekind cuts after we’ve dealt with logical formulae.
The trick of allowing w ≡ [−∞, b] above now lets us deduce the result for < from that for ∈,

a < b ⇔ ∃x. x ∈ x ∧ |∀|x ∈ x. (a < b) ⇔ ∃x. x ∈ x ∧ (|∀|x ∈ x. a)< (|∀|x ∈ x. b),

and likewise for > and 6=.

The induction cases for the logical connectives are easy and similar. For each of them, the
three lines of argument below apply the induction hypothesis to the subformulae φx and ψx, the
logical rules for ∃, ∧ and ∨, and the relevant cases in the definition of |∀|. For the constants, any
non-trivial interval will do for x. The one tricky case is ∧, where we need the intersection x1 ∩ x2.

> ⇔ ∃x. x ∈ x ∧ |∀|x ∈ x.>
⊥ ⇔ ∃x. x ∈ x ∧ |∀|x ∈ x.⊥
φx ∧ ψx ⇔ (∃x1. x ∈ x1 ∧ |∀|x ∈ x1. φx) ∧ (∃x2. x ∈ x2 ∧ |∀|x ∈ x2. ψx)

⇔ ∃x1x2. x ∈ x1 ∩ x2 ∧ (|∀|x ∈ x1. φx) ∧ (|∀|x ∈ x2. ψx)
⇔ ∃x. x ∈ x ∧ (|∀|x ∈ x. φx) ∧ (|∀|x ∈ x. ψx) monot
⇔ ∃x. x ∈ x ∧ |∀|x ∈ x1. (φx ∧ ψx)

φx ∨ ψx ⇔ (∃x1. x ∈ x1 ∧ |∀|x ∈ x1. φx) ∨ (∃x2. x ∈ x2 ∧ |∀|x ∈ x2. ψx)
⇔ ∃x. x ∈ x ∧

(
(|∀|x ∈ x1. φx) ∨ (|∀|x ∈ x2. ψx)

)
⇔ ∃x. x ∈ x ∧ |∀|x ∈ x1. (φx ∨ ψx)

∃u. φux ⇔ ∃u. ∃x. x ∈ x ∧ |∀|x ∈ x. φux

⇔ ∃x. x ∈ x ∧ ∃u. |∀|x ∈ x. φux

⇔ ∃x. x ∈ x ∧ |∀|x ∈ x. ∃u. φux

We assume that ∀ has been eliminated from φ in favour of the recursive program that we gave in
the previous section.

In general, we don’t just have logical formulae with arithmetical sub-formulae, but also form
new real numbers by specifying them as Dedekind cuts. This means that we have another arith-
metical case,

(cut y. θxy) ∈ w ⇔ θxw ⇔ ∃x. x ∈ x ∧ |∀|x ∈ x. θxw,

using the cut-β rule and the induction hypothesis. This case of the induction is then valid so long
as we define

(|∀|x ∈ x. cut y. θxy) b w ≡ |∀|x ∈ x.
(
(cut y. θxy) ∈ w

)
≡ |∀|x ∈ x. θxw.

There are further cases for recursively defined arithmetical and logical expressions. These are
similar to the arguments in [E, §2].

19

References

[Bis67] Errett Bishop. Foundations of Constructive Analysis. Higher Mathematics.
McGraw–Hill, 1967.

[CS88] John Horton Conway and Neil Sloane. Sphere Packings, Lattices and Groups. Number
290 in Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, 1988.

[Dau79] Joseph Warren Dauben. Georg Cantor: his Mathematics and Philosophy of the
Infinite. Harvard University Press, 1979.

[Ded72] Richard Dedekind. Stetigkeit und irrationale Zahlen. Braunschweig, 1872. Reprinted
in Gesammelte mathematische Werke, pp. 315–334 and (in English) in Essays on the
theory of numbers, Dover, 1963.

[Dij87] E. J. Dijksterhuis. Archimedes. Princeton University Press, 1987. Written in Dutch in
1938–44; translated by C. Dikshoorn.

[EL04] Abbas Edalat and André Lieutier. Domain theory and differential calculus.
Mathematical Structures in Computer Science, 14:771–802, 2004.

[Fef77] Solomon Feferman. Categorical foundations and foundations of category theory. In
Robert Butts and Jaakko Hintikka, editors, Logic, Foundations of Mathematics and
Computability Theory, pages 149–169. Reidel, 1977.

[Gen35] Gerhard Gentzen. Untersuchungen über das Logische Schliessen. Mathematische
Zeitschrift, 39:176–210 and 405–431, 1935. English translation in M. E. Szabo, The
Collected Papers of Gerhard Gentzen, North-Holland, 1969, pp. 68–131.

[GHK+80] Gerhard Gierz, Karl Heinrich Hoffmann, Klaus Keimel, Jimmie Lawson, Michael
Mislove, and Dana Scott. A Compendium of Continuous Lattices. Springer-Verlag,
1980. Second edition, Continuous Lattices and Domains, published by Cambridge
University Press, 2003.

[GLT89] Jean-Yves Girard, Yves Lafont, and Paul Taylor. Proofs and Types. Number 7 in
Cambridge Tracts in Theoretical Computer Science. Cambridge University Press,
1989.

[Pea97] Giuseppe Peano. Studii di logica matematica. Atti della Reale Accademia di Torino,
32:565–583, 1897. Reprinted in Peano, Opere Scelte, Cremonese, 1953, vol. 2,
pp. 201–217, and (in English) in H.C. Kennedy, Selected Works of Giuseppe Peano,
Toronto University Press, 1973, pp 190–205.

[Plo77] Gordon Plotkin. LCF considered as a programming language. Theoretical Computer
Science, 5:223–255, 1977.

[RW13] Bertrand Russell and Alfred North Whitehead. Principia Mathematica. Cambridge
University Press, 1910–13. Second edition, 1927; paperback edition to ∗56, 1962.

[Sco70] Dana Scott. Outline of a mathematical theory of computation. In 4th Annual
Princeton Conference on Information Sciences and Systems, pages 169–176, 1970.
Superseded by Oxford technical report PRG-2.

[Tay99] Paul Taylor. Practical Foundations of Mathematics. Number 59 in Cambridge Studies
in Advanced Mathematics. Cambridge University Press, 1999.

[Tur35] Alan Turing. On computable numbers with an application to the
Entscheidungsproblem. Proceedings of the London Mathematical Society (2),
42:230–265, 1935.

[TvD88] Anne Sjerp Troelstra and Dirk van Dalen. Constructivism in Mathematics, an
Introduction. Number 121 and 123 in Studies in Logic and the Foundations of
Mathematics. North-Holland, 1988.

[Vic88] Steven Vickers. Topology Via Logic, volume 5 of Cambridge Tracts in Theoretical
Computer Science. Cambridge University Press, 1988.

20

The papers on abstract Stone duality may be obtained from
www.cs.man.ac.uk/∼pt/ASD

[A] Paul Taylor, Sober spaces and continuations. Theory and Applications of Categories,
10(12):248–299, 2002.

[B] Paul Taylor, Subspaces in abstract Stone duality. Theory and Applications of
Categories, 10(13):300–366, 2002.

[C] Paul Taylor, Geometric and higher order logic using abstract Stone duality. Theory
and Applications of Categories, 7(15):284–338, 2000.

[D] Paul Taylor, Non-Artin gluing in recursion theory and lifting in abstract Stone
duality. 2000.

[E] Paul Taylor, Inside every model of Abstract Stone Duality lies an Arithmetic
Universe. Electronic Notes in Theoretical Computer Science 416, Elsevier, 2005.

[F] Paul Taylor, Scott domains in abstract Stone duality. March 2002.
[G–] Paul Taylor, Local compactness and the Baire category theorem in abstract Stone

duality. Electronic Notes in Theoretical Computer Science 69, Elsevier, 2003.
[G] Paul Taylor, Computably based locally compact spaces. Logical Methods in Computer

Science, 2005, to appear.
[H-] Paul Taylor, An elementary theory of the category of locally compact locales.

APPSEM Workshop, Nottingham, March 2003.
[H] Paul Taylor, An elementary theory of various categories of spaces and locales.

November 2004.
[I] Andrej Bauer and Paul Taylor, The Dedekind reals in abstract Stone duality.

Computability and Complexity in Analysis, Kyoto, August 2005.
[J] Paul Taylor, A λ-calculus for real analysis. Computability and Complexity in

Analysis, Kyoto, August 2005.

21

http://www.cs.man.ac.uk/~pt/ASD/index.pdf
http://www.cs.man.ac.uk/~pt/ASD/sobsc.pdf
http://www.cs.man.ac.uk/~pt/ASD/subasd.pdf
http://www.cs.man.ac.uk/~pt/ASD/geohol.pdf
http://www.cs.man.ac.uk/~pt/ASD/nonagr.pdf
http://www.cs.man.ac.uk/~pt/ASD/nonagr.pdf
http://www.cs.man.ac.uk/~pt/ASD/insema.pdf
http://www.cs.man.ac.uk/~pt/ASD/insema.pdf
http://www.cs.man.ac.uk/~pt/ASD/pcfasd.pdf
http://www.cs.man.ac.uk/~pt/ASD/loccbc.pdf
http://www.cs.man.ac.uk/~pt/ASD/loccbc.pdf
http://www.elsevier.nl/gej-ng/31/29/23/131/23/show/Products/notes/
http://www.cs.man.ac.uk/~pt/ASD/comblc.pdf
http://www.cs.man.ac.uk/~pt/ASD/undset-.pdf
http://www.cs.man.ac.uk/~pt/ASD/eletvc.pdf
http://www.cs.man.ac.uk/~pt/ASD/dedras.pdf
http://www.cs.man.ac.uk/~pt/ASD/lamcra.pdf

	Introduction
	Natural axioms for the real line
	Dedekind cuts and intervals
	Cuts and intervals in analysis
	Type theory for Dedekind cuts
	The translation
	The Heine--Borel property
	Proof of the central proposition

