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Introduction

Let me begin by confessing that this is a very eccentric document. It aims to do two things.
First, of course, it sets out some original constructions, primarily of a “type of types” in certain
categories whose objects have come to be known (rather unimaginatively) as domains, but also
of various other things in such categories. Second, however, which is a departure from custom
as far as Ph.D. or fellowship dissertations are concerned, it attempts to give an introduction
to a substantial but largely undocumented body of knowledge among (certain) Mathematicians,
namely Categorical Logic, which has very recently been found to be of considerable importance
in Theoretical Computer Science.

Category Theory, I like to say, is a tourist subject . It started in Group Theory, but was
only taken seriously when Frank Adams needed it to discuss constructions in Topology; after
that it visited Linear Algebra, Universal Algebra, Automata Theory and Algebraic Geometry.
At the last of these it met Logic and turned into Topos Theory. The journey to that stage was
undertaken (almost) entirely in the company of mathematicians, who could perhaps be expected
to understand the significance of the souvenirs, and in particular the geometrical language. Now
that it has arrived in Computer Science, however, I feel that some basic discussion of what it’s all
about is called for. This is what I have been trying to do.

I have a strong conviction that when one has begun to understand something which is un-
derstood by few other people then it is one’s duty to formulate on paper that understanding (in
whatever terms one has found useful) for the benefit of others trying to do likewise. Moreover I
have an habitual urge to do so. This is my defence for the length and verbosity of this work.

This policy also requires me to apologise to the originators of the results, and other practitioners
of the subject far more expert than myself, for tiring them with the necessity of reading my
misrepresentations. This I freely do.

I have also included a lot of standard Domain Theory, starting with the Lambda Calculus.
This is not a thesis about the Lambda Calculus! This is because I disagreed with some
of the existing terminology and because I wished to push the results as far as I could. Also, in
Chapter V I wanted to be able to assume that a category of domains was of the form Retr(Λ);
this explains my preference for continuous rather than algebraic domains.

Since much of the bulk of the work is therefore “standard” material, a notation is called for
to indicate what is original . This is done by means of a “+” before the number of the section.
The other sections I claim for the most part to be an original account of their subject, though
occasionally I have marked sections “−” by way of confession of having forgotten the proof of the
result in question. In some cases originality means improvement (or in a few cases rediscovery) of
an existing result; here credit has been given in apparent contradiction to the mark on the section.

Certain results in this work have been designated as Facts. (Specifically in §§1.1.13, 1.2.11,
2.2.11, 2.5.8.) This indicates an original result which I have not had time to write up.

The most substantial of these is a technique for dealing with large filtered diagrams in a small
category (where we just say “cardinality” in a poset), the proof of which would have taken ten
pages. [Postscript: This result is a factorisation system which is similar to that of any functor
into a final functor followed by a discrete fibration [Street & Walters, 1973?]. The difference is
that the first part of my factorisation is also regular epi whilst the second is characterised by a
condition I called cosignposted ; the latter places a bound on the size of the intermediate category
in terms of that of the codomain, whilst the former retains the property of final functors that
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they yield equivalent filtered colimits. The final-fibration factorisation for functors which preserve
connected limits is the same as that giving Diers’ spectrum and Berry’s trace.]

I also have another result whose proof is of a similar length but which is not mentioned in the
text. This is that an interpretation by means of partial maps can be given to s simple imperative
language (including a while construct) in a category with certain finitary exactness conditions.
Specifically, we use equalisers of a form in which one of the maps is a mono to interpret the while;
the important stage is the proof (in an elementary topos, though the category itself does not need
higher order logic) that a certain graph has the diamond property and hence that the map from
the equaliser to the coequaliser of a pair of maps one of which is mono is mono. There is no
mention of anything of an infinitary nature in this proof: it uses the adjoint functor theorem in
the way in which §4.4 tries to indicate that it can be used to replace infinitary arguments.

The history of Computer Science from Babbage onwards is one of generalisation and abstrac-
tion. Foremost among the ideas are those of subroutines and high-level (i.e. machine-independent)
languages, enabling the essence (algorithm) of some process to be expressed without reference to
either its application or implementation. As programs become ever more complicated, it becomes
necessary to provide formal rather than ad hoc techniques for understanding them and prov-
ing them correct. This is the rôle of Mathematics, specifically Category Theory, in theoretical
Computer Science.

The major languages which were available for programming until the end of the 1960s were
imperative, which is to say they set out precisely how — and in particular in what order — the
operations were to be performed. The exception to this was LISP. This was nominally based on the
λ-calculus, a mathematical tool for the study of recursion with its origins in symbolic logic. LISP
and modern theoretical languages are called functional because they express only the behaviour
of the program as a function from inputs to outputs, abstracting away details of sequencing just
as earlier high level languages had hidden space allocation. This change shifts the emphasis as
regards the meaning of the program from the operational to the mathematical viewpoint. It also
places functions on the same footing as data items. Also, whereas the imperative style provided
recursion (inductive definition) by means of program loops or jumps, the functional style expresses
the function as a solution of an equation. This is always of a specific form, a fixed point , so for
instance the factorial function is the fixed point of

f 7→
(
n 7→

{
1 if n = 0
n× f(n− 1)otherwise

)
which is a function N→ N. Since we have placed no restriction on the nature of this function (and
cannot, because of the Halting Problem), the domains on which it is defined cannot be ordinary
sets.

Another feature of some of the modern languages is polymorphism, which is the abstraction
of the function away from the types of its arguments; for instance the same code may be used
to calculate determinants of matrices with either real or complex entries. Stronger forms of
polymorphism may also be contemplated, as far as asking for a type of all types.

It is clear that concepts such as these cannot be expressed straightforwardly in terms of discrete
sets. We can express them in the same way as is customary in existing imperative programming
practice, namely operationally. However to do this rigorously we more or less have to invent or
describe a particular machine, and this immediately loses the abstraction which we have tried to
gain.

In the absence of recursion there are mathematical interpretations of functional languages and
even polymorphism naturally provided by category theory. The former is clearly described by a
cartesian closed category , which has an exponential or function space operation. The determinant
example above, which is uniform over the ring definition, is reminiscent of the naturality of the
double dual in Linear Algebra which led Eilenberg and Mac Lane to category theory. In fact this
example can be used to motivate the idea of a classifying topos. Once we include recursion this
approach breaks down; the λ-calculus, for instance, had no naturally occurring model before Scott
replaced function by continuous function and built the so-called D∞ and Pω models. This led
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to the notion of a domain, which is a particular kind of space in which recursion by means of
fixed points is possible. Pω, also provides an ad hoc model for recursion. Following this there was
considerable work in the theoretical computer science community on extending the Scott-Strachey
programme to nondeterministic and parallel languages.

The major aim of the present work is the discussion of polymorphism. This idea arises in a
spectrum from the “uniform constructions” such as the determinant which may be expressed in
terms of categorical techniques motivated essentially by the category of sets, to the most extreme
form in which we admit the type of all types as a first class type itself. Of course this approach
has frequently led to contradiction in the past.

We begin by establishing the major standard results in the theory of domains. The first chapter
looks at the λ-calculus, the category of retracts, the Pω model and various notions of fixed point.

Chapter II moves to categories of domains and solutions of recursive domain equations. Having
provided a definition of a category of domains, it shows that any such arises as a category of
retracts.

In chapter III the various forms of polymorphism are discussed. We find that indexed category
theory is the appropriate tool for discussing them all. A notion of “quantification” over types
(where we consider the identity not to be a function which exists separately once for each type,
but has a type “∀X.X → X”) is found to correspond to completeness of the category in the sense
of having all “small” products.

Chapter IV reformulates indexed as fibred categories, presenting a body of standard theory not
currently well represented in the literature. This was motivated by the category of sets, but the
present treatment makes certain generalisations, in particular by removing the requirement for
all pullbacks (since categories of domains do not possess them) to give the notion of a relatively
cartesian closed category .

In chapter V original material finally forms the major part, where the foregoing theory is
applied to categories of domains. Whereas the only model with a type of types currently to be
found in the literature is that based on Pω, we find that any category of domains in fact possesses
one. Moreover the crudity of the manner of construction shows that models of this nature abound.

Many previous formulations of universal sets and types of types have fallen to contradiction.
We present a new paradox along these lines, which essentially shows that the three notions of
equality , function spaces and type of types (at least as they are understood in category theory)
cannot coexist. The model constructed in chapter V fails to express equality, and indeed most of
the traditional notions in logic (comprehension, conjunction, disjunction and negation) are also
necessarily absent from it.

As the main conceptual contribution of this work, I offer the notion of a continuous type-
dependence. Of course we have to pluck something out of the air as a definition for this, but I
believe that certain pieces of evidence strongly justify my choice.

First, it is naturally suggested by examination of the obvious idea with the category of retracts
(§5.1.13).

Second (§5.2.2), it proves to be the only thing which works (contrary to the claim of my Surrey
paper [1986]).

Third, it also works in arbitrary categories of boundedly complete domains (§5.2.9). Though
we have a better grasp on these than on arbitrary posets, there is likely to be quite a rich structure
in the hierarchy and our ability to deal with fibrations of them seems a remarkable coincidence.
Conversely this partly justifies my rather perverse maintainance of such a wide range of categories
of domains; on the other hand there is this apparent correspondence with fragments of logic and
perhaps there is some “semantic complexity” notion to be found.

I should like to make a few personal comments on the subject.
It will be apparent that I consider myself a Mathematician rather than a Logician (I shall

avoid the question as to whether I am a Computer Scientist), in the sense that it is tangible
mathematical objects (models) which interest me and not the manipulation of syntax. In fact
syntactic discussion of polymorphic languages is decidedly thin in this work. As regards the
“denotational semantics” of programming languages, I lost (or rather, suspended) my faith in the
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applicability of these techniques some two years ago; my interest in the subject is in the remarkable
mathematical behaviour of categories of domains.

I have perhaps been less than courteous to some of its other practitioners. I apologise for
this. However it would appear that Scott’s original Pω and D∞ constructions [1972] and his Data
Types as Lattices paper [1976], together with the work of Smyth and Plotkin on recursive domain
equations [1978] account for most of what has been done as far as semantics, i.e. the provision of
mathematical objects in which to explain things, is concerned. I am of the belief that Chapter V
of the present work is the first model of a type-of-types since 1976. Moreover I further claim that
it is the first (ever) to attempt to explain its own existence (I cannot help but regard V in Pω as
an accident). This in no way detracts from the value of the [1976] paper, indeed it is a veritable
goldmine containing many nuggets of which I personally have very little understanding and which
are sure to lead to many further major contributions to the subject.

I should also like to offer a piece of friendly advice to anyone who might attempt in the future
to study Domain Theory. It is this.

Does your conjecture make any nontrivial statement about finite posets?
If so, then it’s false: look for the counterexample.

On the other hand the remarkable fact about categories of domains is that we seem never to have
to worry about questions of size; indeed this (the fact that the function-space of a continuous
lattice is essentially no bigger than the given lattice) is what led Scott into the subject in the first
place. In other words, the existence of a type-of-types is no particular surprise.

Finally I should like to acknowledge those who have assisted and advised me during the past
three years. Foremost among these is Martin Hyland , whose badgering led to my thinking and
subsequently writing about Polymorphism in the first place. Many ideas of his have found their way
into this text, and though the style of chapter III is not what one usually expects in Mathematics
(and in no way is he to be blamed for it), this is where most of them have come to rest. Chapter
IV is the result of the influence of my supervisor, Peter Johnstone; indeed it is an account of his
Michaelmas 1982 Part III course). Then there are (with a little licence) the members of the joint
DPMMS and Computer Laboratory seminar, Mike Abbott , Jon Fairbairn, Thomas Forster , Carl
Gunter , Alan Mycroft , Larry Paulson, Edmund Robinson, Giuseppe Rosolini , Glynn Winskel and
others. Outside Cambridge, I have had most enlightening discussions with Samson Abramsky ,
Mike Fourman, Eugenio Moggi , Andrew Pitts, Mike Smyth, Steve Vickers and Gavin Wraith. All
these people I should like to thank for their patience with my troublesome manner and eccentric
approach. Finally Chris Thompson of the Computing Service has provided more help with “TEX”
than I have had time to use.

Postscript, February 1987: The dissertation as presented here has been revised somewhat
since its original submission. The main change is that most of the last chapter has been rewritten,
and in particular the proofs have been reworked. This is the fruit of my attempting to explain the
work to my new colleagues at Imperial College (in particular Samson Abramsky, Yves Lafont , Luke
Ong , Axel Poigné, Mike Smyth and Steve Vickers). During this time I have also had the pleasure
of meeting Gordon Plotkin for the first time, and there are a few comments in §2.5 resulting
from this. This document has behaved rather like a large piece of software, always in need of
maintainance and departing rapidly further away from perfection. I should like to apologise to
all those to whom I promissed copies six months ago for succumbing to the temptation to keep
revising it, and to those who read it now for the many residual errors. Finally I should like to
record my appreciation to my examiners, Gavin Wraith and Glynn Winskel for their patience in
reading (and approving) my thesis.

March 1991: Despite its many errors and idiosyncracies, there still remains demand for
copies of this dissertation. I would like to apologise to those who asked for copies of it as long
as three years ago. The reason why it has been “out of print” is that it was originally written
using a bug-ridden wysiwyg word processor and translated into “plain TEX”; the latter relied
upon a collection of ad hoc additional macros, which after a while ceased to work. It has now
been translated into LATEX, and as a result has got its index back, though the bibliography is
rather inaccurate and out of date. All of the diagrams (some of which were literally “scissors and
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paste” inclusions) have been redrawn. To any reader who is thinking of writing a book using some
wysiwyg word-processor and translating it, I have a simple word of advice: don’t.

During this intervening time, of course much has happened in domain theory and polymor-
phism. A whole new kind of domain theory, characterised by wide pullbacks in addition to the
filtered colimits which characterise the kind discussed herein, has seen its rise, fall and renaissance.
My own interest now lies in the synthetic kind of which the Effective Topos is the most famous
model.

The axiomatisation of categorical models of polymorphism introduced here (relatively carte-
sian closed categories) has become standard, and has been developed by several authors, notably
Thomas Ehrhard and Thomas Streicher. The problem of the largest cartesian closed category of
algebraic IPOs has also been solved by Achim Jung, whom I would also like to add to the foregoing
list of acknowledgements (both as a colleague and as a friend).

January 1992: It is inappropriate to make alterations to a thesis, or to any document which
has been overtaken by history or changes in its author’s style. However before catching up with
the requests for copies mentioned above and making the text available by FTP

theory.doc.ic.ac.uk /theory/papers/Taylor/thesis

I have decided to remove a number of fallacies. These have been replaced by counterexamples or
references where available, and I am particularly grateful to Achim Jung for his assistance with
many of these corrections. In the interests of historical accuracy I have left markers admitting to
my mistakes and have resisted the temptation to give any generalations or anachronistic references.
In several cases sketchy proofs here are filled in in my unpublished 1987 paper, Homomorphisms,
bilimits and saturated domains, which is also available by FTP as bilimits.
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Chapter 1

Categories with Models of the
Lambda Calculus

1.1 Lambda Calculus and Combinatory Algebra

§1.1.1 This chapter is largely concerned with Church’s Lambda Calculus, and how it may be
used to obtain a category of domains; the next chapter discusses the latter in the abstract. The
λ-calculus is to be regarded in this work as a vehicle for other study rather than the prime object of
interest. Though most of the material is standard, we wish to establish notations and conventions
and make appropriate remarks concerning its relevance to later parts of the work.

The λ-calculus is concerned with the behaviour of functions under application rather than
composition as in category theory. It comes in two forms, typed and untyped. The typed λ-
calculus is simply a syntax for cartesian closed categories. A model of the untyped λ-calculus
would be a set Λ whose function space ΛΛ is a retract of Λ; though this is clearly impossible for
discrete sets by cardinality, the purpose of the first three sections is to justify this as a definition.
Here every function has a fixed point, which enables us to interpret recursion, indeed there is a
uniform way of assigning such fixed points.

We have already stumbled upon the major concepts to be discussed in this chapter (indeed
most of those with which the work is concerned), namely retracts, cartesian closed categories, fixed
points and typing . We shall also discuss a popular naturally occurring model, known as the Pω
model.

For a comprehensive treatment of the λ-calculus see Barendregt [1981], Koymans [1984] and
Lambek & Scott [1986]. Basic category theory will be assumed without comment: see Mac Lane
[1971] or Arbib and Manes [1975].

§1.1.2 Here is the definition in a “telegraphic” form; for more detail see Barendregt §2.1.
Pf denotes the finite powerset , i.e. the set of finite subsets of a set.

Suppose we have an arbitrary collection Σ of symbols (variables), along with the ability to
generate a (countable) potential infinity of additional ones. We shall often write ~x for a set of
variables, usually intending it to be the string x1, x2, ..., xn.

By a simultaneous recursion we define the set Λ+[Σ] of raw lambda terms in the variables Σ,
the function FV : Λ+[Σ] → Pf (Σ) assigning to a term its set of free variables and the function
(−)[− := −] : Λ+[Σ] × Σ × Λ+[Σ] → Λ+[Σ] which is the substitution in one term, for all free

1



2 CHAPTER 1. CATEGORIES WITH MODELS OF THE LAMBDA CALCULUS

occurrences of a certain variable, another term.

if... then... ∈ Λ+[Σ] with FV = ... and − [y := c] = ...
x ∈ Σ, x = y x {x} c
x ∈ Σ, x 6= y x {x} x
a, b ∈ Λ+[Σ] (ab) FV(a) ∪ FV(b)

(
a[y := c]b[y := c]

)
a ∈ Λ+[Σ ∪ {x}], x = y (λx.a) FV(a) \ {x} (λx.a)
a ∈ Λ+[Σ ∪ {x}], x 6= y (λx.a) FV(a) \ {x}

(
λx.a[y := c]

)
where, in the last case, x /∈ FV(c).

With the syntax strictly as above, there is a unique way of parsing a term, i.e. proving that
a given string is indeed a raw λ-term. The substrings of a term which arise in this parsing are
called subterms. We shall adopt the usual abbreviations:

abc means (ab)c
λx.ab means λx.(ab)
λxy.a means λx.(λy.a)

In fact juxtaposition will be used throughout the work to mean application, composition in a
category being denoted by a semicolon (;) and written right-handedly.

A raw λ-term a is closed if FV(a) = ∅. If Σ ⊂ Σ′ then Λ+[Σ] ⊂ Λ+[Σ′] in a natural way, and the
subsets of closed terms are identified. Consequently the set of closed lambda terms is independent
of Σ, and is written just Λ+. Λ+[Σ] is then seen as the extension of Λ+ by Σ.

§1.1.3 The intended meaning of the term λx.a is that function which, to the argument u,
assigns the value a[x := u]. The process of replacing a (specified) subterm ((λx.a)u) by the
corresponding (a[x := u]) is called a beta conversion, and a string of raw λ-terms in which each is
obtained from the previous one by a β-conversion is called a beta transition.

Since we have defined β-conversion with respect to subterms, β-transition and substitution
are compatible, and the equivalence relation generated by the existence of β-conversions is a
congruence of the application and abstraction operations. We call it beta equivalence.

The quotient sets Λ[Σ] and Λ of Λ+[Σ] and Λ under β-equivalence are called the sets of λ-terms,
or sometimes λKβ-terms.

In Λ[Σ] we then have (λx.a)u = a[x := u].
Throughout we shall use Λ (as opposed to Λ) for a model of the λ-calculus (whatever that is).

Λ is called the (classical) closed term algebra and Λ[N] the open term model .
A raw term from which there is no nontrivial transition is said to be in normal form. A raw

term from which there is a transition to a normal form, or a term with such a raw representative,
has a normal form.

§1.1.4 We shall have occasion to define a variety of special λ-terms, of which the first are

K = λxy.x constant
S = λxyz.xz(yz)
I = λx.x = SKK identity
Y = λf.(λx.f(xx))(λx.f(xx)) fixpoint
⊥ = (λx.xx)(λx.xx) = (SII)(SII) = YI bottom
P = λfgx.g(fx) = S(K(S(S(KS)K)))K composition
Q = λfgax.ga(fax) fibred composition
〈〉 = λxyz.zxy pairing
0 = λxy.x = K left projection
1 = λxy.y = KI right projection
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The combinatory expressions for these things get much longer, so we shall desist from quoting
them in future. The reason for switching the arguments of P (in other words not using the better
known B = λfgx.f(gx)) will become apparent in §5.1.4. We shall adopt the convention of printing
special combinators such as these in sans-serif Roman type, and variables in italics.

Warning The letter P (for Paul, Powerset, Pair, Product, Pullback) appears in six different fonts
in this work, apart from those which have already appeared in this sentence, namely: PPPpPP.
In §5.1.4 we shall see that P = P!

Question Why is the S combinator so-called?
Achim Jung (20 February 1991) says that

“The answer is in Schoenfinkel’s paper from 1924 (Mathematische Annalen 92), where
combinators are introduced for the first time. S stands for VerSchmelzungsfunktion
(amalgamation function), because it allows to express that two occurrences of a variable
are indeed the same variable, i.e. the two occurrences are amalgamated. Schoenfinkel’s
paper is fun to read; it has been translated into English.

Why did he not use V? There was another combinator called Vertauschungsfunktion
(exchange function).

§1.1.5 The consistency of the above formalism is guaranteed by a major classical result known
as the Church-Rosser Theorem. (Barendregt §11.1)

Proposition β-transitions have the diamond property that if a → b and a → c then for some d,
b→ d and c→ d. �

Theorem Λ is not degenerate.
Proof K and S are distinct normal forms and so are not identified under β-equivalence. �

In fact β-reductions may be put in a standard form to give the morphisms of a category with
pushouts (Barendregt exercise 12.4.4). The “upside-down” diamond property fails.

§1.1.6 There is a remarkable λ-term, sometimes known as the “paradoxical combinator”, which
provides a fixed point of (application of) any element.

Lemma For any f ∈ Λ, f(Yf) = Yf .
Proof There is a β-transition from Yf to f(Yf). �

There are other such operators for which the transition is in the more natural direction; indeed
there is an infinity of fixpoint operators, which are precisely the fixed points of G = λyf.f(yf) = SI.

§1.1.7 The importance of the λ-calculus lies in the fact that it can be used to code recur-
sive (computable) functions. Turing [1936] motivated his own definition of computability and
subsequently [1937] showed its equivalence with λ-definability.

Briefly (see Barendregt §6.3), primitive recursive functions are built up from zero (Z), succes-
sor (N), if-zero (?) and product projections together with that if f(−), g(−,−,−) are primitive
recursive then so is h(−,−) where h(0, ~n) = f(~n) and h(k + 1, ~n) = g(h(k, ~n), k, ~n). Then the
recursive functions are those given by adding searching (minimalisation in the literature), so if
f(−,−) is recursive then so is the partial function g(−), where g(~n) is the least k such that f(i, ~n)
is defined for each 0 ≤ i ≤ k and f(k, ~n) = 0, if there is one; we write g = µf .

To code all this we of course need some numerals. For instance Church [1941] defined

n = λfx.fnx
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so
Z = 0 = KI, N = λxyz.y(xyz) and ? = λnxy.n(Kx)y

Using these it is an easy matter to code primitive recursive functions. For recursive functions we
need a searching operator µ with g = µf , such as

µ = λf~n.Y[λhk.?(fk~n)k(h(Nk))]Z

§1.1.8 We wish to interpret the λ-calculus in a great variety of circumstances, in which we
have far less in the way of logic than is available in the category of sets. In order to do this we
reformulate it without mentioning variables (or at least without the variable-binding operator λ).
[In fact it is possible to do what we intend whilst still carrying variables, by methods suggested
in §§3.2.3-5 and 12-13, but this is more complicated. See also [Lambek & Scott, 1986].]

Lemma Λ, the set of closed λ-terms, is generated by K = λxy.x and S = λxyz.xz(yz) under
application.
Proof We define inductively on the structure of a raw representative the translation

[[λx.x]] = SKK

[[ab]] = [[a]][[b]]
[[λx.a]] = K[[a]] if x is not free in a

[[λx.ab]] = S[[λx.a]][[λx.b]] otherwise
[[λxy.a]] = [[λx.[[λy.a]]]]

in which the left and right sides are β-equivalent. �

Definition A combinatory prealgebra is a set Λ with a binary operation • (“application”) and
elements K and S satisfying Kab = a and Sabc = ac(bc) for all a, b, c ∈ Λ, where we adopt the
usual convention that abc means (a • b) • c. It it common to add I = SKK.

There are then obvious notions of combinatory transition and of a free combinatory prealgebra
on a set of generators (“variables”). This should not, however, be allowed to prejudice our view
of what are morphisms of models.

Clarke et al. [1980] have put this to practical use, building a machine whose instruction set is
essentially {S,K, I}. Curien [1983] considers combinators more closely related to the presentation
in terms of cartesian closed categories (§1.3).

§1.1.9 We shall discuss the assignment of types to λ-terms in section 3. There is an obvious way
to type I, K and S, namely P → P , P → (Q→ P ) and [P → (Q→ R)]→ [(P → Q)→ (P → R)].
In §3.1.6 we shall mention briefly the connection between types and propositions. These types are
familiar axioms of propositional calculus. Church’s numerals are typed (P → P )→ (P → P ).

A set Λ with a binary operation • is said to be combinatory complete if any definable function
φ : Λn → Λ (i.e. expression involving •, elements of Λ and n variables) is expressable as fx1x2...xn
for some f ∈ Λ, i.e. ∀~a ∈ Λn.f~a = φ(~a).

Proposition (Λ, •) is combinatory complete iff there are K,S ∈ Λ such that (Λ, •,K,S) is a
combinatory prealgebra.
Proof

[⇒] x, y 7→ x and x, y, z 7→ xz(yz) are two such expressions.

[⇐] Use lemma 1.1.8 to express λ~x.φ[~x] in terms of K, S. �
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§1.1.10 We can speak of a combinatory prealgebra in any category C with finite products. It
consists of an object Λ ∈ C and morphisms • : Λ × Λ → Λ and pKq, pSq : 1 ⇒ Λ in C such that
certain diagrams (expressing the various equations) commute, e.g.

(1× Λ)× Λ ∼= Λ× Λ
π0 - Λ

(Λ× Λ)× Λ

(pKq× 1)× 1

? • × 1- Λ× Λ

•

6

Moreover if F : C → D is a functor preserving finite products then (FΛ, F•, FpKq, FpSq) is
a combinatory algebra in D because F (simply by virtue of its being a functor) preserves the
validity of the equations. Such a functor is the global sections functor F = C(1,−) : C → Set,
which we shall sometimes call Γ or | − |. This notation with single vertical lines will be used for
the underlying set (or its cardinality) of an object; double verticals will be used for the extension
of a type (§1.3.4).

This will enable us to discuss models of the λ-calculus which are not discrete sets.

§1.1.11 The formulation of §§1.1.2-3 may be extended by adding constants and further equa-
tions. In particular, suppose we have a “model” A, whose underlying set we write as |A|. Then the
term model Λ[|A|], in which we add a constant paq for each element a ∈ A, has an interpretation
in A. This will not however be faithful , i.e. some distinct terms will be set equal by it. We add
to the theory these further equations and write Λ[A] for the resulting term model, which should
of course be isomorphic to A.

We may now adjoin a new variable to a model, by making the further addition of a new
symbol x. The term model Λ[A][x] we call just A[x]. The interpretation of A ∼= Λ[A] in A[x] is
faithful. A[x] has the universal property that any interpretation of A in another model B may be
extended uniquely to one of A[x] in which x is taken to an arbitrarily chosen b ∈ B.

To do the same for combinatory prealgebras is a standard easy piece of Universal Algebra.

§1.1.12 Unfortunately the translation from λ-terms to a combinatory prealgebra does not
respect β-equivalence; for example KI and SK are clearly normal forms qua combinators, but as
λ-terms they are equivalent [to λxy.y]. Combinatory prealgebras encapsulate application, but fail
to represent abstraction, for which we require a canonical element f whose application to x yields
f [x].

By definition in the λ-calculus, a = b implies λx.a = λx.b. A λ-term which “begins with a λ”,
i.e. which has a representative of the form λx.a, we call functional .

Lemma

(a) A λ-term is functional iff it has a representative of the form K, S, Ka, Sa or Sab for some a,
b.

(b) If f , g are functional terms (with representatives) in which x is not free, and fx = gx then
f = g.

(c) A term with a representative beginning with a variable or ⊥ is not functional.
Proof

(a) The combinatory translation of λx.a involves either the third, fourth or fifth clause in the
proof of lemma 1.1.8, so is of one of these forms. Conversely there is a β-transition from
each of these forms to a functional λ-term.
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(b) W.l.o.g. f = λx.a, g = λx.b. Then a = fx = gx = b.

(c) The forms λx.a, xa1a2...an or ⊥a1a2...an are invariant under transition. Hence by the
Church-Rosser theorem (proposition 1.1.5) these three forms are β-inequivalent. �

+§1.1.13 More generally we can say that a term has (at least) n+ 1 arguments if whenever it
is applied to any (at most) n new variables then the result is functional.

Fact Any λ-term has a representative recursively in the form λ~x.y~a or λ~x.(λy.y~a)~b, and there is
an algorithm to find such a representative for any raw term. �

The first form is called head normal , and a term with no such form is unsolvable; a raw term
is in normal form iff it is recursively head normal. There is no algorithm to determine whether a
term has a head normal form or not. The Böhm tree of a term is given by developing the head
normal form of each subterm, putting ⊥ instead if it has none; this may of course be infinite. A
combinatory algebra is sensible [Hyland 1976] if all unsolvable terms are identified.

Lemma A λ-term has exactly n arguments iff it has a representative in the form λ~x.a where a is
y~b (possibly y is amongst the ~x) or unsolvable.

Proof By parts (a) and (c) of lemma 1.1.12. �
There are terms with 0, 1, ..., ∞ arguments. Indeed λx1...xn.y has exactly n arguments and

YK = (λx.xx)(λxy.xx) has infinitely many.

Corollary The combinators listed in §1.1.4 have exactly as many arguments as λs at the front as
they are written there. �

§1.1.14 We can now complete the reformulation of λ-calculus as a purely equational theory.

Lemma Let (Λ, •,K,S) be a combinatory prealgebra. tfae

(α) For any functional f, g ∈ Λ, if fx = gx in Λ[x] then f = g.

(β) β-equivalent terms are equal.

(γ) The following equations are satisfied.

K = S(S(KS)(S(KK)K))(K(SKK))
S = S(S(KS)(S(K(S(KS)))(S(K(S(KK)))S)))(K(K(SKK)))
S(KK) = S(S(KS)(S(KK)(S(KS)K)))(KK)
S(KS)(S(KK)) = S(KK)(S(S(KS)(S(KK)(SKK)))(K(SKK)))
S(K(S(KS)))(S(KS)(S(KS))) = S(S(KS)(S(KK)(S(KS)(S(K(S(KS)))S))))(KS) �

If Λ satisfies these conditions then we say it is a combinatory algebra. [In fact most authors
use this term in the weaker case, and lambda algebra in the stronger.] The importance of part
(γ), which is due to Curry, is that we now have a purely equational theory; it now seems unlikely
that the form of the equations has any great significance. Part (α) will be used frequently in the
constructions of §1.3 and §5.1.

Proposition (Λ[t1, ..., tn], •,K,S) is the free combinatory algebra on n generators.

Proof The passage from λ-terms to combinators and back is (β-equivalent to) the identity by
lemma 1.1.8. For the converse we use the above lemma. �
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§1.1.15 When we introduced the distinction between prealgebras and algebras in §1.1.12 we
would have liked to have said that in the λ-calculus “terms beginning with a λ have the same
effect as functions”. If, as has been the case so far during this century (though I personally believe
this to be a passing heresy), we regard functions as assignments of values to arguments, then this
raises questions of extensionality .

Proposition There are distinct functional f, g ∈ Λ with ∀a ∈ Λ.fa = ga.
Proof Plotkin [1974]. �

Definition A combinatory algebra is a model if for functional f , g, if ∀a.fa = ga then f = g.
Hence Λ[N] is a model and Λ is only an algebra. We shall see that this distinction corresponds

to the notion of a concrete category.

§1.1.16 A “stronger” form of extensionality (although it is in fact an independent condition)
is the η-rule that every element is functional, i.e. if x 6∈ FV(a) then λx.ax = a. We write Λη[Σ]
for the set of λη-terms in a given set of variables, and Λη for the closed λη-terms. A combinatory
algebra or model with this property is called an η-algebra or η-model respectively. Categorically
this corresponds to an isomorphism between Λ and ΛΛ rather than the latter merely being a
retract of the former.

We have distinguished between

(i) combinatory prealgebras and algebras by functionality,

(ii) algebras and models by concreteness or weak extensionality, and

(iii) beta and eta by so-called “strong extensionality”;

we will distinguish

(iv) combinatory and lambda by whether we really have function-spaces.

1.2 Retracts, Monoids and Cartesian Closed Categories

§1.2.1 This section is a miscellany of basic category theory.

Definition Let X be a poset and D ⊂ X a subset.

(a) D is said to be directed if (∀d1, d2 ∈ D)(∃d ∈ D)(d1, d2 ≤ d).

(b) D is down-closed if (∀d ∈ D,x ∈ X : x ≤ d)(x ∈ D)

(c) D is an ideal if it is down-closed and directed.

Lemma A directed union of directed sets or ideals is directed, respectively an ideal. �

§1.2.2 Of considerable importance will be directed unions, or more generally directed joins
(also known as directed sups) in a poset.

Definition (a) We say x is the directed join of D ⊂ X, and write x =
∨
� D, if

(i) D ≤ x (i.e. ∀d ∈ D.d ≤ x)

(ii) if also D ≤ y then x ≤ y

(iii) D is directed.
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Note The use of the arrow implicitly asserts the directedness of the set in question.

Definition (b) We say the function f : X → Y preserves directed joins if f(
∨
� D) =

∨
�{fd : d ∈ D}

for all directed D ⊂ X.

Lemma Let f : X → Y preserve directed joins. Then f is monotone (preserves order).
Proof Consider the directed set D = {x, y} for any x ≤ y. �

Proposition Let X be a poset with a least element ⊥, and joins for all directed subsets. Let
f : X → X preserve directed joins; then f has a least fixed point.
Proof Put x0 = ⊥ and xn+1 = fxn. Then x0 = ⊥ ≤ x1 so by induction and monotonicity of
f , xn = fn⊥ ≤ fnx1 = xn+1. Hence D = {xn : n ∈ N} ⊂ X is directed. Let x =

∨
� D. Then

fx =
∨
�{fxn : n ∈ N} by preservation of directed joins, and this is just x. If also fy = y then

x0 = ⊥ ≤ y, so xn = fn⊥ ≤ fny = y; hence x ≤ y. �
The result that Tarski [1955] proved was that every monotone endofunction of a complete

lattice has a least (and also a greatest) fixed point.

§1.2.3 Let C be a category.

Notation Write the composite of f : X → Y and g : Y → Z in C as (f ; g) : X → Z.

Warning This is right-handed notation (left-handed is slightly more common in Category Theory).
The semi-colon is commonly used in programming languages for sequencing . Juxtaposition will
always mean application.

An endomorphism e : X → X in C is idempotent if e2 (that is, e ; e) equals e. If i : U ↪→ X
and p : X � U in C have i ; p = 1U and p ; i = e then we say e splits through U . This also arises
given just i and p with i ; p = 1U , for then e = p ; i is automatically idempotent. Some authors
introduce several different words for the anatomy of this situation, but we shall indiscriminantly
call e or U a retract of X. Write U / X.

We may regard U as a subobject of X by i : U ⊂ X, since this is (regular, indeed split) mono.
In this case the restriction of e to U is just i : U ↪→ X or 1U : U → U ; indeed U is precisely the
fixed point set of e. Categorically, U is the equaliser of 1 and e. If we do regard U as a subset we
may suppress mention of i and consider p : X � U in place of e; we think of px (for x ∈ X) as x
reduced to or reflected in U .

Alternatively, U is a quotient of X by p : X � U , since this is (regular, split) epi. Then U is
the image of e, which we may describe as the coequaliser of 1 and e. i is then a section of p.

We shall try to avoid trivial detail when talking about retracts, and the reader will be expected
to interpret the context and notation appropriately. Letters such as e (then f), c and r are used
for idempotents, p (then q) or π for the surjection and i (then j) or ι for the inclusion.

Notice that when we move to the dual category (in which the arrows are reversed) these
concepts either remain the same or are interchanged with one another.

§1.2.4 Very often there will be an order structure on maps in a category. Retracts which are
comparable to the identity in this order play a special role. If 1 ≤ c = c2 we call it a closure
operator ; if 1 ≥ c = c2 then it is a coclosure operator .

Proposition Let c : X → X be a closure (coclosure) operator on a poset and Y its image. Then
the inclusion i : Y ↪→ X is right (left) adjoint to the surjection p : X � Y . Conversely if the
inclusion of one poset in another has a left (right) adjoint then we have a closure (coclosure). �

Definition Splitting of a coclosure will be of particular importance: we reserve the terms embed-
ding and projection for this case, with notation � and →.
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There are analogous concepts for categories rather than posets: a endofunctor tT with natural
transformations η : 1 → tT and µ : tT 2 → tT satisfying certain equations is called a monad . It
is idempotent or a reflection if µ is invertible; the image is called a reflective subcategory . Dually
ε : tT → 1, ν : tT → tT 2 is a comonad , etc

§1.2.5 In general the composite of two idempotents e, f need not be idempotent.

Lemma

(a) Let e, f be commuting idempotents of X ∈ C. Then e ; f is idempotent. If further e, f and
e ; f split through U , V , W respectively (which we consider as the fixed point sets), then W
is the intersection of U and V .

(b) Let e, f be split idempotents of X ∈ C. Then the fixed point set of e is contained in that of
f iff e = e ; f . �

We write e ⊂ f if e = e ; f = f ; e.
What we shall mean by composed retracts is the situation X / Y / Z.

Lemma

(c) If X / Y / Z then X / Z, where the inclusion and surjection are the obvious composites.

(d) In this case write e and f for the idempotents on Z corresponding to X and Y respectively;
then e ⊂ f .

(e) Conversely e ⊂ f always arises in this way.

(f) Given e ⊂ f like this, e ≤ f iff X is a coclosure on Y , and e ≥ f iff it is a closure. �

§1.2.6 Preservation by functors is always important.

Proposition Let e : X → X be an idempotent in C and F : C → D a covariant or contravariant
functor. Then Fe : FX → FX is also idempotent. Suppose e splits, say through i : U ↪→ X,
p : X � U . Then Fe also splits, through Fi : FU ↪→ FX, Fp : FX � FU in the covariant case
and Fp : FU ↪→ FX, Fi : FX � FU in the contravariant case. �

Also, if the hom-sets are ordered and F preserves the order then it also preserves closures,
coclosures, etc.

§1.2.7 Given any category C we may construct a category K(C), the Karoubian completion
of C, in which C is embedded fully and all idempotents split. K(C) has objects the idempotents
e : X → X in C and morphisms α : (e : X → X) → (f : Y → Y ) those α : X → Y such that
α = e ; α ; f , i.e. the diagram

X
e - X

Y

α

?
� f

Y

α

?

commutes. Composition is as in C and the identity on (e : X → X) is e itself. C is embedded in
K(C) by X 7→ (1X : X → X).
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Proposition C → K(C) splits idempotents universally in the following sense. K(C) has an explicit
choice of splittings, so let D be another category with explicit splittings and F : C → D a functor.
Then there is a unique extension to K(C)→ D which preserves splittings. If idempotents already
split in C then the inclusion is an equivalence. �

Since splitting idempotents is equivalent to adjoining finite filtered colimits (or finite cofiltered
limits), K(C) may be found inside the completions of C under arbitrary or filtered colimits. These
are respectively [Cop,Set] and Ind C (§2.3.6).

+§1.2.8 We shall apply the foregoing construction in the particular case of the monoid derived
from a model of the λ-calculus. Any monoid M may be regarded as a category with just one
object, the morphisms being the elements of M . The unique object of M is taken to the identity
in K(M)

Lemma Let e, f be idempotents in a monoid M . Then e ∼= f as objects of K(M) iff there are
u, v ∈M with u ; v = e, v ; u = f , u ; v ; u = u and v ; u ; v = v in M . �

Proposition Let M and N be monoids. Then there is a natural equivalence

Functors K (M) - K(N)

Semigroup homomorphisms M - N

�

Note The point of view which has been adopted in this work is the currently orthodox one that
functors must preserve identities as well as composition, which leads to the consideration of the
category of retracts. Hoofman [1990] has adopted the opposite attitude, namely that as many of
the functors considered in this topic are free extensions to the category of retracts of underlying
constructions which preserve composition but not identities we should regard such constructions
as respectable mathemaical objects (semifunctors). He has shown that much of the development
of the well known models of continuous and stable domain theory is simplified by this approach;
(essentially) the foregoing result recovers the (identity-preserving) functors.

+§1.2.9 Monoids, like groups, ought always to be considered to act on something. Under what
circumstances can a monoid M be represented as the endomorphisms of a set? If we stretch the
meaning of “set”, always: M is the endomorphism monoid of 1M ∈ K(M).

We can identify the constants of M as the elements which are insensitive to precomposition,
i.e. the c ∈M with ∀m ∈M.m ; c = c.

Lemma The regular action of M on itself, by m 7→ (x 7→ x ;m) restricts to the set C of constants.
If the restricted action is faithful, M is a submonoid of the endofunctions of C and we say M has
enough constants. �

We shall be interested in the monoid of functional elements of a λ-algebra; this will have enough
constants iff it is a λ-model.

(One might ask when monoids in the category of vector spaces, i.e. rings, have enough con-
stants. It is then appropriate to replace equality by proportionality. We are led to submonoids
of the projective matrix monoid, the constants being (projections onto) particular rays, cf. PGL,
the projective linear group.)

Remark This original form of this result was Cayley’s permutation representation of any (ab-
stract) group; another form of it is the Yoneda lemma in category theory.
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§1.2.10 The analogous concept for categories is that there are enough global elements, i.e.
maps from the terminal object to each object, i.e. for f, g : X ⇒ Y , if (∀x : 1→ X)(x ; f = x ; g)
then f = g. In this case we say 1 is a generator . (Many authors gratuitously introduce the
contrapositive in this definition.) The dual notion will appear in §2.3.2. Then the global section
functor C(1,−) : C → Set is faithful.

Warning In näıve category theory, a concrete category is one whose objects are given sets and
whose morphisms are some of the functions between them (e.g. groups, fields, topological spaces,
but not spaces with homotopies). This may be formalised by saying that there is a faithful functor
C → Set. We shall diverge from this usage by requiring this functor to be C(1,−); this makes
sense in our context because it is always possible to give morphisms with a “constant” value, but
the category of groups, for instance, ceases to be concrete.

Proposition Let M be a monoid and C ' K(M) its Karoubi completion. Then M has enough
constants iff C is concrete. �

§1.2.11 The analogous concept to directedness in posets is filteredness in categories. By a
diagram in a category C we simply mean a functor d : I → C from another category I.

Definition A diagram I is said to be filtered if

(i) I is nonempty (more properly, inhabited)

(ii) for any two objects i, j ∈ I there is an object k ∈ I and morphisms f : i→ k and g : j → k
in I.

(iii) for any parallel pair of morphisms f, g : i⇒ j in I there is an object k ∈ I and a morphism
h : j → k with f ; h = g ; h.

Examples

(a) Let I = ω, the category with one object for each natural number n and one morphism n→ m
iff n ≤ m. Then any d : I → C is filtered.

(b) Let D ⊂ X be a directed subset of a poset. Consider X as a category with a unique morphism
x→ y iff x ≤ y. Then the inclusion D → X is a filtered diagram.

(c) Let e : X → X in C be idempotent. Then the diagram

X
e -

1X
- X

e - X

is filtered. �

Lemma Let d : I → C be a finite filtered diagram. Then there is a vertex X and an idempotent
e : X → X in d forming (in the manner of example (c)) a subdiagram equivalent to d. Thus d has
a colimit iff e splits.

Proof Assign to each even number an object of I, and to each odd number a morphism between
previously-named objects, so that each occurs infinitely often. We construct a category and functor
ω ∪ I → I so that I → ω ∪ I → I is an equivalence and ω ⊂ ω ∪ I full and cofinal; this makes the
diagrams I → C and ω ⊂ ω ∪ I → I → C equivalent in the sense of having the same cones and in
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particular the same colimit. We incorporate the chosen objects and morphisms into ω ∪ I using
axiom (ii):

0 - 1 - · · · - 2n− 2 - 2n− 1

2n

-

i2n

-

and (iii) for i2p ⇒ 2n:

0 - 1 · · ·2p− 1 - 2p · · · 2q − 1 - 2q · · ·2n− 1 - 2n - 2n+ 1

i2p
f2n+1-

-

i2q

-

Now let X be any vertex which occurs infinitely often in ω → I and f any endomorphism of X
which occurs infinitely often as an arrow out of it. f has only finitely many powers; so fn = fn+m

for some n ≥ 0, m ≥ 1, and fn+r = fn+r+km for r ≥ 0, k ≥ 1. Put e = fn+r where n+ r = km;
then e is the required idempotent. �

Facts

(a) In a category with colimits of filtered diagrams of cardinality less than κ (where κ is an
infinite regular cardinal considered as an ordinal) any filtered diagram of cardinality κ is
equivalent to one of shape κ.

(b) In a finite category in which idempotents are split, every filtered diagram (however large)
has a colimit (cf. lemma 2.1.2). �

§1.2.12 The dual concept to filteredness is of course called cofilteredness. The following really
amounts to König’s lemma.

Lemma Let X : I → Set be a cofiltered diagram of nonempty sets.

(a) If each map in the diagram is surjective then the limit is nonempty.

(b) If each set in the diagram is finite then the limit is nonempty.

Proof

[a] By induction on the cardinality of the diagram and using Fact 1.2.11a, w.l.o.g. I = κop.
Inductively choose xα ∈ Xα such that xα+1 maps to xα and xλ = (xα : α < λ) for limit
ordinals.

[b] Call x ∈ Xi persistent if for any j ∈ I there’s k ∈ I and y ∈ Xk with k beyond i, j in I
and y mapping to x, and a similar condition on morphisms. Let Yi ⊂ Xi consist of the
persistent elements; it is nonempty since otherwise we may choose a point in the diagram
beyond points at which each of the finitely many elements of Xi has been exhausted. Then
the diagram reduces to one with surjections. �
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§1.2.13 From infinite colimits to finite limits.

Proposition For a category C tfae

(α) C has all finite limits

(β) C has a terminal object and all pullbacks

(γ) C has finite products and binary intersections of retracts

(δ) C has a terminal object, binary products and equalisers.
Proof

[α⇒ β] All of these constructions are examples of finite limits.

[β ⇒ γ] Binary products are found by pulling back two terminal projections, and products with
more factors by iteration. The image of e : X → X is the pullback of (1, 1) : X → X ×X
against (1, e) : X → X ×X. Intersections are examples of pullbacks.

[γ ⇒ δ] It suffices to construct the equaliser of a pair f, g : A ⇒ B. First observe that A is a
retract of A × B by (a, b) 7→ (a, fb). The image of this is usually called the graph of the
function f and is written Af ; the composite Af → A×B → A with the product projection
is an isomorphism. The equaliser of f and g is now Af ∩Ag ⊂ A×B → A.

[δ ⇒ α] The diagram category I is essentially expressed in terms of dom, cod : I1 ⇒ I0. The limit
of d : I → C is given by the equaliser of the following pair:∏

i∈I0

d(i) ⇒
∏
u∈I1

d(codu)

〈xi : i ∈ I0〉 7→
{
〈xcodu : u ∈ I1〉
〈u(xdomu) : u ∈ I1〉

�

Such a C is called a lex category (left exact).

§1.2.14

Lemma Consider the diagram
• - • - •

•
?

- •
?

- •
?

(a) If the two squares are pullback diagrams then so is the rectangle.

(b) If the rectangle and the right hand square are pullbacks then so is the left hand square. �

§1.2.15 Finite limits and filtered colimits interact nicely.

Proposition

(a) Let X : I×J → Set be a diagram with I filtered and J finite. Then the natural comparison
map colimi limj Xij → limj colimiXij is an isomorphism.

(b) The same is true of the category of models of any finitary algebraic theory. �
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§1.2.16 We shall now turn to cartesian closed categories.

Warning In current Computer Science and older Mathematical usage, a category is cartesian
closed if it as finite products and exponentials. In more recent Category Theory, the term has
been redefined to require all finite limits. We shall adopt the weaker definition, for reasons which
will become apparent in proposition 1.5.11.

Let’s do this explicitly.
A terminal object 1 ∈ C has a unique morphism !A : A→ 1 for each A ∈ C. We usually think

of this as the one-point set.
The product of X,Y ∈ C is an object X×Y with morphisms π0 : X×Y → X and π1 : X×Y →

Y (projections or components) which are universal in the sense that if f : Z → X and g : Z → Y
are any two morphisms of C then there is a unique morphism 〈f, g〉 : Z → X × Y making the two
triangles commute:

X

Z
〈f,g〉-

f

-

X × Y

π0

6

Y

π0

6

g
-

We may of course define products with more factors. The terminal object is the product of zero
factors, and any finite product may be obtained by iteration.

The exponential or function space from X to Y is written Y X or X → Y . The functor (−)X is
defined to be the right adjoint to the product with X, −×X. This means that there is a natural
bijection

Z ×X - Y

Z - Y X

The operation from top to bottom is functional abstraction, λx. If we put Z = Y X and consider the
identity on the bottom, the corresponding thing on the top is the evaluation map ev : Y X×X → Y .

§1.2.17 Finally there is a useful presentation of an object as a retract of its function space.

Notation For an object X of a cartesian closed category write

X0 = X Xn+1 = Xn
Xn

Proposition Let X be an object of a cartesian closed category C.

(a) X is inhabited (has a map 1→ X) iff X /XX

(b) If the objects of C carry a partial order, with respect to which X has a least element ⊥, then
X /XX by a coclosure.

Proof Habitation is necessary because the image of 1X ∈ XX in X is an element. Let ⊥ ∈ X.
Then define X ↪→ XX by x 7→ Kx and XX � X by f 7→ f⊥. �

We call this dropping a variable.
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1.3 Typing Lambda Terms

§1.3.1 In this section we discuss the typed λ-calculus and its relationship with cartesian closed
categories. We also construct the category of retracts, Retr(Λ), of a λ-algebra and show that this
enables any term to be typed. Koymans [1984] performs some of these constructions in greater
detail. The significance of Retr(Λ) to our work is that any small category of domains is of this
form. (We state precisely what can be proved of this assertion in theorem 2.6.12.) Besides the
convenience of having a λ-model around, we can also use this formulation to motivate the notion
of a continuous type-dependence (definition 5.1.12).

First we construct the monoid of functional elements; throughout Λ is a combinatory algebra.

Definition 1 = λf.PI(Pf I) = λfx.fx = S[K(SI)]K
This is one of Church’s numerals (§1.1.7).

Lemma

(a) P is associative in the sense that Pα(Pβγ) = P(Pαβ)γ for any α, β, γ ∈ Λ.

(b) The operation f 7→ 1f is idempotent and its image consists precisely of the functional
elements.

Proof

[a] I shall do this kind of thing precisely once, so watch carefully! Either (lemma 1.1.14β)

Pα(Pβγ) = [(λxyz.y(xz))α][(λxyz.y(xz))βγ]
= [λyz.y(αz)][λz.γ(βz)]
= λz.[λz.γ(βz)](αz)
= λz.γ(β(αz))
= [λxyz.y(xz)]{λz.β(αz)}γ
= [λxyz.y(xz)]{[λxyz.y(xz)]αβ}γ
= P(Pαβ)γ

or (lemma 1.1.14α), since P has three arguments,
Pα(Pβγ)z = (Pβγ)(αz)

= γ(β(αz))
= γ(Pαβz)
= P(Pαβ)γz

(b) We now know that the operations f 7→ PIf and f 7→ Pf I are commuting idempotents, so
their composite is idempotent (lemma 1.2.5a). Since P has three arguments, PI(Pf I) has at
least one, so is functional. Conversely any functional element may be seen to be fixed. �

+§1.3.2 Write M for the set of functional elements of Λ, the image of f 7→ PI(Pf I).

Lemma

(a) M is a retract of Λ

(b) Λ is a retract of M

(c) M⊂ Λ is the union of the images of pKq : 1→ Λ, pSq : 1→ Λ, K− : Λ→ Λ, S− : Λ→ Λ and
S−− : Λ× Λ→ Λ.
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Proof

[a] by lemma 1.3.1, i.e. PI(Pf I)

[b] by dropping a variable (1.2.17), i.e. a 7→ Ka, f 7→ f⊥

[c] by lemma 1.1.12a �

Proposition

(a) M carries the structure of a monoid, where I is the identity and P the composition. Specif-
ically, f ; g = Pfg in right-handed notation.

(b) Λ (as a retract) is the set of constants of M, and the action Λ×M→ Λ is (a,m) 7→ ma.

(c) This action is faithful iff Λ is a combinatory model .
Proof

[a] by lemma 1.3.1.

[b] by the above lemma

[c] M has enough constants iff (∀a.m1a = m2a)⇒ m1 = m2. �

§1.3.3 In the following paragraphs we combine §1.2.7 and §1.3.2 to construct the category of
retracts. It is cartesian closed, idempotents split, it has fixpoints and any λ-term is typable in it.

Definition Let Λ be a combinatory algebra and M its monoid of functional elements. Then
Retr(Λ) is the Karoubi completion of M, considered as a category with one object.

Because of the importance of this construction we shall perform it explicitly. An object of
Retr(Λ) is an idempotent of M, i.e. an element A ∈ Λ satisfying PAA = A. Unfortunately this
operation is not itself idempotent: indeed in general there is no retract of Λ whose image is ob C ⊂ Λ
(cf. §1.4.8). The morphisms α : A → B are the elements α ∈ Λ with α = PAα = PαB. The
identity on A is A itself, whilst the composite of α : A→ B and β : B → C is α ;β = Pαβ : A→ C.

Notice that we have dropped the category-theoretic convention that the various hom-sets be
disjoint, so we do not have functions dom and cod; however it is a straightforward but unenlight-
ening exercise to code these things in if they are required.

For an arbitrary a ∈ Λ, we call Aa a reduced to A; many constructions are of the form of
general or untyped constructions reduced to appropriate types, and we shall frequently quote
them as such.

Because of the way Retr(Λ) is given, of course idempotents split . So if α : A→ A in C satisfies
α2 = α, i.e. Pαα = α, then there is an object B and a pair of maps B � A such that B → A→ B
is the identity and A → B → A is α; in fact of course both B and the two maps are represented
by α.

§1.3.4 We now investigate when Retr(Λ) is concrete.
The terminal object is T = K⊥, and this also denotes the terminal projection, the unique map

A→ T.

Proposition For a combinatory algebra Λ tfae:

(α) Λ is a combinatory model

(β) M has enough constants
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(γ) Retr(Λ) is concrete
Proof By propositions 1.2.10 and 1.3.2c. More explicitly, let α, β : A⇒ B be two maps whose
composites with all maps T → A are equal. Since α and β are functional and Λ is a model , it
suffices to show that αw = βw for all w ∈ Λ. Put γ = K(Aw), then γ : T → A so by hypothesis
γ ; α = γ ; β. But α(γ⊥) = α(Aw) = αw since A is the domain of α. The same holds for β so we
are done. �

The type A can be interpreted as the set ‖A‖ = {a : a = Aa} ⊂ Λ and the map α : A→ B as
the function a 7→ αa. Note that ‖T‖ = {⊥} and that every type A has a (“least”) element A⊥.

§1.3.5 We shall next show that Retr(Λ) is cartesian closed. For products we have to choose
pairing and unpairing combinators 〈〉 = λxyz.zxy, 0 = λxy.x = K and 1 = λxy.y = KI.

Lemma 〈〉ab0 = a and 〈〉ab1 = b for all a, b ∈ Λ. �
Write 〈a, b〉, c0 and c1 for (〈〉ab), (c0) and (c1) respectively, noting carefully the positions of

the digits. We do not have 〈c0, c1〉 = c (but see §1.4.8 and §2.5.11).

Proposition The product A × B of A and B is λc.〈Ac0, Bc1〉, which is our abbreviation for
λc.〈〉(A(c0))(B(c1)), with projections π0 = λc.Ac0, π1 = λc.Bc1, i.e. 0 and 1 reduced to (domain
A × B and) codomain A or B. Given α : D → A and β : D → B, 〈α, β〉 = λd.〈αd, βd〉 is the
unique map (pair) D → A×B making the two triangles commute (1.2.16). �

There is a combinator× = λAB.A×B which, when restricted to ob Retr(Λ)×ob Retr(Λ)→ Λ,
yields (idempotents representing) products. The forgetful functor | − | : C → Set creates finite
products and preserves all limits which exist in C.

Corollary Let X be an inhabited object of a cartesian closed category. Then X ×X is a retract
of X3 (see 1.2.17).
Proof We adopt the convention that a, b,... are variables of types involving X once, twice,... in
their definition. First X /X1 by dropping a variable. Then

X ×X / X

[
(XX)X

]
〈x, y〉 7→ λc.cxy

〈d(λab.a), d(λab.b)〉 ←7 d

So

X ×X / X

[
(XX)X

]
/

(
XX

)[(XX)(X
X)
]

/

[(
XX

)(XX)
][(XX)(X

X)
]

�

§1.3.6

Lemma If A = PAA and B = PBB then λf.PAf and λf.PfB are commuting idempotents. �

Proposition Retr(Λ) has function spaces. BA = λf.PA(PfB) = λf.P(PAf)B. Given α : C ×
A→ B we have the exponential transpose α = λca.α〈c, a〉 : C → BA and conversely α = λd.αd0d1.
The evaluation map ev : BA ×A→ B is given by λd.C(d0(Bd1)). �

This trick is known as Currying , although it was actually discovered by Schönfinkel. Notice
that 1 = II.

Again there are obvious combinators doing these things. BAf is called f reduced to domain A
and codomain B, but one should beware that this reduction is not functorial (it does not preserve
identity and composition).

Theorem Retr(Λ) is cartesian closed. �
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§1.3.7 We would like to think of a “model” of the λ-calculus as an object whose function
space is a retract of it in a specified way. Specifically, given a function f : Λ → Λ, λ(f) is its
“name” in Λ, and given a name u of a function and an element a, the application ua is in Λ.
Hence λ : ΛΛ ↪→ Λ and • : Λ×Λ→ Λ. The β-rule says precisely that λ is the inclusion and • (the
exponential transpose of) the surjection of a retract.

Definition Let E be a cartesian closed category and Λ ∈ E . We say Λ is a lambda β-algebra if
ΛΛ / Λ and a lambda η-algebra if ΛΛ ∼= Λ in a specified way. If E is concrete we use the terms
lambda β-model and lambda η-model .

This is the last of the distinctions we summed up in §1.1.15.

Proposition Let Λ be a combinatory algebra. Then I is a lambda β-algebra in Retr(Λ).
Proof I is the type represented by the identity and M = II that represented by λf.PI(Pf I). M
is a retract of I. �

Observe that the endomorphism monoid of I ∈ E is precisely the monoid M of functional
elements, and that this is the set of global elements of II.

§1.3.8 Now we shall discuss what it means for a λ-term to be typable. The basic idea is that
for a term fa to (be defined and) have type B, where a has type A, it is necessary that f have
type A→ B. However besides this function-space construction, there is also a notion of coercion
if we are to deal satisfactorily with the untyped λβ-calculus. Thus the functional element f has
type ΛΛ, but is also to be considered as an element, and to have type Λ.

Coercion first arose in FORTRAN [ANSI 66], where integer or “real” values could be put in
a real or complex context. The purpose is to eliminate vexatious but essentially vacuous explicit
reinterpretations of values; the analogue in category theory is the “forgetful functor”. This is the
practical value of “strong typing”, used in Mathematics everywhere except in the development of
Set Theory, that many things can be understood from context.

The compiler is obliged to supply a conversion function; this is reflected categorically by
having a canonical map N → R (or R → C) which enables morphisms X → N and R → Y
to be composed. This system of canonical maps must be closed under the appropriate categorical
notions (in particular composition and exponential), and there must be at most one such map,
usually a mono, between any two objects. We consider the subject of coercion in the context of
polymorphism in §3.4.9.

The ⊂ relation in Retr(Λ) (§1.2.5) has appropriate properties.

Lemma A′ ⊃ A, B′ ⊂ B ⇒ B′
A′ ⊂ BA ⇒ B′ ⊂ B

Proof Easy. The second part follows from B = λx.BA(Kx)⊥. �

+§1.3.9

Definition

(a) A Heyting system of types is a set V with a binary operation (→) : V ×V → V and a partial
order (⊂) ⊂ V × V such that if A′ ⊃ A and B′ ⊂ B then (A′ → B′) ⊂ (A → B). Note the
contravariance in the first argument! A homomorphism F : V →W of Heyting systems is a
function satisfying FA→ FB = F (A→ B) and A ⊂ B ⇒ FA ⊂ FB.

(b) Let C be a cartesian closed category with specified products and exponentials (also projec-
tions, evaluation and terminal object). A coercion structure on C is a subcategory D with
the same objects as C but at most one (canonical) map between any two objects, such that
(i) if A → A′, B → B′ in D then A × B → A′ × B′ in D and (ii) if A′ → A, B → B′ in D
then BA → B′

A′ in D.
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Examples

(a) By default the free Heyting system on countably many generators is commonly meant.

(b) Let C be a cartesian closed category with (specified products and exponentials and) a coercion
structure D. Then (V,→,⊂) is the underlying Heyting system on C, where V = ob C,
A→ B = BA and A ⊂ B iff there is a canonical map A→ B.

(c) Let C → C′ be a functor preserving specified products and exponentials and canonical maps.
Then there is a homomorphism of their corresponding underlying Heyting systems.

(d) In example (b) suppose D consists only of identities. Then A ⊂ B iff A = B, and (V,→,=)
is the underlying discrete Heyting system on C, written ‖C‖.

(e) Let Λ be a combinatory algebra. Then V = ob Retr(Λ), A → B = BA, A ⊂ B ⇐⇒
A = PAB = PBA is the retract coercion structure on Retr(Λ), the canonical map being
A : A→ B.

+§1.3.10 Given a Heyting system (V,→,⊂) we may say when a λ-term a ∈ Λ[t1, ..., tn] is typable
w.r.t. V when t1, ..., tn are assigned types A1, ..., An respectively:

(i) ti has type Ai

(ii) If f has type A→ B, and a has type A, then fa has type B

(iii) If b ∈ Λ[t1, ..., tn, x] has type B when x is assigned type A, then λx.b has type A→ B

(iv) If a has type A′ and A′ ⊂ A then a also has type A.

Now we shall define a cartesian closed category Type(V ) with a coercion structure.
The objects are finite strings of elements of V , written as formal products (the empty string

is written 1); we shall write ~A for A1 × ... × An. The morphisms ~A → ~B, where ~A and ~B have
lengths n, m respectively, are the strings of m Λ+[~t] terms of types ~B where the variables have
types ~A, identified under the rules

[x : A]
···

b : B a : A
(β)

(λx.b)a = b[x := a]

f : A→ B x 6∈ FV(f)
(η)

f = λx.fx

The identity on ~A is ~x and composition is given by substitution. The coercion structure is also
given by variables.

The terminal object is the empty string, and the product of two strings their concatenation;
the projections are just appropriate substrings of variables.

The exponential is

A1 × ...×An → B1 × ...×Bm = (A1 → (A2 → ...(An → B1)...))× ...× (A1 → ...Bm)

The exponential transpose hom( ~A×X, ~B)→ hom( ~A, ~BX) is λx. We need the typed η-rule as well
as the β-rule to make this a bijection; notice that it applies only to functional types. Evaluation
is given by application.

Given a homomorphism F : V → W of Heyting systems, Type(F ) on objects applies F to
each factor in the string, and on morphisms reinterprets terms.

Proposition Type(V ) is a cartesian closed category and Type(F ) : Type(V ) → Type(W ) a
functor which preserves products, exponentials and canonical maps.
Proof The functor is well-defined on morphisms because any term which is V -typable by A is
W -typable by FA, and any equality which holds for V also holds for W . It preserves products,
exponentials and canonical maps by construction. �
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+§1.3.11 We now compare the cartesian closed categories derived from the naturally occurring
Heyting systems on given cartesian closed categories.

Proposition The functor Type gives the free cartesian closed category with coercion on a Heyting
system of types, i.e. it is left adjoint to the underlying Heyting system functor, ‖ − ‖.
Proof

[η] Let (V,→,⊂) be a Heyting system. ‖Type(V )‖ has elements strings of V -elements, the
unit being the inclusion of singleton strings; → is given in the manner of the exponential in
Type(V ) and two strings are coercible iff they have the same length and are elementwise
coercible.

[ε] Let C be a cartesian closed category with coercion. Type(‖C‖) has new products and only
the λ-definable morphisms (ε being the inclusion of these). �

The adjunction is idempotent in the pseudo sense that the inclusion of Type(V ) in Type(‖Type(V )‖)
is an equivalence.

+§1.3.12 Now we apply this to a λ-model.

Lemma Let V be a Heyting system with an element Λ such that Λ → Λ ⊂ Λ. Then every raw
λ-term has type Λ.
Proof In the notation of §1.2.17, Λn ⊂ Λm for any n ≥ m. Define the degree of a raw λ-term to
be the depth of occurrences of application, so that ∂x = 0, ∂(ab) = max(∂a+1, ∂b), ∂(λx.a) = ∂a.
If a raw λ-term has type Λk when its free variables are assigned types Λm then it has type Λk+r

when we replace m by n with n ≥ m + r. Claim that any raw term a has type Λ in this case if
m ≥ ∂a. This is so for variables. For (ab), a may be retyped as ΛΛ and b as Λ. Finally λx.a has
type ΛΛ ⊂ Λ. �

Proposition Let C be a cartesian closed category with an object Λ for which ΛΛ is a retract of
Λ in a specified way. Then Λ carries a combinatory algebra structure in C, which is preserved by
the global section functor | − | = C(1,−).
Proof First replace C by an equivalent category C′ with specified products and exponentials (the
objects are terms in ×, → and the objects of C, the hom-sets are those for the isomorphic objects
of C). Now let D be the coercion structure on C′ generated by the inclusion ΛΛ ↪→ Λ (these are
of course unequal objects of C′); since the objects of C′ are uniquely expressable as products and
exponentials of C objects, there is indeed at most one (deduction of a) canonical map between any
two objects.

Let V be the underlying Heyting system. This satisfies the hypotheses of the lemma, so
any λ-term has type Λ. In particular we may interpret •, K and S and verify that these give a
combinatory algebra structure on Λ. Such structure is preserved by any functor which preserves
products (§1.1.10). �

§1.3.13 Finally we show that the constructions of §1.3.7 and 12 are inverse.

Theorem

(a) Let Λ be a combinatory model. Then Λ is isomorphic to the global sections of the combina-
tory model structure on the lambda model Λ = I ∈ Retr(Λ).

(b) Let Λ be a lambda model in a cartesian closed category C, such that every object of C is a
retract of Λ and idempotents split in C. Then Retr(|Λ|) is equivalent to C.

Proof
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[a] Following through the constructions, each a ∈ Λ is interpreted by something of the same
name.

[b] Every object of C is represented by a retract of Λ, which is an idempotent global element of
ΛΛ and hence a global element of Λ. �

Question What information does Retr(Λ) give about equality of terms in Λ?
We return in §5.6.10 to the question of repeating the Retr construction for the internal com-

binatory algebra in Retr(Λ).

1.4 The Graph Model

§1.4.1 We have now settled on the definition of a model of the λ-calculus as an object of a cartesian
closed category whose function space is a retract of it in a canonical way. Of course there are
trivial cardinality reasons why this cannot happen in the category of sets, so this view of the
λ-calculus remained dormant for a long time and at one stage it was even doubted whether there
was any model of mathematical interest. Then in 1969 Scott showed that the function-spaces
of what subsequently became known as continuous lattices were essentially no larger than the
original objects, opening the way for a continuous lattice model of the λ-calculus known as D∞.
The techniques which were developed from this form the subject of Chapter II.

Then Plotkin (and later independently Scott), circa 1972, showed how to make Pω (the pow-
erset of the natural numbers) into a model of the λ-calculus, though Scott [1979] traces earlier
occurrences of the ideas and sketches a hypothetical Master’s thesis which he claims could have
been written in 1928. The account given here is a highly potted version of Scott [1976]. The cat-
egory of retracts of this model is precisely the category of (countably-based) continuous lattices
and Scott-continuous maps.

The definition D ∼= D → D of an η-model is an example of a recursive domain equation. D∞
was the first (external, categorical) solution of such a problem, and this technique was developed by
Smyth and Plotkin [1978]. This is rather peculiar in that the exponential functor is contravariant
in the first argument, and so an auxiliary class of morphisms must be introduced to render the
function space construction functorial.

Pω also enables domain equations to be solved, but this time by internalising the constructions
(again in an apparently non-functorial way); the required solution is then obtained simply by use
of the fixpoint combinator. One of our aims is the explanation of why these two techniques work.

In this section we describe the Pω model, which has the property that the Y combinator really
does give least fixed points (with respect to its natural order).

§1.4.2 In order to obtain this property for Y, it is necessary to choose particular explicit
bijections among N itself, its set N× N of ordered pairs and its set PfN of finite subsets.

These are “cross-diagonal” and “binary” counting:

〈n,m〉 = 1
2 (n+m)(n+m+ 1) +m

a =
∑
{2n : n ∈ a}

em = {n : the nth binary digit of m is 1}

20
14 19
9 13 18 ...

m 5 8 12 17
↑ 2 4 7 11 16

0 1 3 6 10 15
→ n

∅ = 0
{ 0 }= 1

{ 1 } = 2
{ 1 , 0 }= 3

{ 2 } = 4
{ 2 , 0 }= 5
{ 2 , 1 }= 6
{ 2 , 1 , 0 }= 7

...
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Lemma

(a) m ≤ 〈n,m〉

(b) n ∈ em implies n < m. �

§1.4.3 Pω carries an order (setwise inclusion), and a topology, the Scott topology , which we
shall discuss in detail in §2.1.4. The sets ↑ em = {a ∈ Pω : em ⊂ a} ⊂ Pω form a base for this
topology, i.e. any open set is a union of sets of this form.

Lemma A function f : Pω → Pω is continuous iff for all a ∈ Pω we have

f(a) =
⋃
6{f(em) : em ⊂ a}

Proof

[⇒] Let n ∈ f(a), so a ∈ f−1(V ) where V = e2n . Hence by continuity there is a basic a ∈ ↑ em ⊂
f−1(V ). Then n ∈ f(em) and em ⊂ a, n lies in the right-hand side and we have ⊂. ⊃ is
trivial.

[⇐] The sets V = e2n are subbasic (generate the topology by finite intersection and arbitrary
union), and it suffices to show that f−1(V ) is open. Let a ∈ f−1(V ), i.e. n ∈ f(a); then
n ∈ f(em) for some em ⊂ a, i.e. a ∈ ↑ em ⊂ f−1(V ). �

§1.4.4 It suffices to define a continuous function f on these finite sets, and any monotone such
definition will do.

Consequently a continuous function is determined by the set

{〈n,m〉 : n ∈ f(em)}

which, by the identification of pairing above, is an element of Pω.

Lemma

(a) With this coding, application is given as

fa = {n : (∃m)(em ⊂ a ∧ 〈n,m〉 ∈ f)}

(b) The composite of these two operations,

u 7→ {〈n,m〉 : (∃m′)(em′ ⊂ em ∧ 〈n,m′〉 ∈ u)}

is a closure operator whose image consists of the codes of continuous functions. �

Proposition Pω is a β-model in Sp. �
Strictly speaking Sp is not cartesian closed but Retr(Pω) is a full subcategory of Sp known as

ContLatω; in theorem 2.3.8 we shall see that it consists precisely of the countably based injective
spaces. The inclusion and surjection maps are called “graph” and “fun”, hence the alternative
name graph model for Pω.
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§1.4.5 Our interest in the Pω model lies partly in the fact that its retracts are the continuous
lattices and that it is a retract of any other continuous β-model but also in that the Y combinator
gives exactly least fixed points.

Proposition Let Y = [[λf(λx.f(xx))(λx.f(xx))]]. Then Yf is the least fixpoint of f : Pω → Pω.
Proof (Scott) Put w = λx.f(xx) and let fa = a. To show ww ⊂ a it suffices by continuity to
show that em ⊂ w implies emem ⊂ a. This we show by induction on m.

Suppose then that the result holds for m′ < m, and that em ⊂ w with k ∈ emem: we want
k ∈ a. But by the definition of application, there is some m′ with 〈k,m′〉 ∈ em and em′ ⊂ em.
But m′ ≤ 〈k,m′〉 < m by lemma 1.4.2, and em′ ⊂ w, so by hypothesis em′em′ ⊂ a. Note also
that 〈k,m′〉 ∈ w and w is defined by λ-abstraction, so k ∈ wem′ = f(em′em′). By monotonicity
f(em′em′) ⊂ fa = a so k ∈ a as required. �

The use of the properties of the identifications is essential, as shown by Baeten and Boerboom
[1979]. The crucial point, however, was identified much earlier by Park [1969]; it is that the order
on N make tuples more complicated than their components.

§1.4.6 On the combinatory algebra structure of Pω we may as before construct the cartesian
closed category Retr(Pω) of types. In the previous discussion of this it was remarked that the
various constructions (product, exponential, etc.) were performed by means of combinators. For
example

× = λABz.〈Az0, Bz1〉
→ = λABf.PA(PfB)

when restricted to types (idempotents) yields their product or exponential.
A kind of “sum” may also be constructed using the Pω-combinator

cond = λtxy.


∅ if t = ∅
x if t = {0}
y if 0 6∈ t 6= ∅
ωotherwise

so
A+B = λz.cond z0 〈{0}, Az1〉 〈{1}, Bz1〉

The effect of this on lattices is to take their disjoint union and add new top and bottom elements
(cf. lemma 2.6.7). It is most certainly not a binary coproduct, but we shall see in §5.7.4 what it
really means.

Recall that retracts are ordered by inclusion of their underlying sets: A ⊂ B iff ‖A‖ = {a :
a = Aa} ⊂ ‖B‖; equivalently A = PAB = PBA. This is not the same as the order inherited as
elements of Pω. We also say a retract is strict if A⊥ = ⊥; of course since Y gives least fixed points
this really is the bottom element ∅.

§1.4.7 Using these operators we may write down domain equations, for instance N = 1 + N
for the “natural numbers” and D = A+ (D → D) for a model of the λ-calculus with atoms.

Proposition Let F ∈ Pω preserve retracts (so PAA = A implies P(FA)(FA) = FA). Then YF
is a retract. If also F preserves strictness and ⊂ then ‖YF‖ is the bilimit of the ‖Fn⊥‖.
Proof By proposition 1.4.5 YF =

∨
�(Fn⊥). By preservation of retracts each term is a retract

and by continuity of composition so is the limit. This is not a combinatory fact about Y: it
depends on proposition 1.4.5. We shall introduce bilimits in proposition 2.2.4 and explain this
more fully in §5.7. �

Our two equations may now be “solved” as N = Y(λn.1 + n) and D = Y(λd.A + d → d).
This may be used to provide domains for more complicated programming languages than the
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λ-calculus, in which objects may be numbers, functions, trees, ... whose values may themselves
be arbitrary objects. We simply write down (essentially) the Backus-Naur form of the definition
of an expression and apply the Y combinator to it; the syntactic operations in the language will
also correspond to semantic operations on the recursively defined type.

This is all very well (and it will be clear that this internal Scott method gives the same answers
as the external Plotkin method) but we can hardly claim to have explained what it all means, and
surely if we are to use the word “semantics” for these techniques it is incumbent upon us to do so.

§1.4.8 What can we say of the collection of retracts? It’s easy to see that it forms a complete
lattice, but Ershov has shown that it is not continuous and so is not the image of a retract [Hosono
& Sato 1977]. Scott’s answer to this was to restrict attention to the closure operators, i.e. the
continuous inflationary idempotents (1 ≤ c = c2).

Proposition The category of closure operators and functions commuting with them is cartesian
closed, and there is a type whose elements correspond bijectively to the types.
Proof We have to adopt a different pairing combinator, specifically

[x, y] = {2n : n ∈ x} ∪ {2n+ 1 : n ∈ y}
u0 = {n : 2n ∈ u}
u1 = {n : 2n+ 1 ∈ u}

which satisfies not only [x, y]0 = x and [x, y]1 = y but also u = [u0, u1], i.e. it is surjective. With
this we construct products and exponentials as before.

The type of types is constructed in the obvious way: V = λA.
⋃
An which is (and has values

which are) continuous and idempotent by continuity of composition. it is inflationary because A
itself occurs in the union and its values are because the identity (A0) occurs. �

This category actually consists of the countably based algebraic lattices (proposition 2.3.4).
This “type of types” combinator V enables us to interpret polymorphism (where the types are

variable), which will be discussed in chapter III. However once again we have begged the question
as to what it all means. It is my opinion the use of closure operators here is also a mistake.

§1.4.9 The intuitive reason why Y should give the least fixed point is that Yf = f(Yf) =
f2(Yf) = ..., and so is the limit of the sequence ⊥, f⊥, f2⊥, ... More generally, we may approxi-
mate terms syntactically by substituting ⊥ for subterms of β-equivalent terms; such approximants
are called Böhm trees if they are in normal form (§1.1.13), and a model is continuous if (it is
sensible, i.e. identifies unsolvable terms to ⊥, and) the interpretation of a term is the directed sup
of those of its Böhm approximants. Thus in particular Y is the least fixed point combinator in a
continuous model.

Proposition Pω is a continuous model. �

1.5 Fixpoint Properties in Categories

+§1.5.1 Having now agreed on the definition of a model of the λ-calculus, it is appropriate the
discuss the various forms which one might adopt for an axiom demanding fixpoints for all objects
in a category, and to investigate the elementary consequences of these. Let E be throughout a
cartesian closed category.

Recall that a lambda β- (respectively η-) algebra is an object Λ ∈ E with ΛΛ /Λ (respectively
ΛΛ ∼= Λ).

Define the following reflexivity conditions on A ∈ ob E :
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[R5] A is η-reflexive if A / Λ for some η-algebra Λ in E .

[R4] A is β-reflexive if A / Λ for some β-algebra Λ in E .

[R3] A is reflexive if AU / U for some object U of E .

[R2] A has internal fixpoints if there’s a map YA : AA → A such that the two composites below
are equal:

AA
〈pidq,YA〉- AA ×A

evA -

π1

- A

[R1] A has external fixpoints if for every f : A→ A there’s some a : 1→ A such that a ; f = a.

[R0] A is inhabited if there’s some map 1→ A from the terminal object of E .

A category in which every object satisfies R4 or R5 is said to have enough models of the lambda
calculus. If one model Λ suffices for the whole category then it is saturated (see §2.6.1) and we
have a subcategory of Retr(Λ); clearly this will not be the case for large categories (in the sense
of Definition 2.5.2).

+§1.5.2

Proposition Let F : E → F be a functor preserving products and exponentials; then β- and
η-algebras and each of R0 to R5 are preserved. If in addition F is full and faithful then η-,
β-algebras, R2, R1 and R0 are reflected.
Proof These follow easily from the form of the definitions. �

+§1.5.3

Lemma Any finite power of an η- or β-algebra or of an η− or β-reflexive object has the same
property.
Proof Let ΛΛ / Λ. By repeated Currying we have ΛΛn / Λ; for ΛΛn+1 ∼= (ΛΛ)Λn / ΛΛn , and so
we have this by induction. So (Λn)(Λn) ∼= (ΛΛn)n /Λn. Similarly with isomorphisms. Also if A/Λ
then An / Λn. �

+§1.5.4 We now show the implications between these properties.

Lemma Each of R5, R4, R2 and R1 implies R0, which is equivalent to A / AA.
Proof These may be seen by consideration of the identity as an element of ΛΛ or AA; the
remaining case (R3 ⇒ R0) will follow shortly. If A has an element (which we may call ⊥) then A
is a retract of AA by dropping a variable (§1.2.17), i.e. a 7→ λb.a and f 7→ f⊥. �

+§1.5.5

Lemma Each property is stable under retracts. R5 and R4 are equivalent to reflexivity by an η-
or β-algebra respectively.
Proof These follow because retracts are preserved by any covariant or contravariant functor, in
particular composition and either side of exponentiation. Let B / A.

[R5, R4] B / A / Λ implies B / Λ.
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[R3] BU / AU / U .

[R2] This requires some thought, but the composite BB ↪→ AA → A� B will be found to work.

[R1] The external version of the same thing. Let f : B → B, and put g : A � B → B ↪→ A for
the composite with the surjection and inclusion. We recover f as B ↪→ A → A � B. Let
a ∈ A with ga = a; then the image of a under the surjection is fixed by f .

[R0] by composition with the surjection.

[R5 ⇒ Rη
3, R4 ⇒ Rβ

3 ] AΛ / ΛΛ / Λ

[Rβ
3 ⇒ R4, Rη

3 ⇒ R5] A / AU by dropping a variable, i.e. a 7→ Ka and f 7→ f⊥ where ⊥ ∈ U .
Then A / U . �

+§1.5.6 The numbers are justified by the

Proposition Each property implies the next.
Proof It remains only to show that R3 ⇒ R2. Let c : AA×AU → AU be the obvious composition
map and ∆ : U → U × U the diagonal. Write u : 1→ AU for the exponential transpose of

U
∆- U × U

p - A

where p is the exponential transpose of the surjection p : U � AU , the inclusion AU ↪→ U being
called i. We might say that u is λx.[p(x)](x). Then let YA : AA → A be

AA × 1
1× u- AA ×AU

c - AU ⊂
i - U

∆- U × U
p - A

This has the required property. �
Of course this is just a specialisation of the Y combinator, and the “bottom” element con-

structed for Λ by this process is just (λx.xx)(λx.xx). We have in particular shown that Retr(Λ)
has internal fixpoints; it will follow shortly that this means that it cannot have binary coproducts,
equalisers or intersections of subobjects.

+§1.5.7 We can force these properties by putting strong completeness conditions on E ; this is
based on an idea of Martin Hyland:

Proposition Suppose E has products over indexing sets of cardinality up to that of the object set
of E . Then it has a β-algebra of which any inhabited object is a retract.
Proof Let I ⊂ ob E be the set of inhabited objects and Λ =

∏
A∈I A their product. Clearly

ΛΛ ∈ I because 1Λ ∈ ΛΛ. Choose a point a for each inhabited object A ∈ I. It suffices that
any B ∈ I be a retract of Λ, for then ΛΛ / Λ also. The surjection Λ � B is simply the product
projection, since B is one of the factors. The image of b ∈ B under the inclusion is (uA(b) : A ∈ I),
where

uA(b) =
{
b if A = B
a(the chosen point of A) otherwise

�
The peculiar thing about this result is not really its use of the Axiom of Choice: this “axiom”

is commonly found to be a theorem when results using it are applied , because there is usually
enough structure in the presentation. The difficulty lies in the dichotomy in the definition of the
retract, and in the notion of equality of objects.

Example Let Λ be a domain with Λ ∼= Λ×Λ ∼= ΛΛ. We shall construct such a device in §2.5.11.
Then E = {1,Λ}, with the obvious morphisms, satisfies the conditions of the Proposition: since
there are only two objects we need only binary products.
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§1.5.8 We cannot ask for bigger products than this because of the well-known result due to
Peter Freyd:

Proposition Let C be a category with at most κ morphisms. If C has κ-indexed products then it
is a complete lattice.

Proof Suppose f, g : X ⇒ Y are distinct. Then |C(X,Y κ)| = |C(X,Y )|κ ≥ 2κ > κ by Cantor’s
theorem (proposition 1.5.13). �

This depends critically on the assumption Ω = 2 in the base topos (Set); if we drop this
assumption it is possible to have small complete proper categories.

+§1.5.9 Now we shall refute some of the reverse implications. Clearly R0 ; R1; we now show
R2 ; R3.

Example Consider the cartesian closed category Posf of finite partially ordered sets and mono-
tone functions. Any nonempty object is inhabited and any finite poset with a least element has
internal fixpoints, but the singleton is the only reflexive object.

Proof Cartesian closure is well-known, the exponential BA being just the set of monotone
functions from A to B with the pointwise order. Tarski’s theorem for finite posets gives the
fixpoints: the sequence ⊥, f(⊥), f2(⊥), f3(⊥),... is monotone and so eventually constant, and the
function assigning to f this ultimate value is monotone. Now suppose AU / U .

Suppose that a < b is a nontrivial instance of the order relation on A. For u ∈ U let fu : U → A
by fu(ξ) = a if ξ ≤ u and b otherwise; fu and fv agree on {u, v} only if u ≤ v and v ≤ u. This
yields a collection of monotone functions {fu : u ∈ U} with as many elements as U , but it does
not exhaust AU because the constant function with value b does not occur. Hence we have found
more elements of AU than there are in U .

Suppose then that A is discrete, whence so also is AU . Any map U → A or U → AU is constant
on the components of U . So the cardinality of AU is nm where n is the cardinality of A and m is
the number of components of U . Then the surjection forces nm ≤ m, which is only possible for
n = 1. It is, however, possible to have an inclusion AU ↪→ U with n > 1. �

+§1.5.10 R1 ; R2. For an introduction to K-spaces see Brown [1964].

Example The category of K-spaces and continuous maps is cartesian closed. The unit interval
[0, 1] has external but not internal fixpoints.

Proof Let I = [0, 1] and R be the reals. I has external fixpoints by the Intermediate Value
Theorem. Suppose Y : II → I were a (continuous) fixpoint operator. Let f : R→ I

I by

f(t, x) =
{

etx if t ≤ 0
1− e−t(1− x)if t ≥ 0

Then Yf : R→ I must take value 0 for t < 0 and 1 for t > 0 so is not continuous. �

Questions

(a) Does R3 ⇒ R4 or R4 ⇒ R5?

(b) What is the structure of {X ∈ E : X |= Ri}?
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+§1.5.11 The rest of this section is devoted to showing that certain properties conflict with
fixpoints. This is why we have adopted the weaker definition (§1.2.16) for cartesian closure:

Proposition Let E be lex cartesian closed with every object of E inhabited. Then E is degenerate.

Proof Let A → 1 → A be the constant endomorphism of an object whose value is the given
element. Consider the pair A ⇒ A consisting of this and the identity, and let U be the equaliser
of the corresponding elements 1 ⇒ AA, so U ↪→ 1 is regular mono. But U is inhabited so this
is epi and hence iso, which means that the two elements of AA and so the two maps A → A are
equal, i.e. A→ 1→ A is the identity. Trivially 1→ A→ 1 is also the identity, so A ∼= 1. �

In order to interpret logic, as usually understood, in sets or categories we need to choose
some class of inclusions (monos) as the “subsets of elements satisfying some condition”. This is
called the Axiom of Comprehension, and there may be some restrictions on the class of conditions
allowed. Since retracts are well behaved, we expect at least these to be admissible as subobjects.
However this result together with lemma 1.2.13γ show that we are unable to use intersections to
interpret Conjunction.

Another corollary of this is that we cannot solve double fixpoint equations A ∼= fA ∼= gA for
general retracts f , g. We can do this if f and g commute, and have done so several times already.

§1.5.12 Negation and Disjunction also fall. For Negation this is of course the famous liar
paradox ; the complete lattice case is due to Martin Hyland.

Proposition Let A be an object of E with external fixpoints and which carries a Heyting algebra
or complete lattice structure. Then it is degenerate (isomorphic to the terminal object).

Proof Let 0 and 1 be the bottom and top elements w.r.t. the order on A and ¬ : A→ A be the
“negation” operation. In the Heyting algebra case ¬a = (a→ 0) and in the complete lattice case
¬a =

∨
{b : af b = 0}. In either case ¬0 = 1. Now suppose ∗ is a fixpoint of ¬. Then in the first

case ∗ = ∗ f ∗ = ∗ f ¬∗ = 0, but then ∗ = ¬∗ = ¬0 = 1, so 0 = 1. In the other case ∗ f b = 0
implies b ≤ ∗ so ∗f b = b = 0; but then ∗ =

∨
{0} = 0 and 0 = ∗ = ¬∗ =

∨
A = 1. �

Corollary If every object of E has external fixpoints and E has binary coproducts then E is
degenerate.

Proof The coproduct of the terminal object with itself has a Boolean algebra structure, and
so is degenerate. It follows that any two global elements 1 ⇒ A of an object are equal. So each
object has a unique global element, and applying this to the exponentials in E we deduce that
between any two objects there is a unique map. �

§1.5.13 Now let E be a topos with subobject classifier (object of truth values) Ω. We shall
prove Cantor’s theorem.

Lemma If either A� B or B ↪→ A then ΩB / ΩA.

Proof The map ΩB ↪→ ΩA (respectively ΩA � ΩB) given by the exponential contravariant
functor gives the inverse image of a subset under the original map. As we shall see in §3.2.16,
the inverse image maps have adjoints on both sides, which are quantifiers (∃ on the left, ∀ on the
right). Either of these provides an inverse, and hence a retract. �

Corollary Suppose E has an object A with either A� ΩA or ΩA ↪→ A; then it is degenerate.

Proof With B = ΩA we then have ΩB / B, so Ω is reflexive. But then it has internal fixpoints,
and on the other hand a Heyting algebra structure. �
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+§1.5.14 Here is an idea (from a note dated 24 April 1986) for [R4 ; R5]. Let Λ be the term
λβ-model and E = Retr(Λ), so by definition A |= R4 for any object A. Suppose A |= R5, so
UU ∼= U for some object U , say u : UU → U and v = u−1. Then u = u ; v ; u, v = v ; u ; v and

u ; v = λf.(v ; u ; f ; v ; u)

I conjecture(d) that the only solution to these equations is u = K(uu), v = Ku, i.e. A ∼= 1.
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Chapter 2

Categories of Domains

2.1 Inductive Partial Orders

+§2.1.1 We shall be concerned with models of the λ-calculus which, like Pω, carry an order struc-
ture, and in the categories of types arising from them. We begin by repeating the basic order-
theoretic result (proposition 1.2.2), and observing its converse.

Proposition Let (X,≤) be a poset with least element ⊥ and a least upper bound for any directed
set (written

∨
�). Then any monotone function f : X → X has a least fixed point.

Proof Put x0 = ⊥ and, inductively, xα =
∨
�{f(xβ) : β ∈ α}. (This is a concise form of

a transfinite recursive definition; alternatively we put xα+1 = f(xα) for successor ordinals and
xλ =

∨
�{xα : α < λ} for limit ordinals.) f is monotone so the sequence is increasing and the sup

is indeed directed. By cardinality (Hartogs’ Lemma) the sequence must eventually stabilise, say
at x, with f(x) = x. If also y = f(y) then xα ≤ y for each α so x ≤ y. �

+§2.1.2 Naturally the converse to this involves Choice.

Lemma Let (X,≤) be a poset, a ⊂ X a directed subset and κ a cardinal. Suppose X has a least
upper bound for any directed set of cardinality less than κ. Then the set of elements lying below
the sup of a directed subset of a of cardinality less than κ is an ideal, which we shall call the
κ-completion of a.
Proof Induction on κ; if κ is a limit cardinal we need only observe that a union of ideals is
an ideal, so suppose κ = λ+. Let b be the λ- and c the κ-completion of a, so b is an ideal. Let
x =

∨
� xα, y =

∨
� yα ∈ c, expressed as unions of directed subsets of a of size less than κ, so at

most λ. Put z0 = ⊥ and for α < λ let zα be a bound in b for
∨
�{zβ : β < α}, xα and yα. Then

{zα : α < λ} is directed of size (at most) λ so has a least upper bound z ∈ c. Also xα, yα ≤ zα ≤ z
so x, y ≤ z. Hence c is directed, and trivially down-closed. �

Proposition Let (X,≤) be a poset. Then every monotone function f : X → X has a least fixed
point iff X has a least element (⊥) and every directed set has a least upper bound.
Proof The least fixed point of the identity is ⊥. Let a ⊂ X be directed of cardinality κ (say
a = {xα : α < κ}) and suppose inductively that X has all directed sups of size < κ.

Let b be the κ-completion of a and (inductively) for α ∈ κ let yα ∈ b be a bound for xα and∨
�{yβ : β ∈ α}. Now define f : X → X by

f(x) =
{
x if x is a bound for a
yαif α = {β : yβ ≤ x} < κ

and verify that this is monotone. Observe that f(x) ≤ x holds only in the first case, where x is
a bound. The fixed points of f are therefore exactly the upper bounds of a, and by hypothesis
there is a least fixed point. �

31
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§2.1.3 In Number Theory the rings in which one can perform Euclid’s algorithm for finding
the highest common factor are called Euclidean Domains, so since Tarski’s theorem characterises
posets with ⊥ and

∨
� perhaps Tarski Domains would be an appropriate name for them. There

seems to be a major industry amongst theoretical computer scientists concerning objects with as
little structure as this, and they give them the grandiose title of complete partial orders or cpos.

The converse we have proved does not justify the claim that all directed sups are necessary
since (i) the proof was nonconstructive (it asked for a fixpoint of a very peculiar function), (ii) we
are only interested in continuous functions and (iii) for computer science purposes we only want
the effectively given functions anyway. Nor are the conditions sufficient , since the domains for
which there is any use are also given in an effective way.

One ought to expect more of something called “complete” than this, and the word is grossly
overused anyway. Since Tarski’s theorem applies to the semantics of recursion, I shall compromise
and call them inductive partial orders and write (following Plotkin [1976]) IPO for the category
having these as objects and as morphisms the functions preserving directed sups.

§2.1.4 We shall always consider ipos to be provided with the Scott topology :

Proposition Let (X,≤) be a poset with directed sups.

(a) The down-closed subsets of X which are closed under directed sups form the closed sets of
a topology.

(b) A function from X to another poset Y with directed sups is continuous w.r.t. this topology
iff it preserves directed sups.

Proof Arbitrary unions and intersections of down-closed sets are down-closed. If we also ask
for closure under directed sups have only finite unions. If f : X → Y preserves directed sups
(whence by considering the sup of any two comparable elements it’s monotone) then its inverse
image preserves closure. Conversely if f is continuous and a ⊂ X directed consider the closure of
the image of a, which is ↓(

∨
�(fa)); the inverse image of this is closed and so contains

∨
� a. �

However Johnstone [1979] has shown that the Scott topology need not be sober, although as
soon as the conditions which we shall regard as minimal (viz. continuity, §2.3.5) are imposed upon
the poset then it is always sober.

§2.1.5 The above derives topology from order . Conversely any topological space carries a
preorder on its points, the specialisation order . Here x ≤ y if every open set which contains x also
contains y.

Lemma The specialisation order ≤ on a space X is

(a) a partial order (antisymmetric) iff X is T0,

(b) discrete iff X is T1. �

Topology can say nothing about spaces below T0, so we shall always assume this holds. [How-
ever Fred Linton has pointed out to me that in a finite T0 space, int ā ⊂ ¯int a (the interior of the
closure is in the closure of the interior) for any subset a, so that there are fewer than fourteen sets
obtainable using closure and complement, whereas there is a nine-point example of a non-T0 space
with fourteen.] Since Hausdorff = T2 ⇒ T1, part (b) explains why this order does not feature in
geometric or analytic topology.

Lemma

(c) Let (X,≤) be a poset with directed sups, and σ its Scott topology. Then the specialisation
order on (X,σ) is ≤.
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(d) Let (X, τ) be a sober space and ≤ its specialisation order. Then (X,≤) has directed sups
and any τ -open set is Scott-open. �

Of course this order structure applies not only to the points of a space but also to continuous
maps between them.

Lemma

(e) Let X, Y be spaces and f, g : X ⇒ Y continuous maps between them. Then ∀x.fx ≤ gx
in the specialisation order on the points of Y iff ∀V.f−1V ⊂ g−1V in the inclusion order on
open subsets of X. �

§2.1.6 Now we consider products and exponentials in IPO.

Proposition

(a) IPO has arbitrary products, created by the forgetful functor IPO→ Set.

(b) A function of several (perhaps infinitely many) arguments is jointly continuous iff it is sep-
arately continuous.

(c) the Scott and Tychonov topologies on a (possibly infinite) product agree. �

Proof

[a] We calculate
∨
� componentwise.

[b] By proposition 2.1.4b we have to preserve
∨
�; but this is calculated componentwise so we

only need preserve it componentwise.

[c] Let Xi ∈ IPO for i ∈ I. Write S, T for the product sets with the respective topologies. By
definition S → T is continuous; we have to show that if U ⊂

∏
iXi is Scott-open then it is

Tychonov-open. Let (xi : i ∈ I) ∈ U ; then for a ∈ Pf (I) put

xai =
{
xiif i ∈ a
⊥otherwise

so
∨
�{(xai : i ∈ I) : a ∈ Pf (I)} = (xi). But U is Scott-open so (xai : i ∈ I) ∈ U for some

a = {i1, ..., ir}. Let U1, ..., Ur be the projections of U onto the corresponding factors of the
product; then the rectangle U1× ...×Ur ×

∏
i 6∈aXi is a basic Tychonov-open set containing

(xi : i ∈ I) and lying within U . �

This good behaviour for products does not apply to all limits. Though IPO does have cofiltered
limits, IPO→ Sp does not preserve them.

Example Let Cn be the “flat domain” with 2n (maximal) points and ⊥. Consider the diagram
with vertices the Cn and surjections Cn+1 → Cn which identify pairs of maximal points in the
obvious way. The limit C∞ of this diagram in Sp is obtained from the Cantor set by adding a
closed point ⊥ whose only neighbourhood is the whole space. The limit in IPO is the same set,
but with the discrete topology on the maximal points (cf. example 5.2.6d). �

§2.1.7

Lemma In the set of Scott-continuous functions between two ipos with the pointwise order, sups
and infs (where they exist) are calculated pointwise. In particular this poset is an ipo. �

Proposition IPO is cartesian closed and has internal fixpoints.
Proof The ipo constructed in the lemma is the exponential. We found the fixed points in
proposition 1.2.1, and this construction is readily seen to be continuous. �

We shall shortly strengthen this reflexivity property (R2 from §1.5.1) to R5. If we were to drop
the requirement that there be a least element we would get all limits but of course lose fixpoints.
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+§2.1.8 When can we take pullbacks in IPO? A map in a category against which we can
take the pullback with any map with the same codomain is said to be carrable (French, means
squarable).

Proposition

(a) A Scott continuous map p : X → Y between ipos is carrable iff it is a projection (§1.2.4).

(b) The pullback of a carrable map is carrable.

(c) The composite of two carrable maps is carrable.

(d) Any terminal projection is carrable.

Proof

[a,⇒] If p : X → Y is carrable let y ∈ Y and take the pullback against the corresponding pyq : 1 ↪→
Y . This is the inverse image of y in X and has to have a least element, which we call iy.
We now have to show that iy ≤ x iff y ≤ px; but since y = p(iy), “only if” is trivial. Let
y ≤ px; consider the map 2→ Y by 0 7→ y, 1 7→ px and let W be the pullback. (0, iy) is the
least element of W , and in particular it is less than (1, x), so iy ≤ x. p therefore has a left
adjoint monotone function, and this then has to preserve all , not just directed, sups.

W - X

Z

6
.................

a

? f - Y

i

6

a p

?

[⇐] Let p : X → Y be a projection and f : Z → Y any continuous function. Let W = X ×Y Z
be the pullback in Set, which consists of the set of pairs (x, z) with p(x) = f(z). With the
componentwise order this is a poset with directed sups. (i(f⊥Z),⊥Z) is the least element.

(b,c) are standard properties of pullbacks (1.2.14).

(d) Terminal maps are projections because of ⊥; they are carrable because we have products.�

Example The following map shows that the fourth sentence of the proof is not redundant: each
point of the codomain has a least preimage but the map is not a projection.

d
d
d

d
d d
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�
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�
��
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?

?

This result will become relevant when we discuss fibrations of ipos in chapter V. Parts (b) to
(d) are the axioms for a class of display maps (§4.3.2). Adjoint pairs of maps like these will play
a major rôle in the rest of the work.
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§2.1.9 As already remarked in §2.1.3, IPO is not particularly interesting in itself but serves as
a convenient category in which to perform basic constructions. In fact we shall take more interest
in certain cartesian closed full subcategories of it.

Lemma Let C be a full subcategory of IPO which is cartesian closed in itself . Then the products
and exponentials in C are those from IPO.

Proof

[1] Let T be the terminal, and X any other object of C. By definition there is a unique C-map
from X to T , and hence by fullness a unique IPO-map. But there is a map Kt for each
t ∈ T , so T has just one point.

[×] Let A,B ∈ C; write A × B for their product in IPO and A ⊗ B for that in C. We have to
show that the comparison map A⊗B → A×B in IPO is bijective and order-reflecting. Each
element of A⊗B (map T → A⊗B) gives a pair 〈a, b〉 (with a ∈ A, b ∈ B) by composition
with the C-product projections, and conversely by the universality of ⊗ each such pair arises
from a unique [a, b] ∈ A⊗B in this way. Hence we have bijectivity. For order-reflection, let
〈a, b〉 ≤ 〈a′, b′〉 in A × B; by transitivity we need only consider the (similar) cases a ≤ a′,
b = b′ and a = a′, b ≤ b′. We have a (unique) map A → A ⊗ B from 1A : A → A and
Kb : A→ B; by monotonicity, a ≤ a′ implies [a, b] ≤ [a, b′].

[→] Let A,B ∈ C. By the exponential adjunctions and fullness there is an natural bijection
among elements of the C-exponential, continuous functions A → B and elements of the
IPO-exponential. To show that this is an order isomorphism, let C ∈ C be an arbitrary
nontrivial domain and ⊥ 6= 1 ∈ C (since 2 / C, cf. Lemma 2.3.1b); given f ≤ g, we can
extend these to h : C ×A→ B with h(⊥, a) = f(a) and h(1, a) = g(a). �

§2.1.10 We devote the remainder of this section to a discussion of finite spaces which will be
needed in section 6.

Proposition There is an equivalence between

(α) Finite T0 spaces and continuous maps

(β) Finite posets and monotone maps

(γ) Finite distributive lattices and opposite homomorphisms.

Proof [α⇒ β] By the specialisation order. [β ⇒ α] There is a unique (T0) topology on a finite
poset for which the specialisation order is the given relation. [α⇒ γ] The topology. [β ⇒ γ] The
lattice of upper sets. [γ ⇒ β] The subposet of coprime elements. �

More generally, the prime filters on an (infinite) distributive lattice provide a space called the
spectrum, whose compact open sets are the elements of the given lattice. A space which arises in
this way is said to be coherent (see §2.4.6).

+§2.1.11 First we characterise finite surjections and their splittings.

Definition

(a) A subset S of a poset X is convex if when s1 ≤ x ≤ s2 for s1, s2 ∈ S and x ∈ X then x ∈ S.

(b) A subset of a space is called locally closed if it is the intersection of an open set with a closed
set.
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(c) A collection of subsets X1, ..., Xn of a poset X is mutually convex if each is convex and
if xi1 ≤ yi2 , xi2 ≤ yi2 , ... xik−1 ≤ yik , xk ≤ y1, for some i1, . . . ik, xij , yij ∈ Xij , then
i1 = i2 = · · · = ik. [This definition was incorrectly stated (with k = 2) in the original.]

Lemma Let X be any space and S ⊂ X.

(a) S = f−1(y) for some continuous f : X → Y with Y T0 finite and y ∈ Y iff S is locally closed
in X.

(b) Such a set is convex in the specialisation order. [This is used in §2.6.2.]

(c) Let X be an ipo; then S is locally closed iff it is convex and closed under and inaccessible
by directed sup (i.e. if s ≤

∨
� xi then ∃i, s′.s′ ≤ xi.)

(d) Let X be an algebraic poset (2.3.4); then S is locally closed iff S = {
∨
� D : D ⊂ C} where

C = S ∩Xfp.

(e) In (d), any convex C ⊂ Xfp arises in this way.

Proof

[a,⇒] Put U = f−1(↑ y) and A = f−1(↓ y).

[⇐] Let u, v : X → 2 be the characteristic functions of the open sets U and X\A, and put
f = 〈u, v〉 : X → 22 = Y , y = 〈1, 0〉.

[b] Suppose s1 ≤ x ≤ s2 with f(s1) = f(s2) = y. Then y ≤ f(x) ≤ y.

[c,⇒] (a) applied to Scott-continuity.

[⇐] ↑S is open and ↓S closed in the Scott topology.

[d,e] follow from (c). �

Proposition Let X = X0 ∪ ... ∪Xn−1 be a partition of a space.

(a) This arises from a surjection to a finite T0 space iff the sets are locally closed and mutually
convex.

(b) It arises from a retract with image xi ∈ Xi iff each Xi is locally closed and whenever u ∈ Xi,
v ≤ Xj with u ≤ v in the specialisation order we have xi ≤ xj .

Proof Necessity in each case is trivial.

[a] By mutual convexity we may suppose (since there are only finitely many of them) that the Xj

are numbered in such a way that if u ∈ Xi, v ∈ Xj , u ≤ v then i ≤ j. Let n = {0, 1, ..., n−1}
with 0 < 1 < ... < n − 1 and f : X → n by Xi → {i}. This is monotone, surjective and
gives rise to the partition: it remains to show that it is continuous. Put Ui =

⋃
{Xj : i ≤ j}.

Suppose Xi = Vi ∩ Ai and v ∈ V ; by the partition v ∈ Xj , say, so by the numbering i ≤ j,
and v ∈ Ui; hence Vi ⊂ Ui. Conversely let v ∈ Ui, so v ∈ Xj for some i ≤ j and then
v ∈ Vj ⊂ Uj ⊂ Ui. Hence Ui =

⋃
{Vj : i ≤ j} and is open.

[b] Mutual convexity is forced by the additional condition. Let Y be the poset with the same
elements 0, 1, ..., n − 1 as before, but only those instances of the order relation which are
forced by monotonicity. Then Y ∼= {x0, ..., xn−1} ⊂ X. �
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+§2.1.12 The corresponding problem for injections is much harder. The following result simply
amplifies the T0 separation axiom.

Lemma Let X be a T0 space and S ⊂ X nonempty finite. Then there is a finite T0 space T
and a continuous map X → T such that S ↪→ X → T is continuous and bijective (though not
necessarily a homeomorphism).
Proof Suppose S = {s0, ..., sn−1} is enumerated in such a way that si ≤ sj implies i ≤ j (sic),
using T0. By the definition of the specialisation order, for i < j we have some open Vij with
si /∈ Vij and sj ∈ Vij . Put

Ui =
⋃
k

{
⋂
j

{Vjk : j < k} : i ≤ k} and Ai = X\Ui+1

Then X = U0 ⊃ U1 ⊃ ... ⊃ Un−1, si ∈ Ui ∩ Ai and these sets partition X. Put T = n =
{0, 1, ..., n− 1} and define X → T by Ui ∩Ai → {i}. This is continuous because the inverse image
of ↑ i is Ui; S → X → T is clearly bijective. We can cut down the order relation on T in the
same way as remarked in the proof of proposition 2.1.11b. There are obvious counterexamples to
homeomorphism. �

In order to split an injection we need to choose a partition satisfying the conditions of proposi-
tion 2.1.11b. To construct this it would be useful to know, for instance, that ↓ ↑x is always closed.
However this is not true in general (example 2.5.7b). In fact in section 6 we shall retreat to a
“lattice-like” case.

The proof of lemma 2.6.3a is a variant of this.

2.2 The Limit Colimit Coincidence

§2.2.1 In this section we begin to see the real power of (suitable subcategories of) IPO. Tarski’s
theorem provides a very simple semantics for recursion, but we find that similar results apply to
the category as well as its objects. In other words we can solve recursive domain equations such
as that Λ ∼= ΛΛ which defines an η-algebra using fixpoint techniques. At the foundation of this
is the limit-colimit coincidence first observed by Scott [1972] in the context of complete lattices;
the technique was subsequently developed by Smyth and Plotkin [1978]. As we work through
this theory the similarities between domains and categories of domains become more and more
conspicuous, and in many places we either deliberately confuse, or are in danger of accidentally
confusing, object and meta-levels. Eventually (and this is the major aim of this work) we find
that we can push this as far as the construction of a “type of types”.

§2.2.2 Perhaps Scott’s “D∞” model of the λ-calculus is the best place to start. We want a
“fixed point” of the construction X 7→ XX . There are three rather obvious problems here. First,
after Cantor’s theorem (1.5.13) we might think that XX is rather a lot bigger than X. Second,
“fixed point” means that f(X) is equal to X, and it is the very first lesson of Category Theory that
equality of objects just does not arise naturally in Mathematics. We shall return to this notion
in §5.3.6. Finally, this construction is not functorial, because (X,Y ) 7→ Y X is contravariant in its
first (raised) argument.

The first problem really just shows that our intuition (based on discrete sets) is simply wrong.
Of course any nontrivial Λ with Λ ∼= ΛΛ is infinite, but its infinity is of a “fluid” rather than
“granular” kind.

There are two different solutions to the second problem. One involves working in a combinatory
model such as Pω, where the types have some kind of canonical representation as elements (though
there may still be distinct isomorphic types). Whilst this is very pleasant to work with, in the
absence of explanation it’s just conjuring.

The other solution, naturally offered by Category Theory, is to replace equality by isomorphism.
We also learn from this discipline that isomorphism is not a property of a pair of objects but a
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structure between them: we have to quote the maps explicitly and carry them around with us
in the construction. More generally, the categorical analogue of Tarski’s theorem requires us to
name comparison maps between the objects in the diagram, where previously we replied on the
mere existence of (an instance of) the partial order relation.

The third problem we also sweep under the carpet (in the first instance) by a trick, namely
to move to an auxiliary class of morphisms. In chapter V we attempt to explain what this is all
about, although really there the “explanation” amounts only to a comparison with the Retr(Pω)
case.

§2.2.3 Scott’s D∞ construction of an η-model in IPO takes us from the weakest to the
strongest of the reflexivity properties listed in §1.5.1. We start with some “seed” (such as the two-
element lattice 2) and repeatedly apply the function space construction until it stabilises (recall
the notation Xm from §1.2.17). From lemma 1.5.4 it is necessary that the seed be inhabited, and
this turns out to be sufficient because we use the point to give a particular retraction X /XX (by
dropping a variable).

In the context of categories rather than posets we need to specify the comparison maps in the
diagram. In our case the first of these is the given retraction X /XX = X1, and subsequent ones
are obtained by applying the function-space functor to this. This is not the same as dropping a
variable between Xm and Xm+1.

Whereas with Tarski’s theorem the order relation (and ⊥) forced the terms in the sequence to
be increasing, in the categorical case we have to supply comparison maps. [No: the same argument
still applies; there is a unique map ⊥ → F⊥ since ⊥ is initial, and applying F provides the other
finite terms. The colimiting cocone gives maps to vertices at limit ordinals; then applying F again
to the whole diagram we have another cocone, to which there is a unique mediating map from the
colimit.]

Thus we need a pointed endofunctor , i.e. a functor F : C → C together with a natural trans-
formation ηX : X → FX. This may be iterated in a diagram of the form

X
ηX- FX

FηX- F 2X
F 2ηX- F 3X

F 3ηX- · · ·FmX
FmηX- Fm+1X· · ·

The reason for using Fm(ηX) rather than η(FmX) is that when we apply F to the whole diagram
we then get another copy of it; hence if F preserves the (filtered) colimit then this colimit, F∞X,
will be a fixed point of F in the sense that F (F∞X) ∼= F∞X.

But we have already remarked that the function-space construction is not functorial, so what
use is this to our case? Well, we change category. In stead of using continuous maps in IPO we
use retractions; then in applying the function space construction, which is partly covariant and
partly contravariant, we use whichever of the two maps comes to hand. Thus given (i, p) : X / Y
we define (ip, pi) : XX / Y Y by ipf = p ; f ; i and pig = i ; g ; p.

+§2.2.4 Let us briefly consider the general retract case.
Let C be any category. Write Cre for the category whose objects are those of C and whose

morphisms X → Y are pairs (i, p) where i : X ↪→ Y and p : Y � X satisfy i ; p = 1X . Let
X : I → Cre be any diagram. Write limXi for the limit of the diagram in C whose arrows are the
epi parts, colimXi for the colimit of the diagram of monos in C and bilimXi for the limit in Cre,
where these exist.

Lemma

(a) If lim and bilim both exist then they are isomorphic.

(b) Likewise colim and bilim.
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(c) If lim and colim both exist and are isomorphic then so does bilim (and is isomorphic to them).
Proof

[a] Let πi : lim → Xi and (ii, pi) : Xi → bilim be the limiting cones. By the universal property
of lim there is a comparison map p : bilim → lim in C with p ; πi = pi. Put ιi = ii ; p, then
ιi ; πi = 1 so we have a cone in Cre. But bilim is universal, so we have a comparison map
(ι, π) : bilim→ lim in Cre with ι ;π = 1, ii ; ι = ιi and π ;pi = πi. Now ι ;πi = ι ;π ;pi = pi so ι
satisfies the universal property of p, whence ι = p. Also π ;ι;πi = π ;ι;π ;pi = π ;pi = πi = 1;πi
so again by the definition of lim, π ; ι = 1. Hence lim ∼= bilim. [Why does ii ; pi = id?]

[b] The same argument in Cop.

[c] Put bilim = lim = colim with limiting cones ii : Xi → colim and pi : lim → Xi. Then
(ii, pi) : bilim→ Xi is limiting. �

If lim, colim and bilim all exist for some diagram of retracts we say C has the limit-colimit
coincidence for that diagram. As defined the existence of bilim does not imply that of lim or colim
(even when the other exists), but by convention we shall only speak of a bilimit when all three
exist.

Example ContLatem has coproducts, calculated as products in ContLat, but ContLat does
not have coproducts. �

+§2.2.5 What is the effect of this in a cartesian closed category? Let us recall the effect of the ×
and→ functors in Cre. Given (i, p) : X ′/X and (j, q) : Y ′/Y we have (i×j, p×q) : X ′×Y ′/X×Y
and (jp, iq) : Y ′X

′
/ Y X , where jp(f) = p ; f ; j.

Proposition Let C be a cartesian closed category with the limit colimit coincidence for the four
diagrams X : I → Cre, Y : J → Cre, X × Y : I × J → Cre and [X → Y ] : I × J → Cre. Then
bilim(Xi × Yj) ∼= (bilimXi)× (bilimYj) and bilim(Xi → Yj) ∼= (bilimXi)→ (bilimYj).
Proof × commutes with all limits anyway, so lim(Xi × Yj) ∼= (limXi) × (limYj) and by the
lemma the result follows. In particular W ×− preserves bilimits (of course if it has a right adjoint
then it preserves colimits).

For exponentials,

homC(W × bilimXi, bilimYj)
∼= homC(bilim(W ×Xi), bilimYj) above
∼= homC(colim(W ×Xi), limYj) hypothesis
∼= limi limj homC(W ×Xi, Yj) definition of lim and colim

∼= limi limj homC(W,YjXi) definition of YjXi

∼= homC(W, limi,j Yj
Xi) definition of lim

∼= homC(W, bilimi,j Yj
Xi) hypothesis

�

§2.2.6 The retraction X / XX given by dropping a variable at ⊥ in IPO is a coclosure. We
are interested only in this case. Of course this depends on the 2-structure of IPO.

Proposition IPO has the limit-colimit coincidence for filtered diagrams of embeddings.
Proof Let X : I → IPOem be filtered. The limit limXi consists of I-indexed families (xi) with
xi ∈ Xi which are compatible in the sense that the projection Xi → Xj takes xi to xj . These
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families are ordered pointwise. This has directed sups by continuity, and has bottom (⊥) since
projections preserve it.

The colimit poset is to be found embedded in limXi as follows. Given x ∈ Xi we define xj ∈ Xj

for any j ∈ J for which there is an arrow i→ j as the image of x under the appropriate embedding
(if there are two such then by filteredness they are coequalised by a further embedding, but this
is mono so they were equal to start with); for other j we take by filteredness a suitable bound k
for i and j and project from k to j (going to a further bound gives the same answer because the
composite of an embedding with its projection is the identity).

However (xi) ∈ limXi lies above, and indeed is the directed sup of, the embeddings of its
components {xi : i ∈ I} so limXi is also the colimit ipo. �

§2.2.7 Write IPOem and IPOpr for the categories of ipos and respectively embeddings and
projections, so IPOem ' (IPOpr)op.

Proposition Any functor F : IPOn × (IPOop)m → IPO which preserves the order between
continuous functions also preserves coclosures, splittings thereof, embeddings and projections
(but interchanges the last two in the contravariant case). It therefore restricts to a functor
(IPOpr)n+m → IPOpr. �

We use this to get round the contravariance of the exponential functor in its first argument. It
will turn out, however, that the significance of embeddings and projections in IPO is far greater
than this mere trick.

Since clearly IPOem has an initial object (the singleton) and these filtered colimits, it bears a
striking resemblance to its own objects. The difference, of course, is that it is a large category whilst
they are small posets. In order, therefore, to take full advantage of the coincidence of structure we
would have to move to ICat, the (2-)category of small inductive categories (with initial object and
all filtered colimits) and Scott-continuous (i.e. filtered-colimit preserving) functors. Unfortunately,
space forbids discussion of this extension of the theory.

There remains, however, an important distinction of size which we cannot abolish and have to
circumvent by surgery.

We shall, however, take immediate advantage of the parallel by calling a functor continuous
if it preserves bilimits, i.e. filtered colimits in IPOem. From proposition 2.2.5, × and → are
continuous.

Warning The term “continuous” in standard category theory means preservation of all limits.
Of course “complete” and “continuous” followed “limit” from General Topology.

§2.2.8 We have now collected the machinery to solve domain equations such as D ∼= DD which
amount to finding a fixed point of an continuous endofunctor of IPOem.

Proposition

(a) Let F be a continuous endofunctor of IPOem; then F has a fixed point.

(b) Every object of IPO is the image of some coclosure on an η-model.

Proof

[a] We construct the diagram as in §2.2.3 with X the singleton (initial object of IPOem) and
X → FX the unique map. Then F∞X is a fixed point.

[b] In the case of the function space construction we get nothing interesting from the singleton.
However starting from any D ∈ IPO we have D /D1 / ... / D∞ where D∞ is an η-model.�
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§2.2.9 Recall the notion of head normal form from §1.1.13; the (infinite) tree of terms we obtain
by developing the recursive head normal form so far and substituting ⊥ for subterms (where one
term lies above another in the tree if it is obtained by filling in some terms for occurrences of ⊥)
we call the Böhm tree. This gives a directed set of finite syntactic approximants to a term, each
of which is in normal form in Λ[⊥, x1, ...]. We say that a model Λ in IPO is continuous (§1.4.9)
if the interpretation of a term is the directed sup of the interpretation of its Böhm approximants.

In the D∞ model we calculate the interpretation of a term as the directed sup of its approx-
imants in Dn for n ≥ n0, where n0 measures the complexity of its functionality in the obvious
way. These approximants give the same values as the Böhm approximants (it is crucial to start by
dropping a variable in order to obtain this: Park [1976]), and so D∞ is continuous. In particular
Y is the least fixpoint combinator because the Böhm approximants of Yf are just fn⊥.

The D∞ construction is illustrated by the figure; observe that the embedding of D1 in D2 is
not by dropping a variable.
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Figure 2.2.9: Construction of D∞ (after Stoy)

§2.2.10 Moving to the auxiliary class of morphisms was only needed in this technique be-
cause of our wish to treat the function space construction. We can do the same for any pointed
endofunctor on a category.

Definition Let η : 1 → F : C → C be a pointed endofunctor. An algebra for (η, F ) is an object
X ∈ C together with a structure map ξ : FX → X such that ηX ; ξ = 1X . A homomorphism of
F -algebras is a C-map f : X → Y making the square commute:
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FX
Ff- FY

X

ξ

? f - Y

υ

?

We therefore have a category F -Alg and a forgetful functor F -Alg→ C.

Lemma If (X, ξ) is initial in F -Alg then ξ is an isomorphism, indeed it is the initial fixed point
of F . �

This reduces the problem of finding fixed points of F to that of finding initial F -algebras, or
more generally to finding a free algebra functor , i.e. a left adjoint C → F -Alg to the forgetful
functor.

Proposition If C has and F preserves countable filtered colimits then there is a free algebra
functor; in this case F has fixed points.
Proof Same technique as in proposition 2.2.8a. If also Y ∼= FY then the unique map X → Y
extends to a cone over the diagram (using FmX → FmY ∼= Y ). The mediating map F∞X → Y
is the unique such map, so that F∞X is the initial algebra. �

In Universal Algebra, preserving (countable) filtered colimits corresponds to finitary algebraic
theories. This is a very common and important phenomenon in Computer Science, since we
frequently encounter complicated data types such as stacks, trees, etc., which are specified by
means of algebraic operations without recursion.

+§2.2.11 Without the hypothesis of continuity we need to construct a transfinite diagram, and
the category may not possess large filtered colimits. There is, for instance, no free complete
Boolean algebra on countably many generators.

On the other hand it is not impossible for a proper category (i.e. not a poset) to have all
(large) filtered colimits. Indeed any finite category in which idempotents split, and more generally
any bilimit of such categories (see §2.5.6), has this property. Hence the generalisation from IPO
to ICat is not a trivial one.

We cannot afford the space to prove the following generalisation of Tarski’s theorem.

Fact Let C be a small category with all filtered colimits.

(a) Let η : 1 → F : C → C be a pointed endofunctor of C (not necessarily continuous). Then
there is a free F -algebra functor.

(b) An arbitrary intersection of (replete) reflective subcategories of C is reflective. �

+§2.2.12 Embeddings and projections of ipos will play a major rôle in the theory. It will,
however, be useful (in §5.2) to make a generalisation. Recall that these two maps are adjoint
and their composite is the identity. It seems not generally known that the latter condition is not
necessary for most occurrences of these maps in the theory, and apart from this ignorance I have
seen no argument to motivate it.

Definition Let f : X → Y be continuous, i.e. in IPO. Then f is

(a) a homomorphism if it has a left adjoint
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(b) a comparison if it has a continuous right adjoint

(c) a projection if it is a surjective homomorphism (Notation →)

(d) an embedding if it is an injective comparison (Notation �).

[Postscript: The corresponding notions in stable domain theory have shown a very close con-
nection between (rigid) comparisons and the (Berry) order relation, namely that stable functions
have a factorisation system whose intermediate object is the trace, whilst instances of the order
relation give rise to rigid comparisons between the traces. The right adjoint (rigid homomorphism)
preserves any internal structure of the domains which is preserved by binary meets bounded above
(pullbacks) — in particular if the latter distribute over arbitrary joins then the homomorphism
itself has a right adjoint. Rigid homomorphisms therefore behave like logical functors between
topos,s locally cartesian closed categories, etc. The name, however, was generalised from contin-
uous lattices (Carl Gunter used the word in the same way and, I believe, for similar reasons), but
the “algebraic” notions suggested by this are, for general domains, so weak as to be misleading.
I now feel that the choice of the word homomorphism for a Scott-continuous functor with a left
adjoint between arbitrary ipos was mistaken.]

Write IPOhm, IPOcp, IPOpr and IPOem for the four categories; there is also a duality at the
2-level, so

IPOem(X,Y ) ' IPOpr(Y,X)op ⊂ IPOcp(X,Y ) ' IPOhm(Y,X)op

Propositions 2.2.5-8 generalise immediately from projections to homomorphisms (or from em-
beddings to comparisons), although of course lemma 2.1.8 does not. Any covariant or contravariant
functor of however many variables which preserves order restricts to a covariant functor on Ccp,
and many important functors (notably products and function-spaces) are continuous in the sense
of preserving bilimits. In particular we prove

Lemma IPOcp has filtered colimits.
Proof Let X : I → IPOcp be filtered. If i→ j in I, the composite of the two maps gives rise to
a closure operator on Xi, and the system of closure operators corresponding to all of the points
beyond i ∈ I is directed. Let ci be the sup of these closure operators on Xi and Yi its image. If
i → i′ in I we have a comparison Xi → Xi′ , and this gives rise to an embedding Yi � Yi′ . We
therefore have a diagram Y : I → IPOem. This has a colimit by proposition 2.2.5, and this is the
colimit of the original diagram. �

A better proof of the general limit colimit coincidence will be found in Homomorphisms, bilimits
and saturated domains.

+§2.2.13

Note Some of the results claimed in the original version of the remainder of this section were
fallacious and have been removed. A more thorough treatment of limits and colimits in categories
of domains was undertaken in my manuscript Homomorphisms, Bilimits and Saturated Domains,
to which the reader is referred.

We can take the pullback of two homomorphisms in IPO (cf proposition 2.1.8a), but the result
is not a pullback in IPOhm because the mediating maps from other diagrams do not have left
adjoints (though they may occasionally have right adjoints). Indeed

Lemma Let X ∈ IPO. Then the diagonal X → X × X has a left adjoint iff X is a complete
lattice.
Proof It is binary join. �

Example The pullback of a homomorphism against another in IPO need not be a homomorphism.
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Figure 2.2.13: Pullback of homomorphisms

+§2.2.14 It is a standard result in elementary category theory that pullbacks and a terminal
object suffice to construct all finite limits in a category, and that if further we have cofiltered
limits then we have all limits. Unfortunately this does not work in the case of projections, because
the pullback does not exist as a functor. Even to show that the maps in the limiting cone are
homomorphisms, as we have done for pullbacks, we would need the stronger result.

Example Let X be an ipo but not a lattice. The limit of each of the diagrams in the figure is X
and the diagonal, ∆ : X → X ×X, which is not a homomorphism, is a map in the limiting cone.
The last diagram is of the form T 2 → IPO.

A category I is called a tree it is non-empty and for any two points i, j ∈ I there is a unique
sequence of non-identity arrows in alternate directions between them.

Theorem Let d : I → IPOhm be a tree-shaped diagram of projections. Then the maps in the
limiting cone are projections.

Proof We use pullbacks to construct limits of finite trees; and arbitrary tree is the filtered union
of its finite subtrees. The limit is therefore a bilimit of pullbacks. �

This result is proved in greater detail in [Taylor 1987].

+§2.2.15

Lemma

(a)

IPOcp(X, 2)op ∼= IPOhm(2, X) ∼=
{
Xif X has >
∅ otherwise

where the comparison corresponding to x ∈ X, which we write as [x], is the characteristic
function of X \ ↓x, and the homomorphism takes ⊥ and > to x and > respectively.

(b)
IPOhm(X, 2)op ∼= IPOcp(2, X) ∼= Xfp

where the homomorphism corresponding to x ∈ Xfp is the characteristic function of ↑x and
the comparison takes ⊥ and > to ⊥ and x respectively. �
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Figure 2.2.14: Diagrams equivalent to equalisers

2.3 Continuous Lattices and Posets

§2.3.1 As already remarked, we shall be interested in the category IPO itself only as a convenient
place in which to do calculations; the categories which are of concern to us will be full subcate-
gories closed under products, exponentials, retracts and countable bilimits. This section is chiefly
concerned with the smallest such category, ContLatω, which is in fact equivalent to Retr(Pω).
Wherever possible, however, our arguments will be given in a form applicable to all continuous
posets, not just lattices.

What is the smallest nontrivial category of (countably based algebraic) domains? It has a
nonsingleton object D, so this has two distinct points ⊥ and u, with ⊥ ≤ u. This is known as the
Sierpinski space, written 2, and it has the following property.

Definition An injective space I is one such that given any diagram of spaces and continuous
maps

U ⊂ - X

I
?�...

.....
.....

.....

where U ↪→ X is a subspace inclusion (i.e. a subset of U is open iff it is the intersection of U with
an open subset of X, which is equivalent to saying that the map is a regular mono in Sp) there is
some (not necessarily unique) map X → I making the triangle commute.

Lemma The Sierpinski space 2 is injective and is a retract of any space which is T0 but not T1.

Proof

[a] The inverse image of the open point of 2 under the continuous map is an open subset V of
U , and there is a largest open set W in X with W ∩ U = V . Let the extension take the
larger value on W and the smaller outside it.

[b] Let x < y in the specialisation order on X. Then 2 ∼= {x, y} ⊂ X so by injectivity we have
a postinverse. �
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§2.3.2 The importance of the Sierpinski space to topology really lies in the fact that it classifies
open sets, i.e. for any X ∈ Sp there is a (natural, order-preserving) bijection between open sets of
X and continuous functions X → 2. This makes it a cogenerator for T0Sp, i.e. given f, g : X ⇒ Y
if whenever we take the composites with maps Y → 2 they are equal then the original maps were
already equal. (This is the dual notion to 1.2.10.)

Proposition A T0 space is injective iff it is a retract of a Tychonov power of 2.
Proof Powers of injectives (specifically 2) are injective by taking the (canonical) extension on
each factor; for retracts first make an extension (of the composite with the mono) into the large
space then use the epi to bring it back.

Let X be injective with κ open sets. Let X ↪→ 2κ by taking each point to the collection of
open sets containing it. Verify that this is a subspace inclusion (it is mono by T0). By injectivity
the identity on X extends to a retraction. �

Observe that 2X is the Scott topology on an ipo X.

§2.3.3 The next task is to characterise those posets which occur as retracts of full powerset
lattices (powers of the Sierpinski space). We shall do this in four stages. First we shall characterise
images of closure operators on 2κ (which give algebraic lattices). Next we introduce continuous
posets by the “way below” relation and show that they occur as images of coclosures of algebraic
posets. Then we show that continuous lattices are the algebras for directed sups and continuous
arbitrary infs. Finally we show that retracts of continuous posets are also continuous.

Definition Let X be an ipo and x an element of it. We say x is compact or finite in X if whenever
x ≤

∨
� a, then already x ≤ y for some y ∈ a. Write Xfp for the set of compact elements of X. (The

reason for this notation is that the categorical analogue is called “finitely presentable”.) Notice
we always have ⊥ ∈ Xfp.

Example x ∈ 2κ is compact iff it is finite quâ subset of κ. �

Proposition Any comparison of ipos (Definition 2.2.12b) preserves compactness.
Proof Let f : X → Y have a continuous right adjoint g : Y → X, let x ∈ X be compact and
b ⊂ Y directed with fx ≤

∨
� b in Y . Then by the adjunction and continuity of g, x ≤ g(

∨
� b) =∨

�(gb) in X. Hence by compactness x ≤ gy for some y ∈ b and again by adjointness fx ≤ y. �

§2.3.4

Definition An element x of an ipoX is finitely approximable if it satisfies x =
∨
�{k ∈ Xfp : k ≤ x}.

Note that it is part of the condition that this set be directed. X is algebraic if every element is
finitely approximable.

Algebraic lattices occur as the subobject lattices of finitary algebraic theories, e.g. groups, rings,
modules, lattices but not fields (not algebraic) or complete lattices (not finitary). Any subgroup
of a group, for instance, is the directed union of the finitely generated (not finite) subgroups it
contains. Closure operators have also been familiar in mathematics for a long time in similar
contexts (group generated by a subset, for instance).

Proposition The images of continuous closure operators on 2κ are precisely the algebraic lattices.
Proof Observe first that 2κ is itself algebraic.

[⇒] Let c2 = c ≥ 1 be a continuous closure operator on an algebraic poset X with image Y and
let y ∈ Y . Then y =

∨
� a where a = {k ∈ Xfp : k ≤ x}. But for k ∈ a, ck is compact in X

by proposition 2.3.3, and k ≤ ck ≤ y. Hence b = {ck : k ∈ a} ⊂ {l ∈ Yfp : l ≤ y} is directed
and x =

∨
� b =

∨
�{l ∈ Yfp : l ≤ y} as required.
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[⇐] Let X be algebraic and κ = |Xfp|. Define X ↪→ 2κ by x 7→ {k ∈ Xfp : k ≤ x}. Then X is
the image of the closure operator c(a) = {k ∈ Xfp : k ≤

∨
a}. �

§2.3.5 We generalise algebraic to continuous posets by making the notion of finiteness or
compactness a relative one.

Definition Let X be an ipo. For x, y ∈ X we say x is way below y if whenever y ≤
∨
� a

for a ⊂ X directed then already x ≤ z for some z ∈ a. Write x � y for this relation and
↓↓ y = {x ∈ X : x� y}, ↑↑x = {y ∈ X : x� y}. x ∈ X is approximable if x =

∨
� ↓↓x (directedness

being again part of the condition), and X is continuous if every element is approximable.
In the case of the lattice of open sets of the reals, R, x � y means that there is a compact

set lying between x and y. A space is locally compact iff its lattice of open sets is continuous;
R, for instance, has this property. Scott [1972] gave an argument that continuous posets are
the appropriate notion of approximate computation, although most of his followers have since
retreated to the algebraic condition.

Proposition

(a) If x� y then x ≤ y

(b) If x′ ≤ x� y ≤ y′ then x′ � y′

(c) x� x iff x ∈ Xfp

(d) Comparisons preserve �.
Proof [a-c] Easy. [d] As proposition 2.3.3. �

§2.3.6 There’s a canonical way of embedding a continuous poset in an algebraic one.

Proposition Let X be a continuous ipo and IdlX its poset of ideals. Then IdlX is an algebraic
ipo on which there is a continuous coclosure of which X is the image. Specifically the embedding
is x 7→ ↓↓x and the the projection a 7→

∨
� a.

Proof The compact elements of IdlX are the principal ideals, {↓x : x ∈ X}. This is the largest
ideal whose sup is x, so ↓ is right adjoint to

∨
� (but is not continuous). ↓↓x, on the other hand,

is the smallest ideal with sup x, so ↓↓ is left adjoint. �
For categories there is a construction called Ind which generalises Idl in the sense that it freely

adjoins filtered colimits. A category C has filtered colimits iff the inclusion C ↪→ Ind C has a
left adjoint. A continuous category is then one for which this functor has a further left adjoint.
Johnstone and Joyal [1982] have used these to solve the analoguous questions for toposes which
are addressed in this section for spaces.

−§2.3.7 We shall now give the algebraic characterisation of continuous lattices, which shows
again the importance of adjoint pairs of continuous maps.

Lemma In a continuous lattice inf distributes over
∨
�.

Proof Let X be continuous and {xjk : j ∈ J, k ∈ K(j)} be a family of elements of X such that
{xjk : k ∈ K(j)} is directed for each j ∈ J . Let M be the set of functions f : J →

⋃
j∈J K(j)

with ∀j.fj ∈ K(j). Then clearly

l =
∨
�

f∈M

infj∈J xj,f(j) ≤ infj∈J
∨
�

k∈K(j)

xjk = r



48 CHAPTER 2. CATEGORIES OF DOMAINS

so we have to show the reverse inequality. By continuity it suffices to show that if u � r then
u ≤ l. By the definition of (inf and) � this means ∀j.∃k ∈ K(j).u ≤ xjk, so choose f ∈ M with
∀j.u ≤ xj,f(j); but then u ≤ l. �

Proposition Continuous lattices are exactly the algebras for directed sup and continuous arbitrary
inf; the homomorphisms are continuous functions which have left adjoints.

Proof The lemma provides one implication, and since a monotone function between complete
lattices has a left adjoint iff it preserves arbitrary infs it is clear what the homomorphisms are.
Hence it remains to show that such an algebra is continuous, for which we have only to show that
for each element there is a least ideal whose sup is that element. But by the Lemma the family of
ideals with this property is closed under intersection. �

Write ContLathm for the category of continuous lattices (i.e. (inf,
∨
�)-algebras) and homo-

morphisms. Since in general the regular epis in a category of algebras are the surjective homo-
morphisms, in this case they are the projections.

The free functor Set→ ContLathm was identified by Day [1975]; it yields the lattice of filters
on the powerset. Of more interest to us is the free functor from IPO; this gives the lattice of open
filters, as it does on Sp. We shall prove the corresponding result for bcCont in proposition 2.5.9.

This result is the reason for the term homomorphism; the term comparison will be explained
in §5.1.10.

−§2.3.8 We now complete the characterisation of injectives.

Lemma A retract of a continuous poset is continuous.

Proof Let f = f2 : X → X in IPO with image Y . We first show that if x ∈ X, y ∈ Y with
x � y in X then fx � y in Y . For if y ≤

∨
�Y b =

∨
�X b for directed b ⊂ Y then x ≤ y′ for some

y′ ∈ b and so fx ≤ fy′ = y in Y . Hence for y ∈ Y we have

y = fy = f(
∨
�

X

{x ∈ X : x�X y}) =
∨
�

Y

{fx : x�X y} ≤
∨
�

Y

↓↓ y

as required, checking that the sets are indeed directed. �
We may sum these and some other results up as follows.

Theorem The following are equivalent for an T0 space X with its specialisation order (and the
Scott topology by default):

(α) X is injective

(β) X is a continuous lattice

(γ) X is a retract of a (Tychonov) power of the Sierpiński space

(δ) X has arbitrary infs which distribute over directed sups

(ε) X is an algebra for the filter monad.

For distributive X we may add:

(ζ) X is the open set lattice of an exponentiable space Y , i.e. one such that the functor −× Y :
Sp→ Sp has a right adjoint. �
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§2.3.9 In order to describe precisely the Scott topology on a continuous poset we need the
interpolation property of �.

Lemma Let X be a continuous poset and x� z in X. Then for some y, x� y � z.
Proof Consider the set S = {v ∈ X : (∃y ∈ X)(v � y � z)}. We first show that S is
an ideal; it is clearly nonempty and down-closed. If v1, v2 ∈ S then vi � yi � z for some
y1, y2 ∈ X. Then since ↓↓ z is directed we can find y � z with y1 ≤ y ≥ y2, and then since
↓↓ y is directed we can find z � y (whence z ∈ S) with z1 ≤ z ≥ z2. Also, we clearly have∨
� S =

∨
�{
∨
� ↓↓ y : y � z} =

∨
�{y : y � z} = z. But by hypothesis x� z so x ∈ S. �

Proposition Let X be a continuous poset.

(a) the sets ↑↑x for x ∈ X form a base for the Scott topology.

(b) the compact open sets of X are precisely those of the form ↑↑{k1, ..., kn} = ↑↑ k1 ∪ ...∪↑↑ kn for
k1, ..., kn ∈ Xfp.

Proof

[a] If
∨
� D ∈ ↑↑x then by the lemma x � d �

∨
� D for some d ∈ D, so ↑↑x is open. Conversely

let U be open (and hence upper) and u ∈ U ; then ↓↓u ∩ U 6= ∅, so u ∈ ↑↑x for some x ∈ U ,
and ↑↑x ⊂ U .

[b] The given sets are compact since they have a finite set of minimal elements. Let x ∈ X
with ↑↑x compact. Then there are y1, ..., yr ∈ ↑↑x with ↑↑x = ↑↑ y1 ∪ ... ∪ ↑↑ yr; w.l.o.g. this
set is minimal. But by the lemma x � z � y1, so yi � z � y1 for some i, and i = 1
by minimality, whence y1 ∈ Xfp. Likewise for y2, ..., yr, so ↑↑x is of the given form. Since
{↑↑x : x ∈ X} is a basis, the result follows. �

We may characterise the Scott topology on continuous and algebraic posets: see Johnstone
[1983] VII theorem 2.6(iii) and corollary 2.9.

Proposition

(c) The Scott topology on a continuous poset is a completely distributive lattice, and every such
arises in this way.

(d) Further the lattice is algebraic iff the poset is. �

§2.3.10 For the purpose of doing detailed calculations with continuous ipos it is useful to have
a small class of easily describable functions of which any other can be expressed as a directed sup.
These are called step functions.

Lemma Let X, Y be continuous ipos and x ∈ X, y ∈ Y . Define

[x⇒ y] : x′ 7→
{
y if x� x′ in X
⊥otherwise

Then [x⇒ y] is continuous, and its dependence on x is contravariant and on y is covariant. It is
compact in X → Y iff x and y are compact in X, Y resp.
Proof This is really the characteristic function of the open set ↑↑x. �

Proposition ContLat, AlgLat, ContLatω and AlgLatω are cartesian closed.
Proof We have only to show that the function space X → Y as calculated in IPO inherits the
properties of X and Y . Since it has arbitrary infs constructed pointwise, it is clearly a lattice.
Let f : X → Y be continuous. Observe that for f : X → Y , if y � fx in y then [x ⇒ y] � f in
X → Y ; indeed f is the directed sup of all such functions. In the algebraic case we may choose
x, y to be compact. If X and Y have countable bases then the step functions provide a countable
basis for X → Y . �

ContPos and AlgPos are not, however, closed under exponentiation (2.4.11-13).
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+§2.3.11 Finally we turn to the limit-colimit coincidence for ContPos.

Lemma Let X : I → ContPoscp be a filtered diagram of comparisons of continuous posets; then
the bilimit is continuous. If the posets in the diagram are lattices or algebraic then so (respectively)
is the bilimit; if they are countably based and I is countable then the bilimit is also countably
based.

Proof Recall first that � is preserved by comparisons. Let X∞ be the bilimit and x ∈ X∞
have images xi ∈ Xi under the projections. Then xi =

∨
�{yi ∈ Xi : yi � xi} in each Xi. But

identifying the xi and yi with their images under embedding, x =
∨
�{xi : i ∈ I} =

∨
�{
∨
�{yi ∈

Xi : yi � xi} : i ∈ I} =
∨
�{yi : yi � xi, i ∈ I}, whence x is approximated. Replacing � by

compactness, the same argument applies to the algebraic case. Since projections preserve infs, we
may calculate these componentwise and so being a lattice is preserved. In the countable case we
take the union of the bases (identified under embedding).

Theorem ContLat, AlgLat, ContLatω and AlgLatω are full subcategories of IPO closed
under products, exponentials, images of closures and countable bilimits. Moreover they are the
smallest nontrivial such categories also closed under respectively retracts and small bimilits, small
bilimits, retracts, and nothing else. �

These properties essentially amount to what we shall define as a category of domains. However
we want to make a generalisation first, and that will be the subject of the next section.

2.4 Bifinite Posets

+§2.4.1 When Scott first provided mathematical structures for the semantics of programming lan-
guages, he believed that the irrelevance of top to computation was outweighed by the mathematical
usefulness of lattices. This view quickly lost favour, chiefly because Plotkin’s [1976] powerdomain
construction (which is intended as a semantics for nondeterminism, but is outside the scope of
this work) does not preserve the property of being a lattice. Indeed the domains in which Scott
himself subsequently took an interest (which sometimes have his name attached to them, though
we write bcAlgω) are themselves continuous (or algebraic) lattices minus their top elements.

There is a larger class of algebraic posets which is closed under the powerdomain constructions,
whilst still also being closed under exponentiation. Indeed Smyth [1982] showed that it is the
largest cartesian closed full subcategory of countably based algebraic posets.

Definition A bifinite poset is one which may be expressed as a bilimit of finite posets. Write
BiPosf for the category of bifinite posets and Scott-continuous maps, and Biω Posf for the full
subcategory of countably based such.

(Space forbids discussion of the prefix Bi for general 2-categories.)
We may imagine that bifinite posets describe the limit of a sequence of finite computers.

Calculations with integers on finite machines may give overflow , but if they dont overflow then
they are correct. An arbitrary computation with integers may be performed on a sequence of
machines, each twice as big and twice as fast as the one before. Where two machines both succeed
they necessarily agree, and there is a two-way comparison between any machine and any bigger
one. This comparison, in information terms, must be an embedding-projection pair.

We shall not settle upon this or an other particular class of ipos to call domains. The reason
for this is that there is in fact significant interest in the variability, for the following reason. In
§3.3 we shall give a brief introduction to classifying toposes; for present purposes one of these is
a (generalised) space whose points are the models of a particular theory in a certain fragment of
logic (namely geometric logic). From this, spaces correspond to theories and classes of spaces to
classes of theories. It turns out, though again discussion of this goes beyond the intentions of this
work, that certain well-known categories of domains correspond to certain identifiable fragments
of logic.
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We shall derive from this a hierarchy of categories of domains, each one in various flavours
according whether they are countably based and whether they are closed under retracts. We
shall explore this hierarchy a little in the next section, and in the final section show that we may
essentially always assume that we are working with a category of the form Retr(Λ). This section
is concerned with the top of that hierarchy, the bifinite posets.

+§2.4.2 We begin with a version of Plotkin’s characterisation, of which the essential idea is the

Definition Let X be a poset.

(a) m ∈ X is a minimal upper bound or mub of S ⊂ X if S ≤ m (i.e. ∀s ∈ S.s ≤ m) and if
S ≤ m′ ≤ m then m′ = m.

(b) S ⊂ X has a complete set of mubs if for any S ≤ x ∈ X there’s some mub m of S with
m ≤ x.

(c) X is mub-complete is any S ⊂ X has a complete set of mubs.

(d) S ⊂ X is mub-closed if any subset of S has a complete set of mubs which lie within S.

Clearly any subset of a mub-complete poset has a mub-closure, obtained by successively ad-
joining mubs.

Lemma Let X be a poset and S ⊂ X finite. Then S is the image of a (unique) coclosure on X
iff it is mub-closed and S ⊂ Xfp.
Proof

[⇒] Suppose p : X → S is a continuous right adjoint to the inclusion i : S � X. The elements
of S are compact in S because the latter is finite, and embeddings preserve compactness
(proposition 2.3.3), so S ⊂ Xfp. Let m be a mub of A ⊂ S, so A ≤ m; then since p is a
projections fixing A, A = pA ≤ pm ≤ m; but m is minimal above A so pm = m, i.e. m ∈ S.
Suppose x ≥ A ⊂ S; then A = pA ≤ px ≤ x; choose m ∈ S minimal with A ≤ m ≤ px;
repeating the argument shows that m is a mub in X.

[⇐] Suppose S ⊂ Xfp is mub closed and let x ∈ X. Consider the set S ∩ ↓x, which is by
hypothesis finite. Let px be a mub for it below x; by mub-closure px ∈ S so is the greatest
element of S∩↓x. This gives a right adjoint p to i. It is continuous because px is compact.�

Example Let X be a complete lattice (or at least a boundedly complete poset). Then the finite
coclosures of X are given by the finite sub-g-semilattices of Xfp. �

Notation We shall adopt the convention of using “curly” symbols g and f for operations within
a lattice to avoid confusion with the logical connectives.

+§2.4.3 Plotkin’s characterisation of bifinite posets proceeded by explicitly adjoining mubs. We
may simplify this to

Proposition For a poset X tfae:

(α) X is bifinite

(β) id : X → X is the directed sup of the continuous coclosures on X with finite image.

(γ) X is algebraic and every finite set of compact elements is contained in a finite mub closed
set of compact elements.
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Figure 2.4.4: Three non-bifinite domains

Proof

[α⇒ β] Let X = bilimXi, so X → Xi are coclosures with finite image. Let x ∈ X with projections
xi. Then x =

∨
� xi.

[β ⇒ γ] For x ∈ X, xi ∈ Xfp ∩ ↓x and x =
∨
� xi, so X is algebraic. Let k ∈ Xfp; then k =

∨
� ki,

so k = ki ∈ Xi for some i. For finite S ⊂ Xfp choose Xi by the directedness of I; this is a
finite mub-closed set by lemma 2.4.2.

[γ ⇒ α] Let (Xi : i ∈ I) be the diagram of finite mub-closed subsets of X under inclusion. This
is directed and the inclusions have continuous right adjoints. The colimit of these posets
accounts for all of the compact elements of X, so X = bilimXi. �

Example A complete lattice or boundedly complete poset is bifinite iff it is algebraic. �

Question In (γ) does it suffice for pairs?

Answer No. Figure 1.7 from [Jung 1987] provides a counterexample.

§2.4.4 We record here for future use the three essential examples of algebraic ipos which are
not bifinite.

Examples

(a) Some bounded pair of compact elements of X fails to have a mub below a given bound, so
X is not mub-complete; also X → X is not continuous.

(b) X is mub-complete but some pair has infinitely many mubs.

(c) Any finite set of compact elements of X has a finite complete set of mubs, but the construc-
tion of adjoining mubs continues indefinitely; again X → X is not continuous.
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§2.4.5 We have already done the work in constructing products and exponentials of bifinite
posets. Posf has all finite limits, colimits and exponentials (§1.5.9), and the full subcategory of
posets with bottom is still cartesian closed.

Proposition BiPosf has the limit-colimit coincidence and is cartesian closed. Also

(bilimXi)× (bilimYj) ∼= bilim(Xi × Yj)
(bilimXi)→ (bilimYj) ∼= bilim(Xi → Yj)

Proof The diagram defining the bilimit is the filtered union of those defining the terms. From
§2.2.5, the product and exponential functors are continuous. Alternatively, let S ⊂ X, T ⊂ Y be
mub-closed sets in bifinite posets. Then S × T and S → T are mub-closed sets in X × Y and
X → Y respectively. In the first case we take the obvious componentwise projections. In the
second case the projection of f : X → Y is the composite S � X → Y → T . The compact
functions are therefore those which reduce X to a finite set and apply some function into a finite
subset of Y . �

+§2.4.6 Recall that the Scott topology on an algebraic poset is based by the sets ↑ k = {x ∈
X : k ≤ x} for compact k. These are of course compact open sets. A general compact open set is
of the form ↑ a = {x ∈ X : k ≤ x for some k ∈ a} where a is a finite (possibly empty) set of finite
elements.

Definition A space is coherent it it is sober and compact, it has a base of compact open sets,
and the intersection of any two compact open sets is again compact.

The specialisation order on a coherent space gives a profinite poset , i.e. one which is the limit
of a diagram of finite posets and monotone maps (not necessarily projections). Since I believe full
coherent logic will turn out to be needed in Computer Science in due course, we are not at liberty
to use the term profinite for bifinite.

Lemma In a coherent space codirected infs exist.
Proof We may calculate them in the finite projections. �

[It was claimed that they distribute over directed sup. This is nonsense.]
Example 2.1.6 shows that the coherent topology on a profinite poset need not be the Scott

topology.

Proposition A continuous poset is coherent iff it is algebraic and any finite set of compact
elements has a complete finite set of minimal upper bounds.
Proof We use the characterisation of compact opens in an continuous poset X (proposition
2.3.9b). Let S ⊂ Xfp be finite; then U = {x ∈ X : ∀s ∈ S.s ≤ x} is an intersection of compact
opens.

[⇒] U is compact open and so of the form ↑T with T ⊂ Xfp finite. Taking a minimal such form
we have a complete finite set of mubs for S.

[⇐] U = ↑T , where T is the (complete finite) set of mubs for S. This is compact open. �

Notice that we haven’t used the full force of the characterisation of bifinite posets, so the “radio
mast” (Example 2.4.4c) is coherent algebraic but not bifinite.

§2.4.7 The characterisation of §2.4.3 applies equally well if we drop the requirement that our
posets have bottom elements. Unlike ipos we do not gain all finite limits.

Example The diagram on the left is not bifinite, but it is the equaliser in IPO of two endofunctions
of the diagram on the right, viz. the two functions which are the identity everywhere apart from
the two ponts in the middle, and send both of those points to one of them. (Carl Gunter)
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Instead of having a unique bottom element we have a smallest (finite) mub-closed set called the
root , which contains the minimal elements. An abstract root is a finite poset with no nontrivial
coclosure operator. We say that a continuous functor F preserves a root R if R is the root of
F (R). This terminology is due to Gunter [1985].

Proposition A continuous functor F has a bifinite fixpoint with root R iff F preserves R.

Proof

[⇒] Let D ∼= F (D) be a fixpoint with root R. Then R is the image of a coclosure on D and so
since F is continuous F (R) is a coclosure of F (D). But R is the least coclosure on D so
factors through this one and so R is the root of F (R).

[⇐] Let i : R� F (R) be an embedding. Form a diagram from Fn(i) : Fn(R)� Fn+1(R) and
take take its bilimit D as before. Since F is continuous D ∼= F (D) with root R. �

Example The function space construction preserves only the singleton root.

Proof Clearly otherwise we could embed any bifinite poset in an η-model and hence get least
fixed points. More explicitly, if m is minimal in D then Km is minimal in DD, but on the other
hand so is the least coclosure (onto the root). Hence unless D has a (unique) bottom, DD has
more minimal elements and so a bigger root than D. �

From corollary 2.4.12 in fact any β-model in AlgPos has ⊥.

+§2.4.8 With a great deal of grubbing around with orders on subsets and multiple-valued
fixpoints, one may find a generalisation of Tarski’s theorem to bifinite posets without ⊥. The true
generalisation, however, is as follows; we shall see why in §5.6.

Proposition Let X be a poset with directed sups, r : X → X a continuous coclosure with
splitting i : R� X, p : X → R and f : X → X a continuous function with f ; p = p. Then there
is a least continuous function g : R→ X with g ; p = 1R and g ; f = g.

Proof Put g =
∨
�(i ; fn). This is directed because i ; f ≥ i ; r ; f = i ; r = i so i ; fn+1 ≥ i ; fn.

If h is another such function then h ≥ h ; r = i so h = h ; fn ≥ i ; fn and h ≥ g. �

+§2.4.9 We saw that the topology of bifinite posets is almost described by saying that they are
coherent.

Proposition A distribitive lattice arises as the lattice of compact open sets of a (coherent)
algebraic poset iff every element is expressable as a finite join of coprimes.

Proof Coprimes correspond to compact points of the poset and arbitrary elements of the lattice
to compact open sets. In a coherent algebraic poset, compact opens are the upper-sets of finite
sets of compact elements. �

Unfortunately the characterisation of the open set lattice of a bifinite posets is not so simple.
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Theorem There is no first order theory whose models are precisely those distributive lattices
whose spectrum is bifinite.
Proof Take the language L to be (include) 1, 0, f, g, ≤, < (we can derive the last two as x ≤ y
iff xf y = x and x < y iff x ≤ y ∧ x 6= y), together with constant symbols a0, a1,... and b0, b1,...
Suppose T were the alleged first order theory. This would in particular include the usual equational
presentation for distributive lattices. Recall that p is prime if (∀xy.xf y ≤ p)(x ≤ p ∨ y ≤ p).

Now let Γ be the theory of distributive lattices together with the assertions that the ai and bi
are distinct primes and

ai g bi = ai+1 f bi+1 (for each i)

(∀x)(∃p, q prime)(x = pf q)

Any model of Γ is the lattice of compact open sets of an algebraic poset in which any two compact
elements have at most two mubs. However there is a pair of compact elements whose mub-closure
is infinite, because the “radio mast” (example 2.4.4c) is embedded.

Hence Γ ∪ T is inconsistent. So by the Compactness Theorem Γn ∪ T has no model for some
n, where Γn is the subset of Γ consisting of just those axioms involving suffices at most n.

But Γn ∪ T has finite models: the corresponding posets are versions of the radio mast with
only finitely many rungs.

Hence there is no such T . �

+§2.4.10 Write mubc(X) for the collection of finite mub closed sets of compact elements of
a bifinite poset X ordered by inclusion, and Cocl(X) for the poset of all continuous coclosures
on X. Clearly we have naturally Idl(mubc(X)) ⊂ Cocl(X). From the characterisation of bifinite
posets mubc(X) is a g-semilattice and Idl(mubc(X)) an algebraic lattice whose top element is the
identity.

Example Let X be a continuous but not algebraic lattice and Y = IdlX. Then X is the image of
a continuous coclosure on Y which is not a directed sup of finite ones.
Proof Recall ↓↓ a

∨
� made X a coclosure of Y (proposition 2.3.6). If this were in Idl(mubc(Y ))

then X would itself be bifinite, and in particular algebraic. �

Question Is it true that if X is a retract of a bifinite poset that Cocl(X) is a continuous lattice?
This was claimed in the original, but the “proof” depended on the assertion that codirected meets
in a profinite poset distribute over directed joins.

Answer (Achim Jung, 4 December 1991) Michael Huth has the following result in his PhD thesis:

Theorem 2.31 Let D be a bifinite dcpo. Then the following are equivalent:

1. Cocl(D) is continuous.
2. Cocl(D) is algebraic.
3. Cocl(D) is an algebraic lattice.
4. D is projection stable i.e. every coclosure has an algebraic image.

So every bifinite domain which is not projection stable is a counterexample to your proposition.
Our student Magnus Rothe has generalised this to continuous domains:

If D is a continuous domain and the space of all retractions is continuous then D is
already algebraic.

I believe this also holds for the space of all coclosures. �
Cocl extends to a functor, indeed a monad, on bcCont, but not for general continuous domains.
mubc(X) × mubc(Y ) generates mubc(X × Y ) or mubc(X → Y ) as a semilattice, and we

may describe either of the latter as the “tensor product”. The case for coproducts is simpler:
mubc(X + Y ) ∼= mubc(X)×mubc(Y ). This is somewhat reminiscent of the behaviour of product
topologies.
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+§2.4.11 The interest in BiPosf lies in the fact that it is about as much of AlgPos as we
can have whilst retaining cartesian closure. Plotkin [1976] conjectured that if X and XX are
countably based algebraic ipos then they are bifinite; we devote the remainder of this section to
a revised version of Smyth’s [1982] proof of this and slightly more. The techniques are extremely
brutal, as are those we shall need to construct saturated domains. The original contribution in our
presentation is essentially that we have twice as many lemmas as Smyth: we have shown separately
that if each of the conditions fails then a generalised version of the corresponding counterexample
is a retract, and that the function-space of the counterexample is not countably based algebraic.
This result also differs from other “exponentiability” results such as proposition 2.3.8ζ in that it is
more common to use 2 as the “test object”; however in this case 2X is always an algebraic lattice
whenever X is an algebraic poset.

For an ordinal α, write αop and α∇ for the algebraic ipos made of α “upside down” together
with, in the second case, three extra elements {⊥, a, b}; cf. Example 2.4.4a.

Lemma

(a) Let X = αop or α∇. Then X → X is algebraic iff α is a successor ordinal.

(b) Let X be a poset with directed sups and some element x below which there is no minimal
element. Then αop / X for some limit ordinal α.

(c) Let X be an ipo with a, b ∈ Xfp, x ∈ X such that a, b ≤ x and there is no mub of {a, b}
below x. Then α∇ / X for some limit ordinal α.

Proof

[a,⇒] We show that if α is a limit then any f ∈ [X → X] (fixing a, b in the second case) is a proper
directed sup, whence the identity is not approximable. For β ∈ α let fβ(γ) = f(γ) if γ ∈ β
and f(γ) + 1 otherwise; then f =

∨
�{fβ : β ∈ α}.

[a,⇐] If α is a successor then X, and hence XX , is bifinite.

[b] Define i : αop ↪→ X for ordinals α. For α = 1, let i(0) = x. For α = β + 1, i(β) ≤ x is
not minimal, so let i(α) < i(β). For α a limit, carry on if we can, else stop. Now make αop

a retract. For y ∈ X we cannot have ∀β.y ≤ i(β) since otherwise the construction could
continue, so let β ∈ α be ∈-least (≤-greatest) with y 6≤ i(β) and put p(y) = β.

[c] Essentially similar to (b). �

Corollary If X and XX are both algebraic ipos then X is mub-complete. �

+§2.4.12 Next we dispose of Example 2.4.4b; this time we make crucial use of countability.

Lemma

(a) Let X be a mub-complete algebraic poset with κ ≥ 2 minimal elements. Then XX has at
least 2κ minimal elements.

(b) Further let Y / X. Then Y has at most κ minimal elements.

(c) Let X be a mub-complete algebraic ipo, and a, b ∈ Xfp have κ ≥ 2 mubs. Then there is a
pair of compact elements of XX with at least 2κ mubs.

Proof
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[a] Let M,N be the sets of minimal elements of X and XX respectively, and let 0, 1 ∈ M be
distinct with 0, 1 ≤ ∞ ∈ X if such a triple exists, otherwise any distinct 0, 1. For A ⊂ M
define A : X → X by

A(x) =

{1 if ∃a ∈ A.a ≤ x
0 if ∃b ∈M\A.b ≤ x
∞if both

(we must have at least one by mub-completeness). Now suppose n ≤ A,B for n ∈ N . These
are functions, so n(m) ≤ A(m), B(m) for all m ∈M . But the restrictions of A and B to M
are just the characteristic functions, so A = B. Hence 2M is a quotient of a subset of N .

[b] Let y be minimal in Y and x minimal below iy in X. Then px ≤ p(iy) = y so px = y. Then
the set of minimal elements of Y is a quotient of a subset of that for X.

[c] Same method as (a): consider the functions [a⇒ a] and [b⇒ b].. �

Corollary

(a) Let Λ be an algebraic poset with ΛΛ / Λ. Then Λ is mub-complete and has ⊥.

(b) Further suppose Λ is not coherent. Then |Λfp| ≥ iω, the first strong limit cardinal . This is
the limit of in where i0 = ω and in+1 = 2in (i the Hebrew letter beth).

(c) Let X and XX be countably based algebraic ipos. Then X is coherent. �

Question

(a) Construct such an incoherent algebraic β-model.

(b) Is there a non-algebraic one without ⊥?

+§2.4.13 It remains to bar Example 2.4.4c; for the purpose of this section, define a radio mast
to be an infinite mub-complete algebraic poset with both ⊥ and > and finite set S of points (not
containing ⊥ or >) of which it is the mub-closure. The crucial property of such posets is that they
have a quasifinite point, a non-finite point for which there is a finite set S of finite points such
that every coclosure fixing S fixes the point.

Recall that for a ∈ Xfp, [a ⇒ a] is the least continuous function fixing a and is compact in
XX ; also these functions are incomparable for distinct a 6= ⊥ (lemmas 2.3.3 and 2.6.6).

Lemma

(a) Let X be a coherent algebraic poset which is not bifinite; then X has a quasifinite point.

(b) Let X have a quasifinite point; then Y / X for some radio mast.

(c) Let X be a radio mast; then XX is not algebraic.
Proof Let us first adopt some notation and terminology appropriate to all three parts. There
is some set S of compact elements whose mub-closure is infinite; this has at least two but finitely
many elements. Assign a level h(x) to points in the mub-closure of S as follows:

h(x) =


0 if x = ⊥
1 if x ∈ S
≤ n+ 1 if x is a mub of two points at level ≤ n
∞ if x 6∈ Xfp

undefinedif x is not in the mub-closure of S

A quasifinite point is then one at infinite level.
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[a] By a chain we mean a finite sequence x0 ≤ x1 ≤ ... ≤ xn with h(xi) = i; chains are partially
ordered by amputation as usual and form a tree. There are at least two, but finitely many,
chains with any given endpoint xn, so this tree is infinite but finitely branching. Hence by
König’s lemma there is an infinite branch, being the initial segments of an infinite chain
m0 ≤ m1 ≤ ... ≤ m = m∞ =

∨
�mi with h(mi) = i. m is then a quasifinite point.

[b] Let M = ↓m and Y be the set of points in the mub-closure of S which lie below m. This
construction is unaltered if we now replace S by S ∩ Y , so S ⊂ Y ⊂ M . Y is then a
radio mast with generating set S. We shall define a retraction f : X . Y . For x ∈ Xfp let
U(x) = Y ∩ ↓x, which increases monotonely with x; then put

f(x) =
{
y greatest with y ∈ U(x) if x ∈M
motherwise

Each case is monotone in x since U(x) is, so we just have to check for x ≤ x′ with x ∈ M
and x′ /∈ M since M is down-closed. But then f(x) = y ∈ U(x) ⊂ U(x′) ≤ m = f(x′).
f now extends uniquely to a continuous function on X which fixes Y .

[c] We shall show that the identity, 1X , is neither compact nor approximable in XX . By
hypothesis X has a top element which not not compact in X. Hence the identity is not
compact since 1X ≤ K> =

∨
�{Ka : a ∈ Xfp} but 1X 6≤ Ka for any compact a. On the other

hand, [s ⇒ s] is a compact function below 1X for s ∈ S, and there are at least two (but
finitely many) such s. If XX were algebraic, XX

fp ∩ ↓ 1X would be directed, i.e. there would
be a compact function g with ∀s ∈ S.[s⇒ s] ≤ g ≤ 1X . We show by induction on the level
of x that g(x) = x, i.e. g is the identity, which is not compact. This is so for level 0 or 1 by
hypothesis on g, so suppose x has level n+ 1, being the mub of a and b at level at most n.
Then a = g(a) ≤ g(x) ≤ x (and similarly b), but x was a mub of a and b so g(x) = x. �

cf. Lamma 2.4.2.

Corollary If X and XX are both countably based algebraic ipos then they are both bifinite. �

Proposition Let C ⊂ IPO ∩ AlgPosω be a full subcategory which is cartesian closed. Then
C ⊂ BiPosf .

Proof Use lemma 2.1.9 to show that the product and exponential must be those from IPO. �

Note The largest cartesian closed category problem for algebraic and continuous domains with
and without bottom has now been solved by Achim Jung. He discovered a new cartesian closed
category, whose objects (called L-domains) are characterised by the property that ↓x is a com-
plete lattice for each x ∈ X, so Example 2.4.4b is one of them. Although he characterised two
maximal cartesian closed subcategories of continuous ipos (one of them consisting of continuous
L-domains), it remains (January 1992) an open question whether the other is strictly larger than
the “continuous domains” defined in the next section — almost certainly it is.

2.5 The Hierarchy of Categories of Domains

+§2.5.1 In this section we explore some further important categories of domains and perform
constructions in them. We see a few glimpses of a very rich structure which has yet to be uncovered.
The methods I have in mind for investigating this hierarchy of categories of domains further again
illustrate the deliberate confusion of object and meta-levels which is a necessary feature of any
discussion of a “type of types”. For whereas, on the one hand, we shall see the suggestion of a
correspondence between categories of domains and fragments of (coherent) logic (via the classifying
topos, which we shall discuss in §3.3), on the other hand it seems that coherent logical properties
of the domains themselves are the appropriate tool for classifying the categories.
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+§2.5.2 My hope in this work was to define a domain to be a certain kind of continuous category
(§2.3.6), and consider arbitrary categories of them (and continuous functors) which are closed
under products, retracts, exponentials and (countable) bilimits. Unfortunately the additional
theory needed for categories rather than posets far exceeds what was feasible, and even the theory
for bifinite posets proved more difficult than expected. We have already seen the majority of the
Domain Theory to be considered in this work (we shortly turn our attention to Indexed Category
Theory), but for the rest of it we concentrate mainly on bcContω.

Question Is the class of retracts of bifinite posets closed under bilimits?

Answer Yes. For a proof see Theorem 4.6 of [Jung 1987].
Because of this embarrassing gap, we define ContDom, the category of continuous domains,

to be the full subcategory of IPO generated by BiPosf together with retracts and bilimits.
ContDomω consists of the countably based such.

Lemma ContDom and ContDomω are cartesian closed.
Proof Products and exponentials essentially commute with retracts (proposition 1.3.5&6) and
bilimits (proposition 2.2.5). �

Definition Let C be a full subcategory of ContDom closed under products, exponentials and
countable bilimits. Then C is a

(i) small category of algebraic domains if C ⊂ Biω Posf and is closed under retracts in so far
as they exist there,

(ii) small category of continuous domains if C ⊂ ContDomω and is closed under retracts,

(iii) large category of algebraic domains if C ⊂ BiPosf and is closed under arbitrary small bilimits
and retracts there,

(iv) large category of continuous domains if C ⊂ ContDom and is closed under bilimits and
retracts.

We shall describe these variant definitions as flavours.
By the weight of a domain we mean the least cardinality of a base, i.e. set which generates the

domain by directed sup. For an algebraic domain X this of course means the cardinality of Xfp.
The weight of a category of domains is meant the supremum of the weights of its objects.

§2.5.3 By far the most widely used category of domains is bcAlgω, whose objects are countably
based algebraic posets in which any bounded subset has a least upper bound. One may feel
confident that this is an appropriate tool for the study of the semantics of deterministic recursive
programs. Following our preference for closure under retracts, the corresponding bcContω is of
more interest to us; similarly we have the other flavours bcAlg and bcCont.

From the point of view of geometric logic, spaces in bcAlg classify models of Horn theories.
These have as axioms sequents (i.e. statements of the form φ ` ψ, where the “implication” is
of an external nature and cannot be embedded) whose antecedent and consequent are built up
from atomic formulae using only true, false, and and exists. (Full coherent logic allows finite
disjunction and geometric logic infinite disjunction: see §3.3.11.)

Since the conjunction of false (⊥) with anything else is still ⊥ and any sequent with ⊥ as
antecedent is redundant, we may divide the axiomatisation into two parts, the first being essentially
algebraic, i.e. in which the only connective is finite conjunction, and the second consisting of
negations of algebraic formulae. Let us call these the positive and negative parts; more specifically
we have a pair of sets P and N of the form

P = {(Γi, φi) : i ∈ I} N = {∆j : j ∈ J}
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where φi are atomic formulae and Γi, ∆j are finite sets of atomic formulae. The axiomatisation is
inconsistent if, for some j ∈ J , we can deduce each δ ∈ ∆j from P. Alternatively, we may deduce
the further sequent Γ ` ∆ from (P,N) if we reach inconsistency by adding {(∅, γ) : γ ∈ Γ} to P
and {∆} or nothing to N if ∆ is respectively algebraic or false.

This fragment of logic has been implemented computationally as the programming language
PROLOG [Clocksin & Mellish 1981]. In this case P is usually larger than N and is called the
database, whilst N and possible deductions from (P,N) are called queries. The driving force of a
PROLOG interpreter is a unification algorithm, which attempts to find simultaneous substitutions
into pairs of terms to make them coincide (syntactically); this enables us to search for applications
of axioms and hence develop the proof tree. By this means we determine whether or not a given
atomic formula is deduceable from the database.

Scott [1982] has also investigated this fragment of logic and shows by means of information
systems that it does indeed correspond to the category bcAlgω.

§2.5.4 The least nontrivial fragment of coherent logic is essentially algebraic logic, in which ⊥
is excluded. Clearly the notion of inconsistency disappears, though of course we may have only
the singleton model. The corresponding category of domains is AlgLat (or ContLat or AlgLatω
or ContLatω according to taste); the categorical analogue of this is described by Gabriel-Ulmer
duality [1971].

Next after this is the logic of partial functions. The domains arising as spaces of models here
have the property that for any subset, if every pair from that subset is bounded (consistent) then
the whole subset has a least upper bound. The word coherent has been used in the computer
science literature to describe these, but again we prefer to reserve this for its established use in
logic, category theory and topology. Because of the connection with partial functions we shall call
them partial lattices and write PAlg, PCont, PAlgω and PContω for the flavours. Write x#y
for ¬∃z.x ≤ z ≥ y.

Proposition (Plotkin 1978) T ω is a saturated object for PContω, where T is the three-element
poset looking like a V.
Proof We have to show that if X ∈ PContω then X / T ω. We represent elements of T ω by a
pair of disjoint subsets of N. Let en enumerate a basis for X, so that ∀x ∈ X.x =

∨
�{en : en � x}.

Let φ : X → T ω by
x 7→ 〈{n : en � x}, {m : em#x}〉

and ψ : T ω → X by

〈u, v〉 7→
∨
�{en : n ∈ u ∧ ∀m ≤ n.em#en ⇒ m ∈ v}

�
Since in particular its own function space is a partial lattice and therefore a retract, this has a

β-model structure; in fact this is a corollary of our theorem 2.6.11c. Barendregt and Longo [1980]
have shown that the theory of equality in this model is the same as that in the Böhm tree model.

It is a further consequence of Plotkin’s result that the posets of partial maps between objects
of suitable categories are exactly partial lattices. From proposition 2.6.4b it will follow that
countability is not necessary in the above result, answering the question in Plotkin’s concluding
remarks.

+§2.5.5 We shall now give a hint of the application of coherent logic to classifying the hierarchy
of domains. Let φ be a coherent formula in the language of posets with n free variables ~x, so it
is a finite disjunction of formulae of the form ∃~y.α(~x, ~y) where ~y has length m and α is a finite
conjunction of instances of the order relation between variables. Then we write (A,~a) |= ∃~y.α(~x, ~y),
where A is a poset and ~a ∈ An, if α(~a,~b) holds for some ~b ∈ Am, and likewise for disjunctions.
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Lemma Let f : A→ B be a monotone map and (A,~a) |= φ for some coherent formula φ with n
free variables and some ~a ∈ An. Then (B, f(~a)) |= φ. �

Proposition Let A / bilimAi with Ai finite, pi : A→ Ai the obvious maps, φ a coherent formula
with n free variables and ~a ∈ An. Then (A,~a) |= φ iff for each i, (Ai, pi(~a)) |= φ.
Proof Put ~ai = pi(~a). [⇒] follows easily from the lemma, as does [⇐] for retracts; we split [⇐]
for bilimits into the cases involving conjunctions of atomics (follows by definition), the existential
quantifier and finite disjunction.

[∃] Let φ = ∃~y.α(~x, ~y) as above, and suppose for each i, (A,~ai) |= φ. Then Wi = {~b ∈
Ami : α(~ai,~b)} is nonempty and finite. By the lemma, the projection Ai → Aj restricts to
Wi →Wj . This is a cofiltered diagram of nonempty finite sets, whose limit is nonempty by
lemma 1.2.12b; let ~b be in it. Since we have projections, ~b =

∨
�~bi; then (A,~a,~b) |= α, so

(A,~a) |= φ.

[∨] Now let φ =
∨
j∈J φj be a finite disjunction, with each φj of the form in (∃), and for each i,

(Ai,~ai) |= φ. Let Ij = {i : (A,~ai) |= φj}; these sets are down-closed in the diagram by the
lemma and cover I. But I is filtered and J finite, so Ij = I for some j. Hence (A,~ai) |= φj
by (∃). �

Question Does this result extend to geometric formulae?

+§2.5.6 There are in fact many more categories of domains lying between ContLatω and
bcContω. Write Hn for the “topless n+ 1-diamond”, i.e. the poset of proper subsets of an n+ 1-
set. Also write P sr for the property (of a poset) that for any s-set, if any r-subset of it is bounded
then the whole s-set has a least upper bound; observe that this is a coherent sequent.

Lemma

(a) if s′ ≤ s, X |= P sr and r ≤ r′ then X |= P s
′

r′ .

(b) Hn satisfies P sr for all n, r, s unless r < n+ 1 ≤ s.

(c) if X |= P sr and Y / XU then Y |= P sr . �

Proposition Given Γ ⊂ {P sr : r, s ∈ N}, let C be the full subcategory of IPO whose objects satisfy
Γ and are retracts of countably based bifinite posets. Then C is a small category of continuous
domains, and there are infinitely many such C.
Proof By part (c) of the Lemma, and proposition 2.5.5, C is closed under exponentials, retracts
(hence products by corollary 1.3.5) and countable bilimits. �

Gordon Plotkin claims that the Hn classify categories of boundedly complete domains. The
crucial point is that any finite boundedly complete poset is a retract of a power of Hn, where
n + 1 is the size of the largest minimally inconsistent subset. The proof of this is presumably a
generalisation of that of proposition 2.5.4, but unfortunately I was unable to locate it in his notes.

+§2.5.7 As a further corollary of this application of coherent logic, we have a result about the
subspace topology on MaxX, the set of maximal elements of a bifinite poset X.

The interest in MaxX lies in the idea [which is plausible at the first order but breaks down
for higher order functions, where the logical complexity of the totality condition increases] that
it represents the “total” or “terminating” elements of the domain, the others being “partial” or
“nonterminating”.
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Figure 2.5.7: Max∩↑x is not closed in Max

Lemma Let X ∈ ContDom and x ∈ X. Then ↓(↑x) and ↑x∩MaxX are closed in X and MaxX
respectively.
Proof Following §2.5.2, we have to prove this by induction on the construction of X. It is
clearly true for finite posets, so let X be a retract of a bilimit of domains Xi in which the result
holds and pi : X → Xi the appropriate maps. Now “y ∈ ↓ ↑x” is a coherent formula in x, y, so
by proposition 2.5.5, ↓(↑x) =

⋂
p−1
i (↓(↑ pix)), which is an intersection of inverse images of closed

sets and hence closed. The result for MaxX follows from the definition of the subspace topology.

Proposition Let X be bifinite. Then MaxX is zero-dimensional.
Proof If x ∈ Xfp then ↑x ∩MaxX is clopen, and these sets form a base for the topology. �

Example

(a) In an infinite flat domain, Max is not compact.

(b) In this algebraic poset there is a point x with ↑x ∩Max not closed.

+§2.5.8 Lattices, partial lattices, boundedly complete posets and the other intermediate cate-
gories of domains correspond to subfragments of propositional Horn logic. In the other direction
we may investigate what happens when we add disjunction to our fragment — necessarily leading
to nondeterministic programs — or move to full model theory in stead of just propositions. The
former leads to larger categories of posets (a certain fragment of coherent logic gives all bifinite
posets, but as we saw in 2.4.9 it is not full coherent logic and the question as to what fragment it
is is not an easy one) and the latter to categories or toposes.

We define a bifinite category to be one which is a bilimit of finite categories. Much of the
theory of bifinite posets carries over immediately, though there are pitfalls.

Fact The category of algebraic field extensions of Q is bifinite (but is not a poset). �
The mind boggles at the thought of Galois models of the λ-calculus! However there is neverthe-

less a moral to be drawn from this example. The interest of Algebraic Number Theory lies in the
objects of the above category, but it is sometimes convenient to work inside the algebraic closure,
A, of Q (or even in the complex numbers, C). This serves the same function as a saturated domain
in our subject, and indeed the two constructions are much the same. Our interest lies in types, i.e.
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objects of the category, but we shall find it convenient to work in a saturated domain, Λ (since it is
necessarily a β-model). The choice of a particular algebraic closure of Q is irrelevant to algebraic
number theory, and we likewise shall regard the particular choice of Λ to be unimportant. (There
is actually a distinction in that any two algebraic closures of Q are isomorphic.)

§2.5.9 For the remainder of this section we concern ourselves only with bcCont.

Proposition The forgetful functor bcConthm → bcCont has a left adjoint, F . Moreover the
unit X → F X is an embedding.

Proof For x ∈ X ∈ bcCont, let F X be the poset of proper filters of open subsets of X and
ηXx the collection of open neighbourhoods of x. [Note: F X is then a set of sets of sets; a filter
is proper iff it does not contain the empty set.]

Given f : X → Y in bcCont we have a homomorphism F X → Y by

f∗ : Y → F X by y 7→ {U : (∃V : y ∈ V )(f−1V ⊂ U)}
f∗ : F X → Y by Φ 7→

∨
�{
∧
{fx : x ∈ U} : U ∈ Φ}

Then f∗ a f∗ since f∗y ⊂ Φ and y ≤ f∗Φ are each equivalent to (∀V : y ∈ V )(f−1V ⊂ Φ). Also
f∗ is continuous, f = ηX ; f∗ and ηX = 1∗. �

Question Does this hold for other categories of (boundedly complete) continuous domains?

§2.5.10 There is a characterisation of boundedly complete continuous posets similar to that
for continuous lattices; indeed much of the theory of one category is obtained directly from the
other by minor surgery.

Recall from §2.3.1 that a space is injective if any continuous map to it from a subspace of
another space can be extended to the whole of that space. More generally a T0 space is densely
injective if the same holds for dense subspaces.

Proposition The following are equivalent for a T0 space X equipped with its specialisation order:

(α) X is a boundedly complete continuous poset with its Scott topology,

(β) X is a closed subspace of a continuous lattice,

(γ) X ∪ {>}, where ∀x.x ≤ >, is a continuous lattice

(δ) X is densely injective

(ε) X is an “algebra” for arbitrary inhabited inf distributing over directed sup.

Proof Only dense injectivity is not completely obvious.

[γ ⇒ δ] Let A ⊂ B be dense. We may extend any A → X to B → X ∪ {>}. X is closed in the
codomain, so its inverse image, which contains A, is in the domain. But A is dense, so
B → X.

[δ ⇒ γ] Let A ⊂ C, with B the closure of A. Extend A→ X to B → X by dense injectivity, and to
C → X ∪ {>} by C\B → {>}. �

Considerations from Universal Algebra strongly suggest that we admit the empty poset to
bcCont, but we resist them.

Warning bcConthm is not algebraic over Set; indeed it is not even complete.
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+§2.5.11 Here is something we promised in Example 1.5.7 (this I now understand to be Martin
Hyland’s original construction from 1973).

Lemma Let X ∈ ContDom. Then the diagonal map X → X × X is an embedding iff X is
boundedly complete.
Proof The right adjoint to the diagonal is the binary inf operation. Every continuous domain
has directed inf, so this exists iff the domain is boundedly complete. Binary inf is continuous since
the domain is continuous. �

Proposition In bcCont there are nontrivial objects Λ with Λ ∼= Λ×Λ ∼= ΛΛ; indeed any object
is a retract of such.
Proof Let X0 ∈ bcCont. Put X2n+1 = X2n × X2n, embedding X2n by the diagonal map.
Put X2n+2 = X2n+1

X2n+1 , embedding X2n+1 by dropping a variable. Finally put Λ = bilimXi.
Then Λ ∼= bilimX2n+1

∼= bilim[X2n ×X2n] ∼= [bilimX2n]× [bilimX2n] ∼= Λ× Λ by continuity of ×.
Similarly Λ ∼= ΛΛ. Also X0 / Λ. �

The Y combinator gives least fixed points for the same reason as it did in proposition 2.2.8b.
We cannot in general expect to be able to solve double fixpoint equations (§1.5.11), but the

relationship between × and → enables us to find X / Λ ∼= Λ × Λ ∼= ΛΛ. For let U = XN and
solve Λ ∼= UΛ. Then U ∼= U × U , Λ ∼= UΛ ∼= (U × U)Λ ∼= UΛ × UΛ ∼= Λ × Λ and ΛΛ ∼= (UΛ)Λ ∼=
U (Λ×Λ) ∼= UΛ ∼= Λ.

+§2.5.12 A large part of the difficulty in extending results about algebraic domains to the
continuous case is that no intrinsic characterisation has yet been found of the retracts of bifinite
posets. The problem is really that we have far less grasp on a general retract than on closure and
coclosure operators; for lattices we overcame this by factoring a retract as a composite of a closure
and a coclosure (this is possible because the intermediate retract is the join of the given one with
the identity in a certain lattice — perhaps there’s some kind of “zig-zag” lemma in general).

Unfortunately Idl, which we used in lemma 2.3.6, preserves mub-completeness but not bifinite-
ness.

Example Let X be the countable power of the poset

• •

•

6 -

◦

6
�

⊥

-
�

Then the pair of sequences {a∞, b∞} in IdlX has infinitely (indeed uncountably) many mubs,
namely those sequences each of whose terms is either c or d. �

However if X ∈ bcCont then IdlX ∈ bcAlg.

§2.5.13 Somewhat after the submission of this dissertation, Gordon Plotkin told me of his
characterisation of continuous domains. We say a domain X is gradable if there is an increasing
sequence of endomorphisms δi : X → X (not necessarily idempotent) with

∨
� δi = 1X and δi(X)

finite.
It is easy to see that retracts, products and exponentials of gradable domains are gradable,

and that countably based bifinite posets are gradable.
δi(x) � x, and x ∈ Xfp ⇐⇒ ∃i.δi(x) = x. It is not, however, necessarily the case that

δi � 1X .
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Proposition (a) Any gradable domain is a retract of a countably-based bifinite poset.
Proof Let δi grade X. Put

Yi = {〈u0, u1, ..., ui〉 : uj ∈
⋃
k≤j

δk(X), uk ≤ uj : (k ≤ j ≤ i)}

which is finite; also put Y for the similar set of infinite sequences. These form a bilimiting diagram
in which the projections curtail the sequences and the embeddings repeat the last term, so Y is
bifinite. We make X / Y by x 7→ 〈δi(x)〉 and 〈ui〉 7→

∨
� ui. �

Corollary A domain is gradable iff it is a retract of a countably based bifinite poset. �
By modifying the definition to say that the deflationary endomorphisms with finite image form

a directed set with sup the identity, we should be able to extend this beyond the countably-based
case.

Proposition (b) A bilimit of gradable domains is gradable.
Proof W.l.o.g. the bilimit is of embeddings. I can only see how to prove the result using one of
the variant definitions, so that the i+ 1st function dominates the preceding ones. �

Theorem The retracts of (countably based) bifinite posets form a category of domains, and in
particular have bilimits. �

2.6 Saturated Domains

§2.6.1 We devote the final section of this chapter on domain theory to the construction of saturated
domains, i.e. of which any other occurs as a retract (the word universal appears in the literature,
but I take the view that this should be reserved for its categorical sense involving uniqueness).
This is done for Biω Posf , though the technique is more widely applicable.

Finding saturated domains is really part of the more comprehensive question of showing that
small categories of continuous domains and categories of retracts of continuous models of the λ-
calculus are one and the same thing. The proof of this in the generality I would have liked has
several gaps, but it is shown here for subcategories of bcContω.

The point of this, as remarked in §2.5.8 by analogy with algebraically closed fields, is that
whilst it is the category of domains which is our primary interest it is convenient to assume that it
is of the form Retr(Λ). In chapter V we shall make substantial use of this assumption to motivate
our definition and subsequent construction of a type of types.

In contradistinction to the case of algebraically closed fields, the technique is a “bootstrapping”
one: we make use of any β-model we are given to construct another with slightly better properties.
As has been repeatedly emphasised, the primary interest is not in the structure of any particular
model. Moreover since each application of this technique suggests a new desirable property of
models of the λ-calculus we make no attempt to formulate the optimal definition.

+§2.6.2 The early constructions of models of the λ-calculus overcame the obvious cardinality
problem with discrete sets because the step functions of §2.3.10 provide a handle on the size of
the function space. The idea of the construction of saturated domains is much the same: we use
the finite posets as a (countable) “basis” for the category.

Lemma Let Y be a finite poset and X = bilimXi in IPO. Then Y occurs as a retract of X iff it
occurs as a retract of some Xi.
Proof [⇐] is obvious. [⇒] We use the characterisation of finite retracts from proposition 2.1.11b.
For y ∈ Y let Uy and Ay be the inverse images of ↑ y and ↓ y, so y ∈ Uy ∩ Ay. For i ∈ I let
pi : X → Xi ⊂ X be the corresponding projection, so

∨
�{pi : i ∈ I} = 1X (cf. proposition 2.4.3β).
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Then for y ∈ Y , y =
∨
�{piy : i ∈ I}, so for some i = iy, piy ∈ Uy. There are only finitely many y,

so choose i ≥ iy. Then Z = {piy : y ∈ Y } is the image of Y in Xi and is a choice satisfying the
conditions of proposition 2.1.11b. Hence it is the image of a retract on X with the same partition
(and Y ∼= Z). This retraction restricts to Xi, although the composite Y ∼= Z /Xi /X need not be
the given retraction. �

Proposition Let X, Y be finite posets. Then Y is an object of any category of domains which
also contains X iff Y / Xm for some m.
Proof

[⇐] Any category of domains is by definition closed under retracts and exponentials.

[⇒] Let Σ be the class of (finite) posets which occur as retracts of iterated function spaces of X.
By the lemma, if we extend Σ to a category C by alternately adjoining bilimits and retracts we
add no new finite domains. Any such extension remains closed under exponentials (lemma
2.5.2). The closure under such operations is a category of domains, indeed the smallest
which also contains X, so it contains Y by hypothesis. Hence Y ∈ Σ. �

+§2.6.3 We would like to show that any category of domains is determined by its finite objects.
There is no problem with algebraic domains, but we need to show for continuous domains that we
can modify any expression of the form X / bilimYi to replace the Yi by Zi which are necessarily
in any category of domains which contains X.

The best I can do here is by restriction to boundedly complete continuous posets. By a
subsemilattice is meant a subset closed under such binary joins as exist.

Lemma

(a) Let X ∈ bcCont and S ⊂ X be a finite subsemilattice. Then S / X.

(b) Let X ∈ bcContω. Then X / bilimYi for some countable diagram of finite posets Yi which
are retracts of X.

(c) Let X ∈ bcCont and U be any finite poset. Then XU / Xn for some n.
Proof

[a] For s ∈ S let Us = {x : (∀t ∈ S : x ≤ t)(s ≤ t)}. Then s ∈ Us, U⊥ = X, and s ≤ t iff
Us ⊃ Ut. Also x ∈ Us ∩ Ut iff (∀u ∈ S.x ≤ u)(s, t ≤ u); hence Us ∩ Ut = Usgt. Now let
p : X � S by p(x) =

⋂
{s : x ∈ Us}.

[b] Let B be a countable base for X, which we may as well assume to be a subsemilattice.
Let S be any finite subsemilattice of B; then S is a retract of X by the Lemma. Then
Y = IdlB ∼= bilimS so it suffices to show X / Y . But B was a base, so any x ∈ X is
a directed sup from B, hence an element of Y , and the inclusion B ⊂ X extends to a
continuous map Y → X. Thus X is in fact a coclosure of Y . Of course we have the same
result with “countable” deleted.

[c] Given f : |U | → X (where |U | means the underlying discrete set of U), let g(u) =
∧
{f(q) :

u ≤ q}. Then XU / X |U | by a coclosure. �

+§2.6.4 We now have two forms of the desired result, a weak one for general algebraic (i.e. bifi-
nite) domains and a strong one for boundedly-complete continuous domains.

Proposition (a) There is a bijective correspondence between
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(α) large or small categories C of algebraic domains,

(β) classes Σ of finite posets closed under exponentials and retracts.

Proof Put Σ = C ∩ Posf and C = Biω Σ. Then Σ 7→ C 7→ Σ is trivially the identity and
C 7→ Σ 7→ C is because any bifinite poset can be expressed as a bilimit of retracts. Σ is of precisely
this form by proposition 2.6.2. �

Proposition (b) There is a bijective correspondence between

(α) large or small categories of boundedly-complete continuous domains,

(β) classes of finite boundedly-complete posets closed under products and retracts.

Proof Further use lemma 2.6.3b for equivalence and lemma 2.6.3c for the form of Σ. �

+§2.6.5 Let H be the poset of categories of algebraic domains under inclusion. We call this the
hierarchy .

Theorem

(a) H is an infinite countably based algebraic lattice.

(b) The basis (subposet of compact elements) of the hierarchy below bcAlg is recursively de-
cidable.

Proof

[a] This is an immediate corollary of proposition 2.6.4a since exponentiation and retracts are
finitary operations; infinity follows from proposition 2.5.6.

[b] We have only to test, for finite boundedly-complete posets X, Y , whether Y / Xn for some
n. However it is easy to show that w.l.o.g. n = |XY |. cf. §2.5.6. �

Question Is it distributive, and if so, what does its spectrum mean?
[My reason for suspecting this is the application of coherent logic to the classification (Question

2.5.5): points in the hierarchy appear to correspond to Grothendieck topologies on Posf and hence
to elements of its locale of nuclei.]

It may be useful to apply (abstract) homology theory to the classification of domains, for
instance making the simplicial sets at dimension n the bounded n-tuples of the domain (this idea
as it stands unfortunately gives a zero result), although as we noted in §2.5.6, Gordon Plotkin
claims that boundedly complete domains have essentially one invariant of products, retracts and
bilimits, namely “dimension”. A categorical union of homology and coherent logic, incorporating
a generalisation of the notion of dimension, would be needed for general bifinite posets.

Remark See (per Archim Jung)

• Baclawski, Bjoerner: Fixed Points in Partially Ordered Sets, Adv. Math.31 (1979) 263–287.

• Walker: Isotone Relations and the Fixed Point Property for Posets. Discrete Math.48 (1984)
275–288.
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+§2.6.6 At this point we temporarily shift emphasis from categories of domains back to models
of the lambda calculus and their retracts. First we get a grasp of the size of such a model. Recall
from §§2.3.1-2 that the Scott topology on a domain X is 2X .

Lemma Let X be an algebraic ipo and a, b ∈ Xfp. If [a ⇒ a] ≤ [b ⇒ b] then either a = ⊥ or
a = b.

Proof First note b 6≤ a iff ∃x.a ≤ x 6≥ b; under our hypothesis if this holds then a ≤ ⊥, otherwise
b ≤ a. In either case a ≤ y ≥ b for some y, whence the hypothesis gives a ≤ b. �

Proposition Let X be an algebraic ipo with weight κ ≥ ω. Then 2κ / X2.

Proof The topology of X1 is a retract of X2. By the lemma (X1)fp has an antichain (discrete
subspace) of cardinality κ, so the topology of X1 has 2κ (the topology of a discrete space of size
κ) as retract. �

Corollary Let Λ be a β-model in AlgPos of weight κ. Then the flat lattice, κ>⊥, of size κ (obtained
by adding top and bottom to a discrete set) is an object of Retr(Λ). So is the (ordinal) chain of
length κ+ 1.

Proof These are retracts of 2κ. �

+§2.6.7 We can use this lattice to index products if we have > in the model; otherwise we want
the flat domain, κ⊥, obtained by adding just ⊥ to a discrete set. Unfortunately I cannot see how
to get beyond ω.

Lemma Let X ∈ ContPos have bottom but not top. Then

(a) T / X, where T = {0, 1,⊥} is the poset introduced in §2.5.4

(b) If U, V / X then U +⊥ V (obtained by adding a new ⊥ to the disjoint union of U and V ) is
a retract of X ×X.

Proof

[a] Let 0, 1 ∈ X be unbounded; choose 0′ � 0, 1′ � 1 with 0′ 6≤ 1 and 1′ 6≤ 0. Then take ↑↑ 0′ to
0, ↑↑ 1′ to 1 and the rest to ⊥.

[b] (cf. §1.4.6) Write T,U, V : X → X for the corresponding idempotents and define an endo-
function of X ×X by

(x1, x2) 7→

{
Ux2if Tx1 = 0
V x2if Tx1 = 1
⊥ if Tx1 = ⊥

�

Proposition Let Λ be a β-model in ContPos without top. Then the flat domain, ω⊥, of size ω
(add bottom to a discrete set) is an object of Retr(Λ).

Proof Let F = λX.X +⊥ (K⊥). Then Fn(K⊥) has the shape indicated by the figure.
ω⊥ /

∨
�{Fn(K⊥)} by sending all non-open points to ⊥. �

+§2.6.8 We can use the previous two results to construct countable products in Retr(Λ).

Proposition Let Λ be a β-model in BiPosf . Then Retr(Λ) has countable products.
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Figure 2.6.7: Lazy natural numbers

Proof Let I = ω>⊥ if Λ has top, ω⊥ otherwise, so I / Λ. Let Xi / Λ for i ∈ ω, i.e. Xi ∈ Λ with
PXiXi = Xi. I claim

∏
i∈ωXi is a retract of ΛI , and hence of Λ, by

(p : I → Λ) 7→

[
i 7→

{> if i = >
Xi(pi)if i ∈ ω
⊥ if i = ⊥

]
For any (xi : i ∈ ω) may be extended to a unique p : I → Λ fixed by this, and any fixed point
yields such a family. �

We have various kinds of “sums” by a similar trick.

+§2.6.9 It is not necessarily the case that the class of retracts of a domain is closed under
bilimits.

Example Let X be the disjoint union of 2n for n ∈ ω, with a ⊥ added. Then every finite lattice
occurs as a retract of X, but no infinite one does. �

Here again we retreat to the case of bcCont.

Lemma Let C be a full subcategory of bcCont closed under retracts and (countable) products.
Then C is closed under (countable) bilimits.
Proof Let X : I → Ccp be a filtered diagram of comparisons; since we have retracts, w.l.o.g.
the maps are embeddings. The proof really goes via the global (polymorphic) product, which we
shall meet in Chapter V; in fact we show bilimi∈I Xi /

∏
i∈I Xi /

∏
i∈|I|Xi, by which we mean

respectively the bilimit, the polymorphic product and the discrete product. Whereas in the last
the terms in the family (xi) may be arbitrary, in

∏
i∈I Xi they must satisfy xi ≤ πjixj , and in the

bilimit we have equality.
Thus we make

∏
i∈I Xi /

∏
i∈|I|Xi by

(xi) 7→
(∧
{πjixj : i ≤ j} ; i ∈ I

)
Continuity follows from directed distributivity, and the comparison condition holds because πii′
preserves

∧
and then we are taking the inf of a larger set for i′ than for i (where i′ ≤ i); finally

the operation preserves families which already satisfy the condition.
The comparison map bilimi∈I Xi →

∏
i∈|I|Xi which takes an element of the (bi)limit to the

compatible family clearly factors through the inclusion of the polymorphic product. This inclusion
is a retract simply by taking the directed sup:

(xi) ∈
∏
i∈I

Xi 7→
∨
� xi ∈ bilimi∈I Xi
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Hence we have the required retract and bilimi∈I Xi ∈ C. cf. Lemma 5.2.5. �

Proposition Let Λ be a β-model in bcContω. Then Retr(Λ) is closed under countable bilimits,
and is hence a small category of continuous domains. �

+§2.6.10 We now return to categories of domains to find saturated objects. The construction
of this section is like Pω and depends on the foregoing results; that of the next section is more
like D∞ and follows on from proposition 2.6.4.

Proposition Let C be a small category of boundedly-complete continuous domains and Σ its
(countable) class of finite objects. Then Λ =

∏
X∈Σ(XN) is a β-model and C ' Retr(Λ).

Proof Since ΛN ∼= Λ, the class of retracts of Λ satisfies the conditions of lemma 2.6.9 and so
is closed under countable bilimits; since it contains Σ, it is Biω Σ ' C. On the other hand ΛΛ

is a bilimit of objects of the form XY with X,Y ∈ Σ, but these are in Σ since it’s closed under
exponentials, so ΛΛ / Λ (somehow). �

+§2.6.11 We shall find a saturated domain for Biω Posf by a more general technique which
historically derives from the general construction of algebraic closures of fields.

Proposition Biω Posf has a saturated domain.
Proof Let Σ be the category of finite posets with ⊥ and embeddings. We seek a “saturated
countable filtered colimit” of Σ.

Consider all finite strings of embeddings in Σ starting from the singleton, ordered by “am-
putation” (i.e. initial segments); these form a tree, T . There is a diagram T → Σ ⊂ Biω Posemf
given on points by taking the object at the end of the string and on arrows by the corresponding
embedding.

Let Λ be the limit of this diagram (the name is justified since we shall have ΛΛ / Λ). By
theorem 2.2.14 we construct it with pullbacks and bilimits and the maps in the limiting cone are
projections.

Now let X ∈ Biω Posf . Then X is the bilimit of an ω-diagram of finite posets and embeddings,
w.l.o.g. starting at the singleton. We therefore have a diagram ω → Σ, which may be extended to
ω → T ⊂ I by considering initial segments. This is a subdiagram of that defining Λ, so there is
an embedding X � Λ as required. �

+§2.6.12 We sum up the results of this section for boundedly-complete continuous domains.

Theorem

(a) Let Λ be a β-model in bcContω. Then Retr(Λ) is a small category of boundedly complete
continuous domains.

(b) Let C be a small category of boundedly complete continuous domains. Then there is some
Λ ∈ C with Retr(Λ) ' C.

(c) Any such category consists of retracts of countable bilimits of Σ-objects, where Σ is a class
of finite boundedly-complete posets closed under retracts and products, and any such Σ will
do. �

The corresponding results for BiPosf are weaker:

Theorem
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(d) Let Λ be a β-model in ContDom. Then Retr(Λ) is closed under retracts, exponentials and
countable products.

(e) Biω Posf has a saturated object.

(f) Any small category of algebraic domains is of the form Biω Σ for Σ some class of finite posets
closed under retracts and exponentials, and any such Σ will do. �

§2.6.6 suggests that we obtain nothing new by varying the weight of the category. We may
improve the properties of Λ (e.g. Y is the least fixpoint combinator and Λ ∼= Λ×Λ ∼= ΛΛ) by using
propositions 2.2.8 and 2.5.8.
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Chapter 3

Type Polymorphism

3.1 Types are First-Class Citizens

§3.1.1 Types first featured in programming languages in an ad hoc fashion as in FORTRAN,
where there are “two kinds of numbers”, and in BASIC and countless operating-system and
applications command languages, which have numeric and string variables. Already here, however,
we encounter coercion (“widening” in ALGOL 68), which is the automatic conversion of a value
of one type (e.g. INTEGER) to the type of its context (e.g. REAL), and overloading , which is the use
of the same symbol (e.g. +) for different operations depending on the types of its arguments (e.g.
addition of numbers and concatenation of strings).

By the end of the 1960s, however, the possibility of extending the type structure was available
to the programmer. Three features in particular may be recognised in ALGOL 68 (see [van
Wijngaarden et al. 1975] or [McGettrick 1978]) or PASCAL [Jensen and Wirth 1975].

First, enumerated types, such as

week = {Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday}

to replace the choice and passing of arbitrary numeric codes. This enforces a discipline on the
programmer, and by explicitly restricting the choice of values of a parameter makes it more likely
that its value will be correct, comprehensible to a future maintainer and consistent with subsequent
extension. It also enables a clever compiler to optimise, performing say byte rather than word
arithmetic on the value. Mathematically these of course correspond to finite coproducts.

Second, records or structures (corresponding mathematically to finite products) enable data to
be organised (passed, copied, compared, ...) at a higher level than a number or string at a time.
Finally, variant records provide for the type of an item of data to be varied, the type itself being
saved in a tag field ; mathematically this corresponds to an indexed sum. These features allow
the implementation of operations to be hidden from the user, making it possible subsequently to
modify it invisibly.

Languages which have such features are called strongly typed . Most of the type checking can
be done at compile-time (as opposed to run-time) because it is syntactic and decidable.

§3.1.2 Even with these extensions, we still have to duplicate code if we wish, say, to calculate
the determinant of both real and complex matrices. To avoid this we now allow the type to be a
variable, which phenomenon we call polymorphism.

It does not require very much of a mathematical background to realise that the determinant
depends only on addition and multiplication, so this process may be performed with respect to
any ring . Consequently one may define the determinant function parametrically on the base ring;
in other words an additional argument is provided (which we shall by convention list first since

73
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the interpretation of subsequent arguments is dependent on it) specifying the type corresponding
to the ring.

The code of the polymorphic determinant program, then, consists of the pure algorithm (either
the defining polynomial with n! terms in the coefficients or — more likely — Gaussian elimination
with pivotting), into which are to be substituted the calls to the addition and multiplication sub-
routines appropriate to the kind of arithmetic in use. The algorithm, however, is given uniformly
for all rings.

For the practical implementation of this, we need to pass to the program not just the type of
the elements of the ring which will feature as coefficients in the matrix (which the compiler will
use only for type-checking) but also the operations on the ring. We can, of course, already do
this in FORTRAN: to the arguments we add functions tMULT (X,Y ) and tADD(X,Y ), calls to
which occur instead of × and + in the code. More abstractly, the initial “type” argument to the
routine consists of the entire signature, (R, 0, 1,+,−,×), of the ring.

It is the word “uniformly” which we shall pursue here. In this example it is precisely the same
notion as the “natural” isomorphism of a vector space and its double dual which led Eilenberg and
Mac Lane to their original formulation of category theory [1942]. We find that it leads naturally to
the notion of classifying topos, which we take the opportunity to introduce (unfortunately, within
the scope of the present work the hierarchy of categories of domains in §2.5 is the only occasion
we find in the present work to make use of it).

In the particular example of the determinant there is in fact another hidden degree of poly-
morphism because (even fixing the base ring as R) there are matrices of different sizes. Of course
this is because we are really dealing with polymorphism over the category of R-modules. When
we discuss this example we shall therefore stick to 2 × 2 matrices and consider just the function
a × d − b × c since this suffices to make the point. However it may dawn on us that the design
of the “conceptually perfect” programming language is inevitably going to involve the whole of
modern Algebra.

§3.1.3 Unfortunately not all of the type constructions one might wish to consider in a program-
ming language are functorial in their parameters. The foremost example of this is the exponential
or function space which, like the single dual of a vector space, is contravariant in its first argument.
In such circumstances it would appear that this interpretation breaks down.

A successful but nevertheless ad hoc attempt to modify the category of types in order to
render the function space construction covariant in the first argument has already been discussed
in chapter II. We shall return to it in chapter V where we motivate the claim that it is an example
of what we mean by a continuous type dependence.

This leads us to consider languages with type-valued expressions. These may have free variables
either of some ordinary type(s) — for instance the type of solutions of some parametric equations
— or of type type — e.g. the function space.

In such languages it may no longer be possible to perform type checking at compile-time
(clearly, for instance, we cannot know whether an expression has type the solution-set of an
equation until we know its value). Indeed it may even be the case that type checking is undecidable,
as happens with the language we introduce in §3.5.6.

§3.1.4 There is another notion of polymorphism which predates the advent of electronic com-
puters. This is the belief that, say, the identity function is really unique rather than occurring
once for each type. We say that the type of λx.x is really “∀X.X → X ′′. We shall introduce two
languages, the second order polymorphic lambda calculus and PONDER, which explore this idea.
PONDER admits of a variety of curious constructions which one might well consider to have no
business to exist.

These will, however, be presented late in the chapter, after we have introduced indexed category
theory and applied it to natural deduction, since there are important formal parallels between the
constructs.
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These are second-order , untyped languages in the sense that the types are terms of a certain
single higher type which is not itself a type of the language. It is therefore analogous to the large
universe of sets. In the determinant example we were interested in types with the signature of
rings rather than sets, whereas here we have only one kind of type. Additionally, it is restricted to
the second order in that we do not have facility to consider collectively all (say) algebraic theories.

It would be possible to construct a more elaborate category of types in which the ordinary
types have mixed in some “higher” types constructed as powers of the external type of types.
There is of course a strong tradition in set theory of such stratification but this approach rapidly
leads to great complexity when the objects we want to consider consist not simply of types or
elements but algebraic structures on a type together with chosen elements.

We shall return to this topic in §3.5.11.

§3.1.5 This kind of approach also necessarily excludes the compiler itself from being well-typed,
since it has to comprehend all types whatever .

Consequently we shall follow what has in the past frequently been a dangerous path and seek
models in which there is an “ordinary” type of all types. We are saved from contradiction because
the logic interpretable in our system is extremely weak (as we showed in chapter I, if we ask for
fixpoints we lose most of Comprehension and all Negation). Nevertheless when, in chapter V, we
do construct a model, we still find ourselves sailing very close to the wind.

§3.1.6 There is a strong formal connection between (polymorphic) type theory and natural
deduction or proof theory, roughly as indicated in the following table:

Proposition Type
Deduction Term or Function

Proof Element
Conjunction and True Products and Singleton
Disjunction and False Coproducts and Empty

Implication Function-space
Substitution Substitution

Existential Quantifier Sum or Coproduct
Universal Quantifier Product

This may be extended to programs, but the novelty of this attitude means that it is difficult to
identify the correct words to use in the table.

We shall take advantage of this analogy by exploring the case of natural deduction first. Since it
involves lattices rather than categories, its features can be identified with less work. It nevertheless
shows the importance of pullback functors and their adjoints.

§3.1.7 The final ingredient of this present chapter is a discussion of the rôle of variables. The
need for such an explicit treatment arises from the fact that since we have both type and term
variables we shall be making more sophisticated use of them than we have done so far. Such a
discussion also throws further light on the use of indexed categories.

The way in which mathematicians in general use variables is mysterious (in both the medieval
and modern senses of the word) to the general population, as one quickly discovers if one attempts
to teach third-form algebra. Consider for example the following quotations from a typical school
textbook:

(a) “Put x = 3, y = 7 in 4x+ 2y”

(b) “Simplify −5a+ b2 − a(b− a) + a− b”

(c) “Factorise x2 + 5x+ 6”
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(d) “Solve x2 + x− 2 = 0”

(e) “Solve x2 − 41y2 = 1”

(f) “Solve
√
x+ 4 +

√
x− 1 = 5”

(g) “Sketch x3 + 3xy = 2”

(h) “Prove (x2 + y2)2 − (x2 − y2)2 = 4x2y2”

(i) “Integrate
∫

dx√
a2+x2 ”

(j) “Find
∫ 1

0
dx√
1−x2 ”

Can we be surprised that most people throw up their hands in horror at the sight of Algebra,
having been brought up on this diet of philosophical confusion?

§3.1.8 In both programming and pedagogy, variables are introduced as having values in an
“environment”. This is a reasonable understanding of x and y in example (a), and — at a stretch
— of a and b in (b) if the pupil is persuaded to read apples and bananas (what is the square of
a banana?). The view is more tenable in programming because a compiler will demand that all
variables be declared , which is tantamount to being given (or at least having) a value.

But clearly this breaks down in the remaining examples from §3.1.7, especially those involving
calculus. In (d) and (e) the symbols x and y are better described as indeterminates (there is an
additional confusion in that (e) is a Diophantine equation: there is a contextual understanding
that we seek all integer solutions). The process of dealing with such problems raises another
philosophical difficulty which we expect schoolchildren to grasp without explanation. Historically
this was described as analysis (in which we treat the indeterminate as if it were known and deduce
its value) and synthesis (in which we make use of this knowledge to prove the solution).

Example (f) particularly illustrates analysis and synthesis; we solve it by twice rearranging
and squaring to deduce x = 5. However had we put −5 on the right the typical schoolchild would
have made the same deduction, though in this case there is no solution since

√
by convention

takes nonnegative values. The analysis deduced from the assumption that the value exists what
it must be, then synthesis determines whether it does exist.

In examples (b), (c) and (h) the variables are intended to stand for generic numbers. We do
not mean that these equations hold for each value which one might care to substitute, but that
they hold formally and may be manipulated as such. We see this again when school textbooks
talk of “the function sinx”, which notation we improve to x 7→ f(x) or λx.a. In the field F5 of
order 5 the polynomial x5 − x always takes the value 0, but x5 − x = 0 is not an identity in this
sense.

The relationship between the environmental and generic use of variables is the same as that
between models and theories. If there are enough values for the variable to take (as there are not
in F5) then we have a completeness theorem, that a proposition which holds in all environments
is provable.

In the case of an algebraic theory (such as rings or combinatory algebra), variables may be
treated as generators for a free algebra. For such a theory completeness is trivial, since provability
coincides with truth in the free algebra. We shall touch briefly on coherent logic and find a generic
model (in the classifying topos) for which the same is true.

§3.1.9 The typical environmental approach to models of the λ-calculus (e.g. [Meyer 1982]) or
to model theory presupposes a fixed infinity of variables and all possible assignments of values to
them. When we try to treat variable binding we then have essentially to “overwrite” the value-
assignments, and we are obliged to imagine some process for picking new variables out of the air
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(i.e. which do not occur freely in some collection of expressions). Of course this process is not an
algorithm because, of its very nature, it cannot be internalised.

Proposition In Λ[x0, ..., xk−1] there is a term # such that #n enumerates the terms as n runs
through (say, Church’s) numerals.

Proof (sketch) Let π0, π1 be the unpairing functions arising from the cross-diagonal bijection
N× N ∼= N (§1.4.2); these are primitive recursive and hence λ-definable (§1.1.7). Now let

#n =
{
xi if π0n ≡ imod k + 1
#(π0(π1n))(#(π1(π1n)))if π0n ≡ −1 mod k + 1

which is also primitive recursive. Then by proposition 1.1.14, Λ[~x] = {#n : n ∈ N}. Application
and abstraction are also recursive, so there exist !, ♣i with #(!mn) = #m(#n) and #(♣m) =
λxi.#m for all m,n ∈ N. �

This does not, of course, work for infinitely many variables.

§3.1.10 The λ-calculus and predicate logic are syntactically more complicated than algebra in
that they have variable binding . This also features in examples (i) and (j) of §3.1.7, where it is
familiar that the variable of integration is “dummy”. Renaming of dummy variables is called the
α-rule.

The fact that the same identifier may occur both free and bound, and indeed may occur bound
more than once, is another source of confusion, with the effect that one must apply a modicum
of thought to the algorithm of substituting an expression for a free variable. There is also a
distinction between an identifier and a name, the latter being a particular occurrence.

The range of a name is the subterm delimited by its binding or declaration, or the whole term
if it is free. Since subterms are nested (not overlapping), so are ranges. The scope of a name is its
range minus any nested range of a name with the same identifier; thus within its scope a name is
determined by the identifier.

There are syntactic devices for overcoming this confusion, by eliminating bound variables alto-
gether. The transition from λ-calculus to combinatory algebra which we made in chapter I is the
prime example of this. Another technique is to replace each use of a bound variable by a numeral,
given by the number of binding operators which separate the use from the binding operator which
governs it. Arguably the almost universal practice amongst programming languages of identifying
subroutine arguments (bound variables) with their values under application positionally already
relegates them to mere names of product projections.

It is usual for a compiler to resolve these things and build its symbol table at a very early stage
in its processing. It is well known that a context-free grammar cannot recognise repetitions of a
subterm; for this and other reasons the syntactic phase of compilation is devided into tokenisation
(in which we strip spaces and comments and recognise identifiers and operators as syntactic atoms
using a regular grammar) and parsing (in which the structure of the program is found).

For a practical discussion of compilers see [Aho and Ullman 1977] and its bibliography.

§3.1.11 Yet another confusion which arises with variables is the old and thorny problem of use
(value) and mention (name). This is particularly dangerous in the context of assignment: when
we write “x := y” we use y and mention x.

The authors of ALGOL 68 put a great deal of effort into assignment, making a novel use of
types (or, as they idiosyncratically called them, assignation and modes). The signature of the
assignment (say for integers) is (refint, int), and if y happens to have mode refint we have first
to coerce (dereference) it to int.
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§3.1.12 There is another problem which arises when a named procedure uses a variable which
is not defined within the procedure but (possibly) within an enclosing one, and this procedure is
called in a different context in which the variable is also defined. This is called the dynamic free
variable problem. Which value for this variable should be used?

§3.1.13 The final problem with variables which we consider arises in Natural Deduction from
the possibility of an empty domain. From the two rules

∀x.φ(x)
φ(t)

(∀E) (∃I)
φ(t)
∃x.φ(x)

it is an easy matter to deduce a contradiction. There has been much discussion in the Model-
theoretic literature — both classical and categorical — of how this problem is to be resolved, with
a suggestion (perhaps applicable to law or politics) even that deduction be not assumed transitive!
A more serious proposal, due to Mike Fourman, is the use of partial elements.

§3.1.14 The aim of this chapter, then, is the introduction of indexed category theory as a
means of presenting notions of polymorphism and clearing up many of these confusions with
variables.

We begin by considering presentations of syntax in terms of indexed “categories” and point out
the significance of structure such as products and functors. These ideas are applied to arithmetic,
context-free grammars, algebra, λ-calculus and finally natural deduction, with particular reference
to the interpretation of the variable binding operators. We also remark that 2-categories and
enriched categories can be employed for the same purpose.

In section 3 we consider the determinant as an example of a generic (uniform, natural) con-
struction. It gives rise to a natural transformation between functors Rng → Set. We introduce
classifying toposes and sketch their construction for coherent theories. Then we discuss stronger
forms of logic which happen “accidentally” in the topos and indicate under what conditions these
are preserved. Finally we show how to make an indexed category which codes the language of
geometric logic.

In section 4 we look at the second order polymorphic λ-calculus and Fairbairn’s language
PONDER, demonstrating that the “type quantifier” ∀ is right adjoint to substitution.

Finally section 5 concerns strong forms of polymorphism including the type of types, showing
how recursion and type-of-types fit into the indexed formulation of polymorphism.

In chapter V we shall construct models for these languages.

3.2 Semantics of Variables

§3.2.1 Let us consider what we would like to be able to do with variables anyway, taking the line
that they denote “generic” typed values. We expect simple categorical descriptions of substitution
and variable binding operators, and the α rule to fall out as a triviality.

The operations on variables are

(i) proliferation: extension of the class of variables in which a given term is to be defined,

(ii) substitution,

(iii) binding by λ, ∀, ∃, etc.,

(iv) α-rule: transparent renaming of dummy (bound) variables,

(v) creation of new variables when required.
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§3.2.2 The basic idea is to “stratify” or “index” formulae with respect to the variables which
are (potentially) free in them. Each stratum or fibre is named by a string of variables of certain
types. Alternatively we may forget (the names of) the variables and list instead the types; it will
become apparent that this list is in fact the product of the types in it.

Note This depends on being able to forget and duplicate variables, cf. §3.2.20.
The substance of each stratum is the “free” or “term” model of the language. It is generated

by the variables in the list and carries the “algebraic” structure corresponding to the operations in
the language. Alternatively we may think of it as the “universe of all definable structure” derived
from the variables as “generic” values.

§3.2.3 What about substitution, say a[x := u]? It seems to be appropriate to regard as
primitive the operation of simultaneously substituting for all of the free variables of a. If we wish
to substitute for only some of them, we make the identity substitution in the remaining places.
[There is an argument to suggest that individual substitution is a strictly more powerful operation:
§3.2.20.]

Suppose, then, that x is the only free variable of a, whilst u has its free variables amongst
~y = y1, y2, ..., ym. The operator [x := u] is then a map from the fibre over x to that over ~y. Since
substitution is meant to respect the operations in the language, this map is a homomorphism of
those operations.

§3.2.4 If a has not just one free variable, x, but a string of them, ~x, we must make a (simul-
taneous) multiple substitution [~x := ~u] for them, and all substitutions are of this form.

Moreover if ~u have free variables ~y, the substitutions which may be performed after (composed
with) [~x := ~u] are those of the form [~y := ~v], and the resultant substitution is

[~x := ~u][~y := ~v] = [~x := ~u[~y := ~v]]

It is then easy to see that we have a category of substitutions, whose objects are the strings of
variables (or their types), whose morphisms are the substitutions, whose composition is that just
given and whose identity is [~x := ~x].

Clearly the substitutions are determined by the strings, ~u, of terms. These strings have type
strings the same as those of the corresponding ~x.

Proposition The category of terms (§1.3.10) is dual to the category of substitutions. It has
finite products, corresponding to listing of types. Each morphism gives rise contravariantly to a
homomorphism between the corresponding fibres, and every such homomorphism arises in this
way. �

We refer to the category of terms as the base category and denote it by B. The fibres are the
“concrete” or regular representation of B, i.e. just the hom sets B(−,−). B(X,Y ) is the collection
of terms of type Y in the fibre over X.

§3.2.5 Now let’s look at the sense in which x, quâ term, is generic in the fibre over itself,
quâ variable. Let a be any term, say with free variables amongst ~y = y1, ..., ym. We may form
the substitution [x := a], which corresponds to a morphism from ~y to x and gives rise to a
homomorphism from the fibre over x to that over ~y. This is the unique homomorphism taking x
to a.

Definition A point x in the fibre over X ∈ B is said to be generic of type X if for any a of type X
in the fibre over Y there is a unique α : Y → X in B such that the corresponding homomorphism
from the fibre over x to that over Y takes x to a. We write paq for α.
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§3.2.6 Most of the rest of this section is concerned with examples of this structure; observe
that as yet we have avoided being specific about the nature of the fibres.

The most familiar example is that of polynomials, for which the language is that of com-
mutative rings, consisting of addition, multiplication, etc. The base category simply counts the
number of variables. The fibre over ~x = x1, ..., xn is the free ring on these generators and the
substitution homomorphisms are the obvious evaluation maps; these are indeed precisely all of the
homomorphisms between these rings.

There’s something a little peculiar here about restricting attention to free rings. It would seem
to be appropriate to extend the base category to the opposite of the category of all commutative
rings, or perhaps to the category of algebraic varieties. This of course leads us into algebraic
geometry.

§3.2.7 Let’s look at the preceding example from the point of view of universal algebra. An
object of the base category is, to all intents and purposes, just a number (of variables), and the
product of objects corresponds to addition of numbers. Since every object is a product of copies
of a certain single object, we need only consider morphisms into that, and from ~x these are all
expressions in the free variables ~x.

The indexed algebra described above is easily seen to be generated by the defining operations
of the algebraic theory. However it is sometimes convenient to add to that theory all derived
operations obtained by substituting one within another and with them the corresponding equations
which say when an operation is obtained in this fashion. For example for groups we specify not only
nullary (identity) and binary multiplication but also the product of one, three, four, ... elements.
The closure of the signature (system of operations) under substitution in this fashion is called the
clone of the theory.

The clone of the theory of rings is just the collection of all polynomials in however many
variables. More generally it gives all the morphisms into x of the base category. The entire base
category B is called the Lawvere presentation of the theory.

Proposition

(a) The objects of the category B arising from a finitary algebraic theory in this way are in
bijection with N, the natural numbers, and the product of two objects is given by the sum
of the corresponding numbers. Any category of this form arises uniquely (up to equivalence)
from some finitary algebraic theory.

(b) The category of models of an algebraic theory is equivalent to the category of functors
B → Set which preserve finite products, and natural transformations between them.

(c) Bop is the category of finitely generated free algebras and homomorphisms. �

§3.2.8 The passage from single-sorted to many-sorted algebraic theories in this presentation
is easy and natural: it is given simply by dropping the condition that obB ∼= N. For the extension
to essentially algebraic theories, we need to make B a left-exact or lex category, i.e. one with all
finite limits (see §1.2.13). The “essentially algebraic” theory of categories yields an example of
this. This is usually presented as a two-sorted theory (“objects”, C0, and “morphisms”, C1) with
three total operations (“identity”, “domain” and “codomain”) and one partial (“composition”).

The domain of the composition function is not the whole of C1×C1 but that subobject carved
out as the equaliser of π0 ; cod and π1 ; dom. It is the set of “composable pairs” and is written C2.
It may also be constructed by means of either of the following pullback diagrams. The first is
the one more commonly seen, but the second will prove more useful to us in chapter V because
〈dom, cod〉 : C1 → C0 ×C0 is a display map, which is to say the inverse image of 〈x, y〉 ∈ C0 ×C0

is to be a type, C(x, y), viz. the set of maps x→ y in C; this will ensure that we can indeed form
the pullback.
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C2
π0- C1

dom- C0

C1

π1

? dom- C0

cod
?

C0

cod
?

C2
- C1 × C0

C0 × C1

?

1× 〈d, c〉
- C0 × C0 × C0

〈d, c〉 × 1

?

Figure 3.2.8: The definition of an internal category

Proposition Bop is the category of finitely presented algebras and homomorphisms (cf. proposi-
tion 3.2.7c). �

§3.2.9 The presentation of a many-sorted finitary essentially algebraic theory is then just a
left-exact category B. Its category of models is LEX(B,Set), the category of finite limit preserving
functors from B to Set, and natural transformations between them.

There’s nothing special here about the category Set: we may interpret an essentially algebraic
theory in any category E with finite limits, and the category of models is LEX(B, E). For single-
sorted algebraic theories this is familiar, writing G for the Lawvere theory of groups, the category
of topological groups is LEX(G,Sp). E will commonly be a topos.

However for E we may instead put another algebraic theory; a left-exact functor B → E is then
an interpretation of one theory in another, that is, an expression of the operations of (the theory
presenting) B in terms of those of E . The following example is an instance of this.

+§3.2.10 Context free grammars may be treated as a special case of a many sorted finitary
algebraic theory. Recall that a concrete context-free grammar over an alphabet A consists of a
collection of syntactic sorts (we prefer this to the usual syntactic category for the obvious reason)
and production rules. For example decimal integer arithmetic expressions may be described by

A = {0, 1, . . . 9, +, −, ×, ÷, (, )}

together with

D : := 0 | 1 | ... | 9
N : := D | ND
I : := N | +N | −N | (E)
T : := I | T × I | T ÷ I
E : := T | E + T | E − T

It is an easy matter to derive from this a five-sorted algebraic theory with ten constants, seven
unary operations, five binary operations and no equations.

It would be more accurate to describe this not as a single theory, but as an interpretation of
one abstract theory (of arithmetic) in another (words in A). As lex categories, an interpretation
of theories is given by a lex functor.

Proposition Let Γ be a context-free grammar in an alphabet A. Then there are naturally arising
categories with products, Γ and A, and a product-preserving functor Γ → A. Moreover this
functor is faithful iff Γ is unambiguous.
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Proof The objects of Γ are strings of syntactic sorts, ~X. The morphisms from ~X to ~Y are
strings of productions of sorts ~Y with free syntactic variables of sorts ~X together with their
detailed parsing forests; the terms are at the roots of the trees, the nodes are production rules
and the leaves are syntactic variables. The identity is as usual given by variables. Composition
is given by substituting trees for leaves in parsing forests. Γ is therefore the free category with
products on the production rules (quâ morphisms).

The objects of A are natural numbers n (or finite sets of any syntactic variables irrespective of
sort). Morphisms n→ m are m-strings of words in A and n syntactic variables (without any kind
of parsing information). Identity and composition are by variables and substitution. Notice that
we have no reference to “words in A” as the “free monoid on A”; this is because that composition
operation is concatenation, which is a red herring as far as parsing is concerned.

The functor Γ→ A gives the length of the string on objects and the term being parsed (with its
free variables) on morphisms, i.e. it throws away the parsing information. It is faithful iff whenever
there are two parsing trees for the same term (in the same variables) then these coincide. �

§3.2.11 Simply by choosing some syntactic representation of an algebraic theory it is easy to
give an interpretation of it in terms of an abstract context-free grammar. However it is necessarily
abstract, since a concrete interpretation (by words in an alphabet) would implicitly be a solution
of the word problem for the theory, i.e. the determination of whether two expressions in given
generators and relations are provably equal in the theory, and this is known not to be possible.

Consideration of the analogy between context free grammars and many sorted algebraic theories
is enlightenling. As a fairly trivial point, we notice that brackets (such as in the rule for I in §3.2.10)
serve as inverses to the inclusion of one sort in another.

The syntactic sorts of course correspond to the algebraic sorts, and when they occur on the
right hand side of a production rule they correspond to variables. We might describe them as
syntactic metavariables, since in the context of a programming language there will also be semantic
(object) variables. Some languages, notably C [Richie et al. 1975], have “macro” facilities, allowing
parametrised substitution into the source text before it is processed by the compiler; here the
analogy between the two kinds of variables is apparent.

§3.2.12 None of the foregoing examples has involved variable binding operators, so let us
now turn our attention to the λ-calculus. Because of the equivalence with combinatory algebra
(chapter I) we already know what the structure of the fibres and substitution maps must be: it
remains only to investigate the interpretation of λ itself.

We may as well deal with the typed λ-calculus. As in §3.2.2 the objects of the base category are
strings of variables of various types, and the morphisms are strings of terms whose free variables are
as listed by the domain and whose types are given by the domain; this is precisely the construction
of §1.3.10. The fibres are also the sets of all terms in the given variables, identified under β-
equivalence; they are organised into types within the fibres, and substitution respects type.

Application is definable structure, being defined between terms of types A → B and A with
result B; it is preserved by substitution. As with algebraic theories the fibre is an algebra for
the operation; it is free if we impose Curry’s equations (§1.1.14). There is a generic instance of
application with these types, namely f • a = fa in the fibre over (A→ B)×A.

§3.2.13 Let us write [~x ; A] for the type A in the fibre with free variables ~x. Abstraction is
then a function λy : [~x, y ;A]→ [~x ; Y → A] where Y is the type of y.

The β-rule is the means by which we relate the internal notion of application to the external
notion of substitution. Since we may separately substitute as we please for y, it suffices to consider
the case (λy.a)y = a. We have to proliferate [~x ;Y → A] and [y ; y] to the fibre over (~x, y); it takes
the full force of proliferated substitution to define a map

[~x, y ;A]→ [~x ; Y → A]→ [~x, y ; Y → A]× [~x, y ; Y ]→ [~x, y ;A]
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which the β-rule requires to be the identity.
Looking at this another way, we have defined a post-inverse to λy. The typed η-rule says that

this is also pre-inverse. This is of course what we did in §1.3.10.
Since in this presentation [~x ;Y ] is just the hom-set B(X,Y ), these two rules together formulate

the fact that B is cartesian closed. Observe, however, that the fact that B is cartesian closed may
be formulated equationally, and hence in a world (instead of Set) which merely has finite limits.

The untyped λ-calculus (with self-application and fixpoints) requires further structure in B.
The remark about the strength of proliferated substitution will be amplified in §3.2.20 when we
mention alternative presentations.

§3.2.14 In all of the foregoing examples the fibres have been discrete sets, and have in fact
carried no structure which was not already present in (the hom-sets of) the base category. For
the application to polymorphism (and before that to natural deduction and type theory), the
fibres acquire the structure of a category and the substitution homomorphisms are functors. The
remarkable thing is that quantifiers, sums and products turn out to be their adjoints.

Let us suppose we have a First Order theory T in a language with certain sorts, operations,
etc. Consider the language of the first order formulae, possibly including variables of the respective
sorts, together with the connectives (>,∧,⊥,∨,→,∀,∃) and the relation ` of T -provability. We
shall make this into an indexed structure (called a hyperdoctrine).

Since we now have a relation as well as operations, we no longer have a discrete set in the
fibres. In fact in general we may build a 2-category, whose arrows are the methods (not just the
fact) of proof that φ ` ψ and whose 2-arrows are the proof transformations. Seely [1977] does
this, but the extent of his detail is far beyond what is appropriate to demonstrate the equivalence
between categorical and proof-theoretic notions, so we shall restrict attention to the provability
preorder .

§3.2.15 The base category, as before, gives the type and term structure of the object language.
The fibre over each string of types is the Lindenbaum algebra of propositions possibly containing
free variables of the given types. This carries a Heyting algebra structure, with definable operations
>, ∧, ⊥, ∨ and ⇒.

We pick just three rules from natural deduction to show that the connectives are interpreted
by products, coproducts and exponentials; the last of these is historically known as the modus
ponens.

φ ` θ ψ ` θ
φ ∨ ψ ` θ

(∨E)
χ ` φ χ ` ψ
χ ` φ ∧ ψ

(∧I)
χ ` φ χ ` φ⇒ ψ

χ ` ψ
(⇒ E)

Classically we have the (¬¬E) rule, making this a Boolean algebra, but (to a large extent be-
cause there is no analogue of this for categories) it is more appropriate to drop this in favour of
intuitionistic logic.

Since the connectives are definable structure, as in the algebraic case they are preserved by the
substitution functors. In the proper-category case we have a cartesian closed category with finite
limits and colimits, this structure being preserved by substitution maps.

§3.2.16 The crucial observation, due to Lawvere [1969], is that the rules for the quantifiers
state that they are adjoints to substitution. This is illustrated by the two rules

ψ ` φ
∃x.ψ ` φ

(∃I) (∀E)
φ ` ∀x.ψ
φ ` ψ

(where x does not occur freely in φ). These may be read directly as the adjunction between the
functor (written, as usual, in invisible ink) which proliferates the free variable x and respectively
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∀x on the right and ∃x on the left. [The Frobenis law, [∃x.(φ(x) ∧ ψ)] = [(∃x.φ(x)) ∧ ψ], is also
needed to characterise the quantifiers.]

These proliferation functors are substitutions over product projections in the base category (the
relevant terms being simply variables quâ terms in (more) free variables). What do quantifiers
over general morphisms mean? They in fact turn out to be generalised to forms “∃x.φ(x)∧ψ(x)”
and “∀x.φ(x) ⇒ ψ(x)”, which are already familiar from mathematical idiom. (In fact the reader
may already have spotted the notations “(∀x : φ(x))(ψ(x))” or sometimes “∀x : φ.ψ” and “(∃x :
φ(x))(ψ(x))” or “∃x : φ.ψ” in this work: these have been used in recognition of this.)

X × Y {(x, y) : φ(x, y)}

Y

π1

?
y

π1

?

We shall see more of (adjoints to) substitution over arbitrary base maps when we discuss the
indexed presentation of Set in the next chapter.

§3.2.17 There is a technicality in this called the Beck condition. [Indeed there are other
important examples of indexed categories with adjoints to substitution, and the Beck condition
sems to characterise those we call logical.] We want to be sure that substitution and quantification
interact properly, in the sense that it doesn’t matter whether we proliferate variables before or
after quantifying. More generally, we want to be able to make substitutions inside quantifiers
(though not, of course, for the variable being bound). This is expressed categorically by requiring
that if the left-hand figure is a pullback in the base category then the right-hand square must
commute (at least up to isomorphism):

C ×A B
γ - C

B

δ

? α - A

β

?

P(C ×A B)
Pγ - PC

PB

∀δ
6

Pα
- PA

∀β

6

We also need a Beck condition for ∃. However this follows automatically from the fact that a
diagram of left adjoints commutes iff the corresponding diagram of right adjoints does (so long as
they both exist, of course).

§3.2.18 The structure we have built so far, in which

(i) the base category has finite limits,

(ii) the fibres have finite limits, finite colimits and exponentials,

(iii) the substitution functors preserve the structure of the fibres

and

(iv) have adjoints on both sides satisfying the Beck condition
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is called a hyperdoctrine. We shall apply this to Set in the next chapter, and (after deleting
equalisers and colimits) to categories of domains in chapter V.

The really basic example of a hyperdoctrine is the sub-object structure on a category of sets
(topos). In this case substitution over α is just the inverse image α−1 and its adjoints are quan-
tification. The Beck condition holds automatically in this case. We may regard an arbitrary
hyperdoctrine as a structure which forces the subobject structure on (a category containing) its
base category, in the following sense:

Proposition Let P → C be a hyperdoctrine. Then there is a category S whose subobject-
structure yields a hyperdoctrine and in which C is fully embedded such that SubS(X) ∼= PX for
X ∈ C.
Proof (sketch) The objects of S are “models of equality”, i.e. objects X ∈ C together with
P-equivalence relations, (=X) ∈ PX (satisfying the usual equations). The morphisms are from
(X,=X) to (Y,=Y ) are P-relations (objects of P(X × Y )) which are functional, total and respect
equality. �

In the proof of this result we use the Beck condition in showing that relational (and hence
functional) composition is associative (as Gavin Wraith has pointed out to me). This result
shows that the Lawvere dictum (that quantification is adjoint to substitution) should be qualified
by saying that the Beck condition characterises logical applications. Seely [1983] gives further
discussion, claiming that the Beck condition for a particular pullback in the base says that “the
category knows that this is a pullback”. When we discuss indexed domain theory in Chapter V
we shall encounter indexed categories whose substitution maps have left adjoints which do not
satisfy the Beck condition. Other examples arise in Universal Algebra, for instance the indexing
of categories of modules over rings, or algebras over theories.

We may take this one stage further and force the higher-order logic. [In other woords, we
can build a category in which ∃ and ∀ are the quantifiers arising from subobjects.] this gives
the definition of a tripos (see Pitts [1981] and Hyland, Johnstone & Pitts [1980], which perform
the above construction in detail). For each object A ∈ B there is a powerobject PA ∈ B and a
membership predicate (∈A) ∈ P(A×PA) such that given any φ ∈ P(A×B) we have pφq : B → PA
in B with P(1A × pφq) ∈A∼= φ.

A tripos provides all of higher-order logic with the exception of equality . The above result
essentially amounts to adding equality to the theory, and in the case of a tripos we thereby obtain
a topos. This is not, however, necessarily Grothendieck. This construction was abstracted from
that of the Effective topos, which is obtained from a tripos in which the predicates over X are N-
indexed sequences (Rn) of subsets of X and (Rn) ` (Sn) if there is a recursive function φ : N→ N

such that ∀n ∈ N.Rn ⊂ Sφ(n).

§3.2.19 In this section we have been describing the use of indexed category theory for many
purposes in algebra and logic. One should not, however, be fooled by this into believing that it
is the only or even necessarily the best tool afforded by (contemporary) category theory. I like
to think of category theory as like the children’s building kit “LEGO”: it doesnt come with an
instruction book and only lays down very primitive rules as to what you have to do with it.

In many cases we may have a generic object in the fibres, making them look like the “hom-sets”
of the base category. When the fibres themselves have additional structure, this is inherited by
the base category, and we say that it is enriched over the category describing that structure. See
Kelly [1982]. Frequently this will be Cat itself, so that between the morphisms (“functors” or
“paths”) in the fibres there are 2-morphisms (“natural transformations” or “homotopies”). In the
case of categories of domains we always have enrichment over IPO. Enriched or 2-categories my
be quite capable of carrying the structure we have in mind.

§3.2.20 The earliest example of enrichment over anything other than Set is the case of Rng
over AbGp. In this case the rôle of the product is played by the tensor product . We may use
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this example to show that proliferated substitution is strictly more powerful than simultaneous
substitution.

In discussing substitution in §§3.2.3-5 and the λ-calculus in §3.2.12, we could have allowed
[~x ; ~A], the collection of things of type(s) ~A in free variables ~x, to be an object of some category
U other than Set. Suppose this carries a tensor product, i.e. a functor ⊗ : U × U → U , which is
associative up to coherent natural isomorphism and has a unit object I ∈ U . Then substitution
naturally gives rise to a U-enriched category , the product being replaced by tensor product.

I
pxq - [x ;X]

[x ; Y ]⊗ [y ; Z]
py :=Y ;Zq- [x ; Z]

The product corresponding to concatenation of strings of terms, however, appears still to be
the ordinary categorical product. We can see this in the category of sets and partial functions,
where the tensor product A ⊗ B is the cartesian product of sets and the categorical product is
A×B ∼= A⊗B ∪A∪B. This requires substitution to be strict whilst allowing pairs to be defined
without both components being so.

If we attempt to replace partial functions by abelian groups with the traditional tensor prod-
uct we find that simultaneous substitution is simply matrix multiplication, but that proliferated
substitution is nonlinear.

§3.2.21 Finally we remark that we may have accidental structure. The best known example
of this is the centre of a group: all groups have centres, but the centre is not preserved by group
homomorphisms. There are many more examples of this in topos theory, and the structure of an
(elementary) topos is a prime example: every topos has a subobject classifier Ω (and higher order
logic resulting from it) but this is not preserved by geometric morphisms. For this reason there
are two sides to the logical interpretation of toposes: we may use their rich structure to prove
(higher order) properties inside them, but unless our constructions are geometric they will not be
preserved.

3.3 Generic Constructions

§3.3.1 In this section for the first time we discuss type polymorphism, in the weak case of con-
structions which are uniform in some variable type. We use the determinant example introduced in
section 1, but ignore the extra degree of polymorphism over the size of the matrix: the calculation
of the formula a× d− b× c suffices to illustrate the point.

A typical polymorphic language might express the 2× 2 determinant function as follows:

let det2((R, 0, 1,+,−,×) : ring ; a, b, c, d : R) = a× d− b× c

where the specification of the higher type ring requires the provision of elements 0, 1 : R and
functions +,× : R×R→ R and − : R→ R.

We leave it to the designer of the language and its compiler to decide how to deal with the
overloading of the symbols 0, 1, +, − and ×, and concentrate on the natural categorical semantics
of such a program. Since our concern is the meaning of the “compound” variable (R, 0, 1,+,−,×)
rather than recursion, we shall here treat all functions as total.

§3.3.2 What is the “type” of the compound variable (R, ...), which is to say, over what does
it range? Clearly over all (commutative) rings, and we need to specify explicitly the operations in
order that the compiler may arrange for calls to the relevant subroutines may be put in the code.
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However although the variable itself can only denote a ring rather than a homomorphism, this
higher type really is the category rather than the class of all rings. To see this we need to consider
the nature of the uniformity of the definition.

Of course R, as opposed to (R, 0, 1,+,−,×), denotes the underlying set (or type) of ring
elements. Admitting for the moment the claim that the category of rings arises, this is the
underlying set functor R : Rng→ Set.

What then are 0, 1, +, − and ×? First we have to say what R × R is. Of course it is the
functor, again Rng→ Set, assigning to a ring the cartesian square of its underlying set. Then +
and × are natural transformations R×R→ R, whilst − : R→ R and p0q, p1q : 1→ R where p1q is
the functor constantly assigning the singleton set.

These things are natural transformations because if we “replace” R by S “along” the homo-
morphism θ : R → S then the operations are translated accordingly. Indeed this is precisely the
definition of a homomorphism in the first place: we have merely transformed it to make + and ×
the subject.

1 ========= 1

R

p0Rq

? θ - S

p0Sq

?

R
θ - S

R

−R

? θ - S

−S

?

R×R
θ × θ- S × S

R

+R

? θ - S

+S

?

and likewise for 1 and ×.

§3.3.3 We can say a little more about R and R×R than merely that they are functors. They
preserve all limits, indeed they have left adjoints: the left adjoint of R is of course the free ring
functor. However of more immediate interest to us now is that they preserve filtered colimits; this
is precisely because the theory of rings is finitary . Since this is the generalisation of preserving
directed sups, we say these functors are continuous as as in §2.2.7. This leads naturally to the
category of all Scott continuous functors Rng→ Set and natural transformations between them.

There is a simplification to be made here. Rng is an example of a locally finitely presentable
category, which is the direct analogue of an algebraic lattice. There is a subcategory Rngfp of
finitely presentable objects (which have no proper expression as a filtered colimit) of which any
object can be expressed as a filtered colimit. This means that Rng ' Ind Rngfp, so there is a
natural equivalence between continuous functors Rng→ Set and all functors Rngfp → Set, just
as any continuous function from an algebraic lattice is determined by its effect on the compact
elements, and any monotone function on them will do.

§3.3.4 The functor category [Rngfp,Set] inherits a great deal of structure from Set, and in
fact it is a topos. On the other hand, as we shall see, it also encodes the “generic” structure of
rings, and for this reason we shall call it more briefly Set[R].

The objects of Set[R] should be thought of as sets dependent upon one variable R of type
ring. To start with, Set[R] includes all the “constant” sets (constant functors) independent of the
variable R. But also the forgetful functor R : Rngfp → Set is an object of Set[R], and R×R is
its product with itself.

We may perform lots of other operations on R as if it were a set. In particular since Set[R] is
a topos we may find its powerset, ΩR. However this is an example of the accidental structure we
mentioned in §3.2.21, because it turns out not to be preserved. We shall return to the question of
preservation in §3.3.16.

In fact only those constructions involving finite limits and arbitrary colimits are preserved by
the transformations we have in mind, so only these are of interest in this context. Regarding limits
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and colimits as “multiplication” and “addition” of sets, Set[R] is the collection of “polynomials”
in an indeterminate R.

Examples of such structures include the circle S = {x, y : x2 + y2 = 1} and the general linear
group GL2 = {a, b, c, d : ∃u.u(ad − bc) = 1}. The first is carved out as an equaliser (of the
interpretations of the sides of the equation as functions R2 → R) and the second is the image of
a subobject of R5 under the product projection R5 → R4.

§3.3.5 In fact what we have discovered is the language of geometric logic. In terms of the
motivations of section 2, the operations in our language are finite limits and arbitrary colimits,
such that finite limits commute with filtered colimits. Lawvere’s presentation of a finitary theory
as a lex category in §3.2.8 is the algebra of “polynomials” in the theory together with finite limits,
and we found that interpretations and models were given in terms of the relevant homomorphisms,
which were lex functors. Set[R] is the algebra whose operations now include colimits, and the
relevant homomorphisms preserve these too. Moreover we can present these algebras in terms of
generators and relations: this is precisely how a topos is given by a site.

Unfortunately it is not easy to define a topos to be a category with finite limits distributing over
arbitrary (small) colimits because of the usual size problems, even though this is the “algebraic”
structure which we wish it to have for the purpose of defining homomorphisms (inverse image
functors).

This problem is circumvented by clever use of the adjoint functor theorem. We formulate
the existence of all colimits in the topos by use of indexed category theory (§4.1.10) and their
preservation by inverse image functors by requiring the latter to have right adjoints. However it
is the “higher order” part of the definition of an elementary topos (§4.4.6) which ensures that
the adjoint functor theorem may be applied. The Giraud theorem (see, e.g., Johnstone [1977],
theorems 0.45 and 4.41) shows that this gives what we want.

§3.3.6 The classifying topos is the uppermost stage in the process of “completing” a theory
under all kinds of structure. The most basic example of this it the consideration of a group as
a totality rather than as a “system of substitutions” generated by some given ones. In §3.2.7 we
took an algebraic theory presented as a signature and built from it its clone and then its Lawvere
presentation, and in the following paragraph added all finite limits to this. The classifying topos
is the result of adding arbitrary colimits to this structure; this admits the facility of prescribing
relations for the colimits, which is precisely the function of a Grothendieck topology (see §§3.3.11-
13).

For a finitary algebraic theory there is a simple connection between the lex presentation, B, the
classifying topos E , the category of models, C. We obtain E by freely adjoining arbitrary (small)
colimits to B and C by adjoining filtered colimits to Bop. In symbols, E ' SetB

op

and C ' IndBop.
Conversely B ' Copfp.

§3.3.7 The natural transformations 0, 1, +, − and × provide R with a ring structure in Set[R]
and det2 is the 2×2 determinant map on R. We call (Set[R], R) the generic ring for the following
reason.

Lemma Let A be any ring. There is a geometric morphism pAq : Set → Set[R] whose inverse
image functor pAq∗ takes R to A, and this is unique up to isomorphism. Indeed this defines an
equivalence between the category of rings and the category of geometric morphisms Set→ Set[R].
Proof Let X ∈ Set[R], i.e. X : Rngfp → Set; then as remarked in §3.3.3, X extends (uniquely
up to isomorphism) to a continuous functor Rng → Set. pAq∗(X) is given simply as the value of
this functor at A. It is easy to verify that pAq∗ is a functor, it sends R to A and will be unique. It
preserves finite limits because in Set (and in any finitary algebraic category over a topos) these
commute with filtered colimits.
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For Y ∈ S, pAq∗(Y ) : Rngfp → Set takes B to Y Rng(B,A). Again we have to verify that this
is right adjoint.

This construction is functorial in A. Conversely the inverse image functor of any geometric
morphism f : Set→ Set[R] picks out a ring f∗(R) in Set, and we verify that this is an equivalence.

�

Definition Let T be a geometric theory. A topos, denoted by Set[T ], is a classifying topos for
T if for any topos E over Set, the category of models for T in E is naturally equivalent to the
category of geometric morphisms from E to Set[T ].

It is a fact that any geometric theory has a classifying topos (unique up to equivalence), and
every Grothendieck topos arises in this way. We shall sketch the construction of the classifying
topos for a coherent theory.

§3.3.8 Our polymorphic 2×2 determinant map, det2, is now the generic one in the sense that
the determinant for any ring in any topos is given as the image of the generic one (§3.2.5) under
an inverse-image functor of a geometric morphism.

I claim that this is the appropriate understanding of the sense in which det2 is polymorphic.

§3.3.9 Set[R] is the space of all rings in a certain sense. It is a category, as is the category of
rings, but they are not equivalent: the sense is a different one from this.

Given any topological space X, we may construct the category Shv(X) of sheaves on it. There
are many standard works (e.g. [Tennison 1975]) on this, so I shall not do it here. Shv(X) is a
topos. Given a continuous function f : X → Y between spaces, there is a geometric morphism
Shv(X)→ Shv(Y ) between the toposes. Moreover if we restrict to sober spaces (or alternatively
move to locales), every geometric morphism arises from a unique continuous function; in order
words Shv : Loc→ Top is a full embedding.

According to Grothendieck, this means that a topos is a generalised space and a geometric
morphism is a continuous function between spaces. The topos Set corresponds to the singleton
space and so geometric morphisms Set→ E are “points” of E .

The points of the classifying topos Set[R] correspond to rings, and the natural transformations
between geometric morphisms give homomorphisms of rings.

§3.3.10 We may consider just the topos Set[R] without mentioning its generic ring R. The
geometric morphism pAq : Set → Set[R] now no longer has a particular aspect of structure to
pick out, and so we must think of it as yielding the totality of all definable structure arising
from the ring A. Thus there is for instance the set of quadruples (a, b, c, d) from A satisfying
(∃u)[u(ab− cd) = 1], i.e. the set of invertible 2× 2 matrices over A.

Of course in practice when we consider a ring we are interested not just in the primitive
structure but also in more complex structures defined from it. This also means that we get the
same answer if we vary the presentation of the theory.

A famous example of this is the equivalence between Boolean algebras (defined in terms of true,
false, and , or and not) and Boolean rings (in which every element is idempotent). In this case
the classifying toposes coincide (are equivalent) and the two (generic structures on the) generic
objects are mutually definable in the obvious way.

§3.3.11 This kind of construction may be performed for any geometric theory . A geometric
language, like a first order language, has type, function and relation symbols of various signatures,
and terms are built up from these. Geometric formulae are built up from relations (including
equality) between terms together with finite conjunction, arbitrary disjunction and existential
quantification. In coherent formulae we allow only finite disjunction.
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We have essentially already described the interpretation of a geometric formula. Relations are
interpreted as given subobjects, and in particular the solution-set of an equation is the equaliser
of the interpretations of the terms; these are called atomic formulae. Conjunction and disjunction
are interpreted by intersection and union of subobjects, and existential quantification by image
factorisation. All of these constructions are preserved by inverse image functors.

A geometric (coherent) theory in a language is given by a collection of axioms or sequents of
the form (φ ` ψ), where φ and ψ are geometric (coherent) formulae. A structure for the language
satisfies the sequent if [[φ]] ⊂ [[ψ]] as subobjects of X1 × ... ×Xn where X1, ..., Xn are the types
of the free variables x1, ..., xn of the formulae. It’s easy to see that any collection of sequents
is equivalent (so far as satisfaction is concerned) to one in which the antecedents are (possibly
empty) conjunctions of atomic formulae and the consequents are disjunctions of formulae of the
form ∃y1...∃ym.ψ1(~x, ~y) ∧ ... ∧ ψr(~x, ~y).

§3.3.12 A geometric sequent is called essentially algebraic if the consequent involves no dis-
junction, and only provably unique existential quantification. It is appropriate to separate the
essentially algebraic sequents in the axiomatisation of a geometric theory T from the other se-
quents. This gives a finitary many sorted essentially algebraic theory, T0, which can be described
by a lex category B in the manner of Lawvere. The models in E of this subtheory form a category
ModE(T0) ' IndBop, and its classifying topos is Set[T0] ' SetB

op

.
The models of T in E form a full subcategory ModE(T ) of ModE(T0), consisting of those

structures satisfying the sequents. Regarding these as “points” of classifying toposes, it is natural
to think of the classifying topos Set[T ] for T as a “subtopos” of Set[T0], and indeed it is. It
is constructed by means of a site; the category is B, Set[T0] is the category of presheaves and
Set[T ] the category of sheaves for a certain Grothendieck topology manufactured out of the
axiomatisation.

§3.3.13 An algebraic formula φ (finite conjunction of atomic formulae in variables x1, ..., xn)
describes a certain particular finitely presented structure A of signature T0, namely the one gen-
erated by x1, ..., xn and satisfying the relations and equations making up the formula. The inter-
pretation [[φ]] of the formula is the set of images of this structure in the model.

Now consider a sequent (φ ` ψ) of the particular form in which ψ already implies φ and does
not involve disjunction (we replace ψ by ψ∧φ to achieve the first, and later consider a disjunction
of such sequents to accommodate the second). ψ is another algebraic formula (corresponding
to a structure B), existentially quantified over the extra variables y1, ..., ym. This sequent may
therefore be described by (and henceforward written as) a homomorphism A → B. The model
X satisfies this sequent iff any homomorphism A → X can be extended (not uniquely) to one
B → X making the triangle commute.

A
φ ` ψ- B

X
?�...

.....
.....

.....
.....

.....
...

A model X satisfies a disjunction of sequents, φ `
∨
ψi with the same antecedent iff any

homomorphism A→ X may be extended to one B → X for one of the sequents or homomorphisms
A→ B. Let R be the set of these for this disjunction. W.l.o.g. we may enlarge R to include any
A → B′ where (A → B) ∈ R and B → B′ is arbitrary; for on the one hand we only need have
some member of R, so it does no harm to increase the choice, and conversely if we manage to
extend A→ X to B′ → X then we have B → B′ → X.
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A collection of homomorphisms R of this kind is called a sieve or crible on A. When we embed
the opposite of the category in the classifying topos by means of the Yoneda embedding, sieves
on representable objects correspond to their subobjects. A sieve which arises from the theory as
above is said to be covering ; it says that this subobject, though not necessarily presented as such,
is intended to be the whole of the object.

The axiomatisation of the theory now specifies a collection J(A) of covering sieves for each
object A of the original category (we have one R for each time A occurs as an antecedent, so this
is the infinite conjunction). J is called a Grothendieck cotopology .

By now the reader will be familiar with the necessity of ensuring that concepts be preserved by
substitution. In this case this condition manifests itself as follows. If R ∈ J(A) and θ : A→ A′ is
any homomorphism, then θ∗R, which consists of those A→ B in R which factor through A→ A′,
is to be in J(A′).

Using the cotopology we may now extract from amongst the presheaves Set[T0], the sheaves
which form the subtopos Set[T ]. Specifically, a sheaf is a presheaf which, as a functor, takes covers
to colimits. Thus the purpose of a topology is to force the colimit structure of a category. This
gives the classifying topos for T .

[It’s not clear whether the presentation of this in terms of C or Cop is clearer, hence the co’s in
the words (some of which have been omitted anyway). This is because of the duality in proposition
3.2.4.]

§3.3.14 The simplest nontrivial geometric theory is that of an “object” (with one type and no
functions, relations or axioms). The classifying topos for this is written Set[U ]. This performs a
similar rôle in Top to that performed by the Sierpiński space 2 in Sp. Recall from §2.3.2 that the
latter classifies open sets and is a cogenerator for Sp (or Loc); likewise Set[U ] cogenerates Top.

Since Set is really the one point space, it is the terminal object of Top, i.e. there is a unique
(up to isomorphism) geometric morphism to it from any given (Grothendieck) topos E . The inverse
image functor of this is written ∆, and is the “constant object” functor (cf. the combinator K)
if we think of E as a category of functors from a lex category C into Set. The direct image,
traditionally called Γ, is the “global section” functor and is given by evaluation at 1 (the terminal
object of C).

In the case E = Set[U ], ∆ also has a left adjoint Σ given by evaluation at 0 (the empty finite
set). A geometric morphism f for which f∗ has a left adjoint f! as well as a right adjoint f∗ is
called essential . [In fact the functor Σ : Set[U ]→ Set in turn has a left adjoint; this is called π0

because in topology it is associated with the set of components of a space.]

§3.3.15 This provides us with a simple interpretation for type polymorphism of sets (readily
extendable to include models of any geometric theory). Recall the view that toposes are the alge-
bras for the language of geometric logic, and index them over the “free variables”; the substitution
homomorphisms are inverse image functors of geometric morphisms.

What are these “free variables”? Of course they are like our (R, 0, 1,+,−, ∗), generic models
of geometric theories. The base (syntactic) category is just the category of geometric theories and
their interpretations.

Let T1, T2,... be geometric theories and Set[T1], Set[T2], ... their classifying toposes. From
these it is possible to construct S[T1, T2, ...], the simultaneous classifying topos for models of each of
the theories, as a pullback in Top. This contains generic models T1, T2, ... for T1, T2, ... respectively
and is the category of all structures definable in terms of them. We may therefore consider it the
category of type expressions in the free type variables T1, T2, ... of appropriate kinds.

Now in this case we have more than we did with ordinary algebraic theories, because the fibres
are categories rather than discrete sets and the substitution maps are functors. Hence we have an
indexed type theory and we can ask about sums, products and exponentials as in §4.1.
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§3.3.16 Since the substitution functors are inverse images, they preserve geometric logic.
However they do not preserve the other logical structure which we find inside a topos — it is
accidental in the sense of §3.2.21. A functor between toposes which preserves finite products,
exponentials and the subobject classifier is called a logical functor because it preserves all higher
order logic; we shall discuss weaker things than this.

In order to obtain the structure of a hyperdoctrine we need a left as well as a right adjoint to
the inverse image functor (giving an essential geometric morphism) and the Beck condition. Such
a geometric morphism is said to be locally connected [Johnstone 1980]; the weaker poset form of
this condition of being open is equivalent to preserving first order logic.

In fact we do not need the left adjoint to ask about the Beck condition. Suppose we have a
pullback of geometric morphisms in Top as follows:

F ×E G
h - G

F

k

? f - E

g

?

Then there are two forms of the condition; we say that f satisfies the Beck condition on the left if,
for all g with the same codomain, the first diagram of functors below (corresponding to the above
pullback) commutes:

F ×E G
h∗ - G

F

k∗
6

f∗ - E

g∗

6

F ×E G �
h∗

G

F

k∗

?
� f∗

E

g∗

?

One may show that this is equivalent to local connectedness. Likewise we say that f satisfies the
Beck condition on the right if we have this for the second diagram. Lindgren [1984] has shown
that this holds iff f∗ preserves filtered colimits.

3.4 Polymorphic Lambda Calculus

§3.4.1 So far, all the forms of polymorphism we have discussed have been of a “functorial” form
interpretable in Set, or at least in some topos. The ideas which form the subject of the remaining
two sections of this chapter are from a different tradition and turn out to be incompatible with
the “ordinary” logic of sets; indeed there are several paradoxes to this effect, to which we shall
add a new one in theorem 5.5.9.

The underlying idea, which first occurred in Mathematical Logic though the foregoing discus-
sion emphasises its relevance to Computer Science, is that the identity function, λx.x, for instance,
does not occur separately as 1X once for each type X, but in a single “Platonic” incarnation of
“type” ∀X.X → X, which is instantiated for each type X in a fashion similar to the use of the
quantifier in predicate logic. The aim of this section is to provide a formal justification for the use
of the quantification symbol in the shape of a demonstration that it is right adjoint to substitution.

There is a remarkable by-product of this approach. Church’s numerals (§1.1.7) are of type
∀X.(X → X)→ (X → X), and in certain interpretations it may be shown that these are the only
terms of this type. Accordingly we have an object which looks like the natural numbers. Likewise
the object ∀U.(X → U) → ((Y → U) → U) is similar to a sum, despite the paradox corollary
1.5.12.
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§3.4.2 We look first at a second-order polymorphic lambda calculus studied by Bruce and
Meyer [1984]. This admits type variables and expressions with quantification, but allowing only
“sets” and not “structures”.

It has

(i) 0-variables x, y, z, ...

(ii) 1-variables X, Y , Z, ...

(iii) (0-)terms formed by the clauses

x (λx : B.a) (ab) (ΛX.a) aA

(iv) types (1-terms) formed by the clauses

X (A→ B) (∀X.A)

(v) α0, β0 and η0 rules

λy : B.a = λx : B.a[y := x]
(λx : B.a)b = a[x := b]
λx : B.ax = a

(where in the first and third clauses x is not free in a),

(vi) α1, β1 and η1 rules

∀Y.A = ∀X.A[Y := X]
ΛY.a = ΛX.a[Y := X]
(ΛX.a)B = a[X := B]
ΛY.aY = a

(where in the first clause X is not free in A, and in the second and fourth it is not free in
the type of any free variable of a),

(vii) non-unique typing of terms

x : A
if f : (A→ B) and a : A then (fa) : B
if a : A then (λx : B.a) : (B → A)
if a : A then (ΛX.a) : (∀X.A)
if a : (∀X.A) then aB : A[X := B]

(viii) equality rules on 0-terms as appropriate.

By convention ∀ governs as much of the expression as possible to the right, so ∀X.X → X means
∀X.(X → X) and not (∀X.X)→ X.

+§3.4.3 Now we shall present this as an indexed category in a manner generalising §1.3.10. The
objects of the base category will count the free 1-variables in the terms of the corresponding fibres
— we shall set aside the additional complication of counting 0-variables as in §3.2.2.

Let the base category have objects the “products” (i.e. strings) of 1-variables and morphisms
from ~Y to ~X the strings of length |~Y | of types with free variables among ~X. Variables provide
the identity and substitution the composition. Product is given by concatenation. Hence we have
a category with products.
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The fibre P ~X over the string ~X has objects the products (strings) of types ~A with free 1-variables
among ~X and the substitution functor over ~B : ~Y → ~X acts on objects as the substitution [ ~X := ~B]
of free type variables. Accordingly the object parts of the fibres are the regular representation of
the base category (§3.2.4).

The morphisms of the fibre P ~X from ~B to ~A are the strings of terms of types ~A with free
0-variables of types ~B. As usual identity and composition arise from variables and substitution.
The effect of the substitution functor is again the substitution [ ~X := ~C]. The fibres have products
by concatenation.

The fibres also have exponentials in the same way as the λ-calculus with fixed types. This
arises from the constructor (A → B) with the obvious iteration to provide from strings. We
need the η0-rule to ensure that the adjunction is bijective. Again exponentials are preserved by
substitution.

+§3.4.4 The type variable X in the fibre over X is a generic type in the sense of §3.2.5. So for
any type A in the fibre over ~Y there is a unique morphism, called A, from ~Y to X the effect of
whose substitution at X over X is A over ~Y .

+§3.4.5 The significant point of this language and indexed presentation is that ∀ and Λ provide
quantification over product projections in the base category, i.e. right adjoints to the corresponding
substitution functors.

For we have a natural bijection
~B - ~A

~B - ∀X. ~A
where X is not free in ~B. For above the line we have the terms ~a of type ~A[X] in free variables of
types ~B, and these correspond to terms ~a′ = ΛX.~a of type ∀X. ~A in the same free variables since
~a = (ΛX.~a)X and ~a′ = ΛX.(~a′)X by the β1 and η1 rules.

It is an easy matter to verify that the Beck condition holds.
The syntax provides no means to express quantification over other maps in the base category,

as we may see from their reading in Natural Deduction as in §3.2.16.

§3.4.6 Seely [1986] discusses a language due to Girard [1972] which is “higher-order” in the
sense that it admits variables for type-valued functions of types.

The difference in the interpretation is that now we require the base category to be cartesian
closed.

§3.4.7 We are now in a position to propose a provisional definition for a model of a language
of this kind. It is an indexed category of a certain form. The base category has at least products
and desirably exponentials; it may as well be generated by an object V which is a metatype of
types. The fibre over a power of V, which is the term structure with this many free type variables,
is to be cartesian closed, and this structure is to be preserved by substitution. The types (objects
of the fibre) are not to be functorial in the type variable, but the substitution is to be a functor.
Finally we require substitution over at least the product projections to have a right adjoint; in
§4.1.7 we shall see why we call this “completeness” for the category.

A presentation of this might be as follows [Moggi 1986]. The types form a small (internal)
category (§3.2.8, 4.2.10, 5.5.2) C with object set C0. A type A with free variables ~X is interpreted
as any function Cn0 → C0, where n = | ~X|. This is not to be a functor.

A term a of type A with free variables of types ~B, where A and ~B themselves have free type
variables ~X, is a function C0

n → C1 (where n = | ~X|) whose postcomposites with the domain and
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codomain maps C1 ⇒ C0 are the interpretations of ~B and A respectively. This interpretation is
generated in the obvious way from variables as product projections and application and abstraction
as the exponential adjunction.

In order to interpret the quantified type ∀X.A we need a right adjoint Π to the substitution
(inclusion) C0 → C0

C0 . We then proceed as in §3.4.5.
The problem with this approach is Freyd’s paradox (proposition 1.5.8). This simply means

that C cannot be an internal category in Set since that argument depended upon excluded middle.
We shall show that it is possible to do this kind of thing with domains instead of sets. It is also
possible to do it in the Effective Topos [Hyland 1982].

§3.4.8 From languages of purely theoretical interest we shall now turn to one called PONDER
which has been implemented practically by Fairbairn [1984]. His emphasis is upon the use of
types as a programming aid (§3.1.1) to ensure that functions are only applied to arguments of
appropriate types, and so this work concerns a type-checking algorithm. Instantiation for X in
∀X.A is then a form of coercion (§1.3.8) and so we have to consider the rules for this.

The syntax of PONDER is essentially as in §3.4.2, with the additional features of casts (ex-
pressions declared, perhaps erroneously, to be of a certain type), capsules (declared types which
must match by name and not structure), overloaded operators (§3.1.1) and generators (recursively
defined types). For our purposes the first three are syntactic sugar, and we shall discuss the last
in the next section.

As in §1.3.9 we have a relation A ⊂ B between types such that whenever we have a : A then we
also have a : B. Fairbairn writes ≥ for this, contrary to the usual convention for the relationship
between posets and categories.

§3.4.9 This relation satisfies the following rules.
(i) A ⊂ A
(ii) if A ⊂ B and B ⊂ C then A ⊂ C
(iii) if A ⊂ A′ and B′ ⊂ B then (B → A) ⊂ (B′ → A′)
(iv) (∀X.A) ⊂ A[X := B]
(v) if A ⊂ B and X 6∈ FV(A) then A ⊂ (∀X.B)
(vi) if X /∈ FV(A) then (∀X.A→ B) ⊂ (A→ ∀X.B)

We shall consider the rules for recursion in §3.5.4.
Clearly axioms (i) to (iii) are those for an (indexed) Heyting system (§1.3.9). (iv) and (v) say

that ∀X is right adjoint to substitution, i.e. a universal quantifier; the monotonicity of ∀X w.r.t.
⊂ follows from these. (vi) is in fact equivalent to preservation of → by substitution; the reverse
inequality follows from the other axioms.

The essence of the idea that ∀X.A is “type A, whatever the value of X”, as in our “Platonic”
identity of §3.4.1, is in axiom (iv).

We have now justified the claim that ∀X is a right adjoint to substitution.

3.5 Strong Polymorphism

§3.5.1 Finally we consider recursively-defined types and type-of-types, both from the historical
negative point of view and in the positive case of highly-typed programming languages. Arguably
the notion of a type of types has been present in Computer Science since Babbage’s first stored
program. Also, although in practice compilers are essentially syntactic beasts, in order for the
compiler for a typed language itself to be well-typed, it is necessary to have a type-of-types in the
language.
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§3.5.2 First we look at the recursively defined types in PONDER (§3.4.8). The syntax of this
language as implemented is declarative, i.e. it allows new names to be introduced. In particular
we have, for instance,

type Identity = ∀X.X → X

typePair[A,B] = ∀X.(A→ (B → X))→ X

rectype Infinite List[A] = Pair[A, Infinite List[A]]

Since Fairbairn’s intention was to build a terminating type-checker, there is a restriction in the
language in the form of recursive type declarations. This is that all applications of the generator
(here Infinite List) within the body of the declaration must be to exactly the parameters as on
the left hand side. This restriction ensures that such infinite behaviour as arises in the type-checker
is only of a cyclic kind and can therefore be trapped by incorporating memory into the algorithm.
Without it, type-checking would have the full power of the λ-calculus and hence be undecidable.

Our intentions, on the other hand, are semantic, and we have not worried about termination
elsewhere in this work, so we shall not consider this restriction.

§3.5.3 Here are the coercion rules for recursive types. These are more complicated than those
in §3.4.9, so we have to include the assumptions (Γ) explicitly. The typing rules may be deduced
from them since the intention of A ⊂ B is that a : A implies a : B for all terms a.

Γ, A ⊂ B ` G[A] ⊂ B ∆ ` A ∼= G[A]
Γ ∪∆ ` A ⊂ B

Γ ` G[X1, ..., Xn] ∼= A

Γ ` G[X1, ..., Xn] ⊂ A
Γ ` G[X1, ..., Xn] ∼= A

Γ ` A ⊂ G[X1, ..., Xn]

§3.5.4 Since types form a category rather than a poset, the semantics of recursive types are
more complicated than simple fixpoint equations. Of course we have already discussed this in
§2.2.2.

§3.5.5 Now let us turn to a “full-blown” form of type polymorphism involving type-of-types.
This discussion is based on that of Cardelli [1986], which gives numerous examples of constructs
which can be expressed in the language; the semantics given there is based on the Pω model
(§1.4.8).

Admitting the type of types is the same as making types values, so we no longer have the strat-
ified variables and terms which we had in the second order polymorphic lambda calculus (§3.4.2),
PONDER (§3.4.8) or Martin-Löf [1975]. Types can therefore be the results and parameters of
computation, in contrast to their usual passive (and solely compile-time) rôle in type-checking.

Types can also depend on non-type parameters. This is quite familiar in Mathematics, e.g.
“the set of points at distance r from the origin”. Notice that y is free in ∀x : a(y).b; again there
are familiar mathematical examples.

§3.5.6 The terms of Cardelli’s language are as follows:

1. variables, x,

2. type of types, V,

3. abstraction, (λx : a.b),
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4. application, (ab),

5. product, (∀x : a.b),

6. pair, 〈a, b〉,

7. component, (a � b),

8. sum, (∃x : a.b),

9. recursion, (µx : a.b).

The reduction rules are:

((λx : c.a)b) = a[x := b] (β)
(λx : c.(ax)) = a (η)
〈a0, a1〉 = a (π)
(〈a, b〉 � c) = ((ca)b) (σ)
(µx : c.a) = a[x := (µx : c.a)] (µ)

where in η, x /∈ FV(a), and in π, 0 = λx : A.λy : B.x, etc.

§3.5.7 Type-checking in this language may involve non-termination computation, and so is
undecidable. In what follows, Γ is a type-assignment , i.e. a set of formulae a : A. The empty
assignment is valid, and further ones are generated by the rule

Γ ok Γ ` A : V

Γ, x : A ok
x 6∈ FV(Γ)

Now we have a long sequence of rules defining the type inference relation `. Observe that the
last of these involves computation.

A
Γ, x : A ` x : A

VI
Γ ` V : V

Γ, x : A ` B : V
∀f

Γ ` (∀x : A.B) : V

Γ, x : A ` B : V
∃f

Γ ` (∃x : A.B) : V
Γ, x : A ` b : B

∀I
Γ ` (λx : A.b) : (∀x : A.B)

Γ ` a : A Γ ` f : (∀x : A.B)
∀E

Γ ` (fa) : B[x := a]
Γ ` a : A Γ ` b : B[x := a]

∃I
Γ ` 〈a, b〉 : (∃x : A.B)

Γ ` c : (∃x : A.B) Γ ` d : (∀x : A.∀y : B.C〈x, y〉)
∃E

Γ ` (c � d) : Cc
Γ, x : A ` a : A

µf
Γ ` (µx : A.a) : A

Γ ` a : A Γ ` B : V A = B
Red

Γ ` a : B

where in (∃E), x, y 6∈ FV(C).

§3.5.8 There are certain constructions which are basic to category theory but derivable from
Cardelli’s language (as in PONDER). These are

void (0) ⊥ = λA : V.µx : A.x : ∀A : V.A
unit (1) ∗ = λA : V.λa : A.a : ∀A : V.∀a : A.A
Boolean (2) 0, 1 : ∀A : V.∀a : A.∀b : A.A
conditional cond = λc : 2.λA : V.λa : A.λb : A.cAab : 2→ ∀A : V.A×A→ A
exponential → = λA : V.λB : V.∀x : A.B : V→ (V→ V)
product × = λA : V.λB : V.∃x : A.B : V→ (V→ V)
sum + = λA : V.λB : V.∀C : V.(A→ (B → C))→ C : V→ (V→ V)
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§3.5.9 How can we present this language as an indexed category? First we have to construct
the (ordinary) category C of types and terms as in §1.3.10. Of course this has objects the strings
~A of types (A such that A : V) and morphisms from ~B to ~A the | ~A|-strings of types ~A in free
variables of types ~B. This is cartesian closed because we have an extension of the λ-calculus.

Next we have to deal with the quantifiers. This involves building an indexed category over
C. The fibre over ~A has objects the strings of type-expressions with free variables of types ~A and
morphisms the appropriate strings of terms. The substitution functors are, of course, given by
substitution.

Now how do we interpret ∀x : B.c, where B has free variables of types ~A and c has them of
types ~A,B (the last being of course x)? The expression has free variables of types ~A, so we have
a functor from the fibre over ~A,B to that over ~A; over what morphism ( ~A,B)→ ~A does this lie?
This corresponds to a string of terms of types ~A in free variables ~A,B; this must simply be the
string of corresponding variables. However this is not a product projection as it was in the second
order polymorphic lambda calculus or PONDER, because B itself depends on A; in fact it is the
display map corresponding to the sum ∃~a : ~A.B over ~A. We shall meet this in the case of Set in
§4.1.11 and subsequently in other categories. ∀x : B is then the right adjoint to this substitution
map.

The sum ∃x : B.c is similarly interpreted as the corresponding left adjoint. The Beck condition
is satisfied in the usual trivial way.

The µ operator gives (or is interpreted as) indexed fixpoints, i.e. YA = λf : (A→ A).µx : A.fx.

−§3.5.10 Finally we have to bring V into the picture. Let X be a variable of type V. This is
then an object of the fibre over X, and is such that any other type (in however many free variables
of whatever type) is obtained by substitution. X is therefore generic in the sense of §3.2.5.

We are also interested in the (objects of) this fibre over X. We have a type of them, namely
G = ∃X : V.X → V. We shall see in §5.4 that this is a generic display and is sufficient to code up
the whole of the structure of the model with type-of-types.

−§3.5.11 Finally let us put this in historical perspective by surveying briefly some of the corpses
in this philosphical minefield.

The first casualty was of course Frege [1893], who attempted to axiomatise Set theory (and
hence Mathematics) using an unrestricted Axiom of Comprehension (cf. §1.5.11). This means
that, given any formula φ(x) whatever, there is a set “{x : φ(x)}” of all things satisfying φ.
As is well known, Russell pointed out to the unfortunate Frege that φ(x) = x 6∈ x leads to a
contradiction.

The main response to this has been to bind the set-abstraction and quantifiers. Category
theorists (at least) would claim that there is no occasion in Mathematics when these operations
are not implicitly bound, and in this work the common convention of using lower-case letters for
variables of the corresponding upper-case type has usually been adopted.

Russell [1908] was the first to formalise this, as the theory of types. We build an N-indexed
hierarchy in which each level consists of all subsets of sets in the level below. This is in fact the
simplification due to Ramsey: the original version took account of quantifiers as well. This was a
very advanced notion for its time: the systematic classification of sets according to their quantifier
complexity (most of the interest being in quantification over subsets of N, which are usually called
“real numbers”) began with Kleene.

Russell made an important observation which he called typical ambiguity . This is that whenever
we have a proof of φ(x) for x of some type n, then we also have it for x of any other type (so
long as there are sufficiently many lower types for its hereditary elements). Accordingly his style
is such that the variables are implicitly to be understood schematically with quantification over
all types. This is of course already a form of polymorphism (we used this kind of type-shifting
implicitly in §1.3.12).
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Quine [1937] took this a stage further and used this polymorphism to abolish the types. Instead
he stratified the formulae (by the ∈-relation). Thus we are allowed to write x ∈ y ∈ z but not x ∈ x
or x ∈ y ∈ z...x ∈ z. Formally, there must be an assignment of natural numbers (or integers, to
remove the “lower types” complication) to the variables such that ∈ occurs only between variables
of successive types. This is called New Foundations or NF . For a general review of this theory
and its developments see [Forster 1983].

The remarkable thing about NF is that it allows a universal set, and also complements of
arbitrary sets inside it. The Russell paradox of course cannot be stated within it. On the other
hand its heavy emphasis on the ∈ relation means that something as basic as the cartesian product
construction has a very complicated expression in terms of 〈x, y〉 = {{x}, {x, y}}.

There are subsystems of NF depending on the number of types which need to be used. The
first two levels (in which a ∈ b and a ∈ b ∈ c are allowed but not a ∈ b ∈ c ∈ d) can be shown to
be consistent, as can NFU (NF plus “Ur” elements or atoms). NF4 is in fact the full theory, since
it allows a kind of duality to be coded, specifically the operation Bx = {y : x ∈ y}.

−§3.5.12 There is another paradox, which was in fact noticed before the better known one due
to Russell. This is based on the observation that ordinals (well-founded totally ordered sets) are
themselves well-ordered and hence “algebraically” form an ordinal usually called On. Thus in the
presence of unrestricted comprehension On ∈ On, and indeed it is the largest ordinal, contrary
to the ease with which the successor may be constructed.

This, the Burali-Forte paradox [Rosser 1942], has perhaps been even more of a killer than
Russell’s. One might attempt to extend NF by allowing class variables (as in Gödel-Bernays set
theory) and admitting as a set the intersection of any abstracted class with a set. However in this
theory one may formulate the ordinal-of-ordinals and hence reach contradiction.

The most famous victim of this paradox is probably Martin-Löf’s original attempt at an in-
tuitionistic type theory [1971]. It was discovered both that it was possible to define a type of
well-founded partial order types (itself a partial order) and to prove induction over well-founded
partial orders. This necessitated some quite far-reaching changes in the type theory, involving the
introduction of a nested sequence of universes. Martin-Löf’s executioner was Jean-Yves Girard,
who was also interested in this area, largely for proof theoretical reasons. He produced a system
of polymorphic λ-calculus known as “Système F” [1972].

This was also a method which was suggested for dismissing typoses with equality (theorem
5.5.9), but other arguments were found instead.
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Chapter 4

The Indexed Category Theory of
Sets

4.1 Indexed Families, Products and Coproducts

§4.1.1 The previous chapter set out to motivate Indexed Category Theory from a syntactic point
of view. We aim, of course, to apply it semantically to categories of domains, and this we do in
chapter V. First, however, we must devote the present chapter to the case of discrete sets, which
we approach with a view to formulating the fact that Set is “complete”, that it has all “small”
(i.e. set- rather than class-indexed) limits (and colimits). The answer to this depends upon first
being able to express the notion of a “family” of sets.

This chapter sets out some of the basic ideas of indexed category theory, motivated in the first
instance by this problem. In the case of Set we would like to be able to define an indexed family
of sets as a function from the indexing set to the “set” of all sets. Of course Russell showed long
ago that we cannot have this. However there is a trick with disjoint unions and pullbacks which
enables us to perform an equivalent construction called a fibration.

The opening section motivates the notion of an indexed family of sets and the definitions of
indexed products and coproducts. In the second section we discuss other categories and construc-
tions indexed over a base category. In section 3 we address the subject of cartesian closure again,
this time from an indexed point of view. In the case of Set we require pullback against arbitrary
maps (not just product projections) to have a right adjoint, but this is too strong a condition
for categories of domains. Instead we define relative cartesian closure, which we find already ap-
plies to Cat in another illustration of our confusion of object and metalevels. In the final section
we discuss the indexed forms of the general and special adjoint functor theorems and introduce
elementary toposes; this illustrates the way in which adjoints can be used to replace infinitary
structure such as arbitrary colimits.

§4.1.2 We begin by formalising the notion of an indexed family of objects. This account of
indexed categories is very loosely based on [Johnstone et al. 1978] and [Johnstone 1983].

Let S be some category, whose objects we are thinking of as sets — in the first instance
S = Set. In order to talk about products, coproducts and so on in S we need some notion of an
A-indexed family of objects of S, for each A ∈ obS. A na¨ıve notation for such a thing might be
(Xa : a ∈ A). Between these there are A-indexed functions, (fa : Xa → Ya : a ∈ A), so that we
have a category SA. In the basic example this category is simply the A-fold power of the category
S = Set.

As well as A-indexed families, we have substitution or relabelling functors. If α : B → A is any
S-map and (Xa : a ∈ A) is an A-indexed family, we have a B-indexed family (Xαb : b ∈ B). The
same applies to morphisms, so this is in fact a functor Sα : SA → SB . The assignment α 7→ Sα is

101
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itself (pseudo) (contra) functorial, in that S id ∼= id and Sα;β ∼= Sβ ;Sα. These natural isomorphisms
will have to satisfy some coherence conditions, but we shall not pay too much attention to them.

§4.1.3 (Xa : a ∈ A) appears to be a function from A to the class of all sets, which is a very
troublesome notion. As has been remarked, we shall be able to think in this way in Retr(Λ), but
not in Set. The trick in Set is to code this up using the disjoint union, making use of our a priori
knowledge of the structure of the category but quietly subsuming the Axiom of Replacement . The
indexed set (Xa : a ∈ A) is represented by its disjoint union together with the display map which
identifies the index:

X =
∐
a∈A

Xa x ∈ Xa

A
?

a
?

An object of SA is therefore just a function, or S-morphism; Xa is picked out as the inverse image
of a, i.e. the pullback of the singleton function paq : 1 → A against the display map. In the case
S = Set any map may occur as a display map.

The substitution functor Sα : SA → AB over α : B → A is easily seen to be given by pullback
along α and is consequently written Pα or α∗:∐

b∈B

Xαb
∼= X ×A B - X ∼=

∐
a∈A

Xa

B
? α- A

?

§4.1.4 There is an alternative description of this set-up in terms of fibrations. The objects
over A ∈ S are the S-maps with codomain A, but besides forming categories over each A (called
fibres) all the objects together form a category called S2 because it is the category of functors
from 2 = (• → •) to S; the morphisms are just the commutative squares in S. There is then a
functor cod : S2 → S with the property that X ∈ SA iff cod(X) = A and the maps X → Y over
α : B → A (i.e. the squares whose lower side is α) correspond bijectively to the maps X → PαY
in SB . The maps within a single fibre (i.e. the squares with an identity along the bottom) are
(for obvious reasons) called vertical whilst those which give pullback squares are called horizontal
or cartesian.

The fibred (as opposed to indexed) approach was pioneered by Bénabou [1975] in recognition
of the fact that substitution is in practice defined only up to isomorphism.

The fibre over A is in this case may be seen as either the A-fold power of S or as the slice
category S/A whose objects are the S-morphisms with codomain A and whose morphisms are the
S-morphisms making the triangles commute. In the relative case the objects of the slice will be
display maps but the morphisms will still be arbitrary maps.

There is, however, nothing in the definition of a general fibration to require the fibre over an
arbitrary A to be the A-fold power of that over the terminal object of S. Indeed the difference is
quite crucial to most applications. We shall denote the fibre over A by PA and the substitution
functor over α : B → A by Pα.

Lemma Let α : B → A and U , X be over B, A respectively. Then there is a natural bijection

U -
α X

U -
B PαX

�
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§4.1.5 Let us consider the form of (binary) products in the fibre categories. Let X and
Y be objects over A, presented either as A-indexed things or as displays (S-morphisms with
codomain A), and write X ×A Y for their product according to either interpretation. Näıvely
this is (Xa × Ya : a ∈ A), but as a display it turns out to be precisely the pullback, hence the
alternative name fibre product for the latter. In English we may therefore say “fibre products are
pullbacks”, although the (Gaullist) French can’t make the a priori distinction!

X ×A Y

X
�

Y

-

A
�

-

PαE - E

PαX
?

∩

- X
?

∩

PαY

Pαf

?

Pαg

?
- Y

f

?

g

?

B
α - A

The indexed equaliser of f, g : X ⇒ Y in SA is E = (Ea : a ∈ A) where Ea = {xa ∈ Xa :
faxa = gaxa}; this is preserved by substitution (pullback). So in the fibred case, if the column
on the right is an equaliser diagram then so is the substituted version on the left. Then E is the
equaliser in the whole display category P = S2 as well as in the fibre over A.

§4.1.6 Now we shall look at products in Set from the “indexed family” point of view. Like
universal and type quantification is corresponds to a right adjoint to substitution. This gives us a
notion of “internal product” applicable to categories of retracts and domains.

Given an B-indexed family of sets, (Xb : b ∈ B), their product has elements the indexed
families (xb : b ∈ B) where ∀b.xb ∈ Xb. This is a B-indexed family of choices of elements, which is
the same as specifying a B-indexed family of maps from the (constant) singleton to the Xb, i.e. a
map 1B → X from the terminal object in the fibre over B. Now the display map of the terminal
object over B is precisely (as an S-morphism) the identity on B (which to some extent excuses
the ambiguous notation 1B) so this is just a section or splitting of the display map.

Write
∏
B X for the product set, and think of it as an object of the fibre over the terminal object

(i.e. of the category of single sets). It has elements 11 →
∏
B X, and these are to correspond to the

maps 1B → X over B. Now 1B is the pullback of 11 against the terminal projection α =!B : B → 1,
i.e. its image under the substitution functor Pα.

1B∼= Pα 11
-

B X

11
-

1

∏
B

X

Thus
∏
B is the right adjoint of Pα: Pα11

∼= 1B → X over B.

§4.1.7 Now let us do this indexedly . So given ((Xb : b ∈ Ba) : a ∈ A), an A-indexed
family of Ba-indexed families of objects, we need to show how to construct the ath product,
(
∏
b∈Ba Xb : a ∈ A), and present it as a member of an A-indexed family.
To do this we begin by displaying the Ba’s over A, i.e. we construct a morphism α : B → A,

where B =
∐
Ba; then we present the objects ((Xb : b ∈ Ba) : a ∈ A) as a B-indexed family
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(Xb : b ∈ B). The elements of the member (ΠαX)a =
∏
b∈Ba Xb of the product are maps to

1 → (ΠαX)a which are to correspond to indexed families (1 → Xb : b ∈ Ba) and so the maps
1B → ΠαX over A correspond to those 1B → X over B. In other words Πα (or α∗) is the right
adjoint to the substitution or pullback Pα (or α∗).

1B∼= Pα 1A -
B X

1A - A ΠαX∼=
∏
b∈Ba

Xb : a ∈ A

Definition An internal product in an indexed category is a right adjoint to substitution over a
display map.

§4.1.8 The are no conceptual difficulties in doing this for Set: collections of maps may be
understood na¨ıvely, and any morphism in the base category S occurs as a display map. This is
not so in categories of retracts or domains: we have to make our indexing “continuous”, and not
every map occurs as a display map.

Likewise the collections of maps (cones) in the definition of product have to be “continuously
varying”. Whilst clearly Retr(Λ) and small categories of domains do not have all products
externally, they still “think” they have them in this sense. Where the “continuously varying” is
taken to mean computable or definable we have the appropriate restriction on the definitions to
make them appropriate to programming or intuitionistic type theory.

§4.1.9 The case of a product over a constant family in Set is very familiar: it is simply an
exponential. It essentially follows that a category with indexed products over itself is cartesian
closed; moreover the exponentials are preserved by substitution (pullback).

The converse is also true for Set. Unfortunately this depends crucially on having all finite
limits.

Proposition Let S be left exact. Then the fibration cod : S2 → S has indexed products iff each
fibre is cartesian closed; moreover in this case the exponentials are preserved by pullbacks.
Proof

[⇒] Let α : Y → A and Z be objects over A, and suppose Πα is right adjoint to pullback Pα
along α. Then ZYA = Πα(PαZ) is the exponential, for

Y ×A X -
A Z

Y ×A X ∼= PαX -
Y PαZ ∼= Y ×A Z

X -
A Πα(PαZ)

[⇐] Let α : B → A and suppose that the fibre over A is left exact and cartesian closed. For
β : Y → B let ΠαY be the equaliser

ΠαY ⊂ - Y BA
K1B-

post(β)
- BBA

Then for U ∈ PA, maps U → ΠαY over A correspond to maps U → Y BA whose composites
with the above maps are equal, and hence to maps U ×A B → Y whose composite with
β : Y → B is the right projection, i.e. to maps PαU ∼= U ×A B → Y over B.
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[pres] By preservation we mean that Pα(ZYA ) ∼= (PαZ)(PαY )
B .

U -
B Pα(ZYA) ∼= ZYA ×A B

U -
A ZYA

Y ×A U -
A Z

Y ×A U ∼= PαY ×B U -
B PαZ

U -
B (PαZ)(PαY )

B

�

§4.1.10 The case for sums is very similar, although we are not allowed to argue in terms of
elements any more. Like existential quantification, it corresponds to a left adjoint to substitution.

Let α : B → A be a display map (with fibres Ba) and Y ∈ PB. The indexed sum is

ΣαY =
{∑

b∈Ba
Yb : a ∈ A

}
Hence a map ΣαY → X over A consists of maps Yb → Xa for b ∈ Ba (by the definition of a
coproduct, for a given a ∈ A we patch these together to make a map (ΣαY )a → Xa). The same
thing may be presented as a B-indexed family of maps {Yb → Xαb : b ∈ B}, i.e. a map Y → PαX
over B.

Definition An indexed sum is a left adjoint to substitution over a display map.
For the cod fibration the following easily-overlooked triviality is appropriate:

Lemma For an S-morphism α : B → A, the pullback functor Pα : S/A→ S/B along α has a left
adjoint Σα (or α!) given by postcomposition with α. �

Proposition The fibration cod : S2 → S is cocomplete iff S has all finite (limits and) colimits.�
This is due to Bénabou.

+§4.1.11 Starting from the indexed approach we now have a direct route to the display map:
recall that this was originally given as a disjoint union. Let X be an A-indexed family (object of
the fibre over A). It has a terminal projection X → 1A in this fibre, and the image of this under
the sum functor is of course

∑
AX →

∑
A 1A over 1; but

∑
A 1A is (isomorphic to) A (in the

canonical identification of S with the fibre over 1).

Proposition In the fibration cod : S2 → S, the fibre over the terminal object is equivalent to S
and the display X → A corresponds to the map

∑
AX →

∑
A 1A in this fibre. �

This is the method by which we shall identify displays of retracts.

§4.1.12 There is another consequence to having a left adjoint to substitution:

Proposition Let p : P → S be a fibration. Then each substitution functor Pα has a left adjoint
iff p : Pop → Sop is also a fibration.
Proof
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[⇒] Let α : B → A in S, Y be over B and Z over C, where γ : A→ C. Then

Y -
α;γ Z

Y -
B Pα(PγZ)

ΣαY -
A PγZ

ΣαY -
γ Z

[⇐] Conversely let Σα be the cosubstitution. �

We shall make use of this in §5.2.
We may form the vertical opposite, Pvop, of P, in which we turn round the morphisms in the

fibres but not between them. Then P has indexed products iff Pop → Sop is a fibration. Also
write Phop ' (Pvop)op; usage of the terms opfibration and cofibration seems confused.

If both P → S and Pop → Sop are fibrations then we call them a bifibration.

4.2 Fibred Categories

§4.2.1 The previous section introduced the fibred presentation of Set and its internal completeness
and cocompleteness. Though our major concern is with categories of types like Set, Retr(Λ) or
BiPosf , we also need to know about how other “large” categories may be presented over the base
category of types. This may also be done in terms of fibrations, and the aim of the present section
is to relate this to “internal” and “indexed” formulations and to describe common categorical
constructions and properties in this new form. In particular in §4.4 we shall prove the various
forms of the adjoint functor theorem.

Besides using fibrations to discuss categories of types and algebras, in the next chapter we shall
apply them to the types (domains) themselves, since domains are posets and hence categories.
Conversely we shall find in the next section that Cat is indexed over itself with fibrations as
displays. This confusion of levels is of course important to the construction of a type of types.

§4.2.2 As in §4.1.2, write S for the “base” category, whose objects are the indexing sets and
whose morphisms are the relabellings; for the moment this is assumed to be Set. Let C be some
(possibly large) category, which we are trying to index over S.

As before, for each set A ∈ S, we have a category of A-indexed families of objects and mor-
phisms of C; of course näıvely this is just CA, the A-fold power of C. If α : B → A is a function
we have a functor Cα : CA → CB given by composition. Notice that the assignment α 7→ Cα is
contravariant , so we have a functor C(−) : S → Catop. More generally this may only preserve
identity and composition up to isomorphism, and we have to specify these isomorphisms explicitly
(they are called coherences).

If C is a concrete category (so its objects are sets and its morphisms some functions between
sets) we can copy the construction of §4.1.3 directly to build a fibration.

Lemma Let C be a concrete category and A a set. Then CA is equivalent to the following (concrete)
category. The objects are disjoint unions X =

∐
a∈AXa of A-indexed families of objects of C (quâ

sets), together with their display maps X → A. The morphisms (X → A) → (Y → A) are the
functions X → Y which (i) make the triangle over A commute and (ii), when restricted to the
components Xa → Ya, yield C-morphisms. �

Since the theory of categories is finitary essentially algebraic (§3.2.8), the data P : S → Catop

yield a (pre)sheaf of categories; this may alternatively be viewed as a category in the topos of
presheaves on S.
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§4.2.3 For abstract categories we have of course to give an abstract construction. We are
aiming for a fibration p : P → S, where P corresponds to S2 in the case C = S. For a concrete
category, P has objects over A the X → A of lemma 4.2.2 and morphisms over α : B → A the
commuting squares which restrict in each component to C-morphisms.

In the abstract case the objects of P over A are the A-indexed families themselves, so obP =∐
A∈S(ob C)A. The morphisms are generated by the vertical ones, i.e. those in CA, together with

the horizontal ones over α : B → A, which are provided by fiat : one of the form (Xαb : b ∈ B)→
(Xa : a ∈ A) for each A-indexed family.

Definition

(a) A morphism f : X → Y in P is cartesian or horizontal (w.r.t. p : P → S) if, given any
g : Z → Y in P and a commutative diagram as on the left:

pZ

pX

α

?

pf
- pY

pg

-

Z

X

h

?

f
- Y

g

-

in S then there is a unique h : Z → X in P with ph = α such that the triangle on the right
commutes.

(b) A morphism is vertical if its image under p is an identity.

(c) The functor p : P → S is a fibration if, given any α : B → A in S and X ∈ P with pX = A,
there is a cartesian morphism f : Y → X in P with pf = α; we call f a cartesian lifting of
α.

In (c) we only ask for the existence of the f , not a choice of it (though any two such will be
isomorphic). Even so, we shall write PαX for any such Y .

Proposition Given any category C, the above construction p : P → S is a fibration. If C is
concrete (in particular if C = S) this is equivalent to the previous construction, in the sense of an
equivalence of categories over S. �

Lemma The following diagram is a pullback in P:

PαX - X

PαY

Pαf

?
- Y

f

?

B
α - A

�

§4.2.4 We have shown how to pass from the indexed to the fibred presentation; the inverse
is rather more complicated. However before attempting to perform an inverse construction, we
observe that there is nothing in this to require the fibre over A to be the A-fold power of C. In
fact the foregoing construction depends only on the (pseudo)functor S → Catop.
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For a general indexing pseudofunctor P : S → Catop, we construct a fibration p : P → S as
follows. The fibre over A is just PA (this accounts for the objects and vertical morphisms), and
the horizontal morphisms are of the form PαX → X over α : B → A where X ∈ PA.

There is still something special about the form of the fibration which arises in this way, namely
that (contrary to the wording of definition 4.2.3(c)) we have canonical choices of cartesian liftings.
A fibration of this form is said to be cloven. Of course any two cartesian liftings are isomorphic,
but there is nevertheless a potential problem of Choice. In the case of cod : S2 → S this is the
distinction between the existence and assignment of pullbacks.

Whether one regards this as a problem or not depends on context. If, as is Bénabou’s view,
S-categories and other constructions arise naturally as arbitrary fibrations and not as indexed
categories, and we aim to work in an arbitrary topos, then clearly this use of Choice is important. In
the contexts in which fibrations arise in the present work, on the other hand, which are essentially
syntactic, we find that they are naturally derived from indexations anyway. (On the other hand, in
the category theory of Set we may vary the values of functors at individual objects independently,
though of course only up to isomorphism, whereas in domain theory we are obliged to make
“continuous” choices.)

Proposition There is an equivalence between pseudofunctors S → Catop and cloven fibrations
over S. The indexation is a functor iff the fibration is split , i.e. the coherences (between cartesian
liftings over identities and composites) are identities. �

The cod : S2 → S fibration is split iff we have not only a canonical choice of pullbacks, but
also the composite (cf. §1.2.14) of those for the two squares gives the one for the entire rectangle:

• - • - •

•
?

- •
?

- •
?

The question of splitting has algebraic content (i.e. apart from questions of Choice) where
there are objects with proper automorphisms. We shall therefore look at the case for groups in
§4.2.16.

§4.2.5 So far the only fibred category we have is cod : S2 → S. Let us therefore construct the
fibred category of models of a single-sorted finitary algebraic theory, say rings.

An A-indexed family of rings is of course given by (Ra : a ∈ A) together with (p0aq, p1aq : 1 →
Ra : a ∈ A), (−a : Ra → Ra : a ∈ A) and (+a,×a : Ra ×Ra → Ra : a ∈ A). These may be coded
as before by R → A, p0q, p1q : A → R, − : R → R and +,× : R ×A R → R over A, remembering
that a fibred terminal object is the identity and a fibred product is constructed by means of a
pullback. The equations are satisfied in the components iff they are for the displays: the reader is
invited to formulate the latter condition.

A homomorphism of indexed families of rings is given by the corresponding function on sets
(which was just a commutative square), so long as it preserves the operations. Again this happens
componentwise iff it happens indexedly.

The reason why the componentwise and indexed formulations coincide is essentially that we
have evaluation functors eva : RngA → Rng for each a ∈ A which (i) preserve (equations and)
products and (ii) are jointly faithful. eva is just the substitution functor over the global element
paq : 1→ A.

§4.2.6 We only so far know about indexed or fibred categories: what about functors?
Consider first the indexed case, given two pseudofunctors P, Q : S → Catop. Then an indexed

functor tT : P → Q is an assignment of a functor tTA : PA → QA to each A ∈ S. This must be
consistent with substitution, so to each α : B → A we have coherent natural equivalence:
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PB �
Pα

PA

QB

tTB

?
� Qα

QA

tTA

?

B
α - A

[cf. the Beck condition. (?)]
Now suppose p : P → S and q : Q → S are the corresponding fibrations. We may collect

together the parts {tTA : A ∈ S} into a functor tT : P → Q; this preserves fibres so p = tT ; q
exactly (not just up to isomorphism). The cartesian morphisms PαX → X in P over α : B → A
are mapped to tTB(PαX) ∼= Qα(tTAX) → tTAX in Q, so tT preserves cartesian morphisms
(though not necessarily choices of them). We call a functor with these properties cartesian. Given
any cartesian functor between fibrations arising from indexations we may recover the indexed
functor.

§4.2.7 And natural transformations?
Given two indexed functors tT , tU : P → Q, an indexed natural transformation θ : tT → tU

is an assignment of a natural transformation θA : tTA → tUA to each A ∈ S consistent with
substitution in the sense that the following diagram commutes for each α : B → A.

tTB(PαX)
∼=- Qα(tTAX) - tTAX

tUB(PαX)

θBX

? ∼=- Qα(tUAX)

Qα(θAX)

?
- tUAX

θAX

?

B =========== B
α - A

This gives rise to a natural transformation θ : tT → tU of cartesian functors. The above condition
is equivalent to naturality w.r.t. horizontal maps, so any such θ will do.

Proposition Let P, Q be indexations and p, q the corresponding fibrations. Then there is a natural
equivalence between indexed and cartesian functors and natural transformations. �

When we speak of functors and natural transformations between fibred categories we shall
always mean them to be cartesian.

§4.2.8 Given a fibred category p : P → S, an arbitrary subcategory of P needn’t be fibred
over S, and even if it is the inclusion needn’t be cartesian.

Examples Posets are sufficient to show this.

(a) A non-fibred subcategory.

(b) A functor between fibrations which doesnt preserve cartesian maps; this is a non-cartesian
inclusion of a fibred subcategory.
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Figure 4.2.8: Non-cartesian subcategories

§4.2.9 We can now speak of indexed adjoints.

Proposition Let p : P → S and q : Q → S be fibrations and tT : P → Q, tU : Q → P be
cartesian functors.

(a) tT is left adjoint to tU quâ cartesian functors iff they are adjoint quâ ordinary functors.

(b) In this case tT preserves indexed sums and tU preserves indexed products.
Proof

[a] From §4.2.7 we impose no additional condition on natural transformations to make them
cartesian, and likewise the triangle equations for adjoints coincide.

[b] By taking the diagram of right adjoints to §4.2.6, tU commutes with Π functors, i.e. preserves
products; likewise tT preserves sums (Σ). �

§4.2.10 Having considered “large” categories, let us now turn to “small” or internal ones.
We showed in §3.2.8 how to interpret the theory of categories in any category with finite limits.
Most of the information is contained in 〈dom, cod〉 : C1 → C0 × C0; considered as a display this
corresponds to the indexed family (homC(x, y) : x, y ∈ C0).

The fibred version of this category is given as follows. The objects over A are A-indexed families
of “objects” of C (“elements” of C0), i.e. just functions (S-maps) x : A → C0. The morphisms
f : (y : B → C0)→ (x : A→ C0) over α : B → A are functions f : B → C1 with f ; dom = y and
f ; cod = α ; x.

Notice that we have a generic object 1 : C0 → C0, of which any other is obtained by substitution
(precomposition), and also a generic morphism, (1 : C1 → C1) : (dom : C1 → C0)→ (cod : C1 →
C0). We shall return to small categories in §4.3.8 and §5.5.2.

§4.2.11 We now turn to manipulation of fibrations, and in particular to change of base.
However since we shall be making extensive use of them, we had better first find out what a
pullback of categories looks like. The peculiar notation is adapted to our applications.

Since Cat is a 2-category, we have to modify the notion of pullback. For in the following
diagram, the images of the functors p and F may “miss” one another up to equality on objects of



4.2. FIBRED CATEGORIES 111

S, whilst having isomorphic objects in common; in this case the strict pullback falls short of the
intention. Replacing equality by isomorphism gives pseudopullback .

Proposition Let F : T → S, p : P → S be functors as in the figure on the left. Then the
pseudopullback of F and p in Cat has objects the triples (A,X, u) with A ∈ T , X ∈ P and
u : FA ∼= pX in S and morphisms (α, f) : (B, Y, v) → (A,X, u) where α : B → A in T ,
f : Y → X in P and the right-hand square commutes.

T ×S P - P

u⇒

T
? F - S

p

?

FB
v - pY

FA

Fα

? u - pX

pf

?

Specifically the pullback square commutes up to the natural isomorphism u, where u(A,X,u) = u.
If we have another pair of functors r : C → T , G : C → P making the square commute up to the
natural isomorphism v : (r ; F )→ (G ; p) then the mediating functor 〈r, G〉 : C → T ×S P takes U
to (rU, GU, vU ) and θ : V → U to (rθ, Gθ). �

+§4.2.12 There is nothing in this construction which really requires u and v to be isomorphisms.
There is a more general notion, called lax pullback , in which they are replaced by arbitrary 2-cells.
We write this T ×S P. There are in fact applications of lax constructions to problems in the
semantics of programming languages (to powerdomains and to the theory of partial functions) but
these topics are not treated in this work.

Note The use of the term lax pullback here is incorrect; the standard name is comma category,
although it does seem regrettable that the name of an important concept is derived from a non-
intuitive piece of notation.

The three forms of pullback are related in the case of a fibration.

Proposition In the notation of proposition 4.2.11, let p be a fibration.

(a) The forgetful functor T ×S P → T ×S P from the strict to the lax pullback has a coreflection
(right adjoint postinverse).

(b) This restricts to an equivalence between the strict and pseudo pullbacks.

(c) If F : T → S is also a fibration q : Q → S and these correspond to indexations P, Q : S →
Catop, the pullback P ×S Q corresponds to the product P× Q.

Proof

[a] Define T ×S P → T ×S P by taking (A,X, u : FA→ pX) to (A, PuX), where PuX → X is
a cartesian lifting of u at X. The counit is (A→ A, PuX → X).

[b] If u is restricted to be an isomorphism, the counit is also an isomorphism.

[c] Same argument as in §4.1.5 �

§4.2.13 In §4.1.3 we saw that substitution of an indexing variable corresponds to precompo-
sition of the indexation and pullback of the display. The same is true at the higher level.
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Lemma Let P : S → Catop be an indexation and p : P → S the corresponding fibration, and
let F : T → S be any functor. Put Q = (F ; P) : T → Catop for the composite indexation and
q : Q → T for the corresponding fibration. Then q is the pullback of p along F .
Proof We have only to show that Q coincides with T ×S P as constructed in proposition 4.2.11,
with the simplification that we may consider strict pullbacks. The fibre QA over A ∈ T is the
same as that P(FA) over FA ∈ S and the horizontal maps QαX → X in Q over α : B → A in T
correspond to those P(Fα)X → X in P over Fα : FB → FA. �

This has been phrased in such a way as to show also that the pullback of an arbitrary fibration
against a functor is a fibration. We call this change of base.

Proposition Let F : T → S be a functor. Then pullback along F gives rise to a 2-functor from
fibrations, cartesian functors and natural transformations over S to those over T . �

We also have a notion of a cartesian functor G : P → Q over a change of base F : T → S. This
is either a cartesian functor from P to F ∗Q over T , or more simply a functor making the square
commute (exactly) and taking horizontal morphisms of P over T to those of Q over S.

§4.2.14 One particularly important example of change of base is where T is a slice category
S/A and the functor is just the forgetful functor dom or post(!A). The pullback is the “fibred
category of A-indexed families of objects” (cf. §4.1.7).

In this case the pullback (S/A)×SP has another description, being an example of an arrow (or
comma) category . For a full treatment of this construction, which also subsumes slice categories,
see Mac Lane [1971], §2.6.

Lemma (S/A)×S P ' (p ↓ A) over S/A.
Proof (p ↓ A) has objects the pairs (X,α : pX → A) with X ∈ P and morphisms f : (X,α)→
(Y, β) the f : X → Y in P with α = pf ; β. This is the same description as the pullback. �

In the case S = Set, (X,α : pX → A) is ((Xb : b ∈ Ba) : a ∈ A), an A-indexed family of
Ba-indexed families of P-objects, where Ba = α−1(a) ⊂ pX and Xb is the fibre of X over b ∈ pX.

More generally, given α : B → A in S, we have a functor S/B → S/A given by postcomposition
with α. This gives rise to a comparison map between the pullbacks (p ↓ B) and (p ↓ A) of P over
!B = α;!A and !A. The image of this at (X,β : pX → B) is (X,β ; α).

§4.2.15 The previous result verifies one of the axioms for a class of display maps (§4.3.2). We
may easily show the other two.

Proposition

(a) A composite of fibrations is a fibration.

(b) Any functor to the degenerate (singleton) category is a fibration.
Proof To find cartesian liftings we simply lift half way and then the rest. If the codomain of a
functor is degenerate, we make no nontrivial requests for cartesian liftings. �

This is the one case in which the fibred presentation is simpler than the indexed form. Taking
the composite of fibrations corresponds to forming indexed sums; indeed if p : C → B and q : B → A
are fibrations corresponding to indexations P : B → Catop and Q : A → Catop then the fibre over
A ∈ A of the composite p ; q is the part of the display p : C → B over the fibre QA ⊂ B.

+§4.2.16 An indexation is, roughly speaking, an example of a map P : A→ Cop in a category C
where Cop itself has the structure of a C-object. Conversely C-objects have a category structure, so
C is a subcategory of Cat. But this makes it a 2-category, so other C-objects also have 2-structure
and C is a 3-category, and so on. It seems to me that the reason for this is the confusion of
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object and meta-levels implicit in the notion of a type-of-types, and (because objects of categories
are to be considered isomorphic rather than equal) explains the inconsistency of equality with
type-of-types (§5.5.9).

Let’s look at a few familiar cases. First let C = Set ⊂ Cat as the discrete categories. Then
P : A→ Setop is just an A-indexed family of sets, and the fibration is the display of their disjoint
union. Pos hardly differs in principle from the general case, but that of IPO and other categories
of domains is of course our main interest: we shall return to it in Chapter V.

Consider, then, the case C = Gp, where we consider a group to be a category with one object
(∗) and every morphism invertible. Functors and group homomorphisms coincide.

Lemma Let p : H → G be a group homomorphism.

(a) p is a fibration iff it is surjective.

(b) Then the fibre over the unique object ∗ of G is the kernel K of p.

(c) The substitution functor Pg over the base morphism g ∈ G acts on K by conjugation in H.

(d) A splitting for this fibration is equivalent to an inclusion of G as a subgroup of H disjoint
from K. �

Proposition

(a) Fibrations of groups correspond to extensions.

(b) A fibration is split iff the extension splits. �

+§4.2.17 This leads us to a categorical proof of the Jordan-Hölder decomposition theorem for
groups. Here is another example of the fact that categories occur in Mathematics not just as
collections of familiar objects, but as the objects themselves.

Proposition

(a) Let 1 = U0 / U1 / U2 / ... / Un = G and 1 = V0 / V1 / V2 / ... / Vm = G be two
subnormal series of subgroups of a group G, i.e. in which each term is normal in the next
(but not necessarily in G). Then there are isomorphic refinements, i.e. series U ′ij and
V ′ji (with lexicogrophic order) such that U ′(i−1)m = Ui = U ′i0, V ′(j−1)n = Vj = Vj0 and
U ′i(j+1)/U

′
ij
∼= V ′j(i+1)/V

′
ij .

(b) The lattice L of normal subgroups of a group is modular , i.e. for a, b ∈ L, the intervals
[af b, a] = {x : af b ≤ x ≤ a} and [b, ag b] are isomorphic posets.

Proof [a] Each step in the series is a fibration, so the result follows from the fact that a pullback
of fibrations is a fibration (lemma 4.2.13). [b] is similar. �

+§4.2.18 Fibrations interact straightforwardly with limits.

Proposition Let P = limPi and C = lim Ci in Cat and pi : Pi → Ci be a family of fibrations
compatible with the diagrams in the sense that

Pj - Pi

Cj

pj

?
- Ci

pi

?
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is a cartesian functor for each i→ j in I. Then the mediating functor p : P → C is a fibration.

Proof Let α : B → A in C and X ∈ PA ⊂ P. α arises from a compatible family αi : Bi → Ai
in Ci, similarly X from Xi ∈ PiAi since piXi = (pX)i = Ai. I claim (PiαiXi) is a compatible
family. This is because the functors in the diagram are fibred and hence preserve the horizontal
maps PiαiXi → Xi. We also have a compatible family of horizontal maps (PiαiXi → Xi).

Put PαX = (PiαiXi) → (Xi) = X; I claim this is horizontal. For let f : Y → X with pf
factoring through α. The we have (pf)i = pifi : piYi → Ai and so a mediating map Yi → PiαiXi.
By the uniqueness of this map we have a compatible family, and hence a mediating map Y → PαX.

�
We shall make extensive use of this result in the next chapter.

4.3 Relatively Cartesian Closed Categories

§4.3.1 In this section we look at cartesian closed categories from a indexed or fibred point of
view. The weakest form is where − ×X has a right adjoint for each object X; this corresponds
to only allowing “constant families” to be displayed. At the other extreme we have the case of
Set, where any map occurs as a display and pullback against it has a right adjoint; we call this
local cartesian closure. We shall find that for domains we need an intermediate concept, which is
parametric upon the chosen class of display maps so is called relative cartesian closure. We leave
the case of domains to the next chapter, but find already here that we can apply this definition
to Cat.

§4.3.2 First let us establish the

Definition Let C be a category and D a class of C-morphisms. We say that D is a class of display
maps for C if

(i) The pullback of any D-map against any C-map exists and is in D,

(ii) The composite of any two D-maps is in D, and,

(iii) C has a terminal object and any terminal projection is in D.

Examples

(a) Let C be any lex category (with all finite limits), e.g. Set. Then C is a class of display maps
for itself.

(b) Let C be any category with finite products and D the class of all (maps isomorphic to)
product projections.

(c) Let C = IPO and D the projections. (Proposition 2.1.8)

(d) Let C = Cat and D the fibrations. (Proposition 4.2.13 & 15) �

Examples (a) and (b) are the maximal and minimal cases; we shall be interested in the other
two, and the relation between them.

+§4.3.3 Recall that the slice category C/A has objects the C-morphisms with codomain A and
morphisms the C-morphisms making the triangle commute. If α : B → A is a C-morphism there
is a functor α! : C/B → C/A given by postcomposition with α. The right adjoint to α!, if it exists,
is called α∗ and is given by pullback along α. (If α∗ itself has a right adjoint, written α∗, then α
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is said to be exponentiable; when we regard α∗ as a substitution we write it as Pα and its adjoints
as Σα and Πα.)

Warning “Slice over” in a category corresponds to “down-set” in a poset.
More generally let D be a class of C-maps; the relative slice C/DA has objects the D-maps

with codomain A but still all C-maps as morphisms (so long as the triangle still commutes in C).
Thus C/DA is a full subcategory of C/A.

Warning This seems not to be quite the correct definition, for in the case of categories and
fibrations we have the extra condition of preserving cartesian morphisms. I cannot see at the
moment what the appropriate morphism-part of this object-definition is, but we do not rely too
heavily on the definition in the rest of the work.

[Postscript: it is actually correct.]
From these data we can construct a fibred category p : P → C, which is in some sense “C fibred

over itself”.
The objects over A ∈ C are the display maps X → A with codomain A, and the morphisms

over α : B → A from Y → B to X → A are the commutative squares of which three sides have
already been given. The fibre PA over A is therefore C/DA.

Lemma If (C,D) satisfy axiom (i) above, then this is a fibration; the fibres are relative slices and
the horizontal maps are the pullback squares. �

This coincides with the standard construction in the case of Set; for the minimal class of
display maps the families are all “constant” ones, so this isn’t very interesting.

+§4.3.4 Axiom (ii) serves a dual rôle: it performs mundane categorical bookkeeping, but also
provides indexed sums. The purpose of axiom (iii) is that we should be able to speak of the
fibration as actually being the indexed form of the original category.

Proposition Let D be a class of display maps for a category C. Then in the fibration constructed
above,

(a) C is canonically identified with the fibre over its terminal object.

(b) C has finite products, and their projections (including all isomorphisms) are in D.

(c) The fibres have finite products and these are preserved (up to isomorphism) by arbitrary
pullback functors.

Proof

[a] The fibre over 1 has objects the display maps with codomain 1, which are all maps to 1
by axiom (iii). But by the definition of a terminal object this category is (canonically)
equivalent to C.

[b] Finite products are given by pullback over the terminal object, and the projections are in D
by axiom (i).

[c] We did this in §4.1.5. Preservation follows from the fact that limits commute with one
another. �

+§4.3.5 We also have indexed sums.

Proposition Let C be a category with a class of display maps D. Then in the fibration;

(a) Pullback along display maps has a left adjoint.
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(b) The Beck condition for sums is satisfied.

(c) The display map in the sense constructed in §4.1.11 coincides with that defining the indexed
type.

Proof (a) and (c) follow immediately from the remarks in §4.1.11 and §4.3.3. We have just to
prove for the pullback square on the left (in which α and γ are displays) that the diagram on the
right commutes up to isomorphism.

D
δ - A

B

γ

? β - C

α

?

PD �
Pδ

PA

PB

Σγ

?
� Pβ

PC

Σα

?

Let ξ : X → A be a display (so X ∈ PA). Then the following squares and rectangle are pullbacks
(lemma 1.2.14), so the isomorphism holds.

Pβ(ΣαX) ∼= Σγ(PδX) - D
γ - B

X
? ξ - A

δ

? α - C

β

?

�

+§4.3.6 It therefore remains to discuss indexed products and exponentials.

Definition A category C is cartesian closed relative to a class of display maps D if the substitution
functors of the fibration constructed in §4.3.3 have right adjoints.

Note This is rather clumsily stated. The products (right adjoints) only exist over display maps,
take displays to displays and must satisfy the Beck condition. The latter is not redundant (despite
§3.2.17) because the adjoints do not exist for all base morphisms. However Thomas Streicher
observed that with the Beck condition the product over a display α : B → A, applied to a display
q : Y → B, enjoys its universal property with respect to maps f not just from displays (objects of
the relative slice) but from arbitrary objects p : X → A of the slice:

X
f-
A ΠαY

α∗X -
B Y

and conversely that if the adjoint α∗ a Πα has this property then the Beck condition is satisfied.

Examples

(a) Set, or any locally cartesian closed category, is cartesian closed relative to all maps.

(b) Any cartesian closed category is cartesian closed relative to product projections. �

We shall show that categories of retracts and domains are relatively cartesian closed in §5.1
and 5.4 respectively. Also the projections provide a class of display maps for IPO, they do not
do so for other categories of domains, and even IPO is not cartesian closed with respect to them
(§5.2.8).
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Y ′ - Y

Pα′X ′
?

- PαX

X ′ -

--

X

-

B′
?

- B
?

A′
?

-

-

A
?

-

Figure 4.3.8: Locally small category

§4.3.7 We may sum up our results in the

Theorem A relatively cartesian closed category gives rise to an indexed category whose fibres
are cartesian closed and whose substitution functors preserve this structure. It is complete and
cocomplete in the sense that substitution along display maps has adjoints on both sides which
satisfy the Beck condition. �

§4.3.8 We can use these methods to formulate definitions and constructions internally (say in
a locally cartesian closed category). This usually takes the form of finding a generic construction,
of which any other is obtained by substitution (pullback), preferably uniquely.

We shall illustrate this by formulating the idea of a category having small hom-sets or being
locally small . Since cartesian closure is concerned with exponentials, i.e. sets of functions, it will
not come as a surprise that these are equivalent. We can formulate local smallness as having a
generic morphism, i.e. one from which any other may be obtained by substitution (pullback).

Thus if Y ∈ PB and X ∈ PA with α : B → A, by a generic morphism from Y to X over α
we mean a diagram of the form in the figure, in which the squares (parallelograms) are pullbacks,
which is generic in the sense that any other diagram of the same shape (but with ′′ for ′) is obtained
by pulling back this one by a unique A′′ → A′.

Proposition

(a) A small category is locally small.

(b) Given an A-indexed family of objects in a locally small category, there is a small category
fully embedded with object-of-objects A.

Proof

[a] Let the small category be (C0, C1). We have a generic object id : C0 → C0, i.e. a (C0-indexed)
family of which any other is a pullback. There is also a generic morphism C1 → C0 × C0

between any pair of generic objects, and substituting any other families for the generic ones
we have generic morphisms between any pair of (families of) objects.
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[b] Let X be over A. Put C0 = A and C1 the hom-set from Pπ0X to Pπ1X over C0 × C0.
Construct the fibration as in §4.2.10 and the obvious embedding. �

§4.3.9

Proposition S is locally small iff it is locally cartesian closed.

Proof

[⇐] Suppose Y is exponentiable in its fibre. Put B′ = (PαX)YB and A′ = A×B B′. Then

Y ′′ -
α′′ X

′′

Y ×B B′′ ∼= Y ′′ - B′′ Pα
′′X ′′ ∼= PαX ×B B′′

B′′ ×B Y -
B Pα X

B′′ -
B (Pα X)YB = B′

and it’s not difficult to see that the correspondence is obtained by pullback.

[⇒] Conversely if B′ is generic then

B′′ ×B Y -
B X

B′′ ×B Y - B′′ B
′′ ×B X

B′′ -
B B′ = XY

B

�

§4.3.10 We shall now give part of the the proof that Cat is cartesian closed relative to fibra-
tions. [But the morphisms of the relative slices in this case are cartesian not arbitrary functors.]

Specifically we shall construct the fibred category of (cartesian) functors between two fibrations.
We do this by first constructing the indexed category and then relying on proposition 4.2.4 to give
the fibration.

Given fibrations p : P → S and q : Q → S we need a notion of an A-indexed family of cartesian
functors P → Q. Generally an A-indexed family of functions is a fibre-preserving function between
displays. Recall from §4.2.14 that (p ↓ A) ' (S/A) ×S P is the “fibred category of A-indexed
families of P-objects”, and that its objects are (X,α : pX → A). Hence cartesian functors
(p ↓ A)→ (q ↓ A) over S/A represent A-indexed families of functors P → Q. We take this to be
the fibre of QP over A.

The substitution functor QPα : [p ↓ A, q ↓ A] → [p ↓ B, q ↓ B] over α : B → A is defined as
follows. Let tT : p ↓ A → q ↓ A be cartesian over S/A and take (X, pX → A) to (tT 0(X, pX →
A), pX → A). Then we define QPαtT : p ↓ B → q ↓ B by letting its value at (X, pX → B)
be (tT 0(X, pX → B → A), pX → B), and likewise by the same postcomposition in the case or
morphisms. Replacing tT 0 by θ gives the prescription for natural transformations.
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+§4.3.11 Now we aim to show that this is indeed the exponential. We must show a (natural)
equivalence between cartesian functors P ×S R → Q and R → QP over S. Curiously this seems
to have more to do with the lax pullback P ×S R than the strict or pseudo one which is directly
given, and the reader is advised to keep the adjunction from proposition 4.2.12a in mind.

The first part of the equivalence takes

R
tT - QP

S
�

q
pr

-

to

P ×S R- -/ P ×S R
tT ′ - Q

S
�

q
p =
r -

Suppose for Z ∈ R over A, tTZ : p ↓ A→ q ↓ A takes (X,α : pX → A) to (tT 0(X,Z, α), α). Then
we define tT ′(X,Z, α : pX → rZ) = tT 0(X,Z, α). It’s a bit more complicated on morphisms:

X
f - Y pX

pf - pY tT 0(X,Z, α) ∼= tT 0(X,W, (α ; ru))

such that goes to

Z
u - W rZ

α

? ru- rW

β

?
tT 0(Y,W, β)

tT 0(f,W )

?

The effect of the correspondence on the natural transformation θ : tT → tU at (X,Z, α) is just
θZ(X,α).

The foregoing construction does not depend on choices of cartesian liftings; naturally its inverse
does. We have to take

P ×S R � �. P ×S R
tT ′ - Q

S
�

q
p =
r -

to

R
tT - QP

S
�

q
pr

-

We must define tT on objects, vertical morphisms and horizontal morphisms. On the object Z of
R over A we define tTZ : p ↓ A→ p ↓ A by tTZ(X,α) = (tT ′(X, RαZ), α) and tTZ(f) = tT (f, h)
where f : (X,α)→ (Y, β) and

RαZ
h - RβZ

Z
�

- is the cartesian lifting of

pX
pf - pY

A
� βα -

On the vertical morphism u : Z → W over A = rZ = rW we have to define a natural transfor-
mation tTu : tTZ → tTW . The value of this at (X,α) is just tT (X, Rαu). On the horizontal
morphism RαZ → Z over α : B → A we have essentially only to observe that the square

p ↓ B
tT (RαZ)- q ↓ B

p ↓ A
? tTZ- q ↓ A

?
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commutes up to isomorphism. On natural transformations θ : tT → tU we have to define the
effect at the object Z of R over A; this is a natural transformation θZ : tTZ → tUZ defined at
(X,α) by θ(X,RαZ).

Proposition QP as defined above is the exponential in the fibre of Cat/fib over S.

Proof We observe equivalence and naturality by the form of the above construction. �

§4.3.12 As a by-product of this construction we can assign to any fibration p : P → S an
associated split fibration p′ : P ′ → S, which is the fibred category of (cartesian) functors from
1 : S → S to p : P → S. There is a cartesian functor P ′ → P which is full and faithful; with
Choice it is essentially surjective on objects. A splitting for p is precisely a choice of preinverse.

4.4 The Adjoint Functor Theorem and Toposes

§4.4.1 This section is a slight diversion from the theme of the use of indexed category theory for
the semantics of polymorphism. Its purpose is to illustrate the way in which the formulation of
the adjoint functor theorems for indexed categories leads naturally to the notion of an elementary
topos. No detailed proofs will be given. This is in turn related via the notion of bounded morphism
to Grothendieck toposes, which we introduced in §3.3 to classify geometric theories.

§4.4.2 The adjoint functor theorem for posets (complete lattices) is a triviality which is sub-
sumed in the confusion of terminology between “supremum” and “least upper bound”, for we
construct the former precisely as the latter. More generally, a monotone function f : X → Y
between complete lattices has a left adjoint iff it preserves infs. The corresponding result for
categories, if it is to exist at all, is necessarily more complicated, since we cannot ask for all limits
because of Freyd’s paradox (proposition 1.5.8).

Let p : P → S and q : Q → S be fibred categories and tT : P → Q a cartesian functor. Let
us assume that P is locally small (§4.3.8) and complete (§4.1.7), and that F preserves limits in
the sense of commuting with Π functors (proposition 4.2.9). We aim to formulate and prove the
General Adjoint Functor Theorem (see Mac Lane [1971] theorem 5.6.2) for these data.

For each object Y ∈ QA we want to construct an initial object for the arrow category (Y ↓ F ).
We make this into a fibred category over S/A in the manner of lemma 4.2.14. The fibre over
α : B → A has objects the diagrams

QαY - Y

FX
?

B
α - A

for X ∈ PB.

Lemma (Y ↓ F ) is complete. (cf. proposition 4.4.10a) �
An initial object for (Y ↓ F ) assigns to each α : B → A an initial object X = GαY such that

GαY → G1Y is cartesian. G = G1 is then the required left adjoint.
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QαY - Y

1

FX
?

B
α - A

QβY - Y

2

FX ′
?

C
β - A

PγX - X

3

X ′
?

C
γ - B

QβY - QαY - Y

Qγ(FX) ∼= F (PγX)
?

- FX
?

4

FX ′
?

C
γ - B

α - A

Figure 4.4.4: The solution set condition

§4.4.3 The point of the General Adjoint Functor theorem is to formulate some condition which
manufactures this initial object (a colimit) from the available limits, analogously to finding the
least upper bound as the intersection of all upper bounds.

Given a fibred category C → S, we say C is initially small if there’s some X ∈ C such that for
any Y ∈ C there’s a “family” of maps from X to Y , i.e. a diagram of the form

• - X

•
?

- Y

in which the horizontal maps are cartesian.

Lemma If C is complete, locally small and initially small then it has an initial object. �

§4.4.4 This enables us to formulate the General Adjoint Functor Theorem.

Theorem Let F : P → Q be a cartesian functor between locally small fibred categories such
that C has and F preserves indexed limits. Then F has a left adjoint G iff for every Y ∈ QA
there’s a diagram (1) such that for any similar diagram (2) there’s some diagram (3) such that
(4) commutes. �

This is the indexed form of the solution set condition.
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§4.4.5 Though the general adjoint functor theorem is “iff”, it is rarely of practical value. A
more useful result is obtained by making the category look concrete; though the additional condi-
tions quite commonly hold, they do not always: the category Loc of locales and continuous maps
is not, for instance, well-powered (see Johnstone [1983] §2.2.11). The ideas are also, unfortunately,
inapplicable to domain theory.

In an ordinary category C, a subobject of an object X is an isomorphism class of monos into
X in C/X. We say that C is well-powered if every object has a set of subobjects.

In a fibred category p : P → S we have to test being mono against a family of maps. So
i : X → Y in PA is vertically mono if Pαi is mono in the (ordinary) category PB for any α : B → A.
Equivalently i is mono in the display P with respect to any pair of maps over the same base map.
An arbitrary map i : X → Y over α : B → A in P is vertically mono if its vertical part X → PαY
is.

To formulate well-poweredness we need a notation for the set (S-object) of vertical monos into
X over A. This is a display map MonoA(X)→ A in S. Over this lies the generic mono U → X,
which is to be vertically mono and such that any other vertical mono V → X over α : B → A is
obtained by substitution over some B → MonoA(X). We say C is weakly or exactly well-powered
according as we have saturation (mere existence of such a substitution) or universality (unique
existence); in the latter case we write SubA(X) for MonoA(X).

§4.4.6 When is cod : S2 → S (exactly) well-powered? If so, then for every X ∈ S we have an
object PX and a subobject (∈X) ⊂ X × PX such that for any subobject U ⊂ X × A there’s a
(unique) pUq : A→ PX making

U - (∈X)

X ×A
? 1X × pUq- X × PX

?

a pullback.

Definition An elementary topos is an exactly well-powered category S with finite limits. �

Proposition Let S be a topos.

(a) If A ∈ S then S/A is also a topos.

(b) S is cartesian closed.

(c) S is locally cartesian closed.

(d) S has finite colimits which are stable under pullback; in particular a strict initial object and
disjoint coproducts.

Proof (sketches)

[a] This involves coding the inclusion relation between subobjects.

[b] We code the function f : X → Y by its graph (1X , f) : X ⊂ X × Y and hence the
corresponding subobject of X × Y .

[c] follows from (a) and (b)

[d] This was the first result in the huge range of technology for elementary toposes. It can be
done within a suitable powerset, since the singleton map may be shown to be mono and the
powerset is an internally complete lattice. �
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§4.4.7 A more commonly seen definition of an elementary topos involves the subobject classi-
fier , Ω, which is the powerset of 1 in the terminology of the previous section. This has a global
element true : 1→ Ω with the property that any mono U ⊂ X is obtained as the pullback along
a unique pUq : X → Ω.

Example Set is a topos in which Ω = {true, false}; the function X → Ω is the characteristic
function of the subset U , which takes the value true on U and false outside. �

The powerset PX of an arbitrary object X is then ΩX .

Proposition A lex category S is a topos iff it is cartesian closed and has a subobject classifier.�

Warning We need equalisers as well as products!

Corollary If S is a topos, the fibration cod : S2 → S is complete, cocomplete, locally small,
well-powered and co-well-powered.
Proof For the last part, the quotients of an object X correspond to those subobjects of X ×X
which are equivalence relations (this is another “exactness” property of toposes). �

§4.4.8 Some examples of elementary toposes

Proposition Any Grothendieck topos, and hence any category of sheaves on a space or site, is
an elementary topos.
Proof See Johnstone [1977], proposition 1.12. �

Example Elementary but not Grothendieck toposes.

(a) The category Setf of finite sets.

(b) The Effective Topos [Hyland 1982]. �

§4.4.9 To return to the adjoint functor theorem, we need the indexed form of a cogenerator
(see §1.2.10 and §2.3.2). This is an object G ∈ PA such that given any pair of maps f, g : X ⇒ Y
over the same C → B such that for any h : Y → G we have f ; h = g ; h then already f = g.

Lemma Let C → S be a complete, locally small, well-powered category with a cogenerator; then
C has an initial object. �

Theorem (Special Adjoint Functor Theorem) Let F : P → Q be a cartesian functor between
locally small fibred categories such that P has and F preserves indexed limits. Suppose P is
well-powered and has a cogenerator. Then F has a left adjoint. �

§4.4.10 Returning to toposes, suppose we have a functor tT : E → S; what properties on tT
do we need in order to get a well-behaved relationship between fibred categories over E and S?

From proposition 4.2.13, we have a 2-functor tT ∗ taking S-categories to E-categories by pull-
back.

Proposition Let tT : E → S be a functor between lex categories.

(a) If tT preserves pullbacks and P → S has indexed (co)-products then so does tT ∗P.

(b) If tT ∗(S2) has indexed coproducts then tT preserves pullbacks.
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(c) If tT has a right adjoint then tT ∗ preserves local smallness.

(d) If S is locally cartesian closed then tT ∗(S2) is locally small iff tT has a right adjoint.

(e) If tT has a right adjoint the tT ∗ preserves exact well-poweredness.

(f) If tT preserves 1 and has a right adjoint R then R extends to a cartesian functor (S ↓ tT )→ E2

over S2. �

Definition A geometric morphism f : S → E between toposes is a pair of functors f∗ : E → S
and f∗ : S → E such that f∗ is right adjoint to f∗ and the latter preserves finite limits.

Examples

(a) Let f : X → Y be a continuous map between (sober) spaces. Then f gives rise to a geometric
morphism f : Shv(X) → Shv(Y ). Moreover there is an equivalence between the poset of
lemma 2.1.5e and the category of geometric morphisms.

(b) Let M be a model of a geometric theory T in a topos E . Then there is a geometric morphism
pMq : E → Set[T ] with pMq∗T ∼= M . Indeed there is an equivalence as in §3.3.9.

(c) Let S be a topos and α : B → A in S. Then pullback α∗ : S/A→ S/B preserves pullbacks
but not 1 and has a right adjoint.

In fact any functor which preserves pullbacks and has a right adjoint factors as the inverse
image f∗ of a geometric morphism and a functor of this form.

§4.4.11 What is the relationship between Grothendieck and elementary toposes? Given any
Grothendieck topos E , we have a geometric morphism E → Set, since Set is the (pseudo) terminal
object in the category of Grothendieck toposes; for sheaves on a space X this corresponds to the
terminal projection X → 1.

A geometric morphism f : E → S is bounded if E has an object of generators over S.

Theorem (Giraud, Mitchell & Diaconescu) An elementary topos E is Grothendieck iff it has a
bounded geometric morphism to Set. �

+§4.4.12

Question Is a weakly well-powered, locally cartesian closed category necessarily a topos?
We have an Ω which is a “saturated” but not “universal” mono. There is an S-indexed

Heyting prealgebra of monos into (rather than subobjects of) each object, which has S-indexed
meets. Moreover pullback preserves this structure. It may be possible to apply the adjoint functor
theorem internally to construct joins and show that they are preserved. This would give a tripos,
but in fact we only really need stable effective image factorisations to construct the “real” (i.e.
universal) Ω.

Answer Martin Hyland has pointed out that the ¬¬-separated objects of the Effective Topos
provide a counterexample.



Chapter 5

Polymorphism in Domains

5.1 Indexed Category of Retracts

+§5.1.1 In this final chapter we shall bring together our studies of Domain Theory and Polymor-
phism, making use of the Indexed Category Theory of the previous chapter. The first half of the
chapter is devoted to Indexed Domain Theory, which we find to be a very pleasing structure. The
second half discusses the notion of a “type-of-types” in the context of indexed category theory
and attempts to construct such a device for domains, although we find that what can be achieved
is rather disappointing.

We motivate our definitions by recourse to the category of retracts of a combinatory algebra;
recall that one of the objectives of Chapter II was to show that we may as well assume any category
of domains to be of this form. We begin with a very natural definition of an indexed family of
retracts and develop the indexed version of the theory of §1.3.3-6. Then we show that global sums
and products may be constructed, and hence follow the “display” idea of §4.1.3 to define display
maps; we show that indexed sums and products exist relative to these.

The purpose of studying the retract case is that it very naturally motivates a definition for
domains. This definition seems to have rather a lot of clauses, so we spend the second section
attempting to drop them. Having thereby shown that the variants yield a much inferior theory,
we show in the third section that the correspondence between indexed and fibred holds nicely for
various categories of domains and in the fourth that we have indexed products. This completes
the indexed version of standard domain theory.

In §5.5 we examine the notion of a type of types in an indexed category, showing in partic-
ular that we cannot have this together with both equality and function-spaces. Dropping the
requirement for equalisers (which we have needed to do anyway in domain theory) we introduce
a provisional definition of a “typos” and show that the familiar closure model (§1.4.8) provides a
nontrivial example.

In §5.6 we construct a “type-of-types” according to this definition for some categories of do-
mains (specifically ContLatω and bcContω, but it would probably be possible to do it for others).
We can tie this in with §5.1 by showing that we may choose a λ-model in such a way that any
fibred type (quâ domain) occurs as a display (quâ retract). This completes the motivation from
the retract to the domain case. Pushing this a little further allows us to code up G→ V as a single
combinator V ∈ Λ.

We are then in a position to interpret polymorphism in domain theory. Unfortunately we
find that ∀X.X → X does not have its expected value of 2, and that such failure is inevitable
in classical poset domain theory. We conclude with a few speculations as to how some of these
problems may be resolved.

+§5.1.2 Since a type is an idempotent element, an indexed or parametric type is a function or
program which always returns idempotent values. Thus an A-indexed type is a function X : A→

125
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Idem(Λ), where Idem(Λ) is the subset of Λ consisting of the idempotent elements. We force X to
have domain A by imposing the equation X = PAX.

Now Ershov showed [Hosono and Sato 1977] that Idem(Pω) is a complete lattice but not
continuous, and so it is not a type (object of Retr(Pω) ' ContLatω). But this does not matter,
because we do not need a type-of-types to formulate this notion. We only need X : A → Λ to
satisfy

∀a ∈ ‖A‖ Xa = P(Xa)(Xa)

The left-hand side of this equation is λu.Xa(Xau). It is convenient to introduce a variant on P
to deal with this form (and the corresponding one for indexed functions):

Q = λfgau.ga(fau)

so that our equation becomes X = QXX as functions of a variable a : A. These two equations are
formally equivalent if Λ is a model (has enough points), but in any case we really want the latter
because we had intentional rather than extensional equality in mind anyway.

Hence an A-indexed type is an element X ∈ Λ satisfying

X = PAX = QXX

By a similar argument, an A-indexed function from Y to X is an f ∈ Λ such that f = PAf =
QY f = QfX. We then have a cartesian closed category with fixpoints, which we shall call PA.

+§5.1.3 PA has terminal object U = K(K⊥), and this also represents the terminal projection
X → U. As before we may consider (A-indexed) elements: x ∈A X is a function x : A → Λ such
that xa ∈ Xa for each a ∈ A; the type of all such indexed elements of X is the (global) product,∏
AX = λua.Xa(u(Aa)) (see below).
The product X ×A Y of X and Y over A is given by λaz.〈Xaz0, Y az1〉; the projection maps

are π0 = λaz.Xaz0 and π1 = λaz.Y az1, and if f : Z → X, g : Z → Y are two maps in PA then
the pair is 〈f, g〉 = λaz.〈faz, gaz〉 : Z → X ×A Y .

We have fibred exponential types.

Y XA = λaf.P(Xa)(P(fa)(Y a))
= λaf.Q(QY f)Za
= λaf.QY (QfZ)a
= λafx.Y a(fa(Xax))

This is obtained by an interchange of variables from the reduction of f to a solution of f = PAf =
QXf = QfY ; the latter is a “global section” of the former. The evaluation map ev : Y XA ×AX → Y
is given by λau.Y a(u0(Xau1)) and the transpose identifies f : W ×A X → Y with g : W → Y XA
by g = λawx.fa〈w, x〉 and f = λau.gau0u1.

+§5.1.4 Now let α : B → A be any map in the base category Retr(Λ); what is the corresponding
substitution functor Pα : PB → PA, and does it have adjoints? The first question has an easy
answer, which gives a pleasing consonance of notation: Pα = Pα. In the same way as the näıve
indexing of Set over itself performed substitution by composition, so does this.

Thus PαX is simply PαX and Pαf = Pαf ; moreover PαU = U, Pα(X ×A Y ) = (PαX) ×B
(PαY ) and Pα(Y XA ) = (PαY )(PαX)

B exactly . The product projections, pairings, evaluation maps
and transposes are also preserved exactly. Because of this notational coincidence (which I hope
justifies the switch of variables in the combinator P to the even the most uncompromising users
of left-handed notation), PA and Pα will in future be written PA and Pα respectively.
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+§5.1.5 We have to show that (some of) the substitution functors have adjoints. In fact those
that do are called display maps, and these arise from global sums. Therefore we first construct
global sums, then identify the display maps and finally construct the indexed sums and products.

Let Y ∈ PB be a B-indexed family of retracts; write
∏
B Y and

∑
B Y for their global product

and sum (coproduct), which are objects of C, the base category. [Later we shall construct ΠαY
and ΣαY , the adjoints to substitution over α : B → A; these give objects of the fibre over A.]

Let B ∈ C and Y ∈ PB. The basic idea of
∏
B Y is the set

{u : B → Λ : ∀b.ub ∈ Y b}

As with indexed families of objects we can code this set up using combinators. To say that u is a
function from B we just need u = PBu as before. Again as before the condition ub ∈ Y b can be
written as ub = Y b(ub). In this we spot a rare natural occurrence of the S combinator, and again
replace ∀ by λ. Hence

∏
B Y is the set of solutions of

u = PBu = SY u

These are commuting idempotents (given that B = PBB and Y = PBY = QY Y ), so their
composite gives the required type.

Likewise
∑
B Y is based on

{〈b, y〉 : b ∈ B ∧ yb ∈ Y b}

which is the set of solutions of
u = 〈Bu0, Y u0u1〉

+§5.1.6 We may now define a display map in Retr(Λ) to be (the composite of an invertible
followed by) a map of the form π0 :

∑
A Y → A where Y ∈ PA. π0 is in fact λu.Bu0.

We shall take as read a number of trivial properties of pullbacks, including the fact that this
definition allows invertibles to be “passed through” display maps.

Lemma (a) The pullback of a display map exists and is a display map.
Proof Let α : B → A in C and X ∈ PA. Put Y = PαX; then the following is a pullback square:

∑
B Y = λv.〈Bv0, Y v0v1〉

λv.〈αv0, Y v0v1〉- λu.〈Au0, Xu0u1〉 =
∑
AX

B

π0

? α - A

π0

?

Given any other β : C → B and γ : C →
∑
AX making the square commute, the pair is

λc.〈βc, (γc)1〉. �

Lemma (b) Any terminal projection is a display map.
Proof Given B → T, put X = KB and A = T. Then X ∈ PA and

∑
AX = λp.〈⊥, Bp1〉 ∼= B.�

+§5.1.7 We have already seen that an indexed category has indexed sums so long as it has a
class of display maps, i.e. closed under composition.

Proposition

(a) A composite of display maps is a display map.
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(b) Substitution over a display map has a left adjoint.

Proof

[a] Given X ∈ PA and Y ∈ PB where B =
∑
AX we want to construct Z ∈ PA with

∑
B Y
∼=∑

A Z over A. Put Z = λau.〈Xau0, Y 〈a, u0〉u1〉; then i :
∑
A Z →

∑
B Y and j :

∑
B Y →∑

A Z are mutually inverse where

i = λz.〈〈Az0, Xz0z10〉, Y 〈z0, z10〉z11〉
j = λy.〈Ay00, 〈Xy00y01, Y y0y1〉〉.

[b] ΣαY = Z. Indeed Σα = λY au.〈Xau0, Y 〈Aa,Xau0〉u1〉. The adjunctive correspondence
between f : ΣαY → V and g : Y → PαV is given by fau = gby where V ∈ PA, αb = a ∈ A,
b ∈ Xa ⊂ B, y ∈ Y b and u = 〈b, y〉. The unit η : Y → Pα(ΣαY ) and counit ε : Σα(PαV )→
U are given by reducing λby.〈b, y〉 and λau.u1 to appropriate types. �

We have presented Σα as a combinator. In some sense Σ is also a combinator (as we have
pretended by our notation), but its expression involves X, the indexed family corresponding to
the display α, rather than α itself. This is because Σα only exists when α is a display map (as
is easily deduced from the above proof), and in this highly constructive world we need a concrete
proof of every necessary fact, which proof is supplied by the X corresponding to α.

Question Is there a combinatorial (in the sense of the definition of X as an A-indexed type)
description of display maps, and hence of Σ?

+§5.1.8

Proposition Pullback against a display map, considered as a functor between relative slices, has
a right adjoint.

Proof Given X ∈ PA, B = ΣX, α : B → A, Y ∈ PB and a ∈ A we want ΠαY a to be
the set of maps from Xa to Y over B. We have Πα = λY av.S(PBY )[P(Xa)v] The adjunctive
correspondence between f : PαU → Y and g : U → ΠαY for U ∈ PA is given by fbu = gaub ∈ Y b,
where αb = a ∈ A, b ∈ Xa ⊂ B and u ∈ Ua. The unit η : U → Πα(PαU) ∼= UXA and counit
ε : Pα(ΠαY )→ B are given by reducing λaub.u and λbv.vb to appropriate types. �

+§5.1.9 Now we shall look at the effect of the foregoing construction in the case where Λ is an
unspecified poset model of the λ-calculus. We deliberately avoid being precise about which model
we are using or which maps arise: the purpose of this discussion is to motivate what we may do
in the category of domains. We began with the assumption that we represent a type which is the
result of a computation by a function into the universe Λ taking type (i.e. idempotent) values.
Now we examine the effect of that in the category, i.e. to what the order relation and directed
sups correspond.

Lemma Let A,B ∈ Retr(Λ) where Λ is an β-model in IPO. Suppose A ≤ B as elements of Λ.
Then

(a) A ; B, B ; A, A ; B ; A and B ; A ; B are also idempotents in Λ, with the order indicated in
the figure.

(b) there is an adjunction between A and B whose image in A is the closure A ;B ;A and in B
the coclosure B ;A ;B, these being isomorphic objects of Retr(Λ).

(c) if A and B commute then the diamond collapses.
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B B

B ;A ;B
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A ;B
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B ;A
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A ;B ;A

-
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A ;B

6

a B ;A

?

(a) (b)

Figure 5.1.9: Order on idempotents in a domain λ-model

(d) if they are both coclosures then A = B ;A ;B is a coclosure of B

(e) if they are both closures then B = A ;B ;A is a closure of A.
Proof

[a] A ; B = A ; A ; A ; B ≤ A ; B ; A ; B ≤ A ; B ; B ; B = A ; B, so (A ; B)2 = A ; B. Also
A = A3 ≤ A ;B ;A ≤ A ;B2 = A ;B = A2 ;B ≤ B ;A ;B ≤ B3 = B. Similarly with B ;A.

[b] (A ;B) ; (B ;A) = A ;B ;A ≥ A = 1A and similarly the other way.

[c-e] obvious. �

Question Suppose F : Λ→ Λ preserves idempotence. Does it then preserve the above diagram?

+§5.1.10 An A-indexed domain therefore gives rise to a functor X : A→ (Chm)op, where Chm is
the category of domains and continuous functions with left adjoint. We saw from the algebraic and
logical examples of indexed categories that the morphisms of the category which arises here are the
homomorphisms of the structure. This gives one motivation of the definition of a homomorphism
of domains as a continuous function with left adjoint; a surjective homomorphism is known as a
projection and its left adjoint an embedding . Since the left adjoint to a homomorphism arises in
this way from an instance of the order relation, we call it a comparison and write (Chm)op = Ccp.

Lemma

(a) Let f : X → Y in IPOhm. Then there is a coclosure u on X and a closure v on Y
with isomorphic images, such that f factorises as the projection u : X → I followed by an
isomorphism followed by the inclusion (injective homomorphism, not embedding) v : I ↪→ Y .

(b) Let c be a coclosure on an object X ∈ C ' Retr(Λ). Then there are retracts s ≤ r in Λ
such that ‖r‖ ∼= X and s ≤ r gives rise to the coclosure c.

(c) Likewise for a closure, r ≤ s.
Proof

[a] Let g a f and put u = f ; g ≤ 1X , v = g ; f ≥ 1Y . Then f = f ; g ; f = f ; v = u ; f .
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[b] Choose r arbitrarily with ‖r‖ ∼= X, and put s = r ; c ; r, i.e. the extension of c from X to Λ.
Then s ≤ r and c = s � X as required.

[c] Likewise. �

This lemma shows that we cannot restrict the category Ccp (i.e. the codomain of the functor
A → Ccp which arises from an indexed domain) further, at least so long as we insist that it
contain all isomorphisms from C. Of course if we restrict attention in advance to either closures or
coclosures of a saturated domain (as is commonly done), we obtain a corresponding restriction on
the category of comparisons which arise. However I believe I have seen no argument justifying such
a restriction, apart from the observation that many authors seem unaware that the theory about
embedding-projection pairs (vis à vis exponentials, recursive domain equations, etc.) generalises
to homomorphisms which are not necessarily onto.

It is unlikely that every homomorphism will actually arise from an instance of the order re-
lation in an arbitrary domain model: it may not be possible to choose appropriate representing
idempotents for the given domains. However it is in fact possible to build a new model with the
same (up to equivalence) category of retracts in which every homomorphism does occur.

+§5.1.11 We have only considered the order relation on Λ and deduced that we have a functor
X : A→ Ccp. However X : A→ Idem(Λ) is continuous (preserves directed sup) and so we have to
see the effect of that.

Lemma Let Λ be a domain model and {Ai ∈ Λ : i ∈ I} a directed set of idempotents. Then
A =

∨
� Ai is idempotent and is the bilimit of the Ai with comparisons given in the manner shown

before.
Proof A is idempotent by continuity of composition. We have coclosures A → Ai → A given
by A ;Ai ;A, and the directed sup of these is clearly A3 = A = 1A. �

Note This argument only shows A ↪→ bilimAi; a full proof will be found in Homomorphisms,
Bilimits and Saturated Domains.

+§5.1.12 We have now justified the definition of a continuous type-dependence or indexed domain
as a Scott-continuous functor into Ccp, the category of domains and comparisons.

Examples

(a) Idem(Λ) → Retr(Λ), where Idem(Λ) ⊂ Λ is the poset (not category) of idempotents (al-
though this is not necessarily a domain).

(b) ↓ : A→ bcCont for A ∈ bcCont (the homomorphisms are of the form −f a).

(c) ↑ : A→ ContLat for A ∈ ContLat (the comparisons being −g a).

(d) Φ : (Ccp)n → Ccp where Φ(X1, ..., Xn) is any expression in type variables X1, X2, ..., Xn and
constructors ×, →, etc. Again (Ccp)n is not a domain.

+§5.1.13 As a footnote to this motivation, consider an indexed domain as a “domain about
which we have partial information”. Thus at a particular value a ∈ A of the parameter we
know xa ∈ Xa about the data. If we have obtained a by improvement from b with α : b ≤ a,
then we take with this at least a certain degree of knowledge, say Σαxb about x. Conversely
if we discard information, reducing from a to b, then we can know at most Pαxa. Performing
these two processes, which as usual we assume to be continuous, we deduce xb ≤ Pα(Σαxb) and



5.2. INDEXED CATEGORIES OF DOMAINS 131

Σα(Pαxa) ≤ xa. Hence Σα a Pα. Further, if we can approximate a as
∨
� ai, then we should be

able to recover xa as
∨
� Σαi(Pαixa). Hence P : A→ Ccp.

Since we have adjoints to substitution in an indexed category, it is natural to ask whether
we should require the Beck condition to hold. The answer to the appears to be “no”: we carry
through the theory without it, getting arbitrary (i.e. non-Beck) indexations, and it just seems
that there are some circumstances (viz. logic) where we need the Beck conditions and others (both
here and in examples in Universal Algebra) where we dont.

In what follows we have tended to use P for indexations and Σ for their left adjoints, despite
the fact that the use of this letter misleadingly suggests the Beck condition and logic. This is
undoubtedly a mistake, and a revision of this notation would be appropriate. Where the indexation
has another name, say X or even ΠαY , we still use Σ, but subscripted appropriately, e.g. ΣX and
ΣΠαY .

5.2 Indexed Categories of Domains

+§5.2.1 The previous section culminated in the definition of a continuous type-dependence as a
continuous functor from a domain to the category of domains and comparisons. We shall see that
for each of the many categories of domains which we introduced in Chapter IV (large or small,
continuous or algebraic and — more strikingly — bifinite or any category of boundedly-complete
posets) the theory is very rich and beautiful.

Specifically,

(a) there is a direct correspondence between indexations P : A→ Ccp and fibrations p : X → A,
i.e. X ∈ C iff A ∈ C and ∀a ∈ A.Pa ∈ C.

(b) this class of display maps yields a relatively cartesian closed category, i.e. we have domain-
indexed sums and products of domains (even in the small case).

(c) we have an indexed form of domain theory, i.e. indexed bilimits and fixpoints.

On the face of it, however, the conditions of the definition appear to be very strong, and (in
comparison with the theory for categories) it may appear that we have not motivated either of
the requirements that the substitution maps have left adjoints or that the functor be continuous
(i.e. send directed sups to bilimits). It is therefore appropriate to consider weakened forms of the
definition, both from the indexed and the fibred points of view; we find that the theory fails to be
at all satisfactory.

+§5.2.2 The most obvious candidate for a class of display maps for IPO is the projections, as
strongly hinted by Lemma 2.1.8. However, contrary to the claims of [Taylor 1986], they do not
give a class of displays for bcCont.

Examples Pullback may destroy top or bounded completeness, as in the figure.
The fallacy in the alleged proof of the first proposition on page 463 of [Taylor 1986] lies in the

last line, where it is claimed that we may pull back an idempotent on W to one on W ×A> B>.

+§5.2.3 When we spoke of the “fibred” form of a continuous type-dependence in the previous
paragraph, we meant the fibration constructed from the indexation in the manner of Chapter IV,
where as usual we regard a domain as a poset and hence as a category.

In most cases when studying posets we have no need to give a name to the (unique) instance
of the comparison between any two elements, and for this reason lattice theory tends to be sub-
stantially simpler than category theory. However in our case we have to regard the base object A
as a category and give names to the comparisons in it in order to name the substitution functors
which arise. In order to avoid repetitious data, we shall adopt the convention that a, a′, ai and b
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Figure 5.2.2: Pullback may destroy top or bounded completeness
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Figure 5.2.3: Projections and fibrations

are elements of A, and that α : b ≤ a, αij : ai ≤ aj , αi : ai ≤ a are instances of the comparison.
Because we are forced to use the general notation from the start, much of the theory carries over
immediately to categories rather than posets.

Lemma Let p : X → A be a fibration in which each fibre is inhabited. Then

(a) p has a left adjoint iff each fibre has an initial object (least element, ⊥a), and this is a 7→ ⊥a.

(b) (Ignoring questions of choice) the substitution functors have left adjoints iff p : Xop → Aop

is also a fibration.
Proof

[a,⇒] Let i a p and ⊥a = ia for a ∈ A; since p is surjective, ⊥a ∈ Pa. Then f : ⊥a → X correspond
bijectively to pf : a→ px and in particular there is a unique f : ⊥a → X over 1Pa.

[a,⇐] Put ia = ⊥a. Then for β : a→ b, x ∈ Pb, by definition of ⊥a there’s a unique map ⊥a → Pβx.
Hence ia→ x correspond bijectively to β : a→ b = px.

[b] This is proposition 4.1.12. �

If, however, any fibre is empty or fails to have bottom, a fibration will not be a projection.
Conversely the coclosure on the four-point lattice which fixes top and bottom gives a projection
which is not a fibration.
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Figure 5.2.4: Continuous fibration counterexamples

+§5.2.4 For technical reasons within the constructions, it is worthwhile introducing a weakened
form of the definition in which we drop the requirement for adjoints to substitution.

Definition A continuous indexation of domains is a functor P : A→ IPOop which takes directed
sups to cofiltered limits. Thus for any directed set (ai : i ∈ I) ⊂ A, say with a =

∨
� ai, we have a

cofiltered diagram Pαij : Pai → Paj and a limiting cone Pαi : Pa→ Paj . Hence elements of Pa are
given by compatible families, (xi ∈ Pai : i ∈ I), where xj = Pαijxi.

Definition A continuous fibration of domains is a map p : X → A in IPO such that

(i) p is a fibration in the sense of Chapter IV,

(ii) each fibre has a least element (equivalently by lemma 5.2.3a, p is a projection in IPO),

(iii) the substitution maps Pα are continuous,

(iv) given px = a =
∨
� ai, then x =

∨
� Pαix, where αi : ai ≤ a,

and

(v) given a compatible family xi ∈ Pai (for the substitution maps) over a =
∨
� ai, then xi =

Pαi(
∨
� xj).

If also

(vi) p : Xop → Aop is a fibration

then we say p is a fibred type.
For fibred domain theory the first three conditions are obviously natural. (iv) and (v) express

in detail the continuity of the indexation, i.e. that directed sups go to cofiltered limits, and one
might question them. However these conditions are used very frequently in the constructions
which follow, and occur in much the same rôle as continuity of substitution. Questions of the
usefulness of domain theory without continuity I shall leave to the reader’s imagination.

Examples

(a) Given a discontinuous functor A → IPOop, the corresponding fibration X → A need not
have X ∈ IPO.

(b) A composite of fibrations between ipos with continuous substitutions need not have contin-
uous substitutions.
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+§5.2.5 In the theory which follows, we shall make heavy use of the correspondence between
the indexed and fibred presentations, so in particular we have to show that the definitions of the
previous paragraph are equivalent. First we construct fibrations from indexations.

Lemma Let A ∈ IPO and P : A → IPOop be a continuous indexation (sending directed sup to
cofiltered limit), and p : X → A the corresponding fibration. Then X is an ipo and p a projection.
Proof There are no nontrivial parallel pairs of maps in the fibres or horizontally, so X is a poset;
p has a left adjoint by lemma 5.2.3a. We have to show that X has and p preserves directed sups.

Let (xi : i ∈ I) ⊂ X be directed with ai = pxi and a =
∨
� ai. For i ≤ j let αij : ai ≤ aj and

αi : ai ≤ a. By hypothesis the substitution maps over αi form a limiting cone over the cofiltered
diagram given by the αij . For i ≤ j, xi ≤ yij = Pαijxj ≤ xj . Hence for each i, {yij : i ≤ j} is a
directed subset of Pai, so put yi for its sup.

Then

Pαijyj = Pαij
∨
�(Pαjkxk : j ≤ k) definition

=
∨
�(Pαij(Pαjkxk) : j ≤ k) continuity

=
∨
�(Pαikxk : j ≤ k) functoriality

=
∨
�(Pαikxk : i ≤ k) cofinality

= yi definition

so y = (yi : i ∈ I) is a compatible family for the diagram and hence an element of Pa.
If ∀i.xi ≤ z ∈ Pb with βi : ai ≤ b and β : a ≤ b then

yi =
∨
�{Pαijxj : i ≤ j} ≤

∨
�{Pαij(Pβjz) : i ≤ j} = Pβiz ≤ z

so y ≤ z. Thus y =
∨
� xi ∈ X and py = a. Hence X has an p preserves

∨
�. �

Notice that compatible families correspond to directed sups. This result does not require the
substitutions to be comparisons, only that directed sups go to cofiltered limits.

Proposition Proposition 4.2.4 specialises to equivalences between

(a) continuous indexations and continuous fibrations of ipos

(b) continuous type-dependences and fibred types.
Proof

[a,⇒] By the lemma.

[a,⇐] We have only to check that the fibres are ipos; but these are given by pullback of the fibration
(which is a projection) against the corresponding global element (map 1→ A) of the base.

[b] lemma 5.2.3b �

+§5.2.6 We have established the equivalence between the indexed and fibred approaches for
continuous indexations and continuous type-dependences of ipos, and as we have already remarked
this will be seen to apply to continuous type-dependences of any of the categories of domains which
we have studied. However for continuous indexations of categories other than IPO and weaker
attempted classes of displays for even IPO, the equivalence breaks down. Curiously, it does so in
opposite ways for the cases of bcCont and AlgPos, and in both ways for BiPosf .

Lemma Let P : A→ IPOop be a continuous indexation with fibration p : X → A.
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(a) If A and each Pa are algebraic then so is X.

(b) If X is boundedly complete then so are A and Pa.
Proof

[a] We shall prove essentially this in §5.3.2.

[b] It is easy to show that p preserves mubs. �

Examples

(a) The display of a continuous indexation of boundedly complete posets need not be boundedly
complete.

(b) Likewise for bifinite posets (the base is a four-point lattice and only the top fibre is nontrivial).

(c) Conversely a continuous fibration of algebraic posets need not have algebraic fibres. The
“odd” point in the infinite fibre is compact neither in the fibre nor in the display, but in
the display it is approximated. This of course also shows that AlgPos is not closed under
arbitrary cofiltered limits.

(d) Likewise for bifinite posets. In this example the finite points of the display are the points of
the finite fibres, and any finite number of fibres yields a mub-closed set; however restricting
to the infinite fibre, the two almost-minimal points become finite but have a Cantor set of
mubs.

+§5.2.7 Since domain theory, unlike category theory, is infinitary, we still have some groundwork
to do before showing that we have classes of display maps even for IPO. First we apply Proposition
4.2.18 about limits of fibrations to the domain case.

Proposition Let pi : Xi → Ai be a compatible family of (a) projections, (b) fibrations, (c)
continuous fibrations or (d) fibred types, for the filtered diagrams X = limXi, A = limAi. This
means (for b–d) that we ask for the diagram

Xj

fji - Xi

Aj

pj

? gji - Ai

pi

?
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Figure 5.2.6: Continuous indexation counterexamples

c@@ "
"
"
"
"
"
"
""

c��""""
"
"
"
""

c
�
�

"
"
"
"
"
"
"
""

c
@
@

�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
��

?c""""
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
""

c@@ �
�
�
�
�
�
�
�
��

c���
�

�
�
�
�
�
�
��

c@@@
@

�
�
�
�
�
�
��c���

�
�
�
�

"
"
"
"
"
"
"
""

c���
�
�
�
�

"
"
"
"
"
"
"
""

?c

c@@ �
�
�
�
�
�
�
�cCCC

C

�
�
��

�
�
��

#
#
#
##

�
�
�
�
�
�
��

c���
�

C
C
CC

S
S
SS

c
c
c
cc

�
�
�
��

c���� c���� c���� c����

?c

c@@ �
�

�
�
�
�
�
�

c
�
�
�
��

c
�
�

�
�

�
�
��

Cantor Space

?c
"
"

"
"
"
"

Figure 5.2.6: (d)



5.2. INDEXED CATEGORIES OF DOMAINS 137

to be an indexed functor. Then the mediating map p : X → A is a projection, etc.
Proof First, p is continuous.

[a] Let ιi a pi. For a ∈ A define (ιa)i =
∨
�i≤j fji(ιjaj). We may show that this is a compatible

family in the same way as in lemma 5.2.5 and also that ι a p. However it is crucial to use
the fact that (ai) and (xi) are compatible families.

[b] Proposition 4.2.18.

[c] Continuity is preserved because we may interchange limits over Piaij .

[d] Use lemma 5.2.3b. �

+§5.2.8

Lemma A composite of continuous fibrations is again a continuous fibration.
Proof Let P : A → IPOop and Q : B → IPOop be continuous indexations with corresponding
fibrations p : B → A and q : C → B respectively, and r = q ; p with corresponding indexation the
functor R : A → Catop; we have to show that each Ra is an ipo that the substitution maps are
continuous and that directed sups map to limits.

p, q and r are projections in IPO by proposition 5.2.5a. For a ∈ A, Ra is an ipo because it is
r−1(a) ⊂ C; alternatively, as remarked in §4.2.15, it is the fibration of Q � Pa.

Now let α : a′ ≤ a in A; we have to show that Rα : Ra → Ra′ is continuous. This is the
cartesian functor (§4.2.6) corresponding to the indexed form Qβ : Qb → Q(Pαb) for b ∈ Pa over a
change of base (§4.2.13). To show continuity of Rα, let {ci : i ∈ I} ⊂ Ra be directed, with ci ∈ Qbi.
Put c =

∨
� ci and b =

∨
� bi. Then since Q : B → IPOop is continuous, c ∈ Qb ∼= lim(Qbi). With

βi : Pαbi ≤ bi, β : Pαb ≤ b the following diagram commutes:

Q(
∨
� bi) ∼= lim Qbi - Qbi

Q(Pα(
∨
� bi)) ∼= Q(

∨
�(Pαbi)) ∼= lim Q(Pαbi)

Qβ

?

- Q(Pαbi)

Qβi

?

(using continuity of Pα). Then Rαc = Qβc = (Qβici) = (Rαci) so Rα is continuous.
Now we have to show that R : A→ IPOop is continuous. Let {ai : i ∈ I} ⊂ A be directed and

a =
∨
� ai. We have a compatible family of continuous fibrations Rai → Pai, so the mediating map

lim(Rai) → lim(Pai) ∼= Pa is a continuous fibration by proposition 5.2.7c. The fibre of this over
b ∈ Pa is lim(Q(Pαib)) by this construction, and this is isomorphic to Qb since b =

∨
�(Pαib) and Q

is continuous; but this is the fibre of Ra over b. �

Proposition The following give classes of display maps for IPO, each class being contained in
the previous one:

(a) projections, i.e. continuous surjections with left adjoint,

(b) fibrations (in the categorical sense) which are also projections,

(c) continuous fibrations, and

(d) fibred types.
Proof Nesting is obvious. By lemma 4.2.15 a composite of fibrations is a fibration, as is any
terminal projection; the latter correspond to type-dependences on 1 and so are fibred types and
hence in all four classes.
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Figure 5.2.9: Indexed product counterexamples

[a] proposition 2.1.8

[b] the classes of fibrations and of projections are each closed under composition and pullback,
and hence so is their intersection.

[c] the lemma gives closure under composition; for pullback we use the equivalence with index-
ations (proposition 5.2.5a), when pullback becomes precomposition.

[d] the composite of the fibrations p : Bop → Aop and q : Cop → Bop is a fibration; for pullback
we use proposition 5.2.5b. �

+§5.2.9 There appear still to be three competitors besides the definition given at the end of
the previous section for continuous type-dependences (fibred types). However they fail to have
indexed products (exponentials);

Examples

(a) Contrary to the claim of [Taylor 1986] and the previous draft of this dissertation, IPO is
not cartesian closed relative to projections. In this example, ΠαY does not have

∨
�.

(b) A finitary example covers fibrations and continuous fibrations. Writing X over A for the
fibration below, XX

A is not a fibration. For the unique nontrivial base-morphism has no
cartesian lifting at a certain point. This is the point in the upper fibre of XX

A which is the
identity on the upper fibre of X. The identity on the lower fibre of X and the involution of
this fibre interchanging the lower two points provide points of the lower fibre of XX

A which
are both maximal below the upper identity. �

5.3 Categories of Fibred Types

+§5.3.1 From now on we shall discard all but the chosen definition of fibred types. As remarked,
there is a remarkably exact correspondence between the indexed and fibred approaches in this case,
and my personal belief is that this is the strongest evidence that we are on the right track. This
correspondence has to be proved separately for each of our categories of domains, and we begin with
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two proofs for BiPosf — I have unfortunately not found the right trick to deal with ContDom.
We have to take bilimit expressions for A and Pa and transform them into such expressions for
X, and some work is needed to achieve the necessary uniformity in the expressions.

As a notational abbreviation, P : A → Ccp is a continuous type-dependence with fibration
p : X → A, where C is a category of domains and it is intended that A,X ∈ C (though the object
is usually to prove the latter).

+§5.3.2 We shall prove the BiPosf case using finite elements and mub-closed sets. The following
lemma classifies finite elements in the fibration.

Lemma x ∈ X is finite iff a = px ∈ Afp and x ∈ (Pa)fp.

Proof

[⇒, A] Suppose a ≤ b =
∨
� bi in A, say βi : bi ≤ b, γ : a ≤ b. Put y = Σγx ∈ Pb and yi = Pβiy ∈ Pb,

so x ≤ y =
∨
� yi. But x ∈ Xfp so x ≤ yi for some i, so a ≤ bi.

[⇒, Pa] Suppose x ≤ y =
∨
� yi with yi ∈ Pa ⊂ X. But x ∈ Xfp, so x ≤ yi for some i.

[⇐] Suppose x ≤ y =
∨
� yi, yi ∈ Pbi, y ∈ Pb, b =

∨
� bi, so a ≤

∨
� bi. But a ∈ Afp so a ≤ bi

for some i. This holds for all later i, so w.l.o.g. ∀i.a ≤ bi. Let γi : a ≤ bi, γ : a ≤ b. Put
zi = Pγiyi ∈ Pa, so x ≤ z =

∨
� zi = Pγiy; but x ∈ (Pa)fp so x ≤ zi ≤ yi for some i. �

Proposition X ∈ AlgPos iff A ∈ AlgPos and ∀a ∈ A.Pa ∈ AlgPos.

Proof

[⇒, A] By the lemma, Afp = p(Xfp). Let a ∈ A. If x ∈ Xfp and x ≤ ⊥a then px ∈ Afp and
px ≤ a; moreover a =

∨
�(px : x ∈ Xfp ∩ ↓⊥a) so A is algebraic.

[⇒, Pa] Since AlgPos is closed under bilimits, A is algebraic and P continuous, it suffices to check
that Pa ∈ AlgPos for a ∈ Afp. By the lemma, (Pa)fp = Pa ∩ Xfp. Let x ∈ Pa. If
y ∈ Xfp ∩ ↓x∩ Pb with α : b ≤ a then y ≤ Σαy ∈ Xfp ∩ ↓x∩ Pa, so x =

∨
�[(Pa)fp ∩ ↓x] and

Pa is algebraic.

[⇐] For a ∈ A, a =
∨
� Afp ∩ ↓ a, so by continuity Pa ∼= bilim(Pb : b ≤ a ∧ b ∈ Afp). This

means that x ∈ Pa ⊂ X is approximated by Pαx ∈ Pb ⊂ X for such α : b ≤ a. These are
approximated in turn by the finite elements of Pb (which are also finite in X) below them.�

+§5.3.3

Proposition X ∈ BiPosf iff A ∈ BiPosf and ∀a ∈ A.Pa ∈ BiPosf

Proof We have only to check mub-closed sets.

[⇒, A] Let S ⊂ Afp be finite and M the mub-closure of {⊥s : s ∈ S} ⊂ Xfp. Then pM is mub-
closed. For let a ∈ A and x be the projection of ⊥a into M , then px ∈ pM ∩ ↓ a; if also
b ∈ pM ∩ ↓ a, ⊥b ≤ m ≤ a for some m ∈M ∩ Pb, so ⊥b ≤ x and b ≤ px.

[⇒, Pa] Let S ⊂ (Pa)fp be a finite set and M be the mub-closure of S ∪ {⊥a} in X. I claim
M ′ = M ∩ Pa is mub-closed in Pa. For let x ∈ Pa and y be its reduction to M with
α : b = py ≤ a. Now ⊥a ∈ S ⊂M so ⊥a ≤ y and a ≤ b; hence y ∈ Pa ∩M = M ′.
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[⇐] Let S ⊂ Xfp. Put T = pS ⊂ Afp and N for its mub-closure in A. This is a finite poset, so
for a ∈ N we may define Ma inductively as the mub-closure of

(S ∩ Pa) ∪ {Σαm : m ∈Mb, α : b < a}

Put M =
⋃
a∈AMa; this is a finite set of finite elements, and I claim it is mub-closed. Let

x ∈ Pa ⊂ X. Put b for the reduction of a to N with α : b ≤ a. Then M ∩ ↓x ≤ Pαx. Let y
be the reduction of Pαx to Mb. Now suppose z ∈ M with z ≤ x, say β : c = pz ≤ b. Then
z ≤ Σβz ≤ Pαx ≤ x. But Σβz ∈ Mb by construction, so Σβz ≤ y. Thus y is the reduction
of x to M . �

The crucial point of this proof is that Σα restrict to Mb →Ma.

+§5.3.4 Having seen a “concrete” version of this proof in terms of finite elements, we are in
a position to give a categorical version. This depends on Cocl(X) being a continuous lattice
(proposition 2.4.10), so that we may express X as a bilimit of Y for which the coclosure c : X →
Y → X has c � 1X (we shall abuse notation by writing Y � X for this). The delicacy of this
construction (or rather the crudeness with which it has been implemented) necessitates restricting
in the first instance to finite A. If I had the appropriate trick for retracts, this result would form a
case in the proof by induction on the complexity of the domain (§2.5.2) that ContDom is closed
under the fibration construction.

Note “Proposition” 2.4.10 is not valid in general.

Lemma Let σ : X → Y and X ′ � X in ContDomcp. Then σX ′ � Y , i.e. there’s a Y ′ � Y
through which σ � X ′ factorises.

Proof “X ′ � X” is an instance of� in Cocl(X), which is embedded in ↓ 1X ⊂ [X → X]: recall
that comparisons preserve and embeddings also reflect �. Write c : X → X for the coclosure
corresponding to X ′ and σ a p. Now σ(c) = p ;c ;σ is a coclosure on Y , and σ(c)� 1Y in Cocl(Y ).
Put Y ′ for its splitting; then σX ′ = Y ′ i.e. σ � X ′ factors through Y ′. �

Proposition Let A ∈ Posf and P : A → ContDomcp be a continuous type-dependence with
fibration p : X → A. Then X may be expressed as a bilimit of Y where q : Y → A are fibrations
corresponding to continuous type-dependences Q : A→ ContDomcp with Qa� Pa.

Proof Let Ua � Pa be an arbitrary “reference” choice of approximants; it suffices to make
Ua ≤ Qa� Pa in order to show that X is the bilimit of such Y . Since A is finite and Cocl(Pa) is
a continuous lattice, we may define

Qa =
∨

(ΣαUb : α : b ≤ a)

By the lemma, Σα : Pb→ Pa restricts to Qb→ Qa. Also Ua ≤ Qa� Pa.
Put Qα : Qa � Pa → Pb → Qb and verify that Σα a Qα; moreover Q : A → ContDomcp is

a functor, indeed (trivially, since A is finite) a continuous type-dependence. Let q : Y → A be
the corresponding fibration; we have to show that Y is a coclosure of X; the projection Y → X
turns out to be fibred over A, but the embedding is not. By construction the diagram on the left
commutes:

Pb
ΣPα- Pa

Qb

ιb

6

ΣQα- Qa

ιa

6
Pb �

Pα
Pa

Qb

πb

?
� Qα

Qa

πa

?
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and hence by adjointness so does that on the right. Hence the projection π : P→ Q is an A-indexed
functor, and we have a fibred functor π : X → Y over A.

Now we have to show that this has a (non-fibred) left adjoint, essentially given by ι. Thus
for y ∈ Qa ⊂ Y , ιy = ιay. To check monotonicity, let y1 ≤ y2 over α : a1 ≤ a2; then ιb1y1 ≤
ιb2(Qαy2) ≤ Pα(ιb2y2) ≤ ιb2y2. For adjointness, let x ∈ Pb, β : a ≤ b; then the following are
equivalent:

y ≤β πbx

y ≤a Qβ(πbx)πa(Pβx)
ιay ≤a Pβx

ιay ≤β x

hence Y is a coclosure of X and q : Y → A is a fibration of the required kind. �

+§5.3.5 The restriction to finite base (A) in the previous result is not a serious one; indeed we
could (at the expense of increased complexity) have included the approximation of A by A′ � A in
the construction, as we did implicitly in proposition 5.3.2. However manipulating the base domain
is much simpler than manipulating the fibres.

Proposition

(a) Let A = bilimAi. Then X = bilimXi, where pi : Xi → Ai are the fibrations corresponding
to Pi : Ai� A→ IPOcp.

(b) Let A / B. Then X / Y , where Y → B is the display of B � A→ IPOcp.
Proof

[a] For i ≤ j, Xi
∼= Xj×Aj Ai; let the coclosure on Aj corresponding to Ai be r. Then there is a

right adjoint Xj → Xi which takes xj ∈ Pjai ⊂ Xj to 〈Pjαxj , raj〉, where α : raj ≤ aj . This
is a fibred functor over Aj → Ai, so pi is a compatible family for bilimXi over A = bilimAi.
The mediating map is a fibred type with fibre bilim(Piai) ∼= Pa over a, so X ∼= bilimXi.

[b] The squares and rectangle below are pullbacks:

X ⊂ - Y -- X

A

p

?
⊂ - B

?
-- A

p

?

�

+§5.3.6

Proposition Fibred types form a class of displays for BiPosf and BiωPosf .
Proof We have to check closure under pullback and composition; terminal projections are triv-
ially fibred types in the category. By the foregoing results we have a two-way translation between
indexations and fibrations. If p : X → A is a fibred type in BiPosf then it corresponds to an
indexation P : A→ BiPosf

cp. The pullback along α : B → A of the fibration is the fibration of the
precomposite with this; this composite clearly lies in BiPosf and hence so does the fibration. For
composites, the objects are already in the category, and the question for morphisms was disposed
of in the discussion of IPO. Lemma 5.3.2 easily ensures that the fibration construction preserves
being countably-based. �
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+§5.3.7 When working with boundedly complete domains, which is the other case which we
treat, we have a convenient way of moving from the fibre over a to that over b, namely via that
over af b, and hence it is possible to form useful retracts.

Lemma Suppose A ∈ bcCont and let f : Y → A, g : Y → X be arbitrary continuous functions.
Then there is a continuous function u : Y → X such that f = u ; p and ∀y.fy = p(gy)⇒ uy = gy.

Proof Let y ∈ Y . Put x = gy, a = px, b = fy and γ : a f b ≤ a, δ : a f b ≤ b. Define
uy = Σδ(Pγx). We have to show that this is continuous, so let y =

∨
� yi, etc., so that the following

diagram commutes:
a b

af b

δ
-

�

γ

ai

αi

6

bi

βi

6

ai f bi

εi
6

δ i

-
�

γ
i

By functoriality, the corresponding diagram of fibres and substitutions (Pa and Pγ, etc.) commutes,
and indeed the three columns are (bi)limiting cones. By adjointness we also have Σεi ; Σδ =
Σδi ; Σβi. Since A is continuous, a f b =

∨
�(ai f bi). Finally recall that x =

∨
� xi in the display

means that x =
∨
� Σαixi in its fibre. So we now have

uy = Σδ(Pγx) definition

= Σδ(
∨
� Σεi(Pγixi)) P(af b) = bilim P(ai f bi)

=
∨
� Σδ[Σεi(Pγixi)] continuity

=
∨
� Σδi(Pγixi) εi ; δ = δi ; β

=
∨
� Σβi(uyi) definition

=
∨
� uyi Pb ∼= bilim Pbi

as required. The properties follow easily from the construction. �

+§5.3.8 We can now prove the result for boundedly complete domains.

Lemma X ∈ bcCont iff A ∈ bcCont and ∀a ∈ A.Pa ∈ bcCont.

Proof

[⇒] A / X, so clearly A ∈ bcCont. Let a ∈ A; we use lemma 5.3.7 with Y = X, f = Ka and
g = 1X , then the square

X
u - X

1
? paq - A

p

?

commutes, so u factorises u : X → Pa ⊂ X. Moreover the other property of u makes Pa /X.
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[⇐] We have only to check binary meets. Let x ∈ Pa, y ∈ Pb. Put c = a f b ∈ A and α : c ≤ a,
β : c ≤ b. Then z = (Pαx) f (Pαy) ∈ Pc is the meet. Note that it has to be in this fibre
since p is a projection. For w ∈ Pd with w ≤ x, y, let α′ : d ≤ a, β′ : d ≤ b, γ : d ≤ c. Then
w ≤ (Pα′x)f (Pβ′y) = (Pγ(Pαx))f (Pγ(Pβy)) = Pγ((Pαx)f (Pβy)) = Pγz ≤ z since Pγ has
a left adjoint. �

Proposition Fibred types form a class of display maps for bcCont and its flavours. �

+§5.3.9 Indeed this applies to other categories of (boundedly complete) domains.

Lemma Let C be a category of continuous boundedly complete domains and P : A → IPOcp a
continuous type-dependence with fibration p : X → A. Then X ∈ C iff A ∈ C and ∀a.Pa ∈ C.
Proof A and Pa are retracts of X by lemma 5.3.8. We shall make X /A×

∏
a∈A Pa. Let a ∈ A;

we shall make two uses of lemma 5.3.7. Let ua : X → Pa as in the proof of lemma 5.3.8, and

ι : X ↪→ U by x 7→ (px, (uax : a ∈ A))

Put Y = Pa × A, f = π1 : Y → A and g = π0 : Y → Pa ⊂ X. Then we have va : Pa × A → X
continuous, where va(x, b) = Σβ(Pαx). Then by directed distributivity,

π : U � X by (a, (yb : b ∈ A)) 7→
∧

(va(uax, px) : px ≤ a)

is continuous. We have to show that ι ; π = 1X . Let x ∈ Pa ⊂ X; then π(ιx) =
∧

(va(ua, px) :
px ≤ a) is the inf of a set with least element x, since for α : px ≤ a, va(uax) = Pα(Σαx) ≥ x, and
if px = a, va(uax) = x. �

Proposition Fibred types form a class of displays for any category of boundedly complete do-
mains. �

+§5.3.10 The notion of a domain-indexed family of domains ought to generalise to spaces
and locales, but I have not as yet been able to formulate the definitions in the absence of the
specialisation order. I can, however, dispose of the use of Scott-continuity.

Lemma Let A ∈ IPO and P : A→ IPOcp be a functor. Then P is continuous iff

(∀a ∈ A, x ∈ U ⊂ Pa : U open) (∃a ∈ V ⊂ A : V open) (∀α : b→ a : b ∈ V ) (Σα(Pαx) ∈ U)
Proof This simply reformulates Pa ∼= bilim(Pa′ : a′ � a) (specifically at the point x). U sets
the degree of approximation to x which we require (by definition of Scott-openness, any directed
sup which reaches x eventually gets into U , and conversely if this holds for all U then it reaches
x). Then V is a sufficient stage in

∨
�{Σα(Pαx) : α : b ≤ a, b ∈ V } to get within U . �

5.4 Indexed Domain Theory

+§5.4.1 We have seen that continuous type-dependences, as defined in §5.1.12, behave very nicely
vis à vis categories of domains, and that the alternative definitions fail to provide cartesian closure.
In this section we demonstrate cartesian closure for continuous type-dependences; we have also to
show that the exponentials remain in the given category of domains.

Theorem IPO is cartesian closed relative to fibred types.
Proof We have to construct the right adjoint, Πα, to substitution, Pα, over a display map
α : B → A. By definition B =

∑
AX for some X ∈ PA, i.e. X : A → IPOcp is a continuous
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type-dependence with fibration α : B → A. Let Y ∈ PB and put β : C =
∑
B Y → B for the

corresponding display map.
By our intuition from Set,

ΠαY a = {u : Xa→ Y : ∀b ∈ Xa.ub ∈ Y b}

with the induced order from [Xa→ Y ]; the least element is λb.⊥Y b and
∨
� is inherited by continuity.

We have to show that ΠαY : A→ IPOcp is a continuous type-dependence and that Pα a Πα.
First, for γ : a′ ≤ a, we have to define the substitution ΠαY γ. Let x′ ∈ Xa′ and δ : x′ ≤ ΣXγx′,

then
ΠαY γux′ = Y δ[u(ΣXγx′)]

which clearly lies in Y x′ as required. To prove continuity in x′ we have to use the continuity of
Y : B → IPOcp: if x′ =

∨
� x′i with ξi : x′i ≤ x′ then the diagram

Y (ΣXγx′i)
Y δi- Y x′i

u(ΣXγx) ∈Y (ΣXγx′)

Y (ΣXγξi)
6

Y δ- Y x′

Y ξ

6

commutes, the vertical columns being (bi)limiting cones. Continuity in u is trivial.
ΠαY γ has a left adjoint given at v ∈ ΠαY a′, x ∈ Xa by

ΣΠαY γvx = ΣY δ[v(Xγx)]

Recalling the contravariance of the function-space in its first argument, the following are equivalent:

ΣΠαY γv ≤ u

ΣY δ[v(Xγx)] ≤ ux ∀x ∈ Xa
v(Xγx) ≤ Y δ(ux) ∀x ∈ Xa
vx′ ≤ Y δ[u(ΣXγx′)] ∀x′ ∈ Xa′

v ≤ ΠαY γu

We now have a functor ΠαY : A → IPOcp, and we have to show that it is continuous. Let
a =

∨
� ai, γi : ai ≤ a, x ∈ Xa; then∨

� ΣΠαY γi(ΠαY γiux) =
∨
� ΣY δi[Y δi[u[ΣXγi[Xγix]]]] = ux

since X and Y are continuous.
Now we have to show that Πα is right adjoint to Pα. Let Z ∈ PA with fibration γ : D =∑
A Z → A. As in §5.1.8, f : PαZ →B Y correspond to g : Z →A ΠαY by fbu = gaub, where

b ∈ Xa ⊂ B and u ∈ PαZb = Za. Bijectiveness and continuity follow immediately as in that
section. �

+§5.4.2 Since we have constructed a continuous type-dependence, ΠαY , it is instructive to see
the corresponding fibration. This is

{〈a, u〉 : a ∈ A, u : Xa→ Y,∀b ∈ Xa.β(ub) = b}

with order relation

〈a, u〉 ≤ 〈a′, u′〉 ⇐⇒ a ≤ a′ ∧ (∀b ∈ Xa, b′ ∈ Xa′ : b ≤ b′)(ub ≤ u′b′)

It would seem that we may make this construction even for projections, since we need only the
display map and its left adjoint (and not the type-dependence) to define it. However this turns
out not to work because of examples 5.2.8.
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+§5.4.3 Next we show that the indexed product construction is continuous w.r.t. bilimits in its
various arguments.

Proposition Let A = bilimAi, B = bilimBi, C = bilimCi and αi : Bi → Ai, βi : Ci → Bi
be compatible families of fibred types. Let γi : Di → Ai be the indexed product Παiβi. Let
α : B → A, β : C → B and γ : D → A be the mediating maps, where D = bilimDi. Then
γ = Παβ, i.e. “ΠαY ” is continuous in A, α and Y .
Proof Παβa is the ipo of u making the diagram

C �
u

Xa - 1

B
? α -

β
-

A

paq

?

commute, where the square is a pullback. We have to show that such u’s are given precisely by
compatible families of similar (but subscripted) diagrams. We may see what the projection maps
are by considering the commutative diagram

ΠαY a ⊂ - [Xa→ C]

ΠαiYiai
?

⊂- [Xiai → Ci]
?

where the right column is (bi)limiting; we have to show that the left is too. We have only to
observe that u ∈ [Xa→ C] satisfies the condition iff its projects do. �

+§5.4.4 We now restrict these results to the various categories of domains

Theorem BiPosf is cartesian closed relative to fibred types.
Proof By the results of §5.3, we have only to show that if A, Xa and Y b are in a given category
of domains, C = BiPosf , (for a ∈ A, b ∈ B =

∑
AX) then so is ΠαY a. This is trivial for finite

domains, and proposition 5.4.3 allows us to introduce bilimits in all three arguments. Functoriality
easily allows retracts to be introduced and the result to be extended to ContDom, but we were
unable to show the indexed-fibred correspondence for this case. �

+§5.4.5 For the case of bcCont and other categories of boundedly complete domains, we make
ΠαY a / [Xa→ C].

Theorem Any category of boundedly complete domains is cartesian closed relative to fibred types.
Proof Let a ∈ A, B =

∑
AX, β : C → B be as before. In lemma 5.3.7, let Y = [Xa→ C]×Xa,

f = π1 : Y → Xa ⊂ B and g = ev : Y → C; then we have a continuous function r : Y → C
with p(r(u, b)) = b and if p(u(b)) = b then r(u, b) = u(b), so the exponential transpose of r makes
ΠαY a a retract of [Xa→ C]. �

+§5.4.6 By “Domain Theory” we mean more than exponentials, so we have to extend these
things to the indexed case. However most of these things are very easy.

Proposition Let P : A→ Ccp be a continuous type dependence with fibration p : X → A.
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(a) Let f : X → X be any fibred continuous function over A; then f has a least fibred fixpoint.

(b) There is a fibred embedding X � XX
A over A.

(c) Any continuous functor F : Ccp → Ccp extends to a fibred endofunctor of the fibration of C
over itself by means of these displays.

(d) We have fibred bilimits over A.

(e) There is a fibred embedding of X into a fibred η-model.
Proof

[a] This even holds for projections; we proved it in proposition 2.4.8.

[b] The proof of proposition 1.2.17b may be read indexedly.

[c] Its value at X is given by P ; F .

[d] Follows from proposition 5.2.6

[e] Apply (c) to (b,c) as in proposition 2.2.8b. �

5.5 Equality, Function-Spaces and Type-of-Types

§5.5.1 In the context of category theory (and we course course take it as axiomatic that this is the
appropriate foundational language for mathematics and theoretical computer science) the system
of all “sets” is not just a set or type but a category. In the absence of a requirement for strong
polymorphism it is generally accepted that this category should be an elementary topos as in §4.4.

Note The account given in this section is rather patchy, but was fully worked out in my joint
paper with Andrew Pitts, A Note on Russell’s Paradox in Locally Cartesian Closed Categories.

In our case we want not just a type, V, of types, but an internal category , with an object C1

of morphisms as well as an object C0 = V of objects. Thus we make the

Definition A typos is a “cartesian closed self-indexed”, i.e. relatively cartesian closed category
(S,D), with a “generic family”, i.e. an internal category C in S together with an equivalence S ' C
of S-indexed categories.

The original definition proposed by Andrew Pitts had “locally” for “relatively”; we devote the
last part of this section to showing that such a gadget is necessarily degenerate.

§5.5.2 Before working on this definition let us first unscramble it from the abstract way in
which it is presented. We have therefore to recall what is an internal category (especially over a
relatively cartesian closed category), how to make the two categories into fibrations and what it
means for them to be equivalent.

The morphism-set of a category C is really a polymorphic notion: instead of the scheme
C1 ⇒ C0 we should really think in terms of the hom-set C(X,Y ) as an object with two free
variables X, Y of type C0. From this we see that 〈dom, cod〉 : C1 → C0 × C0 must be a display
map. This enables us to construct the pullback

C2
- C1 × C0

C0 × C1

?

1× 〈dom, cod〉
- C0 × C0 × C0

〈dom, cod〉 × 1

?
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(as in §3.2.8) which yields the object of composable pairs, and hence the composition map
comp : C2 → C1, and similarly formulate the associative law. Of course we also have id : C0 → C1

as usual.
Given an internal category we construct a fibration as in §4.2.10 whose objects over A ∈ S

are S-maps X : A → C0. The equivalence between C and S is to be (at least) a full and faithful
assignment of a display X → A to such a map. Taking in particular the identity, C0 → C0, we
have a display G → C0. The display corresponding to X : A → C0 is now given by the pullback
X∗G→ A of G→ C0 against this map.

Proposition A typos is determined by a relatively cartesian closed category (S,D) together with
a pair of displays G→ C0 and 〈dom, cod〉 : C1 → C0 × C0 and f : dom∗ G→ cod∗ G such that

(i) any display occurs (not uniquely) as a pullback of G→ C0 and

(ii) for any morphism f : X∗G → Y ∗G (where X,Y : A ⇒ C0) there is a unique pfq : A → C1

with pfq ; dom = X, pfq ; cod = Y and

X∗G
f - Y ∗G

pfq∗(dom∗ G)

∼=

?

pfq∗f
- pfq∗(cod∗ G)

∼=

?

commutes. �

+§5.5.3 This definition is highly redundant. Having (quite correctly) made the observation that
we should take account of the morphisms into our notion of “type of types”, we may forget it again.
For given two “names” (elements of C0 = V) for sets, we already know how many morphisms there
are to be between them, because we know how many functions there are between the sets they
name. Alternatively, we observe that we are using the display G → C0 to carve out a small full
subcategory of S.

Lemma

(a) 〈dom, cod〉 : C1 → C0×C0 is the fibred exponential of G→ C0 (or rather G×C0 → C0×C0)
by itself (i.e. C0 × G→ C0 × C0); more specifically, C1 =

∑
u,v∈V G[v]G[u].

(b) dom∗ G and cod∗ G are objects in the fibre over C1, whose components at f ∈ C1 are just
dom f and cod f ; so f : dom∗ G → cod∗ G is the morphism in this fibre whose component at
f is just f . �

Corollary In proposition 5.5.2 we may delete (ii). �
Since C1 will make no further explicit appearance, we shall revert to the name V for the

object-of-objects (type-of-types) C0.
V is not really so much a type of types but a type of names of types; then for each name

pAq = v ∈ V we have to prescribe the corresponding type A = G[v] = tT−1(pAq), where tT : G→ V.
Commonly discussions of type of types omit this second datum; in the models we shall construct
in the next section V itself will actually be a lattice and so carry very little information on its
own. On the other hand, if we manage to present V as a combinator as in §5.5.5 and §5.6.9, then
it does carry sufficient information on its own.
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+§5.5.4 We have still further redundancy. Since every display occurs as a pullback of G → V
(and every pullback of a display is a display), we need not mention D explicitly. We need only
require that all pullbacks of G → V exist and that this class of maps, once constructed, have the
required properties. There does not, unfortunately, seem to be any abbreviation of axiom (ii) of
§4.3.2 (which formally requires composability of displays but really concerns sums), but we can at
least reduce the last two axioms:

Proposition A typos is determined by a category S and a map G→ V such that

(i) The pullback of G→ V against any map exists in S (write D for the class of such pullbacks)

(ii) D is closed under composition,

(iii) Any terminal projection is in D,

(iv) V has a binary operation →: V × V → V whose pullback against G → V is the fibred
exponential of G→ V with itself. �

The pullback in the last case is of course just C1 again. We shall look again at the definition
in section 6, where we shall replace (iii) by the following:

Lemma Let S have a typos structure G→ V. Then V has an element p1q and a binary operation
× giving rise to the finite products in S. �

§5.5.5 To define a typos we therefore need only give a single morphism in a category. Here is
the best known example.

Theorem The closures in Pω provide a typos structure for AlgLatω.
Proof Put Λ = Pω, V = ‖λa.

∨
�n(1 g a)n‖ and G = ‖λu.〈Vu0,Vu0u1〉‖; G → V is given by the

left component.
The class D of pullbacks of G→ V contains the terminal projection A = ‖a‖ → 1 by considering

paq : 1 → V. We construct pullbacks as in §5.1.6, since G =
∑

V V. For the exponential we only
need GG

V×V = ‖λu.〈〈Vu00,Vu01〉, λx.Vu01(u1(Vu00x))〉‖.
For composites let f : A→ V, g : B → V with pullbacks B =

∑
A f → G and C =

∑
B g → G.

Put h = λau.〈fau0, g(fau0)u1〉. Then the composite C → B → A is the pullback of G→ V along
h. �

The combinatorial flavour of this suggests that one might try to formulate a new (λ-indefinable
but relatively consistent) combinator V. For instance V = VV = QVV says that V is a V-type of
V-types; to this we add axioms forcing cartesian closure.

In the next section a new typos will be constructed from fibred types.

+§5.5.6 Both this traditional example and the new ones to be constructed fail to be extensional
in the sense that there are continuous functions V→ V which do not preserve isomorphisms.

We have already foresaken the traditional belief in Category Theory that all mathematical
constructions are functors. However even in the known cases of nonfunctorial constructions we at
least have preservation of isomorphisms, so is there some serious problem here?

Perhaps not. Isomorphism, recall, is a structure, not a property , and we have no reason to
suppose that even when an isomorphism between to objects exists then it must be recursively
realisable (in whatever sense). It is therefore plausible that a function, and even one with type
values, may distinguish between accidentally isomorphic objects.

On the other hand, this was the reason for throwing isomorphisms into definition 5.1.12. Any
continuous functor Ccp → Ccp necessarily preserves isomorphisms, and so if we had a model with
V = Ccp we would have extensionality. This cannot be done classically, but

Question Does the Effective Topos provide an Extensional Typos?
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+§5.5.7 The notion of typos clearly allows interpretation of function spaces and type of types.
We devote the remainder of this section to the demonstration that if we add equality to these two
then we have inconsistency. However it is very interesting to observe that there is apparently no
pairwise inconsistency amongst these concepts.

Clearly “classical” categorical model theory (the interpretation of the logic of equality, pred-
icate calculus, quantifiers and so on in categories, in particular toposes) allows nondegenerate
interpretations of equality and function spaces.

Our categories of domains allow interpretation of function spaces and type of types.
Joyal’s Arithmetic Universes appear in some sense to allow interpretation of equality and type

of types. (Unfortunately no account of this important work has appeared on paper.)

+§5.5.8 A typos with equality would be just too good: it falls over under its own weight. Let S
be a locally cartesian closed category which is equivalent as an S-indexed category to an internal
category C = (C0, C1). For X over A in S we may construct the object

MonoA(X) =
{
U

i- X :
(
∀V

g

⇒
f
U : f ; i = g ; i

)
(f = g)

}
as a subobject of C0 × C1 by means of (pullbacks,) equalisers and a Π functor.

Then i : U ↪→ X over MonoA(X)→ A is a generic (saturated) mono in S, so that S is (locally
cartesian closed and) weakly well powered.

If Question 4.4.12 has a positive answer then S is a topos, and has a subobject classifier Ω.
On the other hand, we have a “big” set G. Any object A of course gives rise to a display A→ 1

which is a pullback of G → V against some 1 → V; the remaining map in the square is a mono
A ↪→ G.

But putting A = ΩG we deduce by Cantor’s theorem (corollary 1.5.13) that S is degenerate.

Note This contradiction is examined in detail in A Note on Russell’s Paradox in Locally Cartesian
Closed Categories.

§5.5.9 It is possible to dispose of the use of Ω and bring back the diagonal argument underlying
Cantor’s theorem directly into the proof itself with V or G playing the rôle previously played by Ω.
It would be nice if we could remove equality from this proof and show positively that any object
of any typos is inhabited. This would almost certainly show that any typos gives rise to a model
of the λ-calculus.

Theorem Let S be a locally cartesian closed category with a generic family. Then S is degenerate.
Proof (Pitts) First, there is a pullback square

VG i - G

1
? pVGq

- V
?

We perform the rest of the argument in an indexed rather than fibred style, in which G[v], for
instance, denotes the inverse image of v in G. For A ∈ S, the equality type indexed by A × A
corresponding to the diagonal A→ A×A will be written ∆A[a1, a2].

Let X be a fixed object of S and consider∑
f∈VG

∆G[g, if ] × XG[f(if)] : g ∈ G
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which is a G-indexed family of types, so we write its display as a pullback of G → V along some
ξ : G→ V. Thus the expression above is isomorphic to G[ξg].

Now ξ gives a global element of VG, to which one may apply i : VG ↪→ G to obtain a global
element iξ of G. Substituting this for g in the isomorphism yields

G[ξ(iξ)] ∼=
∑

f
∆G[iξ, if ]×XG[f(if)]

∼=
∑

f
∆VG [ξ, f ]×XG[f(if)]

∼= XG[ξ(iξ)]

Thus writing Y for the object G[ξ(iξ)] we have Y ∼= XY so X is reflexive in S and by proposition
1.5.6 is inhabited.

We have shown that every object of a certain cartesian closed category with all finite limits in
inhabited. Hence by proposition 1.5.11 S is degenerate. �

§5.5.10 Here for the record are Andrew Pitts’ comments on this proof.
“Although it may not appear so at first, the above argument is (an elementary version of) the

one given [in §5.5.8]: the necessity of showing S has a subobject classifier Ω is circumvented by
systematically replacing Ω by V in [that] argument, at the same time replacing negation ¬(−) by
the exponential X(−), for X any fixed object. Thus the above proof is really Russell’s Paradox in
disguise! To make this clearer, let me remind you of the following argument [corollary 1.5.13]:

If a topos E contains an object T for which there is a monomorphism i : PT = ΩT ↪→ T , then
E is degenerate. For consider the subobject of T given by

(∃s ∈ PT )(t = is ∧ ¬(is ∈ s))

(cf. the object considered in §5.5.9) and let ξ : 1→ PT be the corresponding global element. Then
one has in E :

iξ ∈ ξ ⇐⇒ (∃s ∈ PT : iξ = is)¬(is ∈ s)
⇐⇒ (∃s ∈ PT : ξ = s)¬(is ∈ s)
⇐⇒ ¬(is ∈ s)

which leads to a contradiction.
Note that one could dually start with the subobject of T given by

(∀s ∈ PT )¬(t = is ∧ ¬is ∈ s)

and derive a similar contradiction. Taking the analogue of this in type theory (with X(−) for ¬(−)
and V for Ω, etc.) probably gives another proof of the result with the technical advantage that the
proof is completely within the (=,Π) fragment of Martin-Löf type theory . G =

∑
v∈V G[v] is not in

this fragment, but only occurs negatively in the argument: VG ∼=
∏
v∈V VG[v], etc.”

Indeed, writing ∇XA [a, b] = X∆A[a,b], we construct the object∏
f∈VG

∇XG [g, if ]
XG[f(if)] ∼= XG[ξg] = G[θg]

then with Z = G[θ(iθ)], Z ∼= XY ∼= XZ as before. Since in some sense

∇XA [a, b] =
{
Xif a = b
1 otherwise

it has more chance of existing in a category in which every object is inhabited, so perhaps this
leads to the “positive” result suggested at the beginning of §5.5.9.
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5.6 Type of Types in Domains

+§5.6.1 Now we are in a position to construct a type of types in any category of domains C, subject
to the difficulties we have encountered in the past in manipulating these. Clearly we shall only be
able to do this for small categories.

From proposition 5.5.4 we have only to find a fibred type G→ V in C of which any other is a
pullback. Since pullback of fibration corresponds to precomposition of indexation (lemma 4.2.13)
it suffices to find the following:

Definition Let C be a small category of domains and tT : V→ Ccp a type dependence (§5.1.12).
This is saturated if given any other type dependence X : A → Ccp there is a continuous map
pXq : A→ V and a natural isomorphism u : X ∼= pXq ; tT .

Lemma Let tT : V→ Ccp be a saturated type dependence and G→ V the corresponding fibration.
Then G→ V is a generic family, making C a typos.
Proof Let p : X → A be a display map, i.e. a fibred type corresponding to a continuous type-
dependence P : A→ Ccp. Then by hypothesis we have pXq : A→ V and u : P ∼= pXq ;tT . The latter
is an indexed functor, so corresponds to a fibred equivalence between the corresponding displays,
u : X ∼= pXq∗G. Hence p : X → A occurs as a pullback of G→ V as required. �

+§5.6.2 This brings us directly back to the similarity of Ccp with its objects, upon which we first
remarked in §2.2.7 (though there we mentioned IPOem). Ccp is a category rather than a poset,
but it is possible (though beyond what could be done within the scope of this work) to generalise
domain theory in this way. Having done this we would like to put V = Ccp.

The saturated type-dependence is then of course the identity Ccp → Ccp. This is clearly the
correct approach, and it fails in our case only because of the inadequacy of classical logic. We may
seriously expect to be able to proceed in this fashion in the Effective Topos.

A more significant problem than its algebraic structure is that Ccp only has countable filtered
colimits. Since it comes quite close to having binary coproducts, Freyd’s paradox (proposition
1.5.8) means that we cannot get round this problem, at least in a classical world.

We shall, however, be able to “cover” Ccp with a suitable domain V to satisfy the above
definition. We do not require the map A→ V to be unique; to do so would on the one hand force
V ' Ccp and on the other amount to equality on objects of C. It is this covering operation which
loses the extensionality mentioned in §5.5.6.

+§5.6.3 Of course as already remarked we have to have a small category of domains. However
we need a better grasp of the object-set than the usual “up to equivalence”, so after, or rather in
the spirit of, theorem 2.6.12, we may as well assume C = Retr(Λ) with Λ algebraic. By “concrete
domain” we shall here mean the image of a coclosure of Λ, so that there are canonical embeddings
and projections between them. We have to do somewhat more work to cut down our indexed
domains to a “canonical” form.

In §2.6.11 we approximated domains by means of bilimits of embeddings, and we shall do the
same here. However does the fact that we are interested in diagrams of comparisons matter? (In a
filtered diagram of monos we have no parallel pairs of maps.) Of course not, because we have just
confused the objects (diagrams of comparisons) with their approximating morphisms (“natural
embeddings”).

Bilimits raise a particular question of canonicity, since we wish to have directed sups defined
up to equality and not isomorphism (and anyway the whole point of the construction on which we
are embarking is to discard a lot of isomorphisms). We have to choose a particular construction for
(bi)limits, and we shall say that the set-theoretic limit of a diagram (Xi) is the set of compatible
families (xi). This approach is facilitated where we can express things as bilimits or directed sups
of “atomic” (i.e. finite) things, and this is precisely what algebraicity is about.
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Definition A canonically indexed domain is a continuous type-dependence P : A→ Ccp where A
is algebraic and

Pa is
{

a concrete domain if a ∈ Afp
bilim{Pb : b ∈ Afp ∩ ↓ a}otherwise

where the limit is the “set-theoretic” one. This enables us to restrict attention to Afp.
The restriction to algebraic A is a convenience to get round the Axiom of Foundation in set

theory and other technical points: we could generalise to arbitrary ipos (at least continuous ones,
at any rate) by introducing bases, but this definition serves our present purposes adequately. We
shall regard Pa as part of the data for canonical indexed domains only for a ∈ Afp; the non-compact
points are redundant and cause unnecessary complications later on.

+§5.6.4 Since continuous type-dependences are functors, of course morphisms between them are
natural transformations. The canonicity programme extends equally to these: instead of arbitrary
comparisons between domains we are interested in canonical embeddings, and so we define an
order relation between canonical indexed domains, P ≤ Q. This holds if Pa ≤ Qa as coclosures
on Λ for each a ∈ Afp (the bilimits take care of themselves) and the square of projections and
homomorphisms

Qb �
Qα

Qa

Pb
?
� Pα

Pa
?

b
α - a

(or alternatively the corresponding square of embeddings and comparisons) commutes.

Lemma L(A), the set of canonical A-indexed domains, is an ipo.
Proof First observe that there can indeed be at most one instance of the order relation between
any two canonical domains, so we have a poset and not a category. The ipo structure is created by
the forgetful functor L(A) → Cocl(Λ)|A|, which means that to calculate it we need only consider
the domains and not the comparisons.

Let Pi ∈ L(A) be a directed set; recall that the order relation is expressed by a commutative
diagram as in the previous paragraph. We take the bilimits of the columns of this diagram; these
correspond to directed sups in Cocl(Λ). The mediating maps give the comparisons in the bilimiting
indexed domain.

If we had not restricted attention to Afp, this proof would have become more complicated,
and if we had not introduced canonicity, the directed sup would not be unique.

The bottom element of L(A) has all its objects ⊥Cocl(Λ) and morphisms the unique comparison
1→ 1. �

For technical reasons (arising from the problem with theorem 2.2.14), we shall find it convenient
also to consider continuous indexations; the foregoing discussion applies equally to them (with the
exception of the alternative form of the above diagram). Write M(A) for the poset of canonically
continuous A-indexations and canonical embeddings; M(A) is also an ipo.

+§5.6.5 The main thing to show is that L(A) ∈ bcContω. We have to use M(A) to show that
it is countably based.

Lemma Let P ∈ L(A). Then the forgetful functor L(A)→ Cocl(Λ)|Afp| (given by the coclosures
naming the objects of an indexed domain), restricted to ↓ P ⊂ L(A), has postinverse adjoints on
both sides. With the corresponding problem for M(A), there is a postinverse right adjoint.
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Proof We have to show that given an arbitrary {Wa : a ∈ |Afp|} there is (for the left) a least
Q ≤ P in L(A) with W ≤ Q and (for the right) a greatest Q ≥ P in L(A) or M(A) with W ≥ Q.

In the right case, for α ; b ≤ a, we want the diagram in §5.6.4 to commute. Hence Qb ⊂ Pα(Qa).
But Qb ⊂Wb, so

FWb = infCocl(Λ){Pα(Wa) : α : b ≤ a} ⊃ Qb

We may put equality to give the required postinverse right adjoint.
For the left case we consider the adjoint diagram to that in §5.6.4, and get FWa =

∨
Cocl(Λ){Σα(Wb) :

α : b ≤ a}. �

Corollary

(a) ↓ P is a countably based continuous lattice.

(b) L(A) and M(A) are in bcCont.
Proof

[a] They are retracts of Cocl(Λ)|Afp|.

[b] An ipo is continuous iff every ↓-set is, and is boundedly complete iff every ↓-set is a lattice.
Unfortunately we cannot deduce anything about size. �

+§5.6.6 We shall now construct the saturated type-dependence in two particular cases, namely
ContLatω and bcContω. The methods can probably be extended to other categories, but these
suffice to make the point.

Lemma

(a) There is a continuous indexation Ψ into which any canonically indexed domain may be
embedded.

(b) L(A) ∈ bcContω.
Proof

[a] Consider the functor M(A) → Cop as a diagram of projections, and take its limit by theo-
rem 2.2.14. We cannot replace “continuous indexation” by “continuous type-dependence”
because as remarked there we do not have limits in Ccp as a functor.

[b] L(A) is equivalent to a Scott-closed subset of ↓Ψ, where Ψ is a canonically continuous
indexation isomorphic to the one just constructed. �

Proposition (a) ContLatω and (b) bcContω have saturated type-dependences.
Proof

[a] With A = Λ, the limit in the lemma may be constructed in ContLathmω , so put L = ↓Ψ.

[b] We have L = L(Λ) ∈ bcContω.

In either case we have a functor L → (Ccp)Λ and hence tT : V = L × Λ → Ccp. Let P : A → Ccp
be a continuous type-dependence and suppose (i, p) : A / Λ. Let Q ∈ L be isomorphic to p ; P :
Λ → A → Ccp, say u : F (Λ)(Q) ∼= (p ; P). Then with pPq = 〈KQ, i〉 : A → L × Λ = V we have
u : pPq ; tT ∼= P : A→ Ccp in the manner of definition 5.6.1. �

In this case ⊥ ∈ V is mapped to the trivial indexation, although in general it is consistent with
the definition that its image be any domain with >. Nevertheless it is convenient to assume that
it does map to 1.
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+§5.6.7 It is appropriate to remind ourselves of what we have proved.

Theorem There are nontrivial small categories which are relatively cartesian closed and have an
internal category to which they are internally equivalent. In other words, the definition of a typos
given in §5.5 is consistent. �

+§5.6.8 Having achieved this, the main aim of the work, we are in a position to pick up certain
other questions.

First, we may replace Λ by some other model with the same category of retracts but for which
the displays constructed in §5.1.6 are precisely the fibred types of the category. As usual we
manufacture the new model from the biggest object in sight, namely the generic type G. It would
seem reasonable to assume that this kind of construction ought to be possible in any (abstract)
typos, but I have no idea how to find the retractions needed in general.

Secondly, we pick up the internal combinatory algebra structure on a λ-model from theorem
1.3.13 and construct the internal version of the category of retracts on it. Though I = Λ carries
this structure and II an internal monoid structure, it is not possible to perform the Karoubi
construction in Retr(Λ) unless we already have a type-of-types. This is because we have no way
of constructing the object of idempotent elements of Λ.

It is, of course, possible to perform this construction without the type-of-types in a locally
cartesian closed category (or topos) E in which Retr(Λ) is fully embedded preserving products
and exponentials (e.g. by the Yoneda embedding). We return to such embeddings in §5.8.

+§5.6.9 This ties §5.1 and §5.2 together.

Theorem Let C be a small category of boundedly complete domains. Then there is a satu-
rated object Λ such that every continuous type-dependence factors up to isomorphism through
Idem(Λ)→ Ccp (cf. 5.1.12) and hence can be represented as an element X ∈ Λ with X = PAX =
QXX.
Proof Let t : G→ V be a generic family for C; as the biggest object in sight, we put Λ = G. We
already have V /G, since any fibred type is in particular a retract, but so far V is only defined up
to isomorphism (indeed less than that) and it will be convenient to replace it with an isomorphic
copy later. Any U ∈ C may be expressed as a retract of G since it occurs as a fibre (namely that
over pUq) and by lemma 5.3.8 the fibres are retracts of the display in the boundedly complete case.
In particular ΛΛ / Λ and so we may put a λ-model structure on Λ.

Now we use lemma 5.3.7 with Y = V × Λ, f = π0, g = π1, so there is a u : V × Λ → Λ such
that u ; t = π0 and (∀a ∈ V)(∀x ∈ tTa)(u(a, x) = x). Hence we have U : V → ΛΛ ⊂ Λ such
that Ua is an idempotent for each a and has underlying set tTa. We also have, for α : b ≤ a,
Ub(Uax) = tTα(Uax) and Ua(Ubx) = ΣTα(Ubx) by construction. Hence ‖U −‖ = tT : V→ Ccp.

Now U : V ↪→ Λ has a postinverse, R = λa.t(a⊥), since R(Ua) = t(Ua⊥) = a. Since,
as remarked, we have used V at most up to isomorphism, and now we have an explicit and
convenient expression for it as a retract of Λ, we may replace it by its image under this. Hence
V = PRU ∈ Idem(Λ) and ‖ − ‖ = R ; tT : ‖V‖ → Ccp. Then we have V = PVV = QVV,
and also, since V → Ccp was a saturated type-dependence, any type-dependence factors through
‖V‖ ⊂ Idem(Λ) as required. �

Unfortunately I cannot see how to make V ∈ ‖V‖, i.e. V = VV.

+§5.6.10 Finally we repeat the Karoubi construction.

Proposition We may express the notions of “category”, “category with products” and “cartesian
closed category” in any category with a class of display maps. The base category does not itself
need to be cartesian closed .
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Proof This is what §3.2 and §4.2 were all about! Being cartesian closed is an equational condition
on (the hom-objects of) an internal category; at no point do we consider the collection of all maps
between two objects in the base category. �

Theorem Let Λ be a β-model in bcContω and C = Retr(Λ). Then there is an internal category
C′ in C which is equivalent to C as a C-category and universally splits idempotents in the internal
monoid II.
Proof C is a typos by theorem 5.6.7. Let C′ be the internal category of §5.5.2; this is equivalent
to C as a C-category by definition of a typos. II is an internal monoid of C and hence embedded
in C′ by the equivalence. We split idempotents internally in C′ or C just as we do externally.
Let II → D be a functor between C-categories in which D splits idempotents, then construct the
mediating functor C ' K(II)→ D externally and verify that it yields a cartesian functor over C and
hence (the unique, up to isomorphism) internal functor C′ → D making the triangle commute. �

5.7 Interpretation of Polymorphism

§5.7.1 We have now completed the major constructions of the work, and we shall finish off with
a few observations (rather than serious applications) about polymorphism. We have, in fact,
provided two slightly different ways of approaching this, namely direct use of the indexed domain
theory introduced in the first half of the present chapter, and via the “type-of-types” co just
constructed. We shall find that the latter falls rather short of our expectations, and that whilst
we have satisfied the definition posed by Andrew Pitts (§5.5.1), this particular programme for
constructing a type of types has failed.

It is, however, worthwhile looking at the way in which the two forms of recursive construction
introduced in §2.2, namely for fixed points and recursive domains are unified by the presense of
a type of types, and also at certain other at first sight anomalous domain theoretic constructions
which are explained in the context of indexed domain theory.

As we have already remarked in §3.5.5, in the presence of a type-of-types we no longer have
a distinction between types and values. I would consider the two-sortedness of languages such
as those introduced in §3.4.2 to be an aesthetic objection to them. This means that the Tarski
fixpoint constructions in domains discussed in §1.4 and §2.1 are unified with the Plotkin-Scott-
Smyth techniques for solving recursive domain equations in categories (§2.2). That there should
be such a unification can hardly be a surprise, given the similarity of the methods.

+§5.7.2 Let us begin by looking at domain constructions (endofunctors of the “modified” cat-
egory of domains Ccp) as endofunctions of the type of type, V.

Proposition Let C be a small category of domains and F : Cn × (Cop)m → C any continuous
functor. Then there is a continuous function φ : Vn+m → V making the following diagram
commute up to isomorphism:

Vn+m - (Ccp)n+m - Cn × (Cop)m

V

φ

?
- Ccp

?
- C

F

?

Proof The existence of the middle map follows essentially from proposition 2.2.7; that of φ is
now just the definition of a saturated type-dependence (§5.6.1). �

Question Is there a converse to proposition 2.2.7, i.e. given a continuous functor Φ : Ccp → Ccp
is there a functor F : C × Cop → C making the following diagram commute?
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Ccp
∆- Ccp × Ccp - C × Cop

Ccp

Φ

?
- C

F

?

+§5.7.3 What about recursive domain equations?

Proposition Let F be a continuous co- or contravariant endofunctor of a small category of
domains and φ : V→ V the corresponding endofunction constructed in proposition 5.7.2.

(a) Let pAq be a fixpoint of φ with corresponding type A ∈ C. Then FA ∼= A.

(b) Let η : 1→ F : Ccp → Ccp be a pointed continuous endofunctor of Ccp. Then Yφ ∈ V names
the (underlying type of the) initial F -algebra.

Proof

[a] Immediate from the diagram in §5.7.2.

[b] The comparison 1 → F1 is unique and necessarily the image of ⊥ ≤ φ⊥. Repeatedly
applying F and φ respectively, the Tarski diagram ⊥ ≤ φ⊥ ≤ ... ≤ Yφ is mapped to that in
§2.2.3. �

This achieves the unification of §2.1 and §2.2 which we promised.

+§5.7.4 There was an oddity which arose in the Pω model (§1.4.6) and also in §2.6.7, namely
the “raised sum”. Can we provide a categorical explanation of this nonassociative operation which
seems to be the obvious semantics for tagged records?

Proposition Let C be a small category of domains containing T and X, Y two objects of it. Then
X +⊥ Y is the indexed sum over T → 1 of the type-dependence which takes the two maximal
points of T to X and Y and ⊥ to 1. If f : X → Z and g : Y → Z are any two continuous
functions, there is a least continuous function X +⊥ Y → Z making the diagram commute. �

+§5.7.5 What do indexed products over T → 1 look like?
If we have ⊥, 0, 1 ∈ T mapped to A,X, Y and the two comparisons are α : A → X and

β : A → Y , then the elements of the indexed product are triples 〈a, x, y〉 ∈ A × X × Y such
that a ≤ Pαx, Pβy. Thus in the case A = 1 we have a binary product; otherwise we have a new
construction: it isn’t the product, the pullback or the lax pullback.

+§5.7.6 Now let us look at polymorphism of the “dependent-type” kind, using indexed domain
theory. In this case we have variables of “ordinary” (i.e. not type) type and quantification over
them.

Constant types are interpreted as appropriate 1-indexed domains, T : 1 → Ccp, and constant
values as (global) elements of these.

Dependent types with variables of type(s) A are interpreted as A-indexed domains, X(−) :
A → Ccp. Proliferation of variables is a special case of substitution, which is interpreted by
precomposition of indexed domains or pullback of fibred ones.
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Iterated dependence, i.e. with a variable whose type is itself dependent, is interpreted by means
of composites of fibred types.

Products, function spaces and other categorical constructions are interpreted by means of
the appropriate constructions, and lambda abstraction is performed using the indexed adjunctive
correspondence for the exponential.

Quantification is always over a variable running over a dependent type, which corresponds to
a display map; accordingly it is interpreted by the appropriate adjoint to substitution and satisfies
the Beck condition as required.

+§5.7.7 Before looking at the second order polymorphic lambda calculus (which, as we have
remarked, we may do in two ways), let us interpret Cardelli’s language with V. The differences lie
in the new type V and in the interpretation of constructors like ×.

The type-of-types combinator , V, is interpreted as tT : V→ Ccp or as the corresponding G→ V.
For ×, etc., we choose maps V × V → V as in proposition 5.7.2; the interpretation of the

expression A × B quâ element of V now yields the same type as the construction (this was the
content of the lemma).

Quantification over type-variables is a special case of quantification over any variable, the type
of the variable now being V.

+§5.7.8 Specialising Cardelli’s language to the second order lambda calculus, what values to we
get for ∀X.X, etc.? Unfortunately, nothing like what we might expect.

Let φ : V→ V correspond to Φ : Ccp → Ccp. Then ∀X.φX is consists of the assignments to each
(name of a) type pXq, a point upXq ∈ ΦX such that whenever we have a comparison f : pXq ≤ pYq,
then Φf(upXq) ≤ upYq, or equivalently upXq ≤ Φg(upYq) where f a g.

Unfortunately there are insufficient such comparisons, so that ∀X.X becomes quite a large
product. The point is that we have nothing to force u to preserve isomorphisms, because the
whole object of the constructions in the previous section was to dispose of them in order to make
V a poset. There will always be lots of distinct elements of V corresponding to isomorphic domains,
and we can separate them by open sets (or maps to 2 with different values at two such points).

+§5.7.9 This brings us back to the “direct” application of indexed domain theory to the second
order polymorphic lambda calculus. We interpret a type which depends on a type-variable as a Ccp-
indexed domain. Since we do not have an explicit type of types in this language, it does not matter
that Ccp is not itself an object of C. This change is equivalent to the condition that u ∈ ∀X.Φ(X)
preserve isomorphisms, or that we have the compatibility condition for all comparisons between
domains rather than names for them in V.

We shall intend quantification over type variables to be over Ccp rather than V in future.

Proposition The value of ∀X.X is

(a) the singleton (K⊥) if T ∈ C.

(b) 2 = {K⊥,K>} otherwise, i.e. if every domain in C has >.

The value of ∀X.X → X is

(c) the three point lattice if every domain has >.
Proof

[a] Suppose uX 6= ⊥X for some X. We have two embeddings X � X ⊕ X, where X ⊕ X
is the disjoint union of two copies of X with their bottoms identified (this is a retract of
X +⊥ X and hence in C by lemma 2.6.7b). Let the images of uX under these be a, b; then
a, b ≤ u(X ⊕X). However {a, b} is unbounded.
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[b] In lemma 2.2.15 we classified the comparisons between X and 2. Suppose uX 6= ⊥X for
some X; let f : X → 2 be the characteristic function of X \⊥, which is a comparison. Then
f(uX) = > ≤ u2. Suppose uY 6= > for some Y ; let y ∈ Yfp \ ↓(uY ) and g : 2 → Y by
⊥ 7→ ⊥ and > 7→ y. Then y = g(>) ≤ uY , contrary to the choice of y. Hence u = K⊥ or
u = K>.

[c] By considering the comparison [⊥] : X → 2 we see that ⊥ 6= uX ⇒ 1 ≤ u2. By considering
the comparison [x ⇒ >] : 2 → X we see that the latter implies 1 ≤ uX and hence (contra-
positively) 1 6≤ uX ⇒ 1 6≤ u2 ⇐⇒ u2 = >. Finally by considering [> ⇒ >] : 2 → X we
see that this implies uX = >. Hence uX can only take one of the (uniform) values K⊥, I or
K>. �

5.8 General Theory of Typoses

+§5.8.1 This final section is unashamèdly speculative: it consists of various ideas which, frankly,
haven’t even really made it to the “top of my head”.

The word “typos” was of course a joke, due to Andrew Pitts, the inventor of the tripos. (This is
an acronym for “Topos-Representing Indexed Pre-Ordered Set” and was actually coined by Peter
Johnstone; I am pleased to say I have never been offered “tripoi” for its plural: even if it were a
Greek word, the plural would be τριπoδες.) However it was clearly the kind of joke that would
stick.

I would ask, though, that future workers in this area refrain from using this word, especially in
any fixed meaning, until it has become clear what the definition should be, i.e. what the strongest
possible/reasonable conditions are which can be placed on it. For already in §5.5 above, the term
has undergone two changes of meaning (besides the reformulations which were the subject of
the first part of that section), namely in dropping the (inconsistent) equality requirement, and in
adding the condition of extensionality (§5.5.6). It is likely that when the classical theory developed
in this work is extended to domains which are categories rather than posets, and when the ideas
are applied to the Effective Topos, and when we begin to see how typoses and toposes can be
brought together, then further modification of the definition will be needed, and it would be a
pity to lose the use of this word (frivolous though it may have been).

§5.8.2 This brings us to my embarrassing ignorance of the Effective Topos. Rosolini [1986]
discussed the category of domains in this, and it seems likely that if we take the category of
comparisons in this then we shall obtain a domain and hence an extensional typos.

§5.8.3 In proposition 5.5.4 we observed that we only need the (generic fibred type) G→ V to
determine the typos structure in a category C. Hence so long as we hang on to this map, we can
perform constructions on C. In particular the obvious thing to do is to embed it in a topos.

Definition An internal typos in a relatively cartesian closed category E is a morphism G → V
satisfying the results of proposition and lemma 5.5.4, with the exception of axiom (iii). An object
A of E is a domain if A→ 1 can be expressed as a pullback of G→ V.

If, as is intended, E is a topos, then it will have lots of other objects which are not domains.

Example Let C be a category of domains with generic fibred type G → V. Put E = [Cop,S] and
embed C by the Yoneda embedding. Then we have an internal typos in a topos.

The point of doing this is that whereas we remain within the category of domains when
discussing the program-structure and internal logic of denotational semantics, we need the full
strength of higher-order logic (in the form of topos theory) to discuss the external logic. This is
needed because there are examples of true theorems which are not provable, or valid terminating
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programs which are not provably so, in the language and fragment of logic in which they are
expressed.

We have shown that categories of domains are complete with respect to products and coprod-
ucts over domains; the same work immediately generalises to families of domains indexed over
sets (objects of the ambient topos) which are not necessarily domains. Indeed we should think of
domains as simply a special kind of set over which the results of programs may range; we may
need more general sets in the meta-discussion of the program.

+§5.8.4 This may throw some light upon the difference between domains with and without ⊥,
and why we do not require it to be preserved (contrary to what usually occurs in Algebra).

We require ⊥ in domains as the “totally undefined” element and as the zeroth approximation
to a fixpoint.

On the other hand, for topos-theoretic purposes it may be useful to have A-indexed fami-
lies of domains for arbitrary A ∈ E , not necessarily a domain. This does not conflict with the
constructions of the present chapter.

Viewed in a category of posets, A is an arbitrary object (set, poset or whatever) and an A-
indexed family of domains is a fibred type (in particular a projection X → A). We may construct
products, exponentials, bilimits and fixpoints indexedly over A. Indeed we found fixpoints in
proposition 2.4.8.

The formulation of Smyth’s theorem about cartesian closure in AlgPos, which was the subject
of §§2.4.11-13, is now more properly made in this context than simply in terms of products and
exponentials in BiPosf . In other words we want some pullbacks against display maps.

+§5.8.5 Having now reached the stage of embedding a typos (and with it the model of the λ-
calculus and its category of retracts which we used to construct it) in a topos, we are in a position
to ask

Question What do we mean by the spectrum of a model of the λ-calculus, and what is a generic
model?

The question of meaning is far from clear: we are asking about a concept defined in terms
of function-spaces, and Geometric Logic, the strongest form for which we have spectra or generic
models, offers nothing on this topic. Moreover the function-space is of course contravariant in its
first argument.

As to some sort of construction, perhaps we should use realisability triposes. How or why, I
do not know.

+§5.8.6 Further on this matter of the spectrum of a model, the object ∀X.X → X ought to
have only two elements.

Question Can ∀X.X → X, or something similar, be given a Heyting algebra structure?
It would appear that the value of ∀X.X → X, as calculated in lemma 5.7.9, depends on the

category of domains; it may in fact reflect the hierarchy (§2.6.5) below it.

+§5.8.7 Discussion of the spectrum of a model brings us to a question which has been avoided
in this work just as much as it seems to have been in all others.

Question What is a morphism of models of the λ-calculus?
It would seem reasonable to suppose that a morphism of categories of domains is a functor

preserving bilimits, products and exponentials; such a functor preserves λ-models, so (since we
would want Retr to be functorial) we have to say what is a morphism between models with the
same category of retracts.
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+§5.8.8 Retr(Λ) is not the whole story as to the world in which a model of the λ-calculus
naturally resides: we can still vary the base topos (Set), though we have not done so at all in this
work. Question 5.8.5 should be interpreted to be asking for the natural topos in which Λ resides,
and I believe it would be missing the point to suggest that this is Set for Λ, Pω or any of the
other models discussed in this work.

The classical name for varying the base topos is forcing , and the earliest example of the use of
that technique was the independence of the Continuum Hypothesis. It is an easy matter to muck
up cardinalities by forcing (consider the classifying topos for the theory of a surjection N � X
for any set X). This is the reason why varying the weight of a category of domains (§2.5.2, §2.6.6
and §2.6.12) is unlikely to make much logical difference.

+§5.8.9 The move to internal typoses in §5.8.3, together with this discussion of morphisms of
models, leads to the consideration of subtypos structures on the same category.

Question Let C ⊂ D be the categories of domains for two internal typoses in a topos S, so products
and exponentials in C are inherited from D and S. Does the inclusion have a left adjoint?
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[1983] Combinateurs Catégoriques, algorithmes séquentiels et Programmation Applicative, Ph.D.
dissertatation, Paris VII, 1983

P.-L. Curien and A. Obtu lowicz

[] Partiality and Cartesian Closedness,

H.B. Curry

[1942] The Inconsistency of Certain Formal Logics, J. Symb. Log. 7 (1942) 115-117

[1963] Foundations of mathematical logic, 1963

H.B. Curry and R. Feys

[1958] Combinatory Logic I , North-Holland, 1958

H.B. Curry, J.R. Hindley and J.P. Seldin

[1972] Combinatory Logic II , North-Holland, 1972

A. Day

[1975] Filter Monads, Continuous Lattices and Closure Systems, Canad. J. Math. 27 (1975) 50-59,
MR 51/3258

M. Dezani-Ciancaglini see H.P. Barendregt
S. Eilenberg

[] Automata, Languages and Machines,

S. Eilenberg and C.C. Elgot

[] Recursiveness,

S. Eilenberg, A. Heller and M. Tierney

[1975] Algebra, Topology and Catgeory Theory: a collection of papers in honor of Sammy Eilenberg ,
1975



BIBLIOGRAPHY 165

S. Eilenberg and S. Mac Lane

[1942] Natural Isomorphisms in Group Theory , Proc. Nat. Acad. Sci. USA 28 (1942) 537-543, MR
4-134

C.C. Elgot see S. Eilenberg
Y. Ershov
J. Fairbairn

[1984] A New Type-Checker for a Functional Language. 53 (1984), Univ. Camb. Comp. Lab.
techn. report

J. Fairbairn and S. Wray

[1987] TIM: A Simple, lazy Abstract Machine to Execute Supercombinators, Dept of Computer
Science Research Report 87/R6 (1987), Univ. Glasgow

S. Feferman see J. Barwise
R. Feys see H.B. Curry
R.G. Fisker, C.H.A. Koster, C.H. Lindsey, B.J. Mailloux, J.G.L.T. Meertens, J.L.

Peck, M. Sintzoff and A. van Wijngaarden

[1975] The Revised Report on the Algorithmic Programming Language ALGOL 68, Acta Informatica
5:1-3 (1975) 1-236

T.E. Forster

[1983] Quine’s New Foundations: an Introduction, Cahiers du Centre de Logique, 1983

M.P. Fourman

[1974] Connections between Category Theory and Logic, D.Phil. dissertation, Oxford, 1974

[1977] The Logic of Topoi , in [Barwise 1977] 1053-1090, MR 56/15351 58/10343

M.P. Fourman, C.J. Mulvey and D.S. Scott

[1979] Applications of Sheaves (Durham, 1977), LNM 753 (1979), Springer

[1980] Applications of Sheaves, 1980

M.P. Fourman and D.S. Scott

[1979] Sheaves and Logic, in [Fourman et al. 1979] 302-401, MR 82d:03061

M.P. Fourman and S.J. Vickers

[1986] Theories as Categories, in [Pitt 1986] 434-448

G. Frege
P.J. Freyd

[] Numerals and Ordinals,

P.J. Freyd and G.M. Kelly

[1972] Categories of Continuous Functors, J Pure Appl Alg 2 (1972) 169-191, MR 48/369

E G. Kahn, D.B. MacQueen and G.D. Plotkin

[1984] Semantics of Data Types, LNCS 173 (1984), Springer

B.D. Gabbay



166 BIBLIOGRAPHY

[1984] Elementary Logic — A Procedural Perspective, 1984

P. Gabriel and F. Ulmer
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P.T. Johnstone, R. Paré, R.D. Roseburgh, D. Schumacher, R.D. Wood and G.C.
Wraith

[1978] Indexed Categories and their Applications, LNM 661 (1978), Springer, MR 58/16816

A. Joyal see A. Boileau and P.T. Johnstone
A. Joyal and M. Tierney

[] An Extension of the Galois Theory of Grothendieck ,

G. Kahn, D.B. MacQueen and G.D. Plotkin

[1984] Semantics of Data Types (Sophia-Antipolis, 1984), LNCS 173 (1984), Springer

K. Keimel see G. Gierz
H.J. Keisler see J. Barwise and C.C. Chang
G.M. Kelly see also P.J. Freyd

[1982] Basic Concepts of Enriched Category Theory , LMS lecture notes 64 (1982), CUP

B.W. Kernighan, M.E. Lesk and D.M. Richie

[1975] The C Programming Language, CSTR 31 (1975), Bell Labs, N.J.

S.C. Kleene and J.B. Rosser

[1935] The Inconsistency of Certain Formal Logics, Ann. Math. 36 (1935) 630-636

D. Knuth

[1968] The Art of Computer Programming , Addison-Wesley, 1968

A. Kock

[1981] Synthetic differential geometry , LMS lecture notes 51 (1981), CUP

A. Kock and G.E. Reyes

[1977] Doctrines in Categorical Logic, in [Barwise 1977] 283-313, MR 58/10395

A. Kock and G.C. Wraith

[1971] Elementary Toposes, Lecture Notes 30 (1971), Aarhus Universitet, MR 49/7324

C.H.A. Koster see R.G. Fisker
C.P.J. Koymans

[1984] Models of the Lambda Calculus 9 (1984), Centrum voor Wiskunde en Informatica, Amster-
dam, ? MR 85b:03020

K. Kunen see J. Barwise
Y.G.A. Lafont

[1987] From Category Theory to Implementation, 1987

[1987] The Linear Abstract Machine, 1987



BIBLIOGRAPHY 169

J. Lambek

[1979] From λ-calculus to Cartesian Closed Categories, in [Hindley & Seldin 1979] 375-402

[1980] From Types to Sets, Advances in Mathematics 35 (1980)

J. Lambek and P.J. Scott

[1986] An Introduction to Higher Order Categorical Logic, St. Adv. Maths. 7 (1986), CUP

K.G. Larsen

[1987] Proof Systems for Hennessy-Milner Logic with Recursion, 1987

J.D. Lawson see G. Gierz
F.W. Lawvere

[1963] Functorial Semantics of Algebraic Theories, Proc Nat Acad Sci USA 50 (1963) 869-872, MR
28/2143

[1964] An Elementary Theory of the Category of Sets, Proc. Nat. Acad. Sci. 52 (1964) 1506-1511

[1969] Diagonal Arguments and Cartesian Closed Categories, Category Theory, Homology Theory
and their Applications II, LNM 92 (1969) 134-145, Springer

[1969] Adjointness in Foundations, Dialectica 23 (1969) 281-296

[1970] Quantifiers and Sheaves, Actes du Congrès Intern. des Math., Nice 1 (1970) 329-334

[1972] Toposes, Algebraic Geometry and Logic (Dalhousie, 1971), LNM 274 (1972), Springer

[1973] Metric Spaces, Generalised Logic and Closed Categories, 1973

F.W. Lawvere, C. Maurer and G.C. Wraith

[1975] Model theory and topoi : a collection of lectures by various authors, 1975

B. Lercher see J.R. Hindley
M.E. Lesk see B.W. Kernighan
L.G. Lewis

[1983] Open maps, colimits and a convenient category of fibre spaces, 1983

T. Lindgren

[1984] Untitled manuscript , Ph.D. dissertation, Rutgers University, 1984

C.H. Lindsey see R.G. Fisker
F.J. Linton
J.W. Lloyd

[1984] Foundations of Logic Programming , Technical Report 82/7 (1984), Dept of Comp Sci, Univ
Melbourne

G. Longo see H.P. Barendregt
G. Longo and E. Moggi

[1984] Cartesian closed categories and partial morphisms for effective type structures The Semantics
of Second Order Polymorphic Lambda Calculus, in [G. et al. 1984] 131-144

[1984] The hereditary partial functional and recursion theory in higher types, JSL 4/49 (1984)

S. Mac Lane see also M. Barr, G. Birkhoff and S. Eilenberg1.1 1.1.1 1.2.13 3.1.2 4.2.14 4.4.2



170 BIBLIOGRAPHY

[1971] Categories for the Working Mathematician, Springer, 1971

C.D. Maclean see T.W. Clarke
D.B. MacQueen see E G. Kahn and G. Kahn
D.B. MacQueen and D.T. Sanella

[] Completeness of proof systems for equational specifications,

D.B. MacQueen and R. Sethi

[1982] A Semantic Model of Types for Applicative Languages, Symposium on LISP and Functional
Programming, 1982

[1982] A Higher-Order Polymorphic Type System for Applicative Languages, Symposium on LISP
and Functional Programming (1982) 242-252

[1984] An Ideal Model for Recursive Polymorphic Types, Eleventh Annual Symposium on Principles
of Programming Languages, 1984

B.J. Mailloux see R.G. Fisker
M. Makkai and G.E. Reyes

[1977] First Order Categorical Logic: Model-theoretic methods in the theory of topoi and related
categories, LNM 611 (1977), Springer, MR 58/21600

E.G. Manes see also M.A. Arbib

[1975] Algebraic Theories, GTM 26 (1975), Springer , MR 54/7578

P. Martin-Löf
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bounded completeness not preserved by pull-

back, 131
bounded geometric morphism, 124
boundedly complete continuous poset, 59, 63

domains and fibrations, 135

domains, hierarchy is recursively decid-
able, 67

Brown, Ronnie, 27
Burali-Forte paradox, 99

C (programming language), 82
Cantor set, 33, 131
Cantor’s theorem, 27, 28, 37, 142, 143
Cardelli, Luca, 96, 97, 148
cardinality of base of category of domains, 65

of exponential, 49
carrable = pullable back, 34
cartesian closed, 14

BiPosf is, 53
IPO is, 33
IPO is relative to projections, 131
Retr(Λ) is relatively, 129
category

lex R0 implies degenerate, 28
limit-colimit coincidence in, 39

category with coercion, free, 20
continuous and algebraic lattices are, 49
domains relative to fibred types, 138
equational formulation, 82
full subcategories of AlgPosω, 57
full subcategories of IPO inherit struc-

ture, 35
locally, 104

iff locally small, 118
relative to, 116
self-indexed category = typos, 138

cartesian functor, 107, 108
adjoints, 110

cartesian lifting, 107
cartesian morphism, 102
categories

exponentials = functor categories
indexed, 118

inductive, 40
theory of as a lex category, 80
various forms of pullbacks of, 111

categories of domains, similarity with domains,
40

category
base, 79
bifinite, 62
concrete, 11
enriched, 85
fibred, 107
slice, 102

category of retracts, 16
Cayley, Arthur, 10
chain, 68
change of base, 111
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characterisations of continuous lattices, 48
characteristic function, 123
choice of cartesian liftings, 107
Choice, Axiom of, 26
Church’s numberals, 76, 92
Church, Alonso, 1, 3
Church-Rosser Theorem, 3
Clarke, Thomas, Gladstone, Philip, MacLean,

Duncan and Norman, Arthur, 4
class of display maps, 114
classical term model, 2
classifies open sets, 46
classifying topos, 88
Clocksin, Bill and Mellish, 59
clone of an algebraic theory, 80, 88
closed subset of a space, locally, 35
closed terms, 1

algebra, 2
closure operator, 8, 24
cloven fibration, 107
Cocl, set of coclosure operators, 55, 140, 141
coclosure operator, 8
cocomplete iff has finite colimits, 105
coercion in programming languages, 18, 20,

95
cofibration, 105
cofiltered diagram in a category, 12
cogenerator for the special adjoint functor

theorem, 123
cogenerator in, 46
coherences in a fibred category, 106
coherent logic, application to categories of

domains, 60
coherent space, 35, 53

X and XX countably based algebraic
implies, 56

algebraic but not bifinite poset, 52
colimit, indexed, 105
combinators, 2

generate lambda terms, 4
combinatory algebra, 6

complete, 4
prealgebra, 4

combinatory prealgebra, in category with prod-
ucts, 5

comma or arrow category, 112, 120
comonad, 8
compact element of an algebraic poset, 46
compact open sets in an algebraic poset, 49
compact space, locally, 47
comparison map between domains, 42

explanation of the name, 95, 130
preserves �, 47
preserves compactness, 46

compilers, 77
being well-typed requires type-of-types,

95
complete category iff locally cartesian closed,

104
lattice forced by mor C-indexed products,

27
complete lattice with R1 is degenerate, 28
complete partial order = ipo, 32
complete set of mubs, 51
complete, combinatory, 4
completely distributive lattices and continu-

ous posets, 49
components = product projections, 14
components of a space (π0), 91
composition in a category (;), 1, 8

of fibrations of domains, 134
of pullbacks, 13
of retracts, 9

Comprehension
Axiom of, 28

Comprehension, Axiom of, 98
computational universe, 125
concrete category, 11

Retr(Λ) is iff Λ is a model, 16
concrete context-free grammar, 81
cond in Pω, 23
confusion of object and meta-level, 37, 40, 58
conjunction fails in categories of retracts, 28
constants in a monoid, 10
context-free grammar, concrete, 81
continuous category, 47
continuous domains, 55, 59, 134

Cocl is continuous, 55
difficulty with, 64, 65
maximal elements are zero-dimensional,

61
continuous families of types, 125, 127
continuous fibrations, 131
continuous function between domains, 40
continuous lattice, 47

and (
∨
�,
∧ 6=∅), 47

equivalent characterisations, 48
continuous model of the λ-calculus, 24
continuous poset, 47

canonically embedded in algebraic poset,
47

chararacterisation of Scott topology on,
49

condition for being coherent, 53
retract of is continuous, 48

continuous type-dependence, 74, 130
ContLat is cartesian closed, 49
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contravariance of function-space, 74
conversion, beta, 2
convex subset of a poset, 35
coproduct

absent from categories of retracts, 28
from class of display maps, 115
indexed, 105
of retracts

indexed, 128
cosubstitution, 105, 131
countable products in Retr(Λ), 68
countably based algebraic, XX is implies X

coherent, 56
counterexamples on fibrations of domains, 131
cpo = ipo, 32
crible or sieve in a Grothendieck topology, 90
cross-diagonal counting (N = N× N), 21
Curien, Pierre-Louis, 4
Curry’s equations for a combinatory algebra,

6, 82
Currying, 17

D∞, 37, 40, 41
database in PROLOG, 59
Day, Alan, 47
definable, λ-, 20
degenerate, lex ccc with every object inhab-

ited is, 28
densely injective space, 63
dereferencing in ALGOL 68, 77
determinant example of polymorphism, 73,

86
Diaconescu’s theorem, 124
diagonal counting (N = N× N), 21
diagram in a category, 11
diamond or Church-Rosser property, 3
dichotomous construction of Λ from prod-

ucts, 26
directed subset of a poset, 7

sups of retracts
bilimits and, 130

unions, 7
disjoint union trick for coding indexed fami-

lies, 102
disjunction fails in categories of retracts, 28
display maps
〈dom, cod〉 is a, 80
class of, 114
continuous fibrations give for IPO, 134
fibrations form a class of for Cat, 112
from indexed sum, 105
in, 102
in Retr(Λ), 127–129
in a polymorphic language, 98

projections in IPO give a class of, 34
distributes over

∨
� in a continuous lattice

inf, 47
in a profinite poset, inf↓, 53

distributive lattices, 35
continuous, 48
continuous posets and completely, 49
is the hierarchy of categories of domains?,

67
no first-order theory for bifinitenes, 54

domain
saturated, 65

domain equations
in Pω, 23
recursive, 21, 37

down-closed subset of a poset, 7
down-set and slice over, 114
dropping a variable

D1 � D2 is not by, 41
(X /XX), 14, 25

dynamic free variable problem, 78

effective topos, 94, 141, 144, 151
Eilenberg, Sammy, 73
elementary topos, 122
embedding continuous in algebraic posets, 47
embedding map between domains, 8, 42

of type dependences, 145
embeddings, category of ipos and, 39
empty domain problem, 78
enough constants, a monoid has, 10
enough models of the lambda calculus, a cat-

egory has, 24
enriched category, 85
enumerated types in PASCAL, 73
enumeration of λ terms in finitely many free

variables, 76
environmental approach to variables, 76
equalisers, products and, 13
equality on objects in a category, 37

function-space and type-of-types, 142
equational formulation of cartesian closure,

82
equivalence, beta, 2
Ershov, 24
essential geometric morphism, 91
essentially algebraic logic, 59
essentially algebraic sequent, 90
η-algebra or model, 7, 18

reflexive, 24
Euclidean domains (discussion of name for

ipos), 32
ev : Y X ×X → Y , evaluation map, 14
evaluation functors in a fibred category, 108
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evaluation map in a cartesian closed category,
14

exactly well-powered, 122
exactness properties of toposes, 123
exponential = function-space, 14
exponential or function-space

as product over constant family, 104
in BiPosf , 53
in IPO, 33
inherited by subcategories, 35
morphism, 114
spaces, characterisation of, 48

extensional typos, 141
extensionality of functional λ-terms, 7
extensionality, strong = η-rule, 7
extensions of groups, 112
external fixpoints = R1, 24

F -algebra, 41
Facts, 42, 62
facts

filtered diagrams equivalent to ordinal
ones, 11

finite Karoubi-complete category has all
filtered (co)limits, 11

quasinormal form of lambda terms, 6
Fairbairn, Jon, 95, 96
faithful interpretation of λ-terms, 5
fallacy in [Taylor 1986], 131
fibration

bilimits of, 133
form a class of display maps for Cat, 112
from indexations of domains, 131, 133–

135, 138
of domains, composite of, 134
of groups, 112
pullbacks of, 111
split, 107

fibration of categories, 107
associated split, 120
cloven, 107
from class of display maps, 115

fibration, and projections: counterexamples,
131

fibre in a syntactic indexed category, 79
fibre product = pullback, 103
fibred adjoints, 110

categories, 106, 107
category of models for an algebraic the-

ory, 108
subcategories, 109
type, 131

fibres in, 102
field extensions form a bifinite category, 62

filter monad, characterisation of algebras for,
48

filtered colimits in diagram or category, 11
filtered colimits in preserving, and finitary al-

gebraic theories, 41
filtered colimits in small proper category hav-

ing all, 42
filtered colimits, and finite limits, 13
finitary algebraic theories, 41, 47
finitary algebraic theory, finite limits com-

mute with filtered colimits, 13
finite element of an algebraic poset, 46

objects in a category of domains, 65, 66
powerset, 1
spaces, 35

finite limits
and filtered colimits, 13
lex category, 13

finitely approximable element of an algebraic
poset, 47

first order logic
indexed presentation as a hyperdoctrine,

83, 84
there is no theory for bifinite posets, 54

fixed point combinators, 3
fixed point set of an idempotent or retract, 8

in bifinite posets without bottom, 54
of functors, 38

fixed point, least, Tarski’s theorem, 7
flat domain, 68
flat lattice, 68
flavours of categories of domains, 59
font

subtle changes of, 2, 126
force colimit structure using a Grothendieck

topology, 90
subobject structure using a tripos, 84

formulae, atomic, 89
Forster, Thomas, 98
FORTRAN, 17, 73
Fourman, Michael, 78
fourteen subsets using closure and comple-

ment, 32
free algebra functor, 41

cartesian closed category with coercion,
20

combinatory prealgebra, 4
Heyting structure, 18

free boundedly complete continuous poset, 63
free combinatory algebra, 6
free continuous lattice, 47
free ring, 87
free variables in a λ-term, 1
Frege, 98
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Freyd
paradox, 27, 94, 120, 144

function space = exponential, 14
contravariance of, 74
equality and type-of-types, 142

function, recursive, 3
functional λ-term, 5
functional abstraction (λ), 14
functor

preservation of retracts by, 9
functor between toposes

cartesian, 107
categories

indexed, 118
indexed or cartesian, 108
logical, 92
preserving models and reflexivity, 25

FV(a), set of free variables of a term a, 1

Γ(−) = C(1,−), global sections functor, 5
G = λyf.f(yf), fixpoint-generating combina-

tor, 3
Gabriel-Ulmer duality, 60
Galois models of the λ-calculus, 62
General Adjoint Functor Theorem, 120
generator in a concrete category, 11
generic, 76

λ-model, 152
determinant function, 89
display = type-of-types, 98
family = typos, 138
mono = subobject classifier, 122
morphism in a locally small category, 110,

117
object, 91
object in a small category, 110
object in an indexed category, 79
ring, 88
type, 94

geometric logic, 88
and polymorphism of sets, 91

geometric morphism, 123
morphism, bounded, 124
morphism, essential, 91
open, 92

geometric theory, 89
Girard, Jean-Yves, 94, 99
Giraud theorem, 88, 124
global elements in a concrete category, 11
global sections functor, 5
Gödel-Bernays set theory, 99
grammar, context-free, 81
graph model = Pω, 22
graph of a function, 13

Grothendieck
(co)topology, 67, 90
Alexander, 89
topos, 124

groups, fibrations of, 112
Guildford paper, fallacy in, 131
Gunter, Carl, 53

Hausdorff implies discrete specialisation or-
der, 32

head normal form for a λ-term, 6
Heyting algebra structure on ∀X.X → X,

153
Heyting algebra with R1 is degenerate, 28
Heyting system of types, 18
hierarchy of categories of domains, 67
hom-set is polymorphic not partial, 139
homology theory, application to categories of

domains, 67
homomorphism of domains, 41

explanation of name, 47
of ipos, pullbacks of, 43

homomorphism of groups is a fibration iff it
is surjective, 112

homomorphism of Heyting systems, 18
homomorphism of rings, 86
homomorphism substitution is a, 79
Hoofman, Raymond, 10
horizontal or cartesian map in a fibred cate-

gory, 102, 107
Horn theories, 59
Hosono and Sato, 24
Hyland, Martin, 6, 26, 28, 64, 84
hyperdoctrine, 83, 84

ICat, 40
I = λx.x, identity combinator, 2
ideal in a poset, 7
idempotent = retract, 8
identifier in a programming language, 77
image of an idempotent or retract, 8
implications between, reflexivity conditions,

25, 26
inconsistent database or query in PROLOG,

59
Ind C, 9
A-indexed family of objects, 101
A-indexed family of objects, type, 125
indexed adjoints, 110
indexed family of objects, 101
indexed fixpoints, 152
indexed functor categories, 118
indexed functors, 108
indexed natural transformations, 109
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indexed of domains to fibrations, 131
indexed presentation of polymorphic lambda

calculus, 93
indexed product, 103

of retracts, 129
over T → 1, 148

indexed retracts, equivalence, 146
indexed structure preserved on the nose, 126,

127
indexed subcategories, 109
indexed sum, 105
indexed sum and raised sum, 148
indexed sums from class of display maps, 115
indexed sums of retracts, 128
indexed type, A-, 125
inductive categories, 40

partial order = ipo, 32
inflationary idempotent = closure, 24
information systems, 59
inhabited = has a map from 1, 24

every object in lex ccc implies degener-
ate, 28

injective space, 45
characterisation of, 48
densely, 63

internal categories, indexed presentation, 110
internal fixpoints = R2, 24
internal product, 103
interpolation property of � in a continuous

poset, 49
use in approximating type-dependences,

140
interpretation of λ-terms, faithful, 5
intersection of reflective subcategories, 42
intersections of retracts, 13
intervals in a lattice, 113
IPO, 32

continuous fibrations give a class of dis-
play maps for, 134

is cartesian closed relative to fibred types,
138

is cartesian closed relative to projections,
131

limit-colimit coincidence for embeddings,
39

limit-colimit coincidence for homomor-
phisms, 42

pullbacks of homomorphisms in, 43
isomorphic refinements in the Jordan-Hölder

theorem, 113
isomorphism is a structure not a property, 37

Johnstone, Peter, 32, 49, 101, 122, 151
Johnstone, Peter and Joyal, André, 47

Joyal, André, 142
juxtaposition, 1

K(C), Karoubi completion, 9
K = λxy.x, constant combinator, 2
K-spaces is R1 but not R2, 27
Karoubi completion

concreteness of, 11
semigroup homomorphism and functors,

10
Karoubian completion, 9

in Retr(λ), 146
Kelly, Max, 85
König’s lemma, 12
Koymans, C.P.J., 1, 15

Λ, model of the untyped lambda calculus, 1
Λ is not degenerate, 3
Λ, set of closed lambda terms, closed term

algebra, 2
Λ+, set of closed raw lambda terms, 1
λx, functional abstraction, 14
λx.a, the function which takes x to a, 1
lambda algebra or model, 18
lambda calculus, 1

as an indexed category, 82
continuous model, 24
definability, 3
terms, raw, 1

lambda terms, generated by S and K, 4
Lambek, Jim, 1
large category of domains, 59
lattices are retracts of all domains, 68
Lawvere

Bill, 83
presentation of an algebraic theory, 80,

88, 90
lax pullback of categories, 111
λη-terms, 7
least fixed point, Tarski’s theorem, 7
least preimage does not imply projection, 34
left Beck condition, 92
left-exact category = lex = has all finite lim-

its, 13, 80
LEGO, 85
lex category, algebraic theory as, 80, 81
lex ccc, every object inhabited implies degen-

erate, 28
liar paradox, 28
lifting, cartesian, 107
limit-colimit coincidence

for BiPosf , 53
for IPO, 39, 42
for retracts in general, 38
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has the, 38
limits

finite, lex category, 13
small (set-indexed), indexed formulation

of, 101, 103
limits of ipos do not carry the limit topology,

33
limits, finite, and filtered colimits, 13
Lindenbaum algebra, 83
Lindgren, Terry, 92
Linton, Fred, 32
λKβ-terms, 2
Λ(N), open term model, 2
Loc is not well-powered, 122
locally cartesian closed, 104
locally closed subset of a space, 35
locally compact space, 47
locally connected geometric morphism, 92
locally finitely presentable category, 87
locally small category, 117

iff locally cartesian closed, 118
logical functor between toposes, 92
Λ(Σ), set of lambda terms in variables Σ, 2
Λ+(Σ), set of raw lambda terms in variables

Σ, 1

M, set of functional elements of Λ, 15
µ = λf~n.Y[λhk.?(fk~n)k(h(Nk))]Z, Church’s

searching combinator, 3
Mac Lane, Saunders, 73, 112, 120
macro facilities in programming languages,

82
Mac Lane, Saunders, 1, 13
Manes, Ernest, 1
Martin-Löf, Per, 96, 99, 143
maximal class of displays for Retr(Λ), 130
maximal elements, zero-dimensional for con-

tinuous domains, 61
membership predicate, 84
mention, use and, 77
metavariables in a context free grammar, syn-

tactic, 82
Meyer, Albert, 76, 93
minimal upper bound = mub, 51
minimalisation = searching in recursive func-

tions, 3
model of the λ-calculus η-, 7
model of the λ-calculus finite powers of, 25
model of the λ-calculus generic and spectrum

of, 152
model of the λ-calculus lambda beta, 18
model of the λ-calculus with surjective pair-

ing, 64
model of the lambda calculus

continuous, 24
model, versus algebra, 7
modes = types in ALGOL 68, 77
modular lattice, 113
modus ponens = (⇒ E), 83
Moggi, Eugenio, 94
monad, 8
MonoA(X) in a typos with equality, 142
monoid, constants in, 10
monotone = preserves order, 7
morphism of type dependences, 145
morphism, cartesian, 102
mub = minimal upper bound, 51
mub-closed subset of a poset, 51
mub-complete poset, 51

X and XX algebraic implies, 56
mubc, set of finite mub-closed sets, 55
mutually convex subsets of a poset, 35

N = λxyz.y(xyz), Church’s successor combi-
nator, 3

name in a programming language, 77
names of types, 140
natural transformations, indexed or cartesian,

109
negative formulae in Horn logic, 59
New Foundations (Quine), 98
nondeterminism, 50
normal form for λ-terms, 2
nose, indexed structure preserved on the, 126,

127
numerals, Church’s, 3, 15, 93

object and meta-levels, confusion of, 37, 58
[Cop,Set], 9
open geometric morphism, 92
open sets, classifies, 46
open term model of the λ-calculus, 2
opfibration, 105
order relation between retracts gives compar-

ison, 130
overloading of operators in a programming

language, 73

P, is associative, 15
P = λfgx.g(fx), right-handed composition

combinator, 2
π : X → U , projection, 8
π0 : X × Y → X, left product projection, 14
π1 : X × Y → Y , right product projection,

14
pairing, model with surjective, 64
paradox

Burali-Forte, 99
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Freyd’s, 27
liar, 28

paradoxical combinator (Y), 3
Park, David, 23, 41
parsing of a context-free grammar, 77

of raw λ-terms, 1
partial functions, 60
partial lattices, 60
partial order = ipo, complete, 32
partitions of a space, characterisation of fi-

nite, 35
PASCAL, 73
Pf (X), finite powerset, set of finite subsets

of a set X, 1
PGL, projective linear group, 10
Pitts, Andrew, 84, 138, 143, 151
Platonic form of the identity function, 92
Plotkin, Gordon, 7, 21, 32, 50, 51, 56, 60
Plotkin, Gordon and Smyth, Mike, 37
Plotkin, Gordon, and Smyth, Michael, 21
Pω gives a typos, 141
po-hyperdoctrine, 84
pointed endofunctor, 38
polymorphic lambda calculus, indexed pre-

sentation of, 93
polymorphism, 73

interpretation in V, 148
of sets, 91
of the ∈ relation, 98

PONDER, 74, 96
poset

bifinite, 50
profinite, 53

Posf is R2 but not R3, 27
positional matching of subroutine arguments,

77
positive formulae in Horn logic, 59
powerdomain construction, 50
powers of models, 25
preserves directed joins, 7
preserves the root of a bifinite poset, a func-

tor, 53
prime element of a distributive lattice, 54
primitive recursive functions, 3
product, 14

and equalisers in fibres, 103
and exponentials inherited by subcate-

gories, 35
as retract of X3, 17
countable

in Retr(Λ), 68
in IPO, 33
indexed, 103

indexed by mor C give a complete lattice,
27

indexed by ob C give a λβ-model, 26
of retracts, indexed, 129
over constant family = exponential, 104

production rules in a context free grammar,
81

profinite posets, 53
projection map between domains, 8, 42

IPO are carrable, 34
IPO is cartesian closed relative to, 131
category of ipos and, 39
not carrable in categories of domains,

131
not implied by least preimage, 34

projection, product, 14
projective general linear group, 10
proliferated substitution is stronger than si-

multaneous, 85
proliferation of free variables, 78
PROLOG, 59
proof theory and type theory, 75
pseudopullback of categories, 110
pullback against projections fails in categories

of domains, 131
pullback carrable =, 34
pullback in IPO, 34, 43
pullback of categories, 110
pullback of displays of retracts, 128
pullback of homomorphisms in bcCont, 69
pullback of homomorphisms in BiPosf , 70
pullbacks

composition lemmas for, 13
pushout form of the Church-Rosser Theorem,

3

Q, 125
Q = λfgax.ga(fax), fibred composition com-

binator, 2
queries in a PROLOG database, 59
Quine, Victor, 98

radio mast
is not algebraic, 57

radio mast, a coherent algebraic but not bifi-
nite poset, 52

raised sum and indexed sum, 148
raised sum in Pω, 23
raised sum of domains, 68
Ramsey, Frank, 98
range of a variable in a program, 77
raw lambda terms, 1
realisability tripos, 152
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record structures in programming languages,
73

recursive domain equation, 21, 37
and V, 147
in Pω, 23

recursive function, 3
recursively decidable, hierarchy of boundedly

complete domains is, 67
a reduced to A, 16
f reduced to domain A and codomain B, 17
reduced to (by a retract), 8, 16, 17
refint in ALGOL 68, 77
refinements in the Jordan-Hölder theorem,

isomorphic, 113
reflected in (by a retract), 8
reflection = left adjoint to inclusion, 8
reflective subcategory, 8

intersection of, 42
reflexivity or fixpoint conditions, 24

implications between, 25, 26
in IPO, 33
reverse implications between, 27
stability under retracts, 25

regular action of a monoid on itself, 10
regular representation of a category, 79
relabelling = substitution functor in an in-

dexed category, 101
relative slice category, 114
relatively cartesian closed, 116

Retr(Λ) is, 129
category with generic family = typos,

139
domains and fibred types, 138

Replacement, Axiom of, 102
representation of a category, regular, 79
Retr(Λ)

category of retracts of λ-algebra Λ, 15
concrete iff Λ is a model, 16
function spaces, 17
objects, morphisms, identity, composi-

tion, idempotents split, 16
products, 17

retracts = idempotents, 8
bilimits of, 69
category of is realtively cartesian closed,

129
composed, 9
countable products of, 68
displays of, 127–129
in Pω, strict, 23
intersection of, 13
limit-colimit coincidence for general, 38
of a model of the λ-calculus, 18
of continuous poset is continuous, 48

order relation between gives comparison,
130

stability of reflexivity conditions under,
25

retracts, splitting equivalent to finite filtered
(co)limits, 11

reverse implications between reflexivity con-
ditions, 27

right Beck condition, 92
right-handed composition in categories, 1, 8
rings (commutative), 80, 86

fibred category of, 108
root of a bifinite poset, 53
Rosolini, Giuseppe, 43, 151
rule, α-, 78
rule, η-, 7
Russell, Bertrand, 98, 99, 120, 143

S = λxyz.xz(yz), 2
Σ, collection of symbols, 1
satisfies a logical sequent, a model, 89
saturated domain, 25, 65

in BiPosf , 70
type-dependence, 143

Schönfinkel, 17
scope of a variable in a program, 77
Scott topology of a continuous poset

characterisation of, 49
continuous function between domains, 40
on Pω, 22
on an ipo, 32

Scott, Dana, 21, 23, 24, 37, 47, 50, 59, 64,
146

Scott, Phil, 1
searching = minimalisation in recursive func-

tions, 3
second order polymorphic lambda calculus,

74
section = pre-inverse, 8, 103
seed of solution of recursive domain equation,

38
Seely, Robert, 83, 84, 94
semantics, use of the word, 23
semigroup homomorphisms and the Karoubi

construction, 10
semilcolon (;) for right-handed composition

in categories, 1, 8
sensible model of the λ-calculus, 6
sequence of finite computers, 50

finite partial orders, 50
sequencing = composition, 1
set-abstraction, 98
set-indexed limits, indexed formulation of, 101
SFP = Biω Posf , 50
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sheaves, functor embedding Loc or, 89
Sierpiński space, 45

retracts of powers of, 48
sieve = crible in a Grothendieck topology, 90
similarity of domains and categories of do-

mains, 40
simultaneous substitution, 79
site = Grothendieck topology, 88
size of categories of domains, 40
SKIM, 4
slice category, 102

relative, 114
small category (locally) iff locally cartesian

closed, 118
small category for the general adjoint functor

theorem, initially, 121
small category indexed presentation, 110
small category locally = has small hom-sets,

117
small category of domains, 59
small limits, indexed formulation of, 101
Smyth, Michael, 50, 56, 152
sober, Scott topology need not be, 32
solution set condition, 121
sorts in a context free grammar, syntactic, 81
space of rings, 89
space, Grothendieck topos is a generalised,

89
special adjoint functor theorem, 123
specialisation order on a space, 32
spectrum of a λ-model, 152

of a distributive lattice, 35
split fibration, 107

associated, 120
split retracts, Karoubi construction to, 9
splits through

injections of finite spaces, 37
retract, 8
surjections onto finite spaces, 35

splitting retracts, equivalent to finite filtered
(co)limits, 11

step function ([x ⇒ y]) between continuous
posets, 49

stratification, 74
strict retract in Pω, 23
strong limit cardinal, 56
strongly typed programming language, 17, 73
structure map of an F -algebra, 41
structures in programming languages, 73
subcategories IPO (full ccc) inherit struc-

ture, 35
subcategories indexed, 109
subcategories reflective, 8
subnormal series of subgroups, 113

subobject, 122
classifier (Ω), 123

subroutine arguments, positional matching,
77

subsemilattice of a boundedly complete poset,
66

substitution ([x := y]), 1, 78, 79, 101
subterm, 1
subterms, 1
sum indexed, 105
sum of retracts, indexed, 128
sum raised, in Pω, 23
supremum = least upper bound: adjoint func-

tor theorem, 120
surjections onto finite spaces, 35
surjective pairing (X = X ×X), 64
surjective pairing (X = X ×X), 23, 26
Surrey paper, fallacy in, 131
symbol table in a compiler, 77
syntactic sorts and metavariables in a context

free grammar, 81
synthesis, analysis and, 76

T = K⊥, terminal object of Retr(Λ), 16
T , 60
T0, 32
T0, but not T1, Sierpiński space is retract, 45
tag field in a progarmming language, 73
Tarski Domain = ipo, 32
Tarski’s theorem, 7, 27, 31, 32, 37, 54
Tennison, Barry, 89
tensor product in an enriched category, 85
(T, ε, ν), comonad, 8
term algebra, closed, 2
terminal object, 14
terms, λ-, 2
Teta(T, η, µ), monad, 8
tokenisation as part of compilation, 77
top

ω⊥ is a retract of any domain without,
68

its irrelevance to computation, 50
topos, elementary, 122
transfinite construction for Tarski’s theorem

and its converse, 31
transition, beta, 2
tripos, 84
Turing, Alan, 3
Tychonov topology on product of ipos, 33
type assignment, 97
type checking, 73
type constructions as V-valued functions, 146
type dependence, saturated, 143
type of types combinator in Pω, 24
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type theory and proof theory, 75
type-of-types, 75, 95

and universal set, 125
equality and function-space, 142
morphisms in, 138–140

typical ambiguity (Russell), 98
typos, 138

Biω Posf is a, 145
Pω gives a, 141
internal, 151
use of the word, 151
with equality, 99, 142⋃

6, directed union, 7
underlying Heyting system, 18
underlying set functor for rings, 86
unification algorithm, 59
Universal Algebra, 80
universal set and set-of-sets, 125
unsolvable λ-term, 6
upper bound = mub, minimal, 51
use and mention, 77

V V-valued functions and type constructions,
146

V in Pω, 24∨
�, directed join or sup, 7

variables
as generators in algebraic theory, 76
binding, 77
discussion of rôle of, 75
enumeration of λ terms in finitely many

free, 76
in a λ-term, free, 1

variant records, 73
vertical morphism in a fibred category, 102,

107
vertical opposite category, 105
vertically mono, 122

warnings
cartesian closed, 14
concrete category, 11
font changes, 2
right-handed composition, 8

way below relation in a continuous poset (�),
47

weakly well-powered category, 122
locally cartesian closed category, 125, 142

weight of a continuous poset, 59
well-powered category, 122
Whitehead, Alfred, 98

X × Y , product, 14

×, product combinator, 17

Y, 26
Y, least fixed point combinator in continuous

models, 24
Y = λf.(λx.f(xx))(λx.f(xx)), fixpoint com-

binator, 2, 3
Yoneda lemma, 10

Z = λxy.y, Church’s zero numeral, 3
zero-dimensional, maximal elements in con-

tinuous domains, 61
zig-zag lemma, 64


