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Abstract
A topological space is sober if it has exactly the points that are dictated by its open sets.

We explain the analogy with the way in which computational values are determined by the

observations that can be made of them. A new definition of sobriety is formulated in terms

of lambda calculus and elementary category theory, with no reference to lattice structure,

but, for topological spaces, this coincides with the standard lattice-theoretic definition. The

primitive symbolic and categorical structures are extended to make their types sober. For

the natural numbers, the additional structure provides definition by description and general

recursion.

We use the same basic categorical construction that Thielecke, Führmann and Selinger

use to study continuations, but our emphasis is completely different: we concentrate on the

fragment of their calculus that excludes computational effects, but show how it nevertheless

defines new denotational values. Nor is this “denotational semantics of continuations using

sober spaces”, though that could easily be derived.

On the contrary, this paper provides the underlying λ-calculus on the basis of which

abstract Stone duality will re-axiomatise general topology. The leading model of the new

axioms is the category of locally compact locales and continuous maps.
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1 Computational values

What does it mean for a computation to yield a value?
If the computational object is a function, or a database measured in terabytes, we may only

obtain parts of its value, by querying it with arguments or search-terms. It is usual to say that if
the type of the object is simple then the object is directly observable, but for complex types we
must perform some computational experiment in order to access the value.

Typically, N is regarded as an observable type [Plo77], but, as Alan Turing had already observed
[Tur35, Section 8], if we are given two numbers with a lot of digits, say 9999999999999999 and
999999999999999, we may only determine whether or not they are equal by carefully comparing
them digit by digit. For very large numbers, it may not even be feasible to print out all of the
digits, so we are back in the situation of merely being prepared to print (or, indeed, to compute)
whichever of the digits are actually required. Recursion theory traditionally regards the contents
of a database as a huge number too.

So much for integers. What does it mean to define a real number? It is no good writing it
out in decimal notation — even overlooking the ambiguity between 0.99999... and 1.00000... —
because such an expression is necessarily finite, and therefore defines a rational number. For me
to give you a real number in this notation, you have first to tell me how many decimal digits you
require.
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This interactive manner of obtaining mathematical values goes back to Weierstrass’s definition
of continuity of f : R→ R at u,

∀ε > 0. ∃δ > 0. ∀u′. |u′ − u| < δ ⇒ |f(u′)− f(u)| < ε.

We ask the consumer of f(u) how much accuracy (ε) is required, and pass this information back
to the producer of u as our own demand (δ) on the input.

Remark 1.1 In all of these examples, the value can only be elucidated by being ready to use it
in situations that ultimately result in an observable value. In general, the best I can do is to be
prepared (with a program) to provide as much information as you actually require.

The theme of this paper is that, once we have loosened our control over computational values
to this extent, we open the floodgates to many more of them.

As N is too big a type to be observable, maybe we should use 2, the type of bits? But no,
this assumes that all computations terminate, so we need a type that’s simpler still. The type Σ
of semi-bits is the only observable type that we need: such a value may be present (“yes”), or
may never appear (“wait”). Σ is like the type that is called unit in Ml, but void in C and Java.
A program of this type returns no useful information besides the fact that it has terminated, but
it need not even do that. The results of many such programs may be used in parallel to light up
a dot-matrix display, and thereby give an answer that is intelligible to humans.

Remark 1.2 Abstractly, it is therefore enough to consider a single program of type Σ, so long as
we allow processing to go on in parallel.

A computation φ[x] of type Σ is an affirmative property of x, that is, a property that will
(eventually) announce its truth, if it is true. Steven Vickers has given a nice account of properties
that are affirmative but false, refutative but true, etc., showing how the algebra of affirmative
properties has finite conjunctions and infinitary disjunctions, just like the lattice of open subsets
of a topological space [Vic88, Chapter 2].

Indeed, by running two processes in parallel and waiting for one or both of them to terminate,
this algebra admits binary conjunction and disjunction, whilst there are trivial programs that
denote ⊥ and >. The other possibility is to start off (one at a time) a lot of copies of the same
program, giving them each the input 0, 1, 2, ..., and wait to see if one of them terminates. If the
nth program terminates after N steps, we ignore (silently kill off) the n+N − 1 other processes
that we have started, and don’t bother to start process number n+N + 1 that’s next in the queue
to go. This existential quantifier is similar to the search or minimalisation operator in general
recursion, though in fact it is simpler, and general recursion can be defined from it.

Definition 1.3 Mathematically, these constructions make Σ into a lattice with infinitary joins,
over which meets (>,∧) distribute. It is convenient to consider finite (⊥,∨) and directed (

∨
�) joins

separately. Allowing joins of arbitrary families, as is required in traditional point-set topology,
such a lattice is called a frame.

For computation, the joins must be recursively defined, and in particular countable. It is one of
the objectives of the programme (Abstract Stone Duality) to which this paper is an introduction
to re-formulate topology to agree with computation.

Because of the halting problem, there is no negation or implication. Nor is a predicate of
the form ∀n:N. φ[n] affirmative, as we never finish testing φ[n]s. Whilst we can use proof theory
to investigate stronger logics, we can only talk about them: the connectives ∧ and ∨, and the
quantifier ∃n, constitute the logic that we can do. In particular, we can do the pattern-matching
and searching that proof theory needs by using ∧, ∨ and ∃.

We write ΣX for the type (lattice) of observations that can be made about values of type X,
because λ-abstraction and application conveniently express the formal and actual roles of the value
in the process of observation. Observations, being computational objects, are themselves values
that we can access only by making observations of them. The type of meta-observations is called
ΣΣX , and of course there are towers of any height you please.
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There is a duality between values and observations.

Remark 1.4 One special way of making a meta-observation P : ΣΣX about an observation φ : ΣX

is to apply it to a particular value p : X. We write

P = ηX(p) for the meta-observation with P (φ) = φ(p).

Thus P is a summary of the results φ(p) of all of the (possible) observations φ that we could make
about p. (Being itself a computational object, the value of P can only be accessed by making
observations ...)

If someone gives us a P , they are allegedly telling us the results of all of the observations that
we might make about some value p, but to which they are giving us no direct access. Must we
accept their word that there really is some value p behind P?

First, there are certain “healthiness” conditions that P must satisfy [Dij76, Chapter 3]. These
are rather like testing the plausibility of someone’s alibis: was it really possible for someone to
have been in these places at these times?

Remark 1.5 The application of observations to a value p respects the lattice operations on the
algebra of observations:
truth: If the observation (λx.>) applied to the value p were not to terminate, this would mean

that the computation of p did not terminate.
falsity : If (λx.⊥)p were to terminate, this would mean that the code to make the observation

(λx.⊥) had never been executed: somehow the computation of p has hijacked the output
channel of the observation. This is indeed done in various programming languages, with a
command abort, halt, etc., or by throwing an exception that is not caught. This raises
the question of the scope of the exception: how far out of the execution environment is it
actually caught, given that it doesn’t bring the World to an end? Hayo Thielecke calls values
that respect these constant observations discardable, though the point is that it is safe to
calculate them, even when we may not need to use them.

binary conjunction: If we can observe both φ(p) and ψ(p) separately, then we can also observe
φ(p) ∧ ψ(p). A computation p that changes the state or consumes some resource can fail this
property by using angelic non-determinism: in the execution of φ(p), it so makes its internal
choices as to make φ(p) more likely to succeed, but as it might want to make different choices
for ψ(p), it may not be able to win twice.

binary disjunction: If we can observe φ(p) ∨ ψ(p), then we could instead observe either φ(p)
or ψ(p). A program p can fail this property by using demonic non-determinism. Suppose
that φ(p) and ψ(p), run individually, are unsuccessful, i.e. they don’t terminate. However, if
instead we run them in parallel, the way in which each of them changes the state amounts
to communication between them, with the effect that the combined computation φ(p) ∨ ψ(p)
may follow a different and successful computation path.

directed joins: If we can observe
∨
�i φi(p) then we can already observe some φi(p). This argument

about finiteness of computation is familiar from the Rice–Shapiro theorem and 1970s domain
theory.

See also [Smy94, Section 4.4] for further discussion of the relationship between non-determinism
and the preservation of lattice structure.

Examples 1.6 Here are some programs that violate the properties above, i.e. which respectively
fail to preserve the logical connectives on the left, although we are mis-using “the” here (Section 9).

> force(λφ.⊥) then.⊥
⊥ force(λφ.>)
∧ force(λφ. φ[0] ∨ φ[1]) then. (n = 0 ∨ n = 1)
∨ force(λφ. φ[0] ∧ φ[1])
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Definition 1.7 A subset P of a frame is called a filter if it contains >, it is closed upwards, and
also under finite meets (∧). A completely coprime filter is one such that, if

∨
U ∈ P , then

already u ∈ P for some u ∈ U . Classically, the complement of such a filter is a prime ideal, I,
which is closed downwards and under infinitary joins, > /∈ I, and if u∧ v ∈ I then either u ∈ I or
v ∈ I.

Remark 1.8 The motivations that we have given were translated from topology, using the dic-
tionary

point value
open subset observation

open neighbourhood observation of a value.
This view of general topology is more akin to Felix Hausdorff’s approach [Hau14] in terms of the
family of open neighbourhoods of each point than to the better known Bourbaki axiomatisation
of the lattice of all open subsets of the space [Bou66]. Beware that we only consider open neigh-
bourhoods, whereas for Bourbaki any subset is a neighbourhood so long as it contains an open
subset around the point. Bourbaki writes B(x) for the collection of such neighbourhoods of x.

Remark 1.9 The family P = ηX(p) of open neighbourhoods of a point p ∈ X is also a completely
coprime filter in the frame ΣX of open subsets of X:
(a) it is closed upwards, i.e. if φ ∈ P and φ ≤ ψ then ψ ∈ P ;
(b) > ∈ P ;
(c) it is closed under intersection: if φ, ψ ∈ P then φ ∧ ψ ∈ P ;
(d) it is coprime: ⊥ /∈ P , and if φ ∨ ψ ∈ P then either φ ∈ P or ψ ∈ P ;
(e) it is Scott-open: if

∨
�i φi ∈ P then φi ∈ P for some i.

Remark 1.10 In Theorem 5.12 we make use of something that fails some of these conditions,
namely the collection {U | K ⊂ U} of open neighbourhoods of a compact subspace K ⊂ X. This is
still a Scott-open filter (it respects >, ∧ and

∨
�), but is only coprime if K is a singleton. (At least,

that is the situation for T1-spaces: the characterisation is more complicated in general. When we
use this idea in Theorem 5.12, K must also be an upper subset in the specialisation order.)

Remark 1.11 So far we have only discussed computations that run on their own, without any
input. In general, a program will take inputs u1 : U1, ..., uk : Uk over certain types, and we
conventionally use Γ to name this list of typed variables. For the moment, we take k = 1.

Suppose that P (u) : ΣΣX is a meta-observation of type X that satisfies the conditions that we
have described, for each input value u ∈ U . If φ : ΣX is an observation of the output type X then
P (u)(φ) is an observation of the input u, which we call ψ(u) ≡ H(φ)(u). Then the lattice-theoretic
properties of P (u) transfer to H:

H(>ΣX ) = >ΣU H(φ1 ∧ φ2) = H(φ1) ∧H(φ2)
H(⊥ΣX ) = ⊥ΣU H(φ1 ∨ φ2) = H(φ1) ∨H(φ2)

together with the infinitary version, H(
∨
� φi) =

∨
� H(φi).

Remarks 1.12
(a) Such an H : ΣX → ΣU is called a frame homomorphism, and any continuous function

f : U → X defines such a homomorphism by Σf : φ 7→ λu. φ(fu).
(b) This is the Bourbaki definition of continuity: for every open subset φ ⊂ X of the output, the

inverse image, ψ ≡ Σfφ ≡ f−1(φ) ≡ {u | fu ∈ φ} ⊂ U , is an open subset of the input.
(c) In particular, for f : R → R, u ∈ R and ε > 0, let φ ≡ {x | |x− fu| < ε} be an open

interval around fu, then ψ is an open neighbourhood of u iff it contains the open interval
{u′ | |u′ − u| < δ} for some δ > 0. This is Weierstrass’s definition.

(d) Computationally, if you tell me what you’re going to do with my output (your continuation
φ from my procedure), I can tell you what (ψ) we’re going to do with your input.
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So computations are given in the same contravariant way as continuous functions are defined in
general topology.

Remark 1.13 Since we only access values via their observations,
if φ[a] = φ[b] for all observations φ : ΣX then a = b : X.

This is a Leibniz principle for values. The corresponding property for points and open subsets
of a topological space is known as the T0 separation axiom. An equality such as φ[a] = φ[b]
of two terms of type Σ means that one program terminates if and only if the other does. This
equality is not itself an observable computation, as we cannot see the programs (both) failing to
terminate.

Remark 1.14 Now suppose that the system P of observations does satisfy the consistency con-
ditions that we have stated, i.e. it is a completely coprime filter. Must there now be some point
p ∈ X such that P = ηX(p)?

Sobriety says that there is — and then T0 says that it’s unique.
In the parametric version, every frame homomorphism H : ΣX → ΣU is given by Σf for some
unique continuous function f : U → X.

We shall show in this paper that the lattice-theoretic way in which we have introduced sobriety
is equivalent to an equational one in the λ-calculus. In Section 9 we return to a lattice-theoretic
view of N, where the corresponding notion is that of a description, i.e. a predicate that provably
has exactly one witness. Then sobriety produces that witness, i.e. the number that is defined by
the description. Taking the same idea a little further, we obtain the search operation in general
recursion.

In topology, sobriety says that spaces are determined (up to isomorphism) by their frames of
open subsets, just as points are determined (up to equality) by their neighbourhoods. Sobriety is
therefore a Leibniz principle for spaces. The next step is to say that not only the spaces but
the entire category of spaces and continuous functions is determined by the category of frames
and homomorphisms — a Leibniz principle for categories. This is developed in [B], for which
we set up the preliminaries here.

Another idea, called repleteness, was investigated in synthetic domain theory [Hyl91, Tay91].
This played the same role in the theory as sobriety (cf. Remark 10.9), but it is technically weaker
in some concrete categories.

Remark 1.15 We have stressed that a meta-observation P : ΣΣX only defines a value of type X
when certain conditions are satisfied. Indeed, we justified those conditions by excluding certain
kinds of programs that have non-trivial computational effects.

Since fire burns, we adopt precautions for avoiding it or putting it out — that is the point of
view of this paper. On the other hand, fire is useful for cooking and heating, so we also learn how
to use it safely.

The mathematical techniques discussed in this paper are closely related to those that have
been used by Hayo Thielecke [Thi97a, Thi97b], Carsten Führmann [Füh99] and Peter Selinger
[Sel01] to study computational effects. More practically, Guy Steele [Ste78] and Andrew Appel
[App92] showed how an ordinary functional program f : U → X (without jumps, etc.) may be
compiled very efficiently by regarding it as a continuation-transformer ΣX → ΣU . This is called
the continuation-passing style. It may be extended to handle imperative idioms such as jumps,
exceptions and co-routines by breaking the rules that we lay down. As in Remark 1.5, programs
may hijack their continuations — altering them, not running them at all, or even calling them
twice! We discuss this briefly in Remark 11.4.

Theoretical computer science often displays this ambiguity of purpose — are we applying
mathematics to computation or vice versa? It is important to understand, of this and each other
study, which it is trying to do.

5



The development of mathematics before Georg Cantor was almost entirely about the employ-
ment of computation in the service of mathematical ideas, but in an age of networks mathematics
must now also be the servant of the science of complex systems, with non-determinism and compu-
tational effects. This paper and the programme that it introduces seek to use computational ideas
as a foundation for conceptual mathematics. The science of systems is a travelling companion,
but our destinations are different. This does not mean that our objectives conflict, because the
new mathematics so obtained will be better suited than Cantor’s to the denotational foundations
of high-level computation.

2 The restricted lambda-calculus

Although we have used completely coprime filters to introduce sobriety, we shall not use lattice
theory in the core development in this paper, except to show in Section 5 that various categories
of topological spaces and continuous functions provide models of the abstract structure.

We shall show instead that sobriety has a new characterisation in terms of the exponential
Σ(−) and its associated λ-calculus. The abstract construction in Sections 3, 4, 6, 7 and 8 will be
based on some category C about which we assume only that it has finite products, and powers
Σ(−) of some special object Σ. In most of the applications, especially to topology, this category is
not cartesian closed: it is only the object Σ that we require to be exponentiating.

This structure on the category C may alternatively be described in the notation of the λ-
calculus. When C is an already given concrete category (maybe of topological spaces, domains,
sets or posets), this calculus has an interpretation or denotational semantics in C. Equally, on
the other hand, C may be an abstract category that is manufactured from the symbols of the
calculus. The advantage of a categorical treatment is, as always, that it serves both the abstract
and concrete purposes equally well.

Definition 2.1 The restricted λ-calculus has just the type-formation rules

1 type
X1 type . . . Xk type

Σ(−)F
ΣX1×···×Xk type

but with the normal rules for λ-abstraction and application,

Γ, x : X ` σ : ΣY
Σ(−)I

Γ ` λx:X. σ : ΣX×Y
Γ ` φ : ΣX×Y Γ ` a : X

Σ(−)E
Γ ` φ[a] : ΣY

together with the usual α, β and η rules.
The turnstile (`) signifies a sequent presentation in which there are all of the familiar structural

rules: identity, weakening, exchange, contraction and cut.

Remark 2.2 As this is a fragment of the simply typed λ-calculus, it strongly normalises. We
shall take a denotational view of the calculus, in which the β- and η-rules are equations between
different notations for the same value, and are applicable at any depth within a λ-expression. (This
is in contrast to the way in which λ-calculi are made to agree with the execution of programming
languages, by restricting the applicability of the β-rule [Plo75]. Besides defining call by name and
call by value reduction strategies, this paper used continuations to interpret one dually within the
other.)

Notation 2.3 We take account of the restriction on type-formation by adopting a convention for
variable names: lower case Greek letters and capital italics denote terms whose type is (a retract
of) some ΣX . These are the terms that can be the bodies of λ-abstractions. Since they are also the
terms to which the lattice operations and ∃ below may be applied, we call them logical terms.
Lower case italic letters denote terms of arbitrary type.

As we have already seen, towers of Σs like ΣΣX tend to arise in this subject. We shall often
write Σ2X, and more generally ΣnX, for these. (Fortunately, we do not often use finite discrete
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types, but when we do we write them in bold: 0, 1, 2, 3.) Increasingly exotic alphabets will be
used for terms of these types, including

a, b, x, y : X φ,ψ : ΣX F,G : ΣΣX F ,G : Σ3X.

Remark 2.4 In order to model general topology (Section 5) we must add the lattice operations
>, ⊥, ∧ and ∨, with axioms to say that Σ is a distributive lattice. In fact, we need a bit more
than this. The Euclidean principle,

φ : Σ, F : ΣΣ ` φ ∧ F (φ) = φ ∧ F (>),

captures the extensional way in which ΣX is a set of subsets [C]. It will be used for computational
reasons in Proposition 10.6, and Remark 4.11 explains why this is necessary.

Remark 2.5 We shall also consider the type N of natural numbers, with primitive recursion
at all types, in Sections 9–10 (where the lattice structure is also needed). Terms of this type
are, of course, called numerical. Note that N is a discrete set, not a domain with ⊥. Strong
normalisation is now lost.

The notation that we use for primitive recursion at type X is

Γ ` n : N Γ ` z : X Γ, m : N, u : X ` s(m,u) : X

Γ ` rec
(
n, z, λmu. s(m,u)

)
: X

where Γ and m : N are static and dynamic parameters, and u denotes the “recursive call”. The
β-rules are

rec(0, z, λmu. s) = z rec(n+ 1, z, λmu. s) = s
(
n, rec(n, z, λmu. s)

)
.

Uniqueness of the rec term is enforced by the rule

Γ ` z = r(0) Γ, m : N ` s
(
m, r(m)

)
= r(m+ 1)

Γ, n : N ` rec
(
n, z, λmu. s(m,u)

)
= r(n),

whose ingredients are exactly the base case and induction step in a traditional proof by induction.
Countable joins in ΣΓ may be seen logically in terms of the existential quantifier

Γ, n : N ` φ[n] : Σ

Γ ` ∃n. φ[n] : Σ

for which distributivity is known as the Frobenius law.

Remark 2.6 For both topology and recursion, a further axiom (called the Scott principle in
[Tay91]) is also needed to force all maps to preserve directed joins:

Γ, F : Σ2
N ` F (λn.>) = ∃n. F (λm. m < n).

For any Γ ` G : ΣX → ΣX , let Γ ` Y G = ∃n. rec(n, λx.⊥, λmφ. Gφ) : ΣX and

Γ, x : X ` F = λφ. G
(
∃n. φn ∧ rec(n, λx.⊥, λmφ. Gφ)

)
x.

Then F (λn.>) = G(Y G)x and ∃n. F (λm. m < n) = Y Gx, so Y G is a fixed point of G, indeed
the least one. However, this axiom is not needed in this paper, or indeed until we get rather a
long way into the abstract Stone duality programme [E–, F].
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Remark 2.7 We shall want to pass back and forth between the restricted λ-calculus and the
corresponding category C. The technique for doing this fluently is a major theme of [Tay99]; see
Sections 4.3 and 4.7 in particular.

When a sequent presentation such as ours has all of the usual structural rules (in particular
weakening and contraction), there is a category with products
•whose objects are the contexts (lists of typed variables), and
•whose morphisms are generated by

– weakenings x̂ : [Γ, x : X] −−. Γ for each type X in context Γ, and

– cuts [a/x] : Γ→ [Γ, x : X] for each term Γ ` a : X;

• composites of these generating morphisms obey the (extended) substitution lemma.
• In the case of the (restricted) λ-calculus, the terms a that appear in the cut morphisms are
λ-expressions modulo the α, β and η rules, and
• the language of these terms is extended for the extra structure in Remarks 2.4ff by the lattice

connectives and laws, primitive recursion and the existential quantifier.
We shall not need the notation x̂ in this paper, but we shall re-use the ̂ for a different purpose
in Section 6. (There we also introduce a category HC that does not have products, but, unlike
other authors, we shy away from using a syntactic calculus to work in it, because such a calculus
would have to specify an order of evaluation.)

Proposition 2.8 The category C so described is the free category with finite products and an
exponentiating object Σ, together with the additional lattice and recursive structure according to
the context of the discussion.

Proof. The mediating functor [[−]] : C → D from this syntactic category C to another (“seman-
tic”) category D equipped with the relevant structure is defined by structural recursion.

The exponentiating object Σ immediately induces certain structure in the category.

Lemma 2.9 Σ(−) is a contravariant functor. In particular, for f : X → Y , ψ : ΣY and F : Σ2X,
we have

Σf (ψ) = λx. ψ[fx] and Σ2f(F ) = λψ. F
(
λx. ψ[fx]

)
.

Proof. You can check that Σid = id and Σf ;g = Σg ; Σf .

In general topology and locale theory it is customary to write f∗ψ ⊂ X for the inverse image
of ψ ⊂ Y under f , but we use Σfψ instead for this, considered as a λ-term, saving f∗ for the
meta-operation of substitution (in Lemmas 8.7 and 9.2).

Now we can describe the all-important neighbourhood-family ηX(x) (Remark 1.4) in purely
categorical terms. As observed in [Tay99, Remark 7.2.4(c)], it is most unfortunate that the letter
η has well established meanings for two different parts of the anatomy of an adjunction.

Lemma 2.10 The family of maps ηX : X → ΣΣX, defined by x 7→ (λφ. φx), is natural and satisfies
ηΣX ; ΣηX = id (which we call the unit equation).

Σ2X
Σ2f- Σ2Y Σ3X

X

ηX

6

f - Y

ηY

6

ΣX
id -

ηΣX

-

ΣX

ΣηX

-
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Proof. As this Lemma is used extremely frequently, we spell out its proof in the λ-calculus in
detail. Using the formulae that we have just given,

Σ2f(ηXx) = λψ. (λφ. φx)
(
λx′. ψ(fx′)

)
= λψ.

(
λx′. ψ(fx′)

)
(x) = λψ. ψ(fx) = ηY (fx).

Also, ΣηX(F) = λx. F(ηXx) = λx. F(λφ. φx) for F : Σ3(X), so

ΣηX(ηΣXφ) = λx. (λF. Fφ)(λφ′. φ′x) = λx. (λφ′. φ′x)(φ) = λx. φx = φ.

Proposition 2.11 The contravariant functor Σ(−) is symmetrically adjoint to itself on the right,
the unit and counit both being η. The natural bijection

H : X - ΣΓ

============
P : Γ - ΣX

defined by P = ηΓ ; ΣH and H = ηX ; ΣP is called double exponential transposition.

Proof. The triangular identities are both ηΣX ; ΣηX = id.

Remark 2.12 The task for the next three sections is to characterise, in terms of category theory,
lambda calculus and lattice theory, those P : ΣΣX that (should) arise as ηX(a) for some a : X.

The actual condition will be stated in Corollary 4.12, but, whatever it is, suppose that the
morphism or term

Γ
P- ΣΣX or Γ ` P : ΣΣX

does satisfy it. Then the intuitions of the previous section suggest that we have defined a new
value, which we shall call

Γ ` focusP : X,

such that the result of the observation φ : ΣX is

Γ ` φ(focusP ) = Pφ : Σ.

In particular, when P = ηX(a) we recover a = focusP and φa = Pφ. These are the β- and η-rules
for a new constructor focus that we shall add to our λ-calculus in Section 8.

Remark 2.13 In the traditional terminology of point-set topology, a completely coprime filter
converges to its limit point, but the word “limit” is now so well established with a completely
different meaning in category theory that we need a new word.

Peter Selinger [Sel01] has used the word “focus” for a category that is essentially our SC. The
two uses of this word may be understood as singular and collective respectively: Selinger’s focal
subcategory consists of the legitimate results of our focus operator.

We now turn from the type X of values to the corresponding algebra ΣX of observations, in
order to characterise the homomorphisms ΣY → ΣX that correspond to functions X → Y , and
also which terms P : ΣΣX correspond to virtual values in X.

3 Algebras and homomorphisms

Notation 3.1 The adjunction in Proposition 2.11 gives rise to a strong monad with
(a) multiplication µX = ΣηΣX : Σ4X → Σ2X given by F 7→ λφ. F(λF. Fφ), and
(b) strength σΓ,X : Γ× Σ2X → Σ2(Γ×X) given by γ, F 7→ λψ. F

(
λx. ψ(γ, x)

)
,

satisfying six equations. Eugenio Moggi [Mog91] demonstrated how strong monads can be seen as
notions of computation, giving a (“let ”) calculus in which µ is used to interpret composition and
σ to substitute for parameters. Constructions similar to ours can be performed in this generality.
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However, rather than develop an abstract theory of monads, our purpose is to demonstrate the
relevance of one particular monad and show how it accounts for the intuitions in Section 1. The
associativity law for µ involves Σ6X, but we certainly don’t want to compute with such λ-terms
unless it is absolutely necessary! In fact we can largely avoid using σ and µ in this work.

Definition 3.2 An Eilenberg–Moore algebra for the monad is an object A of C together with
a morphism α : Σ2A→ A such that ηA ; α = idA and µA ; α = Σ2α ; α.

A �
α

Σ2A Σ2A

Σ2A

α

6

�µA Σ4A

Σ2α

6

A
id -

ηA

-

A

α

-

Lemma 3.3 For any object X, (ΣX ,ΣηX ) is an algebra.

Proof. The equations are just those in Lemma 2.10, although the one involving µ is Σ(−)

applied to the naturality equation for η with respect to ηX .

These are the only algebras that will be used in this paper, but [B] shows how general algebras
may be regarded as the topologies on subspaces that are defined by an axiom of comprehension.
In other words, all algebras are of this form, but with a generalised definition of the type X.

Definition 3.4 We shall show that the following are equivalent (when A = ΣX etc.):
(a) For any two algebras (A,α) and (B, β), a C-morphism H : B → A is called an (Eilenberg–

Moore) homomorphism if β ;H = Σ2H ; α, as in the square on the left.

A �
α

Σ2A ΣX×V �
JX

ΣX×U

B

H

6

� β
Σ2B

Σ2H

6

ΣY×V

HV

6

� JY
ΣY×U

HU

6

(b) A morphism H : ΣY → ΣX is called central if for every morphism J : ΣU → ΣV , the equation
JY ;HV = HU ; JX holds, as in the square on the right.

We must be careful with the notation JX , as it is ambiguous which way round the product is in
the exponent.

Proposition 3.5 If H is a homomorphism or central, and invertible in C, then its inverse is also
a homomorphism or central, respectively.

Lemma 3.6 For any map f : X → Y in C, the map Σf : ΣY → ΣX is both a homomorphism and
central.

10



Proof. It is a homomorphism by naturality of η, and central by naturality of J (−), with respect
to f .

Lemma 3.7 Every homomorphism H : ΣY → ΣX is central.

ΣΣ2Y×V Σ(ηY ×V )
- ΣY×V

ΣΣ2Y×U
ΣηY ×U--

�
ηUΣY

�

JΣ2Y -

Σ(ΣH×V )

ΣY×U

JY
-

?

ΣΣ2X×V
?

Σ(ηX×V )
- ΣX×V

HV

?

ΣΣ2X×U

Σ(ΣH×U)

?
Σ(ηX×U)

-

JΣ2X
-

ΣX×U

HU

?
JX

-

Proof. The front and back faces commute since H is a homomorphism. The left, bottom and
top faces commute by naturality of J (−) with respect to ΣH , ηX and ηY . Using the split epi, the
right face commutes, but this expresses centrality.

Remark 3.8 To obtain the converse, we ought first to understand how monads provide a “higher
order” account of infinitary algebraic theories [Lin69]. The infinitary theory corresponding to our
monad has an operation-symbol J of arity U for each morphism J : ΣU → Σ (for example, the
additional lattice structure consists of morphisms ∧ : Σ2 → Σ and

∨
: ΣN → Σ). Then the

centrality square is the familiar rule for a homomorphism H to commute with the symbol J .
More generally, H commutes with J : ΣU → ΣV iff it is a homomorphism parametrically with

respect to a V -indexed family of U -ary operation-symbols. (So, for example, a map J : Σ3 → Σ2

denotes a pair of ternary operations.) The next two results are examples of this idea, and we
apply it to the lattice structure in the topological interpretation in Proposition 5.5.

Lemma 3.9 H : ΣY → ΣX is a homomorphism with respect to all constants σ ∈ Σ,
i.e. σ : Σ ` H(λy. σ) = λx. σ, iff Σ!Y ;H = Σ!X .

ΣΣ � ĩd
Σ0 = 1

ΣX ΣX×Σ � π̃0 ΣX×0

ΣY

H

6

ΣY×Σ

HΣ

6

� π̃0 ΣY×0

H0

wwwwwwwwww
Proof. J = ĩd : 1 → ΣΣ denotes a Σ-indexed family of constants, for which the centrality
square is as shown.

The following proof is based on the idea that each r ∈ TB corresponds to an operation-symbol
of arity B that acts on A as rA : AB → A by f 7→ α(Tfr). The rectangle says that K is a
homomorphism for this operation-symbol, but it does so for all r ∈ TB simultaneously by using
the exponential (−)TB .
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Thielecke [Thi97a, Lemma 5.2.5] proves this result using his CPS λ-calculus, whilst Selinger
[Sel01, Lemma 2.10] gives another categorical proof. They do so with surprisingly little comment,
given that it is the Completeness Theorem corresponding to the easy Soundness Lemma 3.7.

Theorem 3.10 All central maps are homomorphisms.

Proof. Let H : B = ΣY → A = ΣX . Writing T for both the functor ΣΣ(−)
and its effect

on internal hom-sets, consider the rectangle below, in which the left-hand square says that T
preserves composition and the right-hand square that H is an Eilenberg–Moore homomorphism.
To deduce the latter, it suffices to show that the rectangle commutes at id ∈ BB (which T takes
to id ∈ TBTB).

BB
T - TBTB

βTB - BTB

functor ?

AB

HB

?
T - TATB

THTB

?
αTB - ATB

HTB

?

Re-expanding, the map along the bottom is ΣX×B → ΣΣ2X×Σ2B → ΣX×Σ2B by

θ 7→ λFG. G
(
λb. F (θb)

)
7→ λxG. G

(
λb. ηXx(θb)

)
= λxG. G(λb. θbx),

which is ηXΣB , and similarly the top map is ηYΣB . Thus the rectangle says that H : ΣY → ΣX is
central with respect to ηΣB , which was the hypothesis.

Notation 3.11 We write Alg (or sometimes AlgC) for the category of Eilenberg–Moore algebras
and homomorphisms.

Lemma 3.12 For any object X, (ΣΣX, µX) is the free algebra on X. In particular, (Σ,Ση1) is the
initial algebra.

Definition 3.13 The full subcategory of Alg consisting of free algebras is known as the Kleisli
category for the monad.

As ΣΣX is free on X, the name of this object in the traditional presentation of the Kleisli
category is abbreviated to X, and the homomorphism X →K Y (i.e. ΣΣX → ΣΣY ) is named by
the ordinary map f : X → ΣΣY . This presentation is complicated by the fact that the identity on
X is named by ηX and the composite of f : X →K Y and g : Y →K Z by f ; Σ2g ; µZ .

Using the double exponential transpose (Proposition 2.11), this homomorphism is more simply
written as an arbitrary map F : ΣY → ΣX , with the usual identity and composition.

The (opposites of the) categories composed of morphisms F : ΣY → ΣX , in the cases where
F is an arbitrary C-map (as for the Kleisli category), or required to be a homomorphism, will be
developed in Section 6.

4 Sobriety and monadicity

Our new notion of sobriety, expressed in terms of the λ-calculus rather than lattice theory, is a
weaker form of the fundamental idea of the abstract Stone duality programme.
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Definition 4.1 When the category C of types of values is dual to its category Alg of algebras of
observations, we say that (C,Σ) is monadic. More precisely, the comparison functor Cop → Alg
defined by Lemmas 3.3 and 3.6,

Cop X 7→ (ΣX ,ΣηX ) - Alg

C

Σ(−)

6

a Σ(−)

?
============================== C

X 7→ (ΣΣX, µX)

6

a (A,α) 7→ A

?

(which commutes both with the left adjoints and with the right adjoints) is to be an equivalence
of categories, i.e. full, faithful and essentially surjective.

Remark 4.2 It is possible to characterise several weaker conditions than categorical equivalence,
both in terms of properties of the objects of C, and using generalised “mono” requirements on ηX .
In particular, the functor Cop → A is faithful iff all objects are “ T0” (cf. Remark 1.13), and also
reflects invertibility iff they are replete [Hyl91, Tay91]. Another way to say this is that each ηX is
mono or extremal mono, and a third is that Σ is a weak or strong cogenerator.

For example, N with primitive recursion is T0 so long as the calculus is consistent, but replete-
ness and sobriety are equivalent to general recursion (Sections 9–10).

In this paper we are interested in the situation where the functor is full and faithful, i.e. that
all homomorphisms are given uniquely by Lemma 3.6. We shall show that the corresponding
property of the objects is sobriety, and that of ηX is that it be the equaliser of a certain diagram.

Lemma 4.3 Let (A,α) be an algebra, Γ any object and H : A → ΣΓ any map in C. Then H is
a homomorphism iff its double exponential transpose P : Γ → ΣA (Proposition 2.11) has equal
composites

Γ
P - ΣA

Σα -

ηΣA

- Σ3A.

Proof. We have H = ηA ; ΣP and P = ηΓ ; ΣH . [⇒] P ; Σα = ηΓ ; ΣH ; Σα = ηΓ ; Σ2ηΓ ; Σ3H =
ηΓ ;ηΣ2Γ ;Σ3H = ηΓ ;ΣH ;ηΣA = P ;ηΣA. [⇐] α;H = α;ηA ;ΣP = ηΣ2A ;Σ2α;ΣP = ηΣ2A ;ΣηΣA ;ΣP =
ΣP = Σ2ηA ; ΣηΣA ; ΣP = Σ2ηA ; Σ3P ; ΣηΓ = Σ2H ; ΣηΓ.

Corollary 4.4 The (global) elements of the equaliser are the those functions A → Σ that are
homomorphisms.

Definition 4.5 Such a map P is called prime. (We strike through the history of uses of this
word, such as in Definition 1.7 and Corollary 5.8. In particular, although the case X = N will
turn out to be the most important one, we are not just talking about the numbers 2, 3, 5, 7, 11,
...!) As we always have A = ΣX in this paper, we usually write P as a term Γ ` P : ΣΣX .

Lemma 4.6 In Lemma 4.3, ηX is the prime corresponding to the homomorphism id : ΣX → ΣX .
If P : Γ→ ΣA is prime and J : B → A a homomorphism then P ; ΣJ is also prime. In particular,
composition with Σ2f preserves primes.
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Definition 4.7 We say that an object X ∈ obC is sober if the diagram

X-
ηX - ΣΣX

Σ2(ηX)-

ηΣ2X

- Σ4(X)

is an equaliser in C, or, equivalently, that the naturality square

X-
ηX - ΣΣX

ΣΣX

ηX

?

?

- ηΣ2X- Σ4(X)

Σ2(ηX)

?

?

for η with respect to ηX is a pullback.

Remark 4.8 We have only said that the existing objects can be expressed as equalisers, not that
general equalisers can be formed. In fact, this equaliser is of the special form described below,
which Jon Beck exploited to characterise monadic adjunctions [Mac71, Section VI 7], [BW85,
Section 3.3], [Tay99, Section 7.5]. The category will be extended to include such equalisers, so we
recover a space pts(A,α) from any algebra, in [B].

Notice the double role of Σ here, as both a space and an algebra. Peter Johnstone has given
an account of numerous well known dualities [Joh82, Section VI 4] based the idea that Σ is a
schizophrenic object. (This word was first used by Harold Simmons, in a draft of [Sim82], but
removed from the published version.)

Moggi [Mog88] called sobriety the equalizing requirement, but did not make essential use of it
in the development of his computational monads.

Applegate and Tierney [Eck69, p175] and Barr and Wells [BW85, Theorem 3.9.9] attribute
these results for general monads to Jon Beck. See also [KP93] for a deeper study of this situation.

Proposition 4.9 Any power, ΣU , is sober.

ΣU
- ηΣU -
��...............

ΣηU
.................. Σ3U

ηΣ3U -
- Σ2ηΣU

-
��..............

Σ3ηU

..................
Σ5U

Proof. This is a split equaliser: the dotted maps satisfy

ηΣU ; ΣηU = idΣU ΣηU ; ηΣU = ηΣ3U ; Σ3ηU
Σ2ηΣU ; Σ3ηU = idΣ3U ηΣU ; ηΣ3U = ηΣU ; Σ2ηΣU

by Lemma 2.10, the equations on the right being naturality of η with respect to ΣηU and ηΣU .
Hence if P : Γ→ Σ3U has equal composites then P = P ; ΣηU ; ηΣU , and the mediator is P ; ΣηU .

Theorem 4.10 The functor Σ(−) : Cop → Alg given in Definition 4.1 is full and faithful iff all
objects are sober.

Proof. [⇒] We use P : Γ → Σ2X to test the equaliser. By Lemma 4.3, its double transpose
H : ΣX → ΣΓ is a homomorphism, so by hypothesis H = Σf = ηΣX ; ΣP for some unique
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f : Γ→ X, and this mediates to the equaliser.

ΣΓ �ΣηΓ

Σ3Γ Γ-
ηΓ- Σ2Γ

ηΣ2Γ-

Σ2ηΓ

- Σ4Γ

ΣX

H

6

�ΣηX
Σ3X

Σ2H

6

X

f

?

.................
- ηX- Σ2X

ΣH

? ηΣ2X-

Σ2ηX
- Σ4X

Σ3H

?

[⇐] Let H : ΣX → ΣΓ be a homomorphism, so the diagram on the left above commutes, as do
the parallel squares on the right, the lower one by naturality of Ση with respect to H. Since
X is the equaliser, there is a unique mediator f : Γ → X, and we then have H = ηΣX ; ΣP =
ηΣX ; ΣηX ; Σf = Σf .

Remark 4.11 Translating Definition 3.4(a) into the λ-calculus, the property of being a homo-
morphism H : ΣX → ΣU can be expressed in a finitary way as an equation between λ-expressions,

F : Σ3X `
(
λu. F(λφ. Hφu)

)
= H

(
λx. F(λφ. φx)

)
,

the two sides of which differ only in the position of H.
The double exponential transpose P of H is obtained in the λ-calculus simply by switching

the arguments φ and u (cf. Remark 1.11). Hence ` P : U → ΣΣX is prime iff

u : U, F : Σ3X ` F(Pu) = Pu
(
λx. F(λφ. φx)

)
.

Replacing the argument u of P by a context Γ of free variables, Γ ` P : ΣΣX is prime iff

Γ, F : Σ3X ` FP = P
(
λx. F(λφ. φx)

)
or FP = P (ηX ; F). This is the equation in Lemma 4.3, with A = ΣX , applied to F .

Corollary 4.12 The type X is sober iff for every prime Γ ` P : Σ2X there is a unique term
Γ ` focusP : X such that

Γ, φ : ΣX ` φ(focusP ) = Pφ.

Hence the side-condition on the introduction rule for focusP in Remark 2.12 is that P be prime.
Indeed, since φ 7→ φx is itself a homomorphism (for fixed x), this equation is only meaningful
in a denotational reading of the calculus when P is prime. (On the other hand Thielecke’s force
operation has this as a β-rule, with no side condition, but specifies a particular order of evaluation.)

Remark 4.13 So far, we have used none of the special structure on Σ in Remarks 2.4ff. We have
merely used the restricted λ-calculus to discuss what it means for the other objects of the category
to be sober with respect to it. In Sections 6–8 we shall show how to enforce this kind of sobriety
on them.

If P = ηX(x) then the right hand side of the primality equation easily reduces to the left. Oth-
erwise, since F is a variable, the left hand side is head-normal, and so cannot be reduced without
using an axiom such as the Euclidean principle (Remark 2.4), as we shall do in Proposition 10.6.

The introduction of subspaces [B] also extends the applicability of the equation, by allowing it to
be proved under hypotheses, whilst using the continuity axiom (Remark 2.6) it is sufficient to verify
that P or H preserves the lattice connectives. In other words, the mathematical investigations to
follow serve to show that the required denotational results are correctly obtained by programming
with computational effects.
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Remark 4.14 In his work on continuations, Hayo Thielecke uses R for our Σ and interprets it
as the answer type. This is the type of a sub-program that is called like a function, but, since
it passes control by calling another continuation, never returns “normally” — so the type of the
answer is irrelevant. Thielecke stresses that R therefore has no particular properties or structure
of its own.

In the next section, we shall show that the Sierpiński space in topology behaves categorically
in the way that we have discussed, but it does carry additional lattice-theoretic structure.

Even though a function or procedure of type void never returns a “numerical” result — and
may never return at all — it does have the undisguisable behaviour of termination or non-
termination. Indeed, we argued in Remark 1.2 that termination is the ultimate desideratum, and
that therefore the type of observations should also carry the lattice structure. Proposition 10.6,
which I feel does impact rather directly on computation, makes use of both this structure and the
Euclidean principle.

Thielecke’s point of view is supported by the fact that the class of objects that are deemed
sober depends rather weakly on the choice of object Σ: in classical domain theory, any non-trivial
Scott domain would yield the same class.

Remark 4.15 Although it belongs in general topology, sobriety was first used by the Grothendieck
school in algebraic geometry [AGV64, IV 4.2.1] [GD71, 0.2.1.1] [Hak72, II 2.4]. They exploited
sheaf theory, in particular the functoriality of constructions with respect to the lattice of open
subsets, the points being secondary.

An algebraic variety (the set of solutions of a system of polynomial equations) is closed in
the Euclidean topology, but there is a coarser Zariski topology in which they are defined to be
closed. When the polynomials do not factorise, the closed set is not the union of non-trivial closed
subsets, and is said to be irreducible. A space is sober (classically) iff every irreducible closed
set is the closure of a unique point, known in geometry as the generic point of the variety. Such
generic points, which do not exist in the classical Euclidean topology, had long been a feature of
geometrical reasoning, in particular in the work of Veronese (c. 1900), but it was Grothendieck
who made their use rigorous.

5 Topology revisited

In this section we show how the abstract categorical and symbolic structures that we have intro-
duced are equivalent to the traditional notions in general topology that we mentioned in Section 1.
In fact, all that we need to do is to re-interpret lattice-theoretic work that was done in the 1970s.
On this occasion our treatment will be entirely classical, making full use of the axiom of choice
and excluded middle; for a more careful intuitionistic account see [B, C].

If you are not familiar with locally compact topological spaces, you may consider instead your
favourite category of algebraic (or continuous) predomains, which are all sober. The discrete space
N is also needed, besides domains with ⊥. The results of this section are only used as motivation,
so you can in fact omit it altogether.

Alternatively, the construction may be performed with arbitrary dcpos, although it adds extra
points to those that are not sober. Peter Johnstone gave an example of such a non-sober dcpo
[Joh82, Exercise II 1.9], as part of the philosophical argument against point-set topology. We shall
not need this, as the localic view is already deeply embedded in our approach. In fact, when we
construct new spaces in [B], they will be carved out as subspaces of lattices (cf. [Sco72]) not glued
together from points.

Remark 5.1 The classical Sierpiński space Σ has two points: > is open and ⊥ is closed.
So altogether there are three open sets: ∅, {>} and Σ.

This space has the (universal) property that, for any open subset U of any space X, there is a
unique continuous function f : X → Σ such that the inverse image f∗> is U . Indeed, f takes the
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points of U to >, and those of its closed complement to ⊥.

U - {>}

X
?

∩

f - Σ
?

This is the same as the defining property of the subobject classifier Ω in a topos, except that
there U ⊂ X can be any subobject. We shall discuss sobriety for sets, discrete spaces and objects
of a topos in Section 9.

Hence open subsets of X correspond bijectively to maps X → Σ, and so to points of the
exponential ΣX . In other words, the space ΣX is the lattice of open subsets of X, equipped with
some topology.

Remark 5.2 Finite intersections and arbitrary unions of open subsets give rise to internal lattice
structure on Σ, written ∧ : Σ × Σ → Σ and

∨
: ΣU → Σ. Besides the infinite distributive law,

conjunction also satisfies the Euclidean principle (Remark 2.4). Whilst this is vacuous classically,
it and its lattice dual (which says that ⊥ classifies closed subsets) capture remarkably much of
the flavour of locale theory [C, D], before we need to invoke the continuity axiom (Remark 2.6),
though of course that is also valid in topology.

Remark 5.3 To determine the topology on the space ΣX , consider the map ev : ΣX ×X → Σ.
For this to be continuous, Ralph Fox showed that the space X must be locally compact, and ΣX

must have the compact–open topology [Fox45], which is the same as the Scott topology when we
only consider Σ and not more general target spaces. The categorical analysis is due to John Isbell
[Isb75].

Local compactness is a very familiar notion for Hausdorff spaces, but there are messy subtleties
to its definition for non-Hausdorff spaces [HM81]. However, so long as we only consider spaces
that are sober in the standard topological sense, things are not too difficult:

For any point x and open subset x ∈ U ⊂ X, there must be a compact subset K and
another open subset V with x ∈ V ⊂ K ⊂ U . The “open rectangle” around (U, x) ∈
ev−1{>} ⊂ ΣX ×X that we need for continuity of ev is then

{W ∈ ΣX | K ⊂W} × V ⊂ ΣX ×X.

In the jargon, X has a base of compact neighbourhoods, cf. Bourbaki’s usage in Remark 1.8.
All of this is much prettier in terms of the open sets: the topology ΣX is a distributive

continuous lattice, equipped with the Scott topology. Such a lattice is of course a frame, and
the corresponding locale is called locally compact. Assuming the axiom of choice, the category
LKLoc of locally compact locales is equivalent to the category LKSp of locally compact sober
spaces [Joh82, Section VII 4.5].

Remark 5.4 Since ΣX carries the Scott topology, a continuous function ΣY → ΣX is a func-
tion between open set lattices that preserves directed unions. Such a function is called Scott-
continuous. In particular, it preserves the order that is induced by the lattice structure [Sco72].

Besides frame homomorphisms themselves, functions like this between frames do arise in gen-
eral topology. For example, a space K is compact iff Σ!K : Σ→ ΣK has a Scott-continuous right
adjoint,

∧
: ΣK → Σ. Unfortunately, monotone functions between frames that need not preserve

directed joins are also used in general topology, and these present the main difficulty that abstract
Stone duality faces in re-formulating the subject [D].
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Proposition 5.5 Let H : ΣX → ΣU be a Scott-continuous function between the topologies
of locally compact spaces. If H is central (Definition 3.4(b)) then it preserves finite meets and
arbitrary joins.

Σ �
∧

Σ2 Σ �
∨

ΣN

ΣU ΣU �
∧U

(ΣU )2 ΣU �
∨U

(ΣU )N

ΣX

H

6

ΣX

H

6

�∧
X

(ΣX)2

H2

6

ΣX

H

6

�
∨X

(ΣX)N

HN
6

Proof. Lemma 3.9 dealt with the constants (> and ⊥), so consider J = ∧ : Σ2 → Σ and∨
: ΣN → Σ.

Remark 5.6 We also have
∨

: ΣU → Σ for any space U , together with the associated distributive
law. In the case of U = N, we write ∃ for

∨
, and distributivity is known as the Frobenius law,

ψ ∧ ∃n. φ(n) = ∃n. ψ ∧ φ(n).

We have
∧

: ΣK → Σ only when K is compact; in particular, it would be ∀ for K = N, but (N is not
a compact space and) ∀N is not computable (cf. Definition 1.3). Indeed, in a constructive setting,∨

: ΣU → Σ only exists for certain spaces U , which are called overt Section1 C 8. Overtness is
analogous to recursive enumerability, cf. Remark 9.12 and Lemma 10.2.

We are now ready to show how our new λ-calculus formulation in Sections 3–4 captures the
hitherto lattice-theoretic ideas of continuous functions and sober spaces. A proof entirely within
abstract Stone duality (including the continuity axiom) that preserving the lattice operations
suffices will be given in [E–].

Theorem 5.7 Let U and X be locally compact sober spaces and H : ΣX → ΣU a Scott-continuous
function between their topologies. Then the following are equivalent:
(a) H = Σf for some unique continuous function f : U → X;
(b) H preserves finite meets and joins (>, ⊥, ∧ and ∨);
(c) H is a frame homomorphism, i.e. it preserves >, ∧ and

∨
;

(d) H is central (Definition 3.4(b));
(e) H is an Eilenberg–Moore homomorphism (Definition 3.4(a));
(f) H satisfies the equation in Remark 4.11.

Proof. We have just shown that central maps are frame homomorphisms.
Since X is sober in the topological sense, all frame homomorphisms ΣX → ΣU are of the form

Σf for some unique f : U → X (we take this as the topological definition of sobriety). But all Σf

are Eilenberg–Moore homomorphisms.

Corollary 5.8 The following are equivalent for P : 1→ ΣΣX :
(a) P ⊂ ΣX is the set ηX(x) of open neighbourhoods of some unique point x ∈ X;
(b) P is a coprime filter
(c) its complement, ΣX \ P , is a prime ideal;
(d) P is a completely coprime filter;
(e) P is a point of the equaliser in Lemma 4.3;
(f) P satisfies the equation in Remark 4.11.

1My paper Geometric and Higher Order Logic is cited as if it were “Chapter” C of a book.
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Similarly, for a continuous function P : U → ΣΣX , the same equivalent conditions hold for P (u)
for each point u ∈ U .

Remark 5.9 Our primes are therefore what Johnstone calls the “points” of the locale ΣX , so
sobriety for LKSp in our sense agrees with his [Joh82, Section II 1.6]. As a topological space, the
equaliser is the set U of primes, equipped with the sparsest locally compact topology such that
U → Σ2X is continuous, and the hom-frame C(X,Σ) provides this topology.

Remark 5.10 We have a theorem in the straightforward sense for LKSp that says that, given
a Scott-continuous map H : ΣX → ΣU between the open-set lattices of given locally compact
spaces, H is a homomorphism of frames if and only if it is a homomorphism in the sense of our
monad.

By contrast, the notions of sobriety expressed in terms of lattice theory and the λ-calculus agree
only in intuition. We are only able to bring these two mathematical systems together in a setting
where topological sobriety has already been assumed. If you are skeptical of the mathematical
status of the argument, consider the analogous question in the relationship between locales and
Bourbakian spaces: at what point in the axiomatisation of locales do we make the assumption
that renders them all sober? Even then, these two categories only agree on their products on
the same subcategory as ours, namely locally compact spaces. In summary, the concordance of
several approaches (along with [E–], and models of synthetic domain theory [Tay91]) makes us
confident that the notion of locally compact space is a good one, but not so sure how it ought to
be generalised.

Remark 5.11 The types of the restricted λ-calculus, even with the additional lattice and recursive
structure, form a very impoverished category of spaces. Identifying them with their interpretations
in LKSp, they amount merely to (some of) the algebraic lattices that Dana Scott used in the
earliest versions of his denotational semantics [Sco76], and include no spaces at all (apart from 1
and N) that would be recognisable to a geometric topologist.

The monadic property populates the category of spaces with subspaces of the types of the
restricted λ-calculus. We show how to do this in terms of both abstract category theory and as
an extension of the λ-calculus similar to the axiom of comprehension in [B], which also proves the
next result intuitionistically for locales.

Although we only intended to consider sobriety and not monadicity in this paper, we actually
already have enough tools to characterise the algebras for the monad classically in lattice-theoretic
terms. Two more proofs appear in [B].

Theorem 5.12 LKSp is monadic.

Proof. As all of the spaces are sober, the functor in Definition 4.1 is full and faithful. It
remains to show that every Eilenberg–Moore algebra (A,α) is of the form (ΣX ,ΣηX ) for some
locally compact space X. But, as A is a retract of a power of Σ, it must be a continuous lattice
equipped with the Scott topology, and must in fact also be distributive, so A ∼= ΣX for some
locally compact sober space X.

However, we still need to show that the Eilenberg–Moore structure α : Σ2A → A is uniquely
determined by the order on A, and is therefore ΣηX as in Lemma 3.3.

For this, we must determine αF for each element F ∈ Σ2A; such F defines a Scott-open subset
of the lattice ΣA. It can be expressed as a union of Scott-open filters in this lattice, i.e. these
filters form a base for the Scott topology [Joh82, Lemma VII 2.5] [GHK+80, Section I.3]. Since α
must preserve unions, it suffices to define αF when F is a Scott-open filter.

Now each Scott-open filter F itself corresponds to compact saturated subspace K ⊂ A [HM81,
Theorem 2.16], cf. Remark 1.10. For a lattice A with its Scott topology, a “saturated” subspace
is simply an upper set. Since α must be monotone and satisfy ηA ; α = idA, we have α(F ) ≤ a
for all a ∈ K. For the same reason, if b ∈ A satisfies ∀a. a ∈ K ⇒ b ≤ a then b ≤ α(K). Hence
α(F ) =

∧
K ∈ A. Thus the effect of α on all elements of Σ2A has been fixed, as a join of meets.
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Setting aside the discussion of more general spaces, what we learn from this is that, when all
objects are sober, there are “second class” maps between objects. We shall see in the next section
that this phenomenon arises for abstract reasons, and that the potential confusion over (Scott-)
“continuous maps between frames” is not an accident.

6 Enforcing sobriety

Now we turn from the analysis to the synthesis of categories that have all objects sober. So our
primary interest shifts from locales to the restricted λ-calculus in Remark 2.1.

Since we handle continuous functions f : X → Y in terms of the corresponding inverse image
maps Σf , it is natural to work in a category in which there are both “first class” maps f : X → Y
(given concretely by homomorphisms Σf : ΣY → ΣX) and “second class” maps F̂ : X −−× Y that
are specified by any F : ΣY → ΣX .

These second class maps — ordinary functions rather than homomorphisms between algebras
— are just what is needed to talk about U -split (co)equalisers as in Beck’s theorem (cf. Proposi-
tion 4.9 and [B]). Even in more traditional subjects such as group and ring theory, we do indeed
sometimes need to talk about functions between algebras that are not necessarily homomorphisms.

The practical reason for according these maps a public definition is that the product functor is
defined for them (Proposition 6.5), and this will be crucial for constructing the product of formal
Σ-split subspaces in [B]. After I had hesitated on this point myself, it was seeing the work of Hayo
Thielecke [Thi97b] and Carsten Führmann [Füh99] on continuations that persuaded me that this
is the best technical setting, and this section essentially describes their construction.

As to the first class maps, the whole point of sobriety is that they consist not only of f : X → Y
in C, but other maps suitably defined in terms of the topology.

Definition 6.1 The categories HC and SC both have the same objects as C, but
(a) the (second class) morphisms F̂ : X −−× Y in HC are (any) C-morphisms

F : ΣY → ΣX , cf. Remark 3.13, and
(b) the (first class) morphisms Ĥ : X - Y in SC are C-morphisms H : ΣY → ΣX that are

homomorphisms (Definition 3.4):

ΣX �
ΣηX

Σ3X X
ηX - Σ2X

ΣY

H

6

� ΣηY
Σ3Y

Σ2H

6

Y

Ĥ

? ηY - Σ2Y

ΣH

?

Thielecke and Führmann call these thunkable morphisms, since they write thunkX for ηX
considered as an HC-map. It follows immediately (given Theorem 3.10) that ηX : X → ΣΣX

is natural in SC but not HC.
Identity and composition are inherited in the obvious way from C, though contravariantly, which
is why we need the F̂ notation (which [Sel01, Section 2.9] also uses).

Remark 6.2 By Lemma 3.6, for f : X → Y in C, the map H = Σf : ΣY → ΣX is a homomor-
phism, so Ĥ : X → Y is in SC. We shall just write this as f : X → Y instead of Σ̂f : X → Y , but
beware that, in general, different C-maps can become equal SC-maps with the same names.

By Remark 4.2, this functor C → SC is faithful iff every object of C is T0, and it also reflects
invertibility if every object is replete. Theorem 4.10 said that it is also full iff every object of C is
sober; as SC and C have the same objects, they are then isomorphic categories.

There are, of course, many more morphisms in HC than in C, but one (family) in particular
generates the rest. We shall see that the new second class morphism force : Σ2X −−× X objectifies
the operation P 7→ focusP that is only defined when P : Σ2X is prime. Thielecke and Führmann
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apply their β-rule for force without restriction, producing computational effects, whilst our side-
condition on focus gives it its denotational or topological meaning.

Definition 6.3 forceX = η̂ΣX : ΣΣX −−× X is a natural transformation in the category HC, and
satisfies ηX ; forceX = idX or force(thunkx) = x.

Proof. This is Lemma 2.10 again. force(−) in HC is ηΣ(−) in C, which is natural (in C) with
respect to all maps F : ΣY → ΣX , so force(−) is natural (in HC) with respect to F̂ : X −−× Y .
The other equation is ηΣX ; ΣηX = idX .

Corollary 6.4 The C-map ηX : X → Σ2X is mono in both HC and SC.

Proof. It is split mono in HC, and remains mono in SC because there are fewer pairs of incoming
maps to test the definition of mono.

Proposition 6.5 For each object X, the product X ×− in C extends to an endofunctor on HC.
This construction is natural with respect to C-maps f : X → Y (so H = Σf ).

ΣX×U �
JX

ΣX×V X × U
X × Ĵ

× X × V

ΣY×U

Σf×U
6

� JY
ΣY×V

Σf×V
6

Y × U

f × U

? Y × Ĵ
× Y × V

f × V

?

Proof. For Ĵ : V −−× U in HC, i.e. J : ΣU → ΣV in C, we write X × Ĵ : X × V −−× X × U
for the C-map JX : ΣX×U → ΣX×V . This construction preserves identities and composition
because it is just the endofunctor (−)X defined on a subcategory of C. It extends the product
functor because, in the case of a first class map g : V → U (so J = Σg : ΣU → ΣV ), we have
X × Ĵ = X × Σ̂g = ̂ΣX×g = X × g, which is a first class map X × V → X × U .

The construction is natural with respect to f : X → Y because J (−) is.

Example 6.6 The existential quantifier ∃Γ
N

in the context Γ is obtained in this way, and its
Beck–Chevalley condition with respect to the substitution or cut f : Γ → ∆ (Proposition C 8.1)
is commutativity of the square (cf. Proposition 5.5):

ΣΓ � ∃Γ
N ΣΓ×N Γ

Γ× ∃̂N × Γ× N

Σ∆

Σf
6

� ∃∆
N Σ∆×N

Σf×N
6

∆

f

? ∆× ∃̂N × ∆× N

f × N

?

Example 6.7 × is not defined as a functor of two variables on HC, because the squares

ΣX×U �
JX

ΣX×V X × U
X × Ĵ

× X × V

ΣY×U

FU

6

� JY
ΣY×V

FV

6

Y × U

F̂ × U

× Y × Ĵ
× Y × V

F̂ × V

×
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do not necessarily commute ( [FS90]). For example, take F̂ = Ĵ : Σ −−× 0 where F = J : Σ0 =
1→ ΣΣ is the element ĩd ∈ ΣΣ; then these two composites give the elements π̃0, π̃1 ∈ ΣΣ×Σ.

Remark 6.8 × is a premonoidal structure on HC in the sense of Power and Robinson [PR97,
Pow02], and a map F makes the square commute for all J iff F is central (Definition 3.4(b)).
Thielecke, Führmann and Selinger begin their development from HC as a premonoidal category,
whereas we have constructed it as an intermediate stage on the journey from C to SC.

Definition 6.9 F̂ : X −−× Y is discardable or copyable respectively if it respects the naturality
of the terminal (or product) projection (!) and the diagonal (∆).

These terms are due to Hayo Thielecke [Thi97a, Definition 4.2.4], who demonstrated their
computational meaning (op. cit., Chapter 6). In particular, non-terminating programs are not
discardable, but he gave examples of programs involving control operators that are discardable
but not copyable, so both of these properties are needed for a program to be free of control effects
such as jumps (Remark 1.5). In fact, these conditions are enough to characterise first class maps
in the topological interpretation [F], but not for general computational effects [Füh02].

Lemma 6.10 ∆ is natural in SC, i.e. all first class maps are copyable.

X ×X
Ĥ ×X - Y ×X

Y × Ĥ - Y × Y

?

X

∆X

6

Ĥ - Y

∆Y

6

Proof. As in Lemma 3.7, we show that the above diagram commutes by making it into a cube
together with

Σ2X × Σ2X
ΣH × Σ2X- Σ2Y × Σ2X

Σ2Y × ΣH- Σ2Y × Σ2Y

Σ2X

∆Σ2X

6

ΣH - Σ2Y

∆Σ2Y

6

which commutes by naturality of ∆ in C, as do the side faces of the cube, the other edges being
ηX , ηX × ηY , etc. The top and bottom faces commute because H is a homomorphism and by
naturality of H(−) and (Σ2H)(−) with respect to ηX and ηY . The original diagram therefore
commutes because ηY × ηY is mono by Corollary 6.4.

Proposition 6.11 SC has finite products and C → SC preserves them.

Proof. The terminal object 1 is preserved since Σ is the initial algebra (Lemma 3.12). The
product projections and diagonals are inherited from C, so ∆;p0 = id = ∆;p1 and ∆;(p0×p1) = id.

Then, for SC-maps a = Ĥ : Γ → X and b = K̂ : Γ → Y , we obtain 〈a, b〉 as ∆ ; a × b, but we
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need centrality (Lemma 3.7) to make a× b well defined.

Γ
a - X

?

Γ
∆ -

-

Γ× Γ

p0

6

a× b- X × Y

p0

6

?

Γ

p1

? b -
-

Y

p1

?

The issue is that the squares commute. In C, the upper one is

ΣΓ ============
idΓ

ΣΓ � H
ΣX

?

ΣΓ×Γ

(Σ!Γ)Γ ≡ Σp0

?
� KΓ

ΣΓ×Y

(Σ!Y )Γ

?
� HY

ΣX×Y

(Σ!Y )X

?

using one of the two definitions for Ĥ× K̂ = a× b. The left-hand square commutes by Lemma 3.7
because K : ΣY → ΣΓ is discardable (as it is a homomorphism), and the right-hand square by
naturality of H(−) : ΣX×(−) → ΣΓ×(−) with respect to ! : Y → 1.

For uniqueness, suppose that f ; p0 = a and f ; p1 = b. Then

f = f ; ∆X×Y ; (p0 × p1)
= ∆Γ ; (f × f) ; (p0 × p1) naturality of ∆
= ∆Γ ;

(
(f ; p0)× (f ; p1)

)
= ∆Γ ; (a× b) × is a functor on SC
= 〈a, b〉

7 The structure of SC

We still have to show that SC has powers of Σ, and that all of its objects are sober. In fact SC
freely adjoins sobriety to C.

Lemma 7.1 Still writing Σ(−) for the exponential in C, SC(X,ΣY ) ∼= C(X,ΣY ), where the homo-
morphism H : Σ2Y → ΣX corresponds to the map f : X → ΣY by

H = Σf and f = ηX ; ΣH ; ΣηY .

Proof. Ĥ ∈ SC(X,ΣY ) is by definition a homomorphism H : Σ2Y → ΣX , whose double
exponential transpose P : X → Σ3Y has equal composites with Σ3Y ⇒ Σ5Y by Lemma 4.3, and
so factors as f : X → ΣY through the equaliser by Proposition 4.9. More explicitly,

ηX ; ΣΣf ; ΣηY = f ; ηΣY ; ΣηY = f

by Lemma 2.10, and

Σf = ΣΣηY ; ΣΣH ; ΣηX = ΣΣηY ; ΣηΣY ;H = H
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since H is a homomorphism.

Proposition 6.11 (and the way in which objects of SC are named) allow us to use the product
notation ambiguously in both categories. Relying on that, we can now also justify writing ΣX for
powers in either C or SC.

Corollary 7.2 SC has powers of Σ and C → SC preserves them.

Proof. SC(Γ ×SC X,Σ) = SC(Γ ×C X,Σ) by Proposition 6.11. Then by the Lemma this is
C(Γ×X,Σ) ∼= C(Γ,ΣX) ∼= SC(Γ,ΣX).

Lemma 7.3 AlgSC
∼= AlgC .

Proof. AlgSC is defined from SC in the same way as AlgC ≡ Alg is defined from C (Defini-
tion 3.2). Consider the defining square for a homomorphism over SC:

A �
α

Σ2A

B

H

6

� β
Σ2B

Σ2H

6

The vertices are retracts of powers of Σ, and Lemma 7.1 extends to such objects. Hence the
SC-maps α, β and H might as well just be C-maps, by Lemma 7.1, and the equations hold in SC
iff they hold in C.

Proposition 7.4 All objects of SC are sober, SSC ∼= SC and HSC ∼= HC.

Proof. The categories all share the same objects, and by Lemma 7.1,

HSC(X,Y ) = SC(ΣY ,ΣX) ∼= C(ΣY ,ΣX) = HC(X,Y ).

Lemma 7.3 provides the analogous result for SC, namely

SSC(X,Y ) = AlgSC(Σ
Y ,ΣX) ∼= Alg(ΣY ,ΣX) = SC(X,Y ).

Then all objects of SC are sober by Theorem 4.10.

By Corollary 4.12, SC therefore has focusP for every prime P . The construction in the previous
section shows that this is given by composition with the second class map force.

Lemma 7.5
(a) Each Ĥ : X −−× Y in HC is P ; forceY for some unique P : X → ΣΣY in C.
(b) Ĥ : X → Y is in SC iff P is prime.
(c) In this case, focusP = P ; forceY .

(d) On the other hand, x : X ` P = ηX(x) : ΣΣX is always prime, and focus(ηXx) = x.
Σ2Y

X

P
-

Y

ηY

6

6

forceY

×Ĥ ≡ focusP

..................................-
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Proof. The correspondence between H and P is double exponential transposition (Proposi-
tion 2.11), and H is a homomorphism (i.e. Ĥ is in SC) iff P is prime, by Lemma 4.3. In particular,
H = idΣX corresponds to P = ηX . When H is a homomorphism we have

P = ηX ; ΣH = ηX ; Σ2Ĥ = Ĥ ; ηY ,

or thunk(a), where x : X ` a : Y is the term corresponding to Ĥ, so

focusP = focus(thunk a) = a.

Theorem 7.6 SC is, up to isomorphism, the universal way of forcing all objects of C to be sober.

SC ...................- D

C

6
F

-

Proof. Let D be a category with products and an exponentiating object ΣD, and let F : C → D
be a functor that preserves this structure. Suppose that all objects of D are sober. Given any
homomorphism H : ΣY → ΣX in C, consider its image under the functor in D. This is a
homomorphism FH : ΣFYD → ΣFXD since F commutes with Σ(−) and preserves the Eilenberg–
Moore equation. Therefore FH is of the form ΣgD for some unique g : FX → FY , since all objects
of D are sober. Then g is the effect of F on the given SC-morphism Ĥ : X → Y .

This construction preserves identities and compositions by the usual uniqueness arguments,
and similarly if H = Σf with f : X → Y in C then g = Ff . Hence we have a commutative triangle
of functors. As the objects X and Y of SC are just objects of C and F (X × Y ) ∼= FX ×FY on C,
products in SC are also preserved, as are powers of Σ.

Remark 7.7 Peter Selinger, for whom (his version of) the computational category HC is of primary
interest, calls C and SC value categories, and takes an egalitarian view of them [Sel01, Section 3.5].
However, we have just shown that SC has a universal property, so it is the sober completion of
C, and such (established) language does make a value-judgement : we regard SC as better than C,
since it includes denotational values that we have argued ought to be present.

Be careful, however, to distinguish this sober completion of the category C from the sobrification
X of the space (object) X [Joh82, Corollary II 1.7(ii)]. If C has equalisers, X is obtained by forming
the equaliser that we used to define sobriety (cf. Remark 4.8). In [B] we shall obtain the space
pts(A,α) of points of an arbitrary algebra by forming an equaliser of this kind. These “concrete”
constructions on objects are carried out within a single sufficiently expressive category, whereas
SC is a new category that is obtained “abstractly” by re-naming features of the old category C.

Remark 7.8 What of the extra structure in Remarks 2.4ff? The lattice operations >, ⊥, ∧ and
∨, being morphisms 1 → Σ or Σ × Σ → Σ in C, are carried by the functor C → SC into the
new category. The equations for a distributive lattice still hold, because any functor preserves
equations, and this one also preserves products. The Euclidean principle remains valid in the new
category too, as ΣΣ is also preserved. This leaves N, from which preservation of the existential
quantifier and continuity axiom follow easily.

The only issue is in fact the way in which new values are created in SC by the combination of
focus and primitive recursion. We leave the reader to add parameters: Ŝ : Γ× N×X → X.
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Proposition 7.9 C → SC preserves the natural numbers object, i.e. N admits primitive recursion
in SC.

Γ× N �
+1

Γ× N

Γ

0 -

X

r

?

.................
� Ŝz -

X

r

?

.................

Proof. The recursion data consist of z : Γ → X and a homomorphism S : ΣX → ΣX . So
Z ≡ z ; ηX is prime and has equal composites in the lower triangle below, whilst the parallel
squares each commute, by naturality of η.

Γ× N �
+1

Γ× N

Γ
Z -

0
-

ΣΣX

R

?

...............
� ΣS

ΣΣX

R

?

...............

Σ4X

ηΣ2X

?

Σ2ηX

?
� Σ3S

-

Σ4X

ηΣ2X

?

Σ2ηX

?

As N has the universal property in C, there are mediators R : Γ × N → Σ2X and Γ × N → Σ4X
making the whole diagram commute. But, by uniqueness of the second, the composites Γ× N⇒
Σ4X are equal, so R is prime by Lemma 4.3, and focusR : N → X is the required mediator in
SC.

Finally, we note a result that would hold automatically if SC were a cartesian closed category.

Lemma 7.10 The functor SC → Cop preserves such colimits as exist.

Proof. The diagram for a colimit in SC is a diagram for a limit in C whose vertices are powers
of Σ and whose edges are homomorphisms. If the diagram has a colimit C in SC then it is a
cone of homomorphisms in C with vertex ΣC whose limiting property is tested by other cones
of homomorphisms from powers of Σ. We have to extend this property to cones from arbitrary
objects Γ of C.

Σ2Γ
Σ2φ- Σ3Y

Σ2H- Σ3Z

Γ

ηΓ

6

φ - ΣY

ΣηY

?
H - ΣZ

ΣηZ

?

Let φ : Γ → ΣY be a typical edge of the cone and H : ΣY → ΣZ an edge of the diagram. Then
Σ2φ ; ΣηY : Σ2Γ→ ΣY is a homomorphism, and is an edge of a cone with vertex Σ2Γ because the
diagram above commutes.

Hence there is a mediator Γ → Σ2Γ → ΣC to the limit. It is unique because any other such
mediator Γ → ΣC can be lifted to a homomorphism Σ2Γ → ΣC in the same way, and this must
agree with the mediator that we have.

Proposition 7.11 The functor X × (−) preserves (distributes over) such colimits as exist in SC.

26



Proof. The functor X × (−) on SC is (−)X on C, which is defined at powers of Σ and homo-
morphisms between them. If C is the colimit of a diagram with typical edge Ĥ : Z → Y in SC
then the Lemma says that ΣC is the limit of the diagram with typical edge H : ΣY → ΣZ in C.
Now (−)X , in so far as it is defined, preserves limits, since it has a left adjoint X× (−) in C. (You
may like to draw the diagrams to show this explicitly.) Hence ΣC×X is the limit of the diagram
with typical edge HX : ΣX×Y → ΣX×Z in C. Since fewer (co)cones have to be tested, C ×X is
the colimit of the diagram with typical edge X × Ĥ : X × Y → X × Z in SC.

8 A lambda calculus for sobriety

In this section we show that SC interprets the restricted λ-calculus, together with the new operation
focus. For reference, we first repeat the equation in Remark 4.11.

Definition 8.1 Γ ` P : ΣΣX is prime if Γ, F : Σ3X ` FP = P
(
λx. F(λφ. φx)

)
.

Definition 8.2 The sober λ-calculus is the restricted λ-calculus (Definition 2.1) together with
the additional rules

Γ ` P : ΣΣX P is prime

Γ ` focusP : X
focus I

Γ ` P : ΣΣX P is prime

Γ, φ : ΣX ` φ(focusP ) = Pφ : Σ
focusβ

Γ ` a, b : X Γ, φ : ΣX ` φa = φb

Γ ` a = b
T0

The definition thunk a = ηX(a) = λφ. φa serves as the elimination rule for focus. Using this,
equivalent ways of writing the focusβ and η (T0) rules are

thunk (focusP ) = P and focus (thunkx) = x,

where P is prime.

Remark 8.3 The restriction of focus to primes is the crucial difference from Thielecke’s force
calculus, and is the reason why we gave it a new name. In the focusβ-rule, how can we tell how
much of the surrounding expression is the predicate φ that is to become the sub-term of P? For
example, for F : ΣΣ,

does F
(
φ(focusP )

)
reduce to F (Pφ) or to P (φ ; F )?

So long as P is prime, it doesn’t matter, because these terms are equal. In Remark 11.4 we
consider briefly what happens if this side-condition is violated.

Proof. The double transpose H : ΣX → ΣΓ of P is a homomorphism with respect to the double
transpose J : Σ→ ΣΓ of F .

The interaction of focus with substitution, i.e. cut elimination, brings no surprises.

Lemma 8.4 If Γ ` P : Σ2X is prime then so is ∆ ` (u∗P ) : Σ2X for any substitution u : ∆→ Γ
[Tay99, Section 4.3], and then

∆ ` u∗(focusP ) = focus(u∗P ) : X.

Proof. In the context [∆, F : Σ3X], since x, φ and F don’t depend on Γ,

F(u∗P ) ≡ u∗(FP ) = u∗
(
P (λx. F(λφ. φx))

)
≡ (u∗P )

(
λx. F(λφ. φx)

)
,
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so u∗P is prime. Then, in the context [∆, φ : ΣX ],

φ
(
u∗(focusP )

)
≡ u∗

(
φ(focusP )

)
= u∗(Pφ) ≡ (u∗P )φ = φ

(
focus(u∗P )

)
using the focusβ-rule, whence the substitution equation follows by T0.

Theorem 8.5 SC is a model of the sober λ-calculus.

Proof. Since SC has products and powers of Σ (Proposition 6.11 and Corollary 7.2), it is a
model of the restricted λ-calculus. Lemma 7.5 provides the interpretation of focusP and (the
second form of) its β- and η-rules.

Remark 8.6 Let C and D be the categories corresponding to the restricted and sober λ-calculi
respectively, as in Remark 2.7. Since the calculi have the same types, and so contexts, D has the
same objects as C and SC.

We have shown how to interpret focus in SC, and that the equations are valid there. Hence we
have the interpretation functor [[−]] : D → SC in the same way as in Proposition 2.8, where [[−]]
acts as the identity on objects (contexts).

Since D interprets focus by definition, all of the objects of D are sober by Corollary 4.12. The
universal property of SC (Theorem 7.6) then provides the inverse of the functor [[−]], making it an
isomorphism of categories.

Alternatively, we can show directly that D has the same morphisms as SC, by proving a nor-
malisation result for the sober λ-calculus. Besides being more familiar, this approach demonstrates
that we have stated all of the necessary equations in the new calculus. We have already shown
that the new calculus is a sound notation for morphisms of the category SC, and it remains to
show that this notation is complete.

We can easily extract any sub-term focusP from a term of power type:

Lemma 8.7 φ[focusP ] = P (λx. φ[x]).

Proof. [focusP/x]∗φ[x] = (λx. φ[x])(focusP ), where [ ]∗ denotes substitution.
The term φ in focusβ may itself be of the form focusP :

Lemma 8.8 Let Γ ` P : Σ3X (sic) and Γ ` Q : Σ2X be primes. Then

(focusP )(focusQ) = PQ and focusP = λx. P (λφ. φx).

This equation for focusP is the one in Proposition 4.9 and Lemma 7.1.

Proof. (focusP )(focusQ) = Q(focusP ) = PQ using focusβ twice.
In particular, put Q = ηX(x) = λφ. φx, so x = focusQ. Then

(focusP )x = (focusP )(focusQ) = PQ = P (λφ. φx),

from which the result follows by the λη-rule.

For the extra structure, we need a symbolic analogue of Proposition 7.9, now including the
parameters Γ and m : N. Note that S here is the double transpose of the same letter there.

Lemma 8.9 Let Γ ` Z : Σ2X and Γ, m : N, u : X ` S(m,u) : Σ2X be prime. Put

Γ, n : N ` rn = rec
(
n, focusZ, λmu. focusS(m,u)

)
: Σ2X

Γ, n : N ` Rn = rec
(
n,Z, λmFφ. F (λu. S(m,u)φ)

)
: X.

Then Rn is prime and Γ, n : N ` rn = focusRn.
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Proof. We prove
Γ, n : N ` Rn = λφ. φ(rn)

by induction on n. For n = 0, since Z is prime,

λφ. φ(r0) = λφ. φ(focusZ) = λφ. Zφ = Z = R0.

Suppose that Rn = λφ. φ(rn) for some particular n. Then

Rn+1 = λφ. Rn
(
λu. S(n, u)φ

)
recursion step

= λφ.
(
λφ′. φ′(rn)

)(
λu. S(n, u)φ

)
induction hypothesis

= λφ. S(n, rn)φ λβ

= λφ. φ
(

focusS(n, rn)
)

focusβ, S prime
= λφ. φ(rn+1) recursion step.

Since Rn is equal to some λφ. φ(a), it is prime, and the required equation follows by focus η.

Proposition 8.10 Every term Γ ` a : X in the sober λ-calculus is provably equal (in that
calculus) to
(a) some term that is already definable in the restricted calculus, if X is ΣU , so a is logical in the

sense of Notation 2.3; or
(b) focusP , for some prime Γ ` P : Σ2X in the restricted λ-calculus, otherwise, i.e. when X = N,

so a is numerical.
Cf. Lemmas 7.1 and 7.5(a) respectively.

Proof. By structural recursion on the term a.
(a) The result is trivial for variables and constants (>, ⊥, 0), where P = ηX(a).
(b) If a = λu. φ, φ ∧ ψ, φ ∨ ψ or ∃n. φ[n] then the recursion hypothesis says that φ and ψ, being

logical, are provably equal to terms in the restricted calculus, whence so is a.
(c) If a = focusP , the recursion hypothesis says that P : Σ2X is provably equal to a term in the

restricted calculus (not a focus, as it is logical). Moreover, if a : ΣU then Lemma 8.8 rewrites
it without using focus.

(d) If a = φu then (by the recursion hypothesis, and as it is logical) φ is (provably equal to a term
that is) defined in the restricted calculus. If u : ΣV then u is too. Otherwise, u = focusP ,
and then a = φ(focusP ) = Pφ by focusβ.

(e) rec(focusN, z, s) = focus
(
λφ. N(λn. φ[rec(n, z, s)])

)
by Lemma 8.7, so the first argument of

rec need not involve focus.
(f) If a = rec(n, z, s) : X then z, s : X, so they are provably equal to terms in the restricted

calculus if X = ΣU , whilst Lemma 8.9 rewrites a if X = N.
(g) succ(focusP ) = focus(Σ2succP ), where (Σ2succ)P is prime by the symbolic version of Lemma 4.6.
(h) In anticipation of Remark 9.1,(

(focusP ) =N (focusQ)
)

may be rewritten as P (λx. Q(λy. x = y)),

using Lemma 8.7 twice, and similarly for 6=.

Warning 8.11 Once again, this dramatic simplification of the calculus (that focus is only needed
at base types such as N) relies heavily on the restriction on the introduction of focusP for primes
only, i.e. on working in SC. Hayo Thielecke shows that force is needed at all types in the larger
category HC whose morphisms involve control operators [Thi97a, Section 6.5].
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Theorem 8.12 If C is the category generated by the restricted λ-calculus in Definition 2.1 then
SC is the category generated by the sober λ-calculus. If C has the extra structure in Remarks 2.4ff
then so does SC.

So the extension of the type theory is equivalent to the extension of the category.

restricted
λ-calculus

add focus & β, η - sober
λ-calculus

Proposition 8.10 - normal
forms

C

Cn(−)

?
- SC ============================= D

Cn(−)

?
Cn(−)

-

Proof. We rely on the construction of the category Cn of contexts and substitutions developed
in [Tay99], and have to show that the trapezium commutes.

The categories C, SC and D in Remark 8.6 have the same objects. The morphisms of C and
D are generated by weakenings and cuts, where weakenings are just product projections. A cut
[a/x] : Γ → Γ×X splits the associated product projection, and corresponds to a term Γ ` a : X
in the appropriate calculus, modulo its equations.

By Proposition 8.10, the term a of the sober calculus is uniquely of the form focusP , where
P is a prime defined in the restricted calculus (so the triangle commutes). Hence [a/x] in D
corresponds to the SC-morphism 〈id, Ĥ〉, where H is the double exponential transpose of P .

9 Theory of descriptions

We have seen that focus is redundant for types of the form ΣX , since they are all sober, so N is the
only type of the restricted λ-calculus that still needs to be considered. In fact, if it is defined to
admit primitive recursion alone, as in Remark 2.5, it has points “missing”. These may be added
in various equivalent ways, using
(a) the focus operator for sobriety,
(b) definition by description in the sense of Russell,
(c) the search or minimalisation operator µ in general recursion, or
(d) the “orthogonality” mediator for repleteness.

Remark 9.1 The relevant property of N in the first part of the discussion is not recursion, but
the fact that there are morphisms

∃N : ΣN → Σ and (=N) : N× N→ Σ

with the expected logical properties. Objects that carry these structures are called overt and
discrete respectively (Sections C 6–8).

The whole of this paper (apart from Section 5) also applies to the category of sets and functions,
or to any topos. There ΣX is the powerset, more usually written ΩX , and ηX(x) is the ultrafilter
of subsets to which x ∈ X belongs. All sets are overt and discrete, so the argument that follows
(up to Corollary 10.5) applies to them as well as to the natural numbers. See [LS86, Section II 5]
for a discussion of definition by description in a topos, the crux of which is that {} : X → ΣX is
a regular mono, cf. our Definition 4.7 for sobriety.

Lemma 9.2 [a/x]∗φ = ∃n. φ[n] ∧ (n = a), cf. Lemma 8.7.
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Definition 9.3 A predicate Γ, n : N ` φ[n] is called a description if it is uniquely satisfied, i.e.

Γ ` (∃n. φ[n]) = > and Γ, n,m : N ` (φ[n] ∧ φ[m]) = (φ[n] ∧ n = m).

We shall refer to these two conditions as existence and uniqueness respectively. Using inequality,
uniqueness may be expressed as

Γ ` (∃m,n. φ[m] ∧ φ[n] ∧ n 6= m) = ⊥.

Definition 9.4 Any description entitles us to introduce its numerical witness,

Γ, n : N ` φ[n] : Σ description

Γ ` then. φ[n] : N,

the elimination rule being the singleton

n : N ` {n} ≡ (λm. m = n) : ΣN,

which is easily shown to be a description. Then the β- and η-rules are

Γ, n : N ` (n = them. φ[m]) = φ[n] and n : N ` (them. m = n) = n.

The restricted λ-calculus, together with the lattice structure and primitive recursion in Re-
marks 2.4–2.5 and these rules, is called the description calculus.

Lemma 9.5 Let Γ, n : N ` ψ[n] : Σ be another predicate. Then, assuming these rules,
(a) ψ

(
then. φ[n]

)
= ∃m. ψ[m] ∧ φ[m];

(b) if ψ is also a description then
(
then. φ[n] = them. ψ[m]

)
= ∃m. φ[m] ∧ ψ[m].

Proof. By Lemma 9.2, ψ
(
then. φ[n]

)
= ∃m. ψ[m]∧

(
m = then. φ[n]

)
, which is ∃m. ψ[m]∧φ[m]

by the β-rule for descriptions.

Lemma 9.6 Γ ` rec
(
n, z, λmu. s(m,u)

)
= then. ρ[n] where

Γ, n : N ` ρ[n] ≡ rec
(
n, (λr. z = r), λmφr. ∃u. r = s(m,u) ∧ φ[u]

)
.

Proof. In the recursion step, ρ[r] is the description of the result at n + 1 and φ[u] is the
description of the sub-result u = rec(n, z, λmu. s).

Hence we have the analogue of Proposition 8.10 for descriptions.

Proposition 9.7 Any term Γ ` a : X in the description calculus is provably equal
(a) to some term not involving “the”, if it is logical, or
(b) to then. φ[n] for some description Γ ` φ : ΣN, if it is numerical.

Proof. By structural recursion on the term a, in which Lemmas 9.2, 9.5 and 9.6 handle the
non-trivial cases.

Remark 9.8 As in Remark 8.3 for focus, we must be careful about the scope of the description,
— how much of the surrounding expression is taken as the formula ψ? For F : ΣΣ, does

F
(
ψ(then. φ[n])

)
reduce to F

(
∃n. φ[n] ∧ ψ[n]

)
or to ∃n. φ[n] ∧ F (ψ[n])?

Once again, it does not matter, as they are equal, so long as φ is a description. Otherwise, they
are different if F (⊥) = >, for example if F = λσ.> or (in set theory) F = ¬.

Remark 9.9 The theory of descriptions was considered by Bertrand Russell [RW13, Introduction,
Chapter III(1)] [vH67, pp 216–223] [GG00, Section 7.8.4]. The theme of his development is that
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then. φ[n] is incomplete: it acquires a meaning only when embedded in a predicate ψ, as in
Lemma 9.5. (This came out of his dispute with Hugh McColl and Alexius Meinong regarding
grammatically correct noun-phrases that don’t denote [GG00, Section 7.3].) Russell defined

ψ
[
then. φ[n]

]
as ∃n. ψ[n] ∧ φ[n] ∧ (∀m. φ[m]⇒ n = m),

incorporating the condition of unique satisfaction as a conjunct in this predicate. He used an
inverted iota for the description operator.

So long as φ is a description, Russell’s definition is equivalent to our β-rule, but ∀ is not a
symbol of our calculus — for the reasons that we set out in Section 1.

Gottlob Frege had treated the description operator as an everywhere-defined function-symbol,
written \ [Fre93, §11] [GG00, Section 4.5.6]. He therefore had to make a case-distinction, in which
\φ returns the member of a singleton class, but the class itself if it is not a singleton. A 1960s
logic textbook that I prefer not to advertise assigns 0 = then. φ[n] whenever φ fails either of the
conditions for being a description, with the result that

the unicorn is the author of Principia Mathematica
is true since 0 = 0 (and this book had two authors).

As we have observed, if we are allowed to write then. φ[n] without φ satisfying the condition,
then all sorts of mathematical transformations that we would normally expect to be able to
make become invalid. Frege’s case-distinction is not computable — we have first to determine
the cardinality of the class, which may involve answering an arbitrarily difficult mathematical
question. It also illustrates the untyped nature of his calculus (which was a part of its downfall):
if we introduce a = thex. φ[x], we at least expect φ[a] to be meaningful (though maybe false if
φ is unwitnessed), which it is not if a is a set. Even Russell’s good intentions of enforcing the
description property are frustrated by his object-language implementation, as it may result in some
larger formula becoming true contrary to common sense.

Giuseppe Peano [Pea97] [GG00, Section 5.4.3] had also recognised the incomplete nature of
description-phrases in mathematics. On the other hand, he required the predicate to be a de-
scription as a premise to the definition of the operator, for which he wrote ι, using ιa for our
{a}. So, the condition of unique satisfaction is part of the meaning in a meta-logical way: if the
author has written then. φ[n] anywhere, there is an implicit claim that φ has been proved to be
a description, and this fact may be re-used anywhere in the argument. This is the point of view
that we have taken: it is a side-condition on the well-formedness of the expression. At the very
least, it documents the fact, and to rely on some exceptional behaviour is hacking.

Whilst Russell’s extension of Peano’s iota to non-descriptions is questionable, from our deno-
tational point of view, he did take the technical analysis a step further by considering the scope
of the expression, as in Remark 9.8.

The obvious way to find then. φ[n] is to search for the least n that satisfies φ[n]. In order to
be sure that it is the least, we must check ¬φ[m] for each m < n along the way.

Definition 9.10 Γ ` α : Σ is said to be complemented or decidable if there is some (unique)
Γ ` β : Σ such that α ∧ β = ⊥ and α ∨ β = ⊥. We write ¬α for β.

Lemma 9.11
(a) Any description φ on N is decidable, with ¬φ[n] ≡ ∃m. φ[m] ∧ (n 6= m).
(b) Let Γ, n : N ` ψ[n] : Σ be a decidable predicate such that Γ ` ∃n. ψ[n] = >. Then

Γ, n : N ` φ[n] ≡ ψ[n] ∧ ∀m < n. ¬ψ[n]

is a description, and Γ ` µn. ψ[n] ≡ then. φ[n] is the least n for which ψ[n] = >.
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Remark 9.12 The search operator µ is usually defined without the existence and decidability
conditions (ψ being replaced by a partial function ψ : N ⇀ 2), and then itself defines a partial
function, i.e. a program that need not terminate.

The universal property of N, as formulated in category theory by Bill Lawvere, is known in logic
as primitive recursion. Adding the search operation gives general recursion. This is known to be
properly more powerful, as functions can be defined using it that grow much faster than is possible
using primitive recursion alone. Since, as we show in the next section, definition by description
in N is equivalent to sobriety, the way that we described in Section 1 of defining computational
values via observations really does define bigger numbers than we could obtain directly. (At any
rate, it defines bigger functions, but since functional notation such as 10n and its generalisations
are essential for writing big numbers, it is widely argued that general recursion does indeed define
bigger numbers.)

Although general recursive functions are partial, we would prefer to treat them as total func-
tions N→ N⊥ into the lift. This object may be seen as a closed subspace of ΣN, but its construction
in abstract Stone duality makes rather serious use of the lattice structure on Σ [D, F].

Remark 9.13 When we add subspaces to our calculus in [B], we find that a predicate that is a
description on the subspace of interest may no longer satisfy the existence and uniqueness criteria
on the ambient space. Conversely, any predicate becomes a description when restricted to the
(possibly empty) locally closed subspace defined by the > and ⊥ equations in Definition 9.3.
Nevertheless, it turns out that then. φ[n] may be manipulated on the subspace by using the β-rule
as we have given it, but on the ambient space, even though this it is not a well formed expression
there. Although the reduction may result in expressions with different meanings on the ambient
space, they agree as intended on the subspace.

10 Sobriety and description

In this section we prove that focus and description are inter-definable, for the natural numbers.
In the following notation, we need to show that φ is a description iff P is prime.

Lemma 10.1 This is a retraction,

ΣN
- φ 7→ λψ. ∃n. φ[n] ∧ ψ[n] -
��
λn. P (λm. m = n)←7 P : Σ{}

ΣΣN

N

n 7→ {n} ≡ λm. m = n - ΣN

Compare the connection between {} and η in [BW85, Lemma 5.1.3] and Lemma C 6.12.

First, we characterise the image of ΣN- - ΣΣN .

Lemma 10.2 Γ ` P : Σ2
N is of the form λψ. ∃n. φ[n] ∧ ψ[n] for some Γ ` φ : ΣN iff it preserves

∃N. In this case, φ = λn. P (λm. n = m).

Proof. Suppose that P preserves ∃. Then

Pψ = P (λm. ∃n. n = m ∧ ψ[n])
= ∃n. P (λm. n = m ∧ ψ[n])
= ∃n. P (λm. n = m) ∧ ψ[n]

by the Euclidean principle (Remark 2.4). The other way is easy.

For the rest of this section, P and φ will be related in this way.
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Lemma 10.3 P preserves > iff φ satisfies the existence condition, and P preserves ∧ iff φ satisfies
the uniqueness condition.

Proof. For the first, observe that P> = ∃n. φ[n]. For the second, if φ[n1] ∧ ψ1[n1] and φ[n2] ∧
ψ2[n2] then n1 = n2 = n by uniqueness.

Proposition 10.4 If P is prime then φ is a description, and then. φ[n] satisfies the rules for
focusP (Definition 8.2).

Proof. As P is prime, it preserves >, ∧ and ∃ because its double exponential transpose is
a homomorphism, in particular with respect to >, ∧ and ∃, as in Proposition 5.5. Also, P =
λψ. ∃n. φ[n] ∧ ψ[n] by the Lemma, so Pψ = ψ

[
then. φ[n]

]
, which means that the β-rules agree.

For the η-rules,

φ = {n} ≡ (λm. m = n) iff P = thunkn ≡ λψ. ψ[n],

which are respectively a description and prime, and then (them. φ[m]) = (focusP ) = n.

Corollary 10.5 Any overt discrete object that admits definition by description is sober. In
particular, all sets and all objects of any topos are sober.

The converse is the case X = N of Theorem 5.7, that if H : ΣN → ΣU is a frame homomorphism
(i.e. it preserves >, ∧ and ∃) then it is an Eilenberg–Moore homomorphism. Of course, we showed
that for LKLoc, by re-interpreting results from the literature, not for our abstract calculus. The
proof below depends on (primitive) recursion, so only applies to N rather than to discrete overt
spaces in general, although when the whole theory is in place the result will hold for them too.

But before considering N we have to deal with 2 = {0, 1}. As we did not ask for this as a
base type in Section 2, ψ : Σ2 may be replaced by 〈ψ0, ψ1〉 ∈ Σ × Σ, and similarly for the type
of P . (Alternatively, one could formulate a result with ψ : ΣN to capture the same point.) See [B,
Section 11] for further discussion of disjoint unions in abstract Stone duality.

Proposition 10.6 Let α : Σ be decidable, with β = ¬α (Definition 9.11). Then

P ≡ λψ. (α ∧ ψ[0]) ∨ (β ∧ ψ[1])

is prime. This justifies definition by cases: (if α then 0 else 1) ≡ focusP .

Proof. Let Pαβ be the obvious generalisation, so

γ ∧ Pαβ = P(γ∧α)(γ∧β)

by distributivity. The equation that we have to prove for Definition 8.1 may be written

(α ∨ β) ∧ FPαβ = (α ∧ FP>⊥) ∨ (β ∧ FP⊥>).

By the Euclidean principle (Remark 2.4) and the lattice laws, we have

α ∧ FPαβ = α ∧ F(α ∧ Pαβ)
= α ∧ F(α ∧ Pα(α∧β))
= α ∧ F(α ∧ Pα⊥)
= α ∧ F(α ∧ P>⊥)
= α ∧ FP>⊥
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Lemma 10.7 For any description φ, we define, by primitive recursion,

φ≥[0] ≡ > φ>[n] ≡ φ≥[n+ 1] ≡ φ≥[n] ∧ ¬φ[n]

φ<[0] ≡ ⊥ φ≤[n] ≡ φ<[n+ 1] ≡ φ<[n] ∨ φ[n].

Then φ<[n] has the properties of the ordinary arithmetic order, that is, (them. φ[m]) < n, and
similarly for the others.

Proposition 10.8 If φ is a description then P is prime, and focusP satisfies the rules for
then. φ[n].

Proof. The idea of the proof is to define a permutation f : N ∼= N that cycles the witness to 0
and any smaller values up by 1, leaving bigger numbers alone. The function f itself is defined by
(cases and) primitive recursion, but it only has an inverse with general recursion. Let

f(n) =

 0 if φ[n]
n if φ<[n]
n+ 1 if φ>[n]

δ(n,m) =

 m = 0 ∧ φ[n]
∨ m = n ∧ φ<[n]
∨ m = n+ 1 ∧ φ>[n],

so δ(n,m) ⇐⇒ f(n) = m. The operations Σf and I, defined by

Σfθ = λn. ∃m. δ(m,n) ∧ θ[m]
Iψ = λm. ∃n. δ(m,n) ∧ ψ[n],

are mutually inverse, because, by expanding disjunctions,

∃m. δ(m,n) = φ[n] ∨ φ<[n] ∨ φ≥[n+ 1]
∃n. δ(m,n) =

(
m = 0 ∧ ∃n. φ[n]

)
∨ (∃n. m = n+ 1)

δ(m,n1) ∧ δ(m,n2) = (n1 = n2) ∨
(
φ<[m] ∧ φ>[m]

)
δ(m1, n) ∧ δ(m2, n) = (m1 = m2) ∨

(
φ[n] ∧ φ<[n]

)
∨
(
φ[n] ∧ φ>[n+ 1]

)
.

Thus Σf is a homomorphism, as is its inverse I by Proposition 3.5. But so too is evaluation at 0,
so

ψ 7→ θ[0] ≡ ∃n. δ(0, n) ≡ ∃n. φ[n] ∧ ψ[n]

is a homomorphism, and P is prime. The β- and η-rules agree as before.

Remark 10.9 Sobriety says that the functor Σ(−) : Cop → A in Definition 4.1 is full and faithful.
But in this proof we only used the fact that it reflects invertibility, so it suffices to assume that
N is replete. Then f−1 is the diagonal mediator that is provided by the orthogonality property
[Hyl91, Tay91].

N

f - N

N

id

? ηN-
�...

.....
.....

.....
.....

.....
....

ΣΣN

n 7→ λψ. Iψn

?
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Corollary 10.10 H : ΣN → ΣU is an Eilenberg–Moore homomorphism iff it preserves >, ∧ and
∃.

This result can be extended from N to higher types on the assumption of the continuity axiom
(Remark 2.6). Hence there is a version of Theorem 5.7 that links the notions of homomorphism
and sobriety that we have introduced entirely abstractly using the λ-calculus with those that arise
from the N-indexed lattice structure in Remarks 2.4ff. Although the proof would only require one
more section, it begins to make serious use of domain-theoretic ideas, and so properly belongs in
a discussion of that subject [E–, F]. Besides, surprisingly much progress can be made with the
development of topology without the extra axiom.

11 Directions

We saw in the previous two sections that the new focus operator is equivalent to definition by
description. This is more familiar, both in the sense of tradition, but also in that the requirements
on its data are more idiomatic: a predicate with a unique numerical solution, rather than a term
of type Σ2X satisfying a strange equation. Indeed, this calculus seems to be a useful denotational
basis for both mathematical and computational investigations: it plays a similar role to that of the
class of total recursive functions, whilst being better both as a type theory and for computation.

As it stands, it does not meet the needs of mathematicians, who expect to be able to form
subtypes by means of the axiom of comprehension and other constructions such as disjoint sums.
Such subtypes, specified by a comprehension-like operation, but equipped with the subspace topol-
ogy, will be added to the category in [B]. However, this is ignored by computation, i.e. by the
reduction rules for the terms.

Topological ideas such as compact Hausdorff spaces are studied in [C, E–], and the partial map
classifier or lift X⊥ in [D, F].

Remark 11.1 For high-level computation, on the other hand, the calculus is already a serviceable
functional programming language. It has as
• types, 1, N and Σ`, where ` is (the product of) a list of types;
• numerical terms, zero, successor, recursion, description and variables; and
• logical terms, > and ⊥; variables; equality and inequality of numerical terms; ∧, ∨, ∃ and λ

with logical sub-terms; application and recursion.
Following Peter Landin [Lan64], it is useful to “sugar” λ-application (λx. φ)a or plain substitution
[a/x]∗t, with syntax such as

let x = a in t or t where x = a.

The Y -combinator that we derived from the continuity axiom in Remark 2.6 provides recursively
defined procedures. So

letrec φ(x1, · · · , xn) = F in t,

in which φ may be used in F as well as in t, is encoded as

let φ = ∃n. rec(n,⊥, λmφx1 · · ·xn. F ) in t.

The body F may contain the “recursive call” φ and its recursive arguments x1, · · · , xn; these are
the variables bound by the λ within rec. The numerical variables n and m count the depth of the
recursion, but their values are forgotten by ∃n.

The development of mathematical and topological structures contributes Floyd–Hoare reason-
ing and special types such as X⊥ to the programming applications. However, by using mathe-
matical intuitions to construct R and other objects, it will also provide methods of programming
(i.e. algorithms) for problems where no order of evaluation is naturally apparent.
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Remark 11.2 How could we then compile such a program?
As we have understood the calculi in this paper denotationally, let us first clarify what we

mean by compilation and execution. In, for example, elementary algebra, we use the rules (such
as distributivity) in whatever fashion seems best, to simplify the given complicated expression into
a denotationally equivalent one that lies within a subclass of preferred forms. In doing this, we
choose some amongst all valid reduction paths.

The objective may be “full” execution, in which we are satisfied with nothing less than an
explicit number (assuming that the expression is of type N), and thereby risk non-termination.
Alternatively it may be to re-express the program in some simpler language, removing high-level
features, but without actually doing the iterations. This translation is called compilation, and is
required always to terminate. Sometimes compilation may use η-rules and reverse β-rules that
would not be used in an execution strategy.

Remark 11.3 Without loss of generality, the term to be compiled is of type Σ, since terms of
higher type may be applied to free variables, and a numerical term Γ ` t : N may be handled as
Γ,m : N ` m = t : Σ. For example, a numerical function f : N → N is treated in the form of its
graph, n,m : N ` m = f(n) : Σ.

Lemmas 9.2, 9.5 and 9.6 eliminate embedded descriptions and recursion of numerical type in
favour of additional existentially quantified variables, so the numerical sub-terms that remain are
ordinary expressions.

Suppose at first that the term doesn’t involve disjunction or recursion: any such sub-term is
replaced by a logical variable and will be handled separately.

Since we have a fragment of the simply typed λ-calculus with some constants, the term strongly
normalises. This eliminates λ-abstraction and application, which is a desirable property of our
compiler, as both Abstract Stone Duality and the Continuation-Passing Style introduce numerous
“administrative” λ-expressions of the form λφ. φ[a].

Any existential quantifiers may be moved to the front by renaming the bound variables (this
uses the Frobenius law to get past ∧). What remains is either >, ⊥, or a conjunction of sub-terms,
each of which is either
• a (free) logical variable, possibly applied to arguments, or
• an equation or inequation of two numerical sub-terms.

The entire term may be existentially quantified over some numerical variables, effectively “hiding”
them.

This is a pure Prolog clause (apart from the free logical variables).
The numerical equations may be normalised by unification. The occurs check must be made,

since logically
(
∃n. n = f(n)

)
≡ ⊥ if f is any non-trivial numerical expression in which the

variable n is free. The result of unification serves as a pattern that the free numerical variables
must satisfy; the pattern is incorporated into the head of the clause, and many of the hidden
variables are eliminated in this process. The body consists of the other logical conjuncts.

We restore disjunction to the language by introducing a Prolog predicate-symbol for each ∨
sub-term, with a clause for each branch. In order to be denotationally equivalent to the original
term, these disjuncts must in general be executed in parallel. This is because they may fail either
finitely (because of a clash in unification) or infinitely by non-termination, whereas ∨ is meant to
be commutative. In practice, the branches are usually guarded by patterns, all but one of which
fail straight away.

The term rec(n,Z, λmu. S) is treated like the disjunction

(n = 0 ∧ Z) ∨
(
∃m. n = m+ 1 ∧ S(m,u)

)
but with an actual link to rec(m,Z, λmu. S) in place of u. The circular translation from pro-
gramming language to our calculus and back therefore simply introduces a hidden variable n that
counts the depth of the recursion. (There is a disjunct ⊥ that is redundant.)

For the most part, logical variables in the main program are bound to Prolog procedures,
any free ones being (illegally) undefined procedure names. However, recursion at type ΣΣN or
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higher types does involve passing logical arguments to recursive procedures. In simple cases, this
may be done by Gödel-numbering them, and in fact it is not difficult to write a self-interpreter for
and in pure Prolog.

Remark 11.4 Turning from low- to high-level programming, what can we make of Thielecke’s
force operator? In our treatment, we insisted that focus be accompanied by its side condition
(that it only be applied to primes), so maybe we are unable to interpret control operators. But
the difference is merely that we have investigated SC, which includes general recursive function,
and argued that it should be used in place of C, which only has primitive recursion. The category
HC with control operators is still there, and HC ∼= HSC. Its terms are interpreted contravariantly
in C, by means of a λ-translation which, when written on paper, may seem complicated [Fis93,
Section 4], but is dissolved away by our λ-normalising compiler.

John Reynolds has given a nice historical survey of mathematical and computational calculi
that use continuations [Rey93]; for a formal introduction to control operators, you should see
the work cited there. Here, we shall just say something about the consequences of dropping the
primality side-condition, by way of an introduction addressed to mathematical readers. Note that
the programming language for HC that we’re about to describe is to be translated into the sober
calculus, and is not an extension of it.

In return for allowing force to be used without restriction, we have to constrain the reduction
rules in general, i.e. to impose an order of evaluation. We choose call by value, in which the
argument a is reduced before the β-redex (λx. φ)a, and unapplied abstractions λx. φ are not
reduced at all.

This means, in particular, that the argument of φ(forceP ) gets evaluated before φ, turning the
expression into Pφ. However, we must specify how much of the enclosing expression φ is to be
consumed by this reduction. We do this by introducing another keyword, label, as a delimiter (it
has no computational effect in itself). Since force may occur repeatedly, we must name the label
that delimits each force. Assuming that neither F nor φ can be reduced on its own,

F
(

labelk φ(forcek P )
)

reduces to F (Pφ).

What has happened here, in programming terms? The part of the continuation (φ) that is brack-
eted by label and force has been given to P as an argument. Because of the call-by-value rules,
φ does not get executed until P puts it into an active position in front of an argument. P may
also duplicate or lose φ. When it has finished, P does not return in the normal way to its calling
context (φ), but to F , i.e. to the position of the matching label. In other words, forcek jumps to
labelk. Unless, that is, φ gets executed and itself performs a different jump.

Remark 11.5 Our compiler translated disjunction into alternative Prolog clauses, which ought
in general to be executed in parallel. If, however, one branch fails finitely, it can back-track to the
point of choice, and proceed with another option.

Continuations provide the natural way in which to do this. Instead of having a single calling
context φ to which it always returns normally, a sub-program that has a notion of finite failure can
be supplied with two continuations, φ+ and φ−, which it may invoke respectively in the event of
success and failure [Hay87, Thi01]. This translation is not the one that we obtain from disjunction
(cf. Proposition 10.6), but does fall naturally out of the interpretation of coproducts (disjoint
unions) in [B, Section 11].

Remark 11.6 There are several reasons why pure Prolog should arise as the intermediate or
object language of our compiler, that is, that we use logic rather than functional programming.
Primarily, it is that we chose ΣX rather than X⊥ our basic type constructor. Then terms Γ→ ΣX

are relations, whereas those Γ→ X⊥ are partial functions.
However, it is a curious feature of Prolog that single clauses are static: the control and

data-flow only acquire a direction when the clauses are put together into a whole program. This
may perhaps be connected with the fact that it is a natural target of the continuation-passing
style, i.e. that we are translating high-level programs that are themselves ambivalent about their
direction.
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