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This paper is still work in progress.
As you can see from the number of declared counterexamples, this is a particularly

fiddly subject and likely to be riddled with more than the usual quota of errors.

1 Introduction

[Start off by saying that an “ordinal” is a fragment of a free structure, for which the whole
structure may or may not exist, but typically doesn’t.]

Whilst this paper culminates in transfinite recursion, it is by no means a standard
account of the ordinals but with a few diagrams. Indeed, the goal of the programme is to
destroy the notion of an ordinal as a linear order and instead use the ideas to build a more
widely applicable technique.

This is an investigation led by categorical intuitions of some novel categorical ideas that
just happen to have been suggested by elementary set theory. It is a worked example of
Well Founded Coalgebras and Recursion [Tay23] with Pos instead of Set. This is intended
as a model to be re-worked in other categories.

Category theory is the appropriate way to conduct such an investigation because it
consists of a small toolbox of very sharp tools that have been forged by decades of experience
across many mathematical disciplines. As a result, it usually advises the one correct
definition for a concept, whereas symbolic formulations allow a free-for-all of unstructured
ideas.

In this application, the Set-Theoretic ideas will, unfortunately, turn out not to be such
straightforward instances of standard categorical ones as commonly happens in algebraic
disciplines. The effort to give an account that matches them more accurately obliges us to
explore some deeper (2-)categorical notions than were first envisaged.

The motivation is that set theory (∈-structures) provides partial initial algebras where
the total one may not exist. So the intention is that future work (by me or others) will
substitute other (perhaps much more complicated) categories and functors for the ones
that we consider and thereby characterise the partial free algebras for them.
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Georg Cantor originally defined well-orderings by saying that every non-empty subset
has a least element. He showed how to “zip together” any two such structures, with the
result that classical well-orderings are linearly ordered [Can97, §13 Thms N&E]. The same
phenomenon re-appears in Zermelo set theory, but without the linear order, in the form of
its bizarre notions of intersection and overlapping union.

The identification of sets with extensional well founded relations was made by Andrzej
Mostowski [Mos49, Thm 3], relying on recursion and the axiom-scheme of replacement.
The same argument can be used to impose extensionality on a well founded relation.

Since John von Neumann, set theorists have said that ordinals are transitive sets of
transitive sets. Re-writing this definition without its ontology, an ordinal is a carrier with
a transitive extensional well founded relation.

Remark 1.1 In the 1970s people began to develop mathematics without excluded middle
and in particular Robin Grayson worked on intuitionistic set theory [Gra77, Gra78]. He
adopted the “transitive” definition of ordinal, along with the “one-point” successor,

α+ ≡ α ∪ {α}.

He observed that, intuitionistically, these satisfy

β+ ∈ α+ ⇐⇒ (β+ ∈ α ∨ β+ = α) =⇒ β+ ⊂ α ⇐⇒ β ∈ α

and β+ ⊂ α+ ⇐⇒ β ∈ α+ ⇐⇒ (β ∈ α ∨ β = α) =⇒ β ⊂ α,

but not the reverse of the remaining implications.
We will call these the thin ordinals. This formulation has continued to be the most

popular one in constructive accounts, despite the alternative notions that were developed
in the 1990s. For example, Michael Shulman used it in Homotopy Type Theory [Pro13,
§10.3] and others have followed him.

Intuitionistic mathematics was developed in a categorical style at that time too, in-
terpreted in its then recently introduced analogue of (Zermelo) set theory, namely an
elementary topos [Law70]. In particular, Christian Mikkelsen [Mik22] gave a categorical
proof of recursion for well founded relations. Gerhard Osius [Osi74] took the ∈-structures
of set theory seriously: he represented any binary relation as a coalgebra for the covariant
powerset functor and characterised the subset relation as a coalgebra homomorphism, to
re-construct Zermelo set theory within any elementary topos.

There was renewed interest in these ideas in the 1990s and in particular how to reverse
the one-way implications above. It emerged that there are several (maybe many) kinds of
ordinals and that they are best understood by treating the well founded relation (≺) and
the “inclusion” that it induces independently. This is how we proceed in this paper.

Remark 1.2 In one of these accounts, André Joyal and Ieke Moerdijk [JM95, Awo13]
adapted the fibred category theory of open maps in topology to model the large–small
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distinction in set theory. They used this to present the systems of sets and ordinals as the
(large) free algebras with all (small) joins and an operation s such that:
(a) with no extra condition: sets (∈-structures);
(b) with x ≤ sx: thin ordinals;

(c) with x ≤ y ⇒ sx ≤ sy: plump ordinals; and

(d) with s(x ∨ y) = sx ∨ sy: directed ordinals.

The names thin and plump were introduced in my parallel investigation [Tay96] that
was intended to be categorical but was in retrospect still too symbolic. The initial idea
was to use the fat successor {β | β ⊂ α}, but this was too fat and a non-trivial recursion
was needed to obtain the correct definition. The characterisation will be much simpler in
the present paper, because we will treat the two order relations in a genuinely independent
and categorical way from the outset.

It was also observed there that Mostowski’s construction amounts to a quotient of
the carrier, which can be effected by an equivalence relation that it defined co-recursively
[Tay96, Thm 2.11].

Both of these accounts had a goal of using their ordinals to prove that any monotone
endofunction of a directed-complete poset with least element has a least fixed point. Joyal
and Moerdijk did this by invoking an additional axiom of collection, that the image of a
large object within a small one is small. I hoped to use Friedrich Hartogs’ construction
[Har15], but its application to the fixed point problem irretrievably uses excluded middle.

However, shortly afterwards and out of the blue, Dito Pataraia gave a far simpler proof
that exploited endofunctions instead of subsets or ordinals, and nothing beyond Zermelo
set theory or an elementary topos. Unfortunately, he never published it before his death,
but [Tay23, §2] gives an account of it and its context.

Osius’s formulation using coalgebras was generalised to any endofunctor of Set that
preserves inverse images [Tay99, §6.3], introducing the definition of well founded coalgebra.

After a further delay, this condition was weakened to require the functor just to preserve
the monos themselves [Tay23]. Far from using a heavy technology of transfinite recursion
and “large” objects to prove a simple fixed point theorem, for that work it was essential
to build on (a development of) Pataraia’s result to prove the recursion theorem.

That work examined exactly what properties are required of the underlying category
to develop generalisations of the recursion theorem, set-theoretic intersection and union
and the extensional quotient. In particular, it replaced the “plain” monos (1–1 functions)
between sets with a factorisation system.

Against this background, the present paper may be seen as the exercise book for the
previous one as the textbook. We give proofs both by exploiting that technology and
directly, using both symbolic and categorical arguments. The purpose of this detail and
repetition is to learn the techniques thoroughly before applying them to more complex
situations in future work.

3



Specifically, instead of discrete sets we consider posets and in place of the powerset P
we have the similar functor D : Pos → Set that yields the (po)set of all lower subsets in
the order. There are at least three factorisation systems instead of 1–1/onto functions.

Section 2 prepares for this by examining to what extent the category of posets enjoys
the properties of sets that the original arguments exploited. We will need to work through
rather a lot of elementary facts and fallacies, so this is a toolbox of such things and you
may prefer to start with the main job in Section 3 and return as necessary. On the other
hand, it is an overview of the structure of the underlying category and endofunctor that
will be needed to develop a theory of ordinals for other situations.

Section 3 characterises coalgebras and their homomorphisms for the lower-sets functor,
giving various terminology and illuminating examples that will be needed in the remainder
of the paper. The larger category has a weaker characterisation of its morphisms than in
the case of Set. The various categories of “ordinals” of headline interest are embedded in
it, but in several cases with the same notion of morphism as in the case over Set.

Section 4 considers well-foundedness. The way in which it was defined in [Tay23] is in
principle flexible enough to measure logical complexity or quantifier depth. However, the
application in this paper essentially still uses the full higher -order logic of a topos, making
the new versions equivalent to the old one. Nevertheless, adaptations of the present work
that, for example, replace powersets with polynomial functors will need to take account of
possibly different forms of induction and recursion.

Section 5 begins to show the power of our programme by considering the notion of
extensionality. Recall that a binary relation (≺) is traditionally said to have this property if

∀xy.
(
∀z. z ≺ x⇔ z ≺ y

)
=⇒ x = y,

which amounts to saying that the structure map of the coalgebra is a 1–1 function. Our
principal innovation is to replace 1–1 functions with a factorisation system.

Remark 1.3 Well-foundedness and extensionality together provide the force of the math-
ematical structure that was behind Cantor’s “zipping” property and then used for set
theory. What we are generalising is what set theorists call transitive sets, rather than
general ones, but beware that their use of this word is not the standard one. These are
essentially fragments of a model of set theory.

Such things have some very strange properties, compared with other mathematical
objects:
(a) Even though the way in which one set may be a subset of another is a homomorphism

of ∈-structures (or for us, of coalgebras), this can only happen in a single way;

(b) then there is a 1–1 matching of hereditary elements;

(c) hence sets have no automorphisms besides identities.

(d) Also, two â priori independent sets in general have a non-trivial intersection; and so

(e) their union is not a coproduct but a pushout over this intersection.
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This behaviour remains a key feature of the general theory (Theorem 5.2) but beware
that its proof takes three sections of the previous paper. It also assumes that the functor
preserves the “monos”, so it is valid for two of the factorisation systems that we consider
here, but not the third.

Remark 1.4 In Section 6 we develop our analogue of the ordinal rank and Mostowski’s
extensional quotient. Categorically, these say that the subcategories of extensional coal-
gebras, according to (a different two of) the notions that we consider, are reflective. This
was done in [Tay96] by means of a co-recursively defined equivalence relation, but now we
take the co-recursion step by step. Each successive quotient results from factorising the
structure map of the coalgebra according to the chosen factorisation system.

Whereas the symbolic development of the thin (“transitive”) ordinals was easy but the
plump ones required a difficult recursion, the latter are natural products of the categorical
approach. Unfortunately, this does not straightforwardly give the thin ones, so in Section 7
we see a hint of the 2-categorical phenomena that seem to lie behind this, but did not
appear in the earlier work. For the transitive closure to be a reflection into a subcategory
requires explicit consideration of the poset order on the coalgebras. In fact, we see that
three different such orders (=, ⪯ and ⊆) are needed to understand the situation.

Remark 1.5 Whilst well founded induction and recursion are based on the predecessor
relation (≺) or its abstraction as a coalgebra, transfinite recursion is defined in terms of
“successors” and “limits” (joins, unions or colimits). In the classical theory, each ordinal
can be classified as either zero, a successor or a limit, but we cannot expect this trichotomy
to survive in a constructive situation. It does nevertheless still make sense to present
instances of recursion in terms of successors and unions, but instead of a case-analysis, we
must regard them as simultaneous equations. This is sufficient because every ordinal is the
join of the successors of its elements.

Section 8 considers joins, in particular binary ones, these being the overlapping ones
from set theory that result from zipping them together. For this we need to identify the
axioms obeyed by pushouts in the category of sets and how well their properties transfer
to posets. We find that only one of the three systems of monos (I, R and L) behaves well,
but that thin ordinals actually behave quite similarly to plump ones for this part of the
theory.

Section 9 shows how the thin and plump successors of the earlier accounts become two
instances of a generic notion. Like transitivity (Section 7), this is derived from the unit of
the monad structure.

Section 10 brings joins and successors together to prove transfinite recursion for thin
and plump ordinals.

Remark 1.6 The systems of ordinals and indeed the categories that we consider are all
“large”. Joyal and Moerdijk can deal with such things using the technology that they
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develop. However, we prefer to consider them as schemes, so for example “Pos” is a
shorthand for what it is to be a poset or monotone function, essentially just the axioms.
(Our motivation for not introducing any kind of universes is the way in which we intend
to approach the axiom-scheme of replacement in future work.)

The difficulty with the scheme approach is that transfinite recursion ostensibly yields
a function from a large object to a small one.

In fact, these large preorders of ordinals are the (illegitimate) colimits of their slices
or down-sets. These in turn have a simple characterisation as small objects, since the
homomorphisms from other (thin or plump) ordinals into a given one are just lower subsets.

In general a map out of a colimit is equivalent to a cocone under the corresponding
diagram. This brings the result of transfinite recursion back within our scheme point of
view, so long as its partial approximants are compatible with the diagram.

A more complicated case is the successor operation, considered as an (illegitimate)
function from the entire system of ordinals to itself. In the first instance we might hope
that this will be a compatible scheme of endofunctions of the individual ordinals.

However, the successor endofunction for each particular ordinal is in general partial,
but it can always be made total by allowing the values to be in a larger ordinal. In terms
of colimit diagrams, this means that the “cocone” needs to be like a wonky ladder that
links each level on one side to a step up on the other.

Overall, from the point of view of a structural mathematician, the plump ordinals (those
whose successor operation preserves order) work the most neatly of the different systems.
However, in Section 11 we see that they grow very fast, so that ω · 2 does not exist in the
simplest non-classical topos. The method of Section 6 does not converge and so cannot
construct the plump rank.

The set theorists will intervene here to say that the axiom-scheme of replacement in ZFC
rescues these constructions. However, in future work we intend to turn this argument on
its head: instead we will use the methods introduced in this paper to provide a replacement
for replacement, in the native language of category theory, that is, to use adjointness in
foundations as Bill Lawvere told us to do [Law69].

2 From sets to posets

Notation 2.1 As explained in the Introduction, we will compare
(a) the category Set of sets and functions (or indeed any elementary topos), equipped with

the full powerset , P , considered as a covariant functor, i.e. acting as the direct image
operation on functions:

P(X) ≡ {U | U ⊂ X}
PfU = {f(x) | x ∈ U} for f : X → Y and U ⊂ X
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(b) with the category Pos of posets (sets equipped with reflexive, transitive, antisymmetric
relations) and monotone (order-preserving) functions, equipped with the lower sets
functor D:

D(X,≤) ≡ {U | U ⊂↓ X} ≡ {U ⊂ X | ∀x, y ∈ X. x ≤ y ∈ U ⇒ x ∈ U}
DfU ≡ {y ∈ Y | ∃x ∈ U. y ≤Y f(x)} for f : (X,≤) → (Y,≤) and U ⊂↓ X.

Here we use the symbol U ⊂↓ X for a lower subset , i.e. one for which

X ∋ x ≤ u ∈ U =⇒ x ∈ U.

Also note that Df preserves order even if the function f does not. Also, the antisymmetry
axiom (x ≤ y ≤ x⇒ x = y) will have an impact at several places in this work.

First we examine the relationship between the categories Set and Pos in more detail,
to explain why we have chosen D as the analogue of P .

Remark 2.2 There is a diagram of categories and adjoint functors

Set

(=)
>

⊥
<

|−|
Pos

>

⊥
< ⋃ CSLat

∨

∧

in which the leftward functors forget the relevant structure and Set → Pos assigns the
discrete order X 7→ (X,=).

The composites via CSLat (the category of complete
∨
-semilattices and join-preserving

functions) provide the endofunctors P : Set → Set and D : Pos → Pos. Since these
functors arise from adjunctions, they have monad structures, for which we write η and µ
as usual in both cases. However,
� for a set X, ηX : X → PX gives the singleton , x 7→ {x}; whilst
� for a poset (X,≤), ηx ≡ {y | y ≤ x} ≡ ↓x is the lower or down-set ; and

� the multiplication µ : P(PX) → PX or µ : D(DX) → DX and the structure maps of
P- or D-algebras are given by unions in both cases.

Remark 2.3 Joyal and Moerdijk [JM95] showed that transfinite recursion over ordinals
may be seen as a consequence of the theory of monads. (That ordinals form a proper
class unfortunately obscures this relationship.) Briefly, the union (multiplication, µ) is
of course connected with limit ordinals (Section 8), but less obviously, the unit η gives
rise to successors, as we will see in Section 9. Transfinite recursion brings them together
(Section 10).
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Remark 2.4 Both P and D add all joins, yielding complete join-semilattices. However,
whereas the powerset then forgets this structure entirely, the down-sets endofunctor D on
posets respects the given order.

For ordinary monads, any given set can in principle enjoy many different algebra struc-
tures. In contrast, posets can only have joins in one way, that is in fact left adjoint to the
unit map (the inclusion of generators) with respect to the order between morphisms.

This is typical of an abstract 2-categorical situation that was studied by Anders Kock
[Koc95] and Volker Zöbelein [Zöb76], so it is called a KZ-monad .

Other KZ-monads capture different classes of joins, possibly assuming some of them
together with meets and other structure. They generalise to colimits and there are dual
versions for meets and limits.

Here is simplest characterisation of a KZ-monad for joins:

Lemma 2.5 f ≤ g =⇒ Df ≤ Dg and DηX ≤ ηDX .

Proof
DfU ≡ {y | ∃x ∈ U. y ≤ fx ≤ gx}

⊂ DgU ≡ {y | ∃x ∈ U. y ≤ gx}
DηXU ≡ {V ∈ DX | ∃x ∈ U. V ⊂ ηXx}

= {V ⊂↓ X | ∃x ∈ U. ∀y ∈ V . y ≤ x}
⊂ ηDXU ≡ {V ∈ DX | V ⊂ U}

= {V ⊂↓ X | ∀y ∈ V . ∃x ∈ U. y ≤ x}. □

We will see in Section 7 that KZ-monads have a novel relationship to the theory of
ordinals, namely regarding transitivity of the well founded relation.

When we compare the notions of well founded P- and D-coalgebras in Section 4 we
will need another specific technical consequence of the diagram of adjoints in Remark 2.2:

Notation 2.6 For any poset (X,≤), write ϵ(X,≤) : (X,=) → (X,≤) for the function
from the discrete poset (X,=) to the one with the given order. This is the counit of the
adjunction between the discrete order and underlying set functors. It is monotone and
surjective on points, but does not reflect the order.

(X,=)
|f |

> (Y,=) PX
Pf

> PY

(X,≤X)

ϵ(X,≤X)

∨ f
> (Y,≤Y )

ϵ(Y,≤Y )

∨
D(X,≤X)

Dϵ(X,≤X)

∨ Df
> D(Y,≤Y )

Dϵ(U,≤Y )

∨

Applying D to this yields yields the diagram on the right. Naturality of ϵ means that the
square on the left commutes and functoriality of D makes the right one commute too.
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Lemma 2.7 There is a right adjoint DϵX ⊣ ϵ∗X as a monotone function, with

ϵ∗X ;DϵX = id DX and id PX ≤ DϵX ; ϵ∗X .

Proof For the equality, V ∈ DX is V ⊂↓ X, which ϵ∗X takes to V ∈ PX and ↓V = V ∈
DX. For the inequality, U ∈ PX is a general U ⊂ X, with goes to U ⊂ ↓U . □

So far we have largely described the similarly between the categories of sets and posets.
The power of the generalisation to a new setting comes from replacing the single notion of
1–1 function between sets with the many possibilities that other categories offer.

Definition 2.8 We will consider the following classes of “generalised monomorphisms”
between posets:
I plain monos , injective functions: subsets with a possibly sparser order; these are the

monomorphisms in Pos in the standard categorical sense.

R full subsets : subsets equipped with the restricted order relation; these are the regular
monomorphisms in Pos.

L lower subsets : if x ≤ y in X with y ∈ U ⊂↓ X and U ∈ L then x ∈ U , where U carries
the restriction of the order relation on X.

In Section 6 we will see that that these classes of “monos” are accompanied by “epis” that
form factorisation systems.

First we see how these classes arise.

Example 2.9 In Pos, this equaliser inclusion is in R but not L:

(a) > >

( a

d

) d 7→ b
>

d 7→ c
>

( a

c b

)

Lemma 2.10 For any inclusion i : U ↣ X in Set, Pi : PU ↣ PX is lower (in L).
Proof Suppose PX ∋ Y ⊂ V ∈ PU ⊂ PX, so Y ⊂ V ⊂ U ⊂ X. Then Y ⊂ U , so
U ∈ PU . □

Fundamental to their role in any adaptation of categorical logic is that these three
classes are closed under pullback.

Proposition 2.11 The forgetful functor |−| : Pos → Set creates limits.

Proof This means that, to construct a pullback etc. of a diagram of posets, we first find
it for the underlying sets and then equip the result with the unique order that is compatible
with the diagram and the universal property. This is the densest order for which the maps
in the limiting cone are monotone. □
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Lemma 2.12 The pullback of any I-, R- or L-map V ↣ Y along any monotone function
f : X → Y belongs to the same class.

f ∗V > V

X
∨

∨

f
> Y

∨

∨

Proof For I, this is just the result from Set, where the inverse image of a 1–1 function
is again 1–1.

For R, this just takes more careful reading of the Proposition, so f ∗V inherits the order
from V .

The L case is part of the proof of Lemma 2.19 below. □

Pullbacks can also arise “spontaneously”:

Lemma 2.13 For any i : U ↣ X in L this square is a pullback:

PU >
Pi

> PX

DU

ϵ∗U

∧

∧

>
Di

> DX

ϵ∗X

∧

∧

Proof The square commutes because its sides are näıve inclusions, acting as the identity
on V ⊂↓ U ⊂↓ X. It is a pullback or intersection because if V1 ∈ PU and V2 ∈ DX agree
in PX then V1 = V2 ∈ DU . □

Example 2.14 For i ∈ R, the square need not even commute.

Proof Let V ≡ U ≡ {⊤} ⊂ X ≡ {⊥ ≤ ⊤}. This goes to {⊤} by the upper route and
{⊥ ≤ ⊤} by the lower one. □

When we apply the downsets functor D to these classes we begin to see that some
things work in the passage from one category to another, but others don’t.

Lemma 2.15 The functor D preserves the class L.
Proof Let i : U ↣ X in L, i.e. U ⊂↓ X. Then DX ∋ W ⊂ V ∈ DU is W ⊂ V ⊂↓ U ⊂↓
X with W ⊂↓ X. Thus if U ∋ u ≤ w ∈ W ⊂↓ X then u ∈ W , so W ⊂↓ U and W ∈ DU .□

Lemma 2.16 The functor D preserves the class R.

Proof Let (i : X → Y ) ∈ R and U ′, U ⊂↓ X be lower subsets with Di(U ′) ⊂ Di(U).
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Recall that Di(U) ≡ {y | ∃x ∈ U. y ≤ ix}, so the inclusion says that

∀x′ ∈ U ′. ∃x ∈ U. ix′ ≤ ix.

But we may delete i from this since it reflects the order (i ∈ R), and then U ′ ⊂ U since
U ⊂↓ X. □

Example 2.17 The functor D does not preserve the class I. For example with i : {x, y} →
{x ≤ y}, Di goes from a 4- to a 3-point lattice and Di{y} = {∅, {a}, {y}} = Di{a, y}.

{a, b} {∅, {a}, {b}}

{a} {b} {∅, {a}}

∅ ∅

Indeed:

Lemma 2.18 For f : X → Y if Df : DX → DY is 1–1 on points (Df ∈ I) then f reflects
order (f ∈ R).

Proof Let x′, x ∈ X with fx′ ≤Y fx in Y . Then U ≡ ↓{x′, x} and V ≡ ↓{x} satisfy
DfU = DfV = ↓ {fx}. Since Df is 1–1 by hypothesis, we have U = V and so x′ ≤ x.
Note that X and Y could be discrete in this example. □

The different behaviours of the three classes becomes more pronounced when we con-
sider whether the functor D preserves inverse images (pullbacks):

Lemma 2.19 D preserves inverse images of the class L.

D(f ∗V )

f ∗V > V (Df)∗(DV ) >
>

DV
∨

X
∨

∨

f
> Y

j

∨

∨

> DX
∨

∨

Df
> DY

Dj
∨

∨

Proof If V ⊂↓ Y and X ∋ x′ ≤ x ∈ f ∗V ⊂ X then fx′ ≤ fx ∈ V ⊂↓ Y and fx′ ∈ V
too, whence x′ ∈ f ∗V , so f ∗V ⊂↓ X. Hence pullbacks in Pos preserve L.

The pullback (Df)∗(DV ) on the right consists of pairs (U,W ) such that

U ⊂↓ X, W ⊂↓ V ⊂↓ Y, W = DjW = DfU = {y | ∃x. y ≤ fx ∧ x ∈ U},

soW is redundant and we just require DfU ⊂↓ V . But by the adjunction this is equivalent
to U ⊂↓ f

∗V since V ⊂↓ Y . Hence the pullback is isomorphic to D(f ∗V ). □
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Example 2.20 The functor D does not preserve R-intersections.

∅ > > odd {∅} > > {∅ ⊂ N} > > D(odd)

even
∨

∨

> > N
∨

∨

D(even)
∨

∨

> > D(N,≤)
∨

∨

Proof Consider N as a poset with its usual arithmetical order. The lower closure of the
subset of odd numbers is the whole of N, and the same with the even numbers. Hence
the subsets ∅ and N both belong to the pullback on the right, whereas N is not a (lower)
subset of the pullback on the left. □

Remark 2.21 Filtered colimits agree with unions of I-, R- and L-maps, as required in
[Tay23, Section 4].

3 Coalgebras and homomorphisms

Recall that a coalgebra for an endofunctor T : C → C of a category is an object X ∈ obC
together with any C-morphism α : X → TX.

Notation 3.1 A coalgebra for the powerset P : Set → Set is a set X together with any
binary relation (≺) whatever:

(y ≺ x) ≡
(
y ∈ α(x)

)
and α(x) ≡ {y : X | y ≺ x}.

The relation (≺) has no particular meaning as yet, but following previous work our devel-
opment will be inspired by aspects of set theory, where (≺) is called “membership” and
we may derive a relation called “subset” (⊆), cf. Notation 3.9.

On the other hand, (⊂) means the standard notion of subobject, whilst P and (∈)
belong to the infrastructure, namely the logic of an elementary topos, which we call Set.
Beware that the symbols (⊂) and (⊆) are not related, and our use of the latter most
certainly does not mean that the former is irreflexive.

As we have said, the purpose of this paper is to apply the same ideas to posets.

Proposition 3.2 A coalgebra for the lower sets functor D : Pos → Pos is similarly
given by a poset (X,≤) together with another binary relation, (≺), that corresponds to
the coalgebra structure map as before. However, in order to define an order-preserving
function

α : (X,≤) −→ D(X,≤),

these relations must be compatible in the sense that

z ≤ y ≺ x =⇒ z ≺ x and z ≺ y ≤ x =⇒ z ≺ x.
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Proof The first condition says that α(x) is a lower subset (an element of DX), i.e. z ≤
y ∈ α(x) ⇒ z ∈ α(x). The second says that α is monotone (a morphism of C ≡ Pos),
y ≤ x =⇒ α(y) ⊂ α(x). □

We will pass between these representations without further comment, but the most
important thing to say at this point is that the two relations are independent, apart from
the compatibility conditions: (≤) is not necessarily any particular poset relation that you
may have in mind.

At one extreme we may essentially do without it:

Example 3.3 Any relation (≺) is compatible with equality, (=). In this way, we will be
able to import extensional well founded relations (the ∈-structures for sets in the sense
of Set Theory) into the same setting that we will use for ordinals. Indeed, for X ≡ P3∅
or any further stage in the von Neumann hierarchy of sets, equality is the only reflexive
relation that is compatible with (≺) ≡ (∈). □

The functor acts on coalgebras:

Lemma 3.4 The coalgebra (DX,Dα) is (DX,≤DX ,≺DX), where

V ≤DX U ≡ V ⊂ U and V ≺DX U ≡ ∃u ∈ U. ∀v ∈ V . v ≺X u.

Proof Apply Notation 2.1 to Proposition 3.2. □

Example 3.5 The subobject classifier (object of truth-values) Ω ≡ P1 ≡ D1 carries the
coalgebra structure (Ω,⇒,≺) where the only instance of (≺) is ⊥ ≺ ⊤. Explicitly, for
ϕ, ψ : Ω,

(ϕ ≺ ψ) ≡ (ϕ⇔ ⊥) ∧ (ψ ⇔ ⊤) ≡ (¬ϕ ∧ ψ).

This is an application of the previous result to the empty (≺) relation on the singleton.
The structure map is

α(⊥) ≡ ∅, α(ϕ) ≡ {⊥ | ϕ} and α(⊤) ≡ {⊥}. □

Ω is an example of how the two relations interact and of the role of the unit η of the
KZ-monad:

Definition 3.6 (X,α) or (X,≤,≺) is a transitive coalgebra if

α ≤ ηX or (≺X) ⊂ (≤X) or ∀xy. y ≺ x =⇒ y ≤ x,

where ηX(x) ≡ ↓x ≡ {y | y ≤ x}.

Lemma 3.7 If (X,≤,≺) is a transitive coalgebra then (≺) is a transitive relation.

13



Proof By either of the compatibility conditions for D-coalgebras. □

Immediately from this and Lemma 2.4 for a KZ-monad, we have:

Lemma 3.8 The functor D preserves transitivity, because Dα ≤ DηX ≤ ηDX . □

Notation 3.9 If (≺) is transitive, the relations

y ⊆ z ≡ (∀x. x ≺ y ⇒ x ≺ z) and y ⪯ z ≡ (y ≺ z ∨ y = z)

satisfy y ⪯ z =⇒ y ⊆ z constructively and they are equivalent for classical ordinals. They
are candidates for the poset relation (≤) that make the coalgebra transitive and we will
study them in Sections 5 and 7 respectively.

Definition 3.10 A coalgebra homomorphism is a commutative square of the form

TY
Tf

> TX

Y

β

∧

f
> X

α

∧

In the case of T ≡ P : Set → Set, coalgebra homomorphisms are characterised as bisimu-
lations, but this is modified for D : Pos → Pos:

Lemma 3.11 Let (Y,≤Y ,≺Y ) and (X,≤X ,≺X) be D-coalgebras and f : Y → X a
function. Then f is a D-coalgebra homomorphism iff

∀yy′ :Y . y′ ≤Y y =⇒ fy′ ≤X fy
∀yy′ :Y . y′ ≺Y y =⇒ fy′ ≺X fy
∀x:X. ∀y :Y . x ≺X fy =⇒ ∃y′ :Y . x ≤X fy′ ∧ y′ ≺Y y,

where the last implication is reversible because of the other two and compatibility. If we
do make the third implication reversible then the second is redundant.

Proof The first condition says that f is a Pos-morphism.

Y
β

> DY ∃y′ .....................
≺Y

> y Y

X

f
∨ α

> DX

Df
∨

x
≤X

> fy′

f
∨

........ ≺X
> fy

f
∨

X

f
`

The square on the left commutes iff

Df(βy) ≡ {x | ∃y′. x ≤ fy′ ∧ y′ ≺ y}
and α(fy) ≡ {x | x ≺ fy}

14



are equal in DX. The inclusion Df(βy) ⊂ α(fy) is

∀xyy′. x ≤ fy′ ∧ y′ ≺ y =⇒ x ≺ fy,

which, with x ≡ fy′, entails the second condition, but they are equivalent because x ≤
fy′ ≺ fy ⇒ x ≺ fy by compatibility.

The other inclusion is the third condition. It is reversible because of the second condi-
tion and since (≤X) and (≺X) are compatible. □

Corollary 3.12 A subset inclusion Y ⊂ X is a homomorphism and
(a) in I iff: we can’t say anything useful;

(b) in R iff Y carries the restriction of (≤X) and (≺X) and also satisfies

∀x:X. ∀y :Y . x ≺ y =⇒ ∃y′ :Y . x ≤ y′ ≺ y,

i.e. a weak form of lower-closure with respect to (≺).

(c) in L if it is lower-closed with respect to both (≤) and (≺).

(d) Lemma 7.4 shows that homomorphisms between well founded D-coalgebras that carry
the (⪯) order are lower inclusions.

Proof Being in R means that (≤) is the same for X and Y .
Putting x ≡ fy′′ in the third condition in the Lemma gives

y′′ ≺X y =⇒ (∃y′. y′′ ≤X y′ ≺Y y) =⇒ (∃y′. y′′ ≤Y y′ ≺Y y) =⇒ y′′ ≺Y y,

by compatibility of (≤Y ) and (≺Y ), so the second condition is reversible and the (≺)
relations agree. The displayed condition restates the third condition of the Lemma in the
simplified notation. If f ∈ L then y′ is redundant in this condition. □

Notation 3.13 We write x ≡ ∅ for any element x of a coalgebra that has α(x) = ∅, so
there is no y ≺ x. Classically, any inhabited well founded relation has such an element,
which is unique by extensionality, but there need not be such a thing constructively1. In
our examples we will also adopt some other set-theoretic notation in an informal way.

Example 3.14 Any homomorphism preserves ∅ (put y ≡ ∅ in the third condition in
Lemma 3.11), but of course there are functions that preserve (≺) and (≤) but not ∅,
such as

• > •

•
1The object X ≡ {∅ | ξ}∪{{∅ | ξ}} is inhabited because {∅ | ξ} ∈ X with full truth, but the truth value

of “∅ ∈ X” is ξ ∨ ¬ξ. This is easy if you know how to manipulate such objects, but otherwise no amount
of explanation would help!
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where the vertical line indicates (≺). □

Corollary 3.15 Example 3.3 defines a full and faithful embedding of P-coalgebras in Set
into D-coalgebras in Pos:

(X,≺) > (X,=,≺).

Proof When (≤X) is equality, the conditions in the Lemma reduce to the characterisation
of P-coalgebra homomorphisms as bisimulations, where y′ ≺Y y is a strict “lifting” of
x ≺Y fy, i.e. with x = fy′. □

The following key examples show why the (≤) order and the interpolant in Corol-
lary 3.12(b) are so important to our account.

Example 3.16 Consider the function that assigns ordinal rank to sets (∈-structures),
starting with

{∅, {∅}} {{∅}}
f

> 2

{∅}
f

> 1

∅
f

> 0,

where the lines indicate the (≺) relation. Then 0 ≺ 2 = f{{∅}} does not lift because
∅ /∈ {{∅}}.

In order to make it a D-homomorphism, we need 0 ≤ 1 for the third condition in
Lemma 3.11, which is what lies behind our Definition 3.6 of a transitive coalgebra.

The map f is a split surjection, where the inclusion has 2 7→ {∅, {∅}}. The composite
of these is a non-identity idempotent D-endomorphism of the structure on the left. □

Notation 3.17 Since the various notions of ordinal coincide classically, in order to distin-
guish them we must introduce at least a soupçon of non-classical logic. For many purposes
it will suffice to use the three-valued logic of the presheaf topos Set→ (in which we mean
that Set itself is Boolean). Then Ω = {⊥, ξ,⊤} with a third proposition ξ that is neither
provable nor refutable, although (¬ξ) ⇔ ⊥ and (¬¬ξ) ⇔ ⊤.

Example 3.18 In DΩ, recall that “(⊥ ∈ U)” is a proposition, so it is an element of Ω,
and this might belong to V ⊂ Ω. Hence on DΩ we may define the binary relation

U ≺ V ≡ (⊥ ∈ U) ∈ V,

which is Lemma 3.4 applied to Example 3.5.
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Example 3.19 The map f : 3 ≡ {0, 1, 2} → DΩ by

0 7→ ∅, 1 7→ {∅}, 2 7→ Ω

is a homomorphism of D-coalgebras that is in R but not L. It is not a P-homomorphism.

Proof Consider x ≡ {∅ | ξ} and y ≡ 2 in Lemma 3.11, so x ⊆ {∅} ≡ f(1) ⊆ Ω ≡ f(2).
In the third condition there we have x ⊆ f(1) and 1 ≺ 2 but x is not the image of any
element of 3. Hence the interpolant is needed. □

Corollary 3.20 The “underlying P-coalgebra” operation, i.e. the assignment

(X,≤,≺) 7→ (X,≺) or (X,α) 7→ (X,α ; ϵ∗X),

where ϵ∗X was defined in Lemma 2.6, is not a functor. □

This is why we write (X,≤,≺) with the reflexive (poset) order first : it is a more
intimate part of the structure. There is a functor (X,≤,≺) 7→ (X,≤) from the coalgebra
to its underlying poset, but none to (X,≺). D-coalgebras are not P-coalgebras with an
additional order, but a unifying framework in which different structures are embedded.

Remark 3.21 These are not contrived examples.
We will exploit the difference between P- and D-coalgebra homomorphisms to em-

bed both sets (∈-structures) and ordinals (of various kinds) in the same general setting
of D-coalgebras. In many of these cases, the morphisms within the subcategory are P-
homomorphisms.

In this setting, the transitive closure and ordinal rank become reflections into subcat-
egories, i.e. left adjoints to their inclusions (Corollaries 6.15 and 6.16 and Section 7).

The universal properties make these examples the principal links between structures
that would elsewhere be put into separate categories. So we might imagine the subcate-
gories as islands in the sea of D-coalgebras and these examples as bridges amongst them.

Notation 3.22 The categories that we have so far are related by the diagram

(X,≤,≺) > (X,≤)

(X,=,≺) D-CoAlg > Pos

(X,≺)

∧

P-CoAlg

∧

> Set

∧

⊣
∨

where
� the rightward functors forget the coalgebra structure or associated relation, (≺);

� the downward one forgets the reflexive order, (≤); and

� the upward ones assign equality (=) for it and are full and faithful.
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These horizontal functors create colimits, which means that to compute a colimit of coal-
gebras we do it for the carriers and then use the unique structure that makes the diagram
commute. The same holds for inverse images of plain monos between P-coalgebras and also
(using [Tay23] and Lemma 2.19) for inverse images of L-maps between D-coalgebras. □

4 Well-foundedness

A well founded relation is one over which we may perform induction. This was abstracted
in [Tay99, Tay23] to a coalgebra for an endofunctor. The predicates may be represented
by a class of monos, so long as this is closed under the functor and inverse images. In this
section we characterise well-foundedness using R and L for the predicates, but I is not
suitable.

In fact these notions for Pos turn out to be the same as the ones for Set. The proof
makes use of the map ϵ∗X that we introduced in Notation 2.6.

Definition 4.1 A T -coalgebra α : X → TX is well founded if, for every mono i : U → X
in C, whenever the pullback K ↣ X of Ti against α factors through U ↣ X,

TU >
Ti

> TX

K

∧

> > U >
i

> X

α

∧

we must have i : U ∼= X. In fact, we ask this not for all (plain) monos, but for those
belonging to the chosen class of monos, here R or L.

Example 4.2 Well-foundedness for P-coalgebras in Set is the familiar induction scheme:

∀x. [∀y. y ≺ x⇒ ψy] =⇒ ψx

∀x. ψx

This is explained in [Tay96, Tay99, Tay23], but it is a special case of the ordered case:

Lemma 4.3 A D-coalgebra (X,≤,≺) in Pos is well founded for an R-predicate ϕ iff
≺ satisfies the induction scheme:

∀x. [∀z. z ≺ x⇒ ∃y. z ≤ y ≺ x ∧ ϕy] =⇒ ϕx

∀x. ϕx

Proof The complication arises from the action of the functor D on the map i : U ↣ X
(Definition 2.1(b)). Saying that i ∈ R means that U ⊂ X is an arbitrary subset equipped
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with the restriction of the order (≤) on X. However, a lower subset V of U need not be
lower in X, so it needs to be closed downwards. Therefore

DiV ≡ {y : X | ∃v. y ≤ v ∈ V }, whilst V = U ∩ DiV

since V is lower in U . Now we may form the pullbackK, where, for x : X and V ⊂↓ U ⊂ X,

(x, V ) ∈ K ≡ α(x) = DiV =⇒ V = α(x) ∩ U.

If V is given by the formula on the right then DiV ⊂ α(x) since α(x) is lower. Conversely

α(x) ⊂ DiV ≡ ∀z. z ≺ x⇒ ∃y ∈ U. z ≤ y ≺ x,

or using the predicate ϕ instead of the subset U ,

∀z. z ≺ x⇒ ∃y. z ≤ y ≺ x ∧ ϕ(y).

This characterises K, or rather ∃V. (x, V ) ∈ K, which is the induction hypothesis. The
containment K ↣ U is then the stated induction premise. □

Lemma 4.4 A D-coalgebra (X,≤,≺) is well founded for an L-predicate ϕ iff (≺) satisfies
the familiar induction scheme,

∀x. [∀z. z ≺ x⇒ ϕz] =⇒ ϕx

∀x. ϕx

except that it only applies to lower subsets or predicates.

Proof If ϕ is an L-predicate, the complication in the previous result is redundant. □

We temporarily call these schemes P-, R- and L-induction respectively and now show
that they are equivalent. We refer to the sub-formula in square brackets in each of them as
the induction hypothesis; it corresponds to the object K in the categorical definition.
The upper line of each scheme is called the induction premise and corresponds to the
property that K be contained in U .

Lemma 4.5 P-induction entails R-induction.

Proof The P-induction hypothesis entails the one for R for the same predicate (with
y ≡ z):

[∀z ≺ x. ϕz] =⇒ [∀z ≺ x. ∃y. z ≤ y ≺ x ∧ ϕy].

Since implication is contravariant on the left, it follows that the R-premise entails the
P-premise. Similarly, P-induction entails R-induction. □

Lemma 4.6 R-induction entails L-induction.
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Proof In the case of an L- (lower) predicate, the two versions of the induction hypothesis
are equivalent. Hence so are the premises and the induction schemes. □

Lemma 4.7 P- and L-induction are equivalent.

Proof They take the same form, except that L-induction only applies to lower predicates,
which means that P-induction entails L-induction.

For the converse, let ψ be a general predicate that satisfies the premise for P-induction,

∀x. [∀y. y ≺ x⇒ ψy] =⇒ ψx.

This says that ∀x. ϕx⇒ ψx, where

ϕx ≡ (∀z. z ≺ x =⇒ ψz).

Then ϕ an L-predicate, since, by compatibility (z ≺ y ≤ x⇒ z ≺ x),

y ≤ x ∧ ϕx ≡ y ≤ x ∧ (∀z. z ≺ x⇒ ψz) =⇒ (∀z. z ≺ y ⇒ ψz) ≡ ϕy.

It satisfies the premise for L-induction because

[∀y. y ≺ x⇒ ϕy] =⇒ [∀y. y ≺ x⇒ ψy] ≡ ϕx.

Hence ∀x. ϕx by L-induction, so ∀x. ψx. □

Now we repeat these arguments in diagrammatic form, in order to help us see how they
might be applied to other categories.

Lemma 4.8 P-induction entails R-induction: Let α : X → DX be a D-coalgebra (in
Pos) such that (α ; ϵ∗X) : X → DX → PX is a well founded P-coalgebra (in Set). Then
α is well-founded with respect to R-predicates.

PU >
Pi

> PX

DU >
Di

>

DϵU

<<

∧

DX <
id

DϵX

<<

DX

ϵ∗X
∧

∧

K > > X

α

∧

H

∧

> >
<....
....
....
....
....
....
...

U >
i

> X

α

∧

==
==
==
==
==
=
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Proof Lemma 2.6 defined ϵ∗X . Suppose that (i : U ↣ X) ∈ R satisfies the induction
premise for the D-coalgebra α. That is, we have a broken pullback in Pos, including
H ↣ U , as the front face of the cube.

Form the corresponding P-coalgebra (α ; ϵ∗X) and the P-induction hypothesis K, which
is the pullback at the back. Whilst this diagram is â priori in Set, all the maps are
monotone and Pos → Set creates pullbacks (Proposition 2.11), so K is also the pullback
in Pos.

The top (rhomboidal) face of the cube and adjacent triangle commute by Notation 2.6
and Lemma 2.7.

Then K → H mediates to the pullback H, making K a broken pullback for the P-
coalgebra. By P-induction, i : U ∼= X in Set. Since it was given to be in R, this is also
an isomorphism in Pos. □

Lemma 4.9 R-induction entails L-induction (Lemma 4.6). □

Lemma 4.10 L-induction entails P-induction: Let α : X → DX be D-coalgebra in Pos
that is well founded with respect to L-predicates. Then (α ; ϵ∗X) : X → DX → PX is a
well founded P-coalgebra in Set.

PK >
Pj

> PU >
Pi

> PX

DK

ϵ∗K
∧

∧

>
D(j ; i)

>

∧

DX

ϵ∗X
∧

∧

H

∧

>..............> K >
j

> U >
i

> X

α

∧

Proof The diagram is in Set. Let i : U ↣ X be any subset (corresponding to ψ) that
satisfies the broken pullback (induction premise) on the right, from K to PX.

K is now the ≺-lower closure of U , corresponding to ϕ in Lemma 4.7.
Then (Pi : PU ↣ PX) ∈ L by Lemma 2.10 and (K ↣ X) ∈ L by Lemma 2.19.
Form the L-induction hypothesis H for the predicate K ↣ X on the D-coalgebra

(X,α), which is the lower pullback rectangle H.
Since (K ↣ X) ∈ L, the wide upper rectangle commutes by Lemma 2.13.
(In fact it is a pullback, but we don’t need this. On the other hand, such a square

need not even commute given just an R-map, so we cannot insert DU in the middle of the
diagram, cf. Example 2.14.)

It follows that H ↣ X factors through K ↣ X. This is the L-induction premise, so
K ∼= X by L-induction and U ∼= X by cancellation. □
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Proposition 4.11 Let α : X → DX be a D-coalgebra in Pos corresponding to binary
relations (X,≤,≺). Then the following are equivalent:
(a) (X,α) is well founded as a D-coalgebra in Pos with respect to the class R as predicates;

(b) (X,α) is well founded as a D-coalgebra in Pos with respect to the class L as predicates;

(c) (X,α ; ϵ∗X) is well founded as a P-coalgebra in Set using 1–1 functions as predicates;
and

(d) (X,≺) is a well founded relation in the traditional sense. □

At this point we defer to the “textbook” [Tay23] for the proof of the recursion theorems
that may be deduced from well founded induction. The simpler of these is that there is a
unique coalgebra-to-algebra homomorphism to any P- or D-algebra; from this we will de-
duce transfinite recursion (with successors and unions) in Section 10. A more complicated
form of well founded recursion is the behaviour of extensional well founded coalgebras that
we study in the next section.

Remark 4.12 The proof of these theorems relies on some other properties of the classes
of monos that are used for predicates and initial segments. These are easily verified for
our R and L, but for the record they are:
(a) all isomorphisms are “mono”;

(b) “monos” satisfy the cancellation property ∀fg. f ; i = g ; i =⇒ f = g;

(c) the composite of two “monos” is “mono”;

(d) the pullback of any “mono” along any map exists and is “mono” (Lemmas 2.12 and 2.19);

(e) all maps ∅ → X are “mono”;

(f) filtered colimits of monos are unions (Definition 2.21);

(g) “well powered”: the “monos” into any object (X,≤) form a set, in fact a subset of
P(X); and

(h) the functor D preserves “monos” (Lemmas 2.15 and 2.16).

Notation 4.13 We now write P- and D-WfCoAlg for the categories of well founded
P- and D-coalgebras, since the forms with R and L are the same. Adding them to the
diagram in Notation 3.22, we have

D-WfCoAlg
> >

⊥
<<

D-CoAlg > Pos

P-WfCoAlg
∧

∧

> >

⊥
<<

P-CoAlg
∧

∧

> Set
∧

∧

⊣
∨

The rightward functors create colimits and also inverse images of 1–1 functions and L-maps
respectively [Tay23, Section 5]. Proposition 6.10 below gives the right adjoint, namely the
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largest well founded part. Therefore, since the remainder of this paper will be about
constructing left adjoints, given well founded coalgebras, we will take them as our baseline
from now on.

Although the flexibility that [Tay23] provided by using different classes of “mono” in
the underlying category has had no real impact on the notion of well-foundedness, we will
now see a very different story for the notion of extensionality.

5 Extensionality: slim and plump ordinals

Recall that the axiom of extensionality is traditionally stated as

(∀z. z ≺ x ⇔ z ≺ y) =⇒ x = y

or αx ≡ {z | z ≺ x} = {z | z ≺ y} ≡ αy =⇒ x = y

so the structure map of the coalgebra PX <
α

< X is 1–1. When we transfer this idea from
sets to posets there are other options for “monos”:

Definition 5.1 A D-coalgebra α : X → DX or (X,≤,≺) is I-, R- or L-extensional if
α ∈ I, R or L, respectively. As before, we will say P-extensional for the corresponding
idea in Set.

I-extensionality amounts to extensionality of the relation (≺) in the traditional sense.
However, we do not consider it in this section because the functor D does not preserve this
class and the next result fails, but we will need to use it in Section 7. We instead show
that R- and L-extensional well founded coalgebras share many properties of set theory
(Remark 1.3).

Theorem 5.2 In the categories of P-, R- or L-extensional well founded coalgebras and
homomorphisms,
(a) there is at most one map between any two objects, so these categories are preorders;

and

(b) all of these maps belong to the chosen class of monos.

(c) The preorder is a least member (∅),
(d) binary meets and

(e) directed unions [Tay23, Section 7]. □

Example 5.3 The first part fails for “plain” (I-)extensionality.
Proof In Example 3.16, the map f is a homomorphism of I-extensional coalgebras but
it is a surjection and not even a plain mono, whilst its composite with the inclusion is a
non-identity idempotent D-homomorphism. □
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We devote this section to characterising R- and L-extensional D-coalgebras, which we
will will call slim and plump ordinals respectively.

R-extensionality: slim ordinals

Lemma 5.4 A coalgebra (X,α) corresponding to (X,≤,≺) is R-extensional iff

∀xy.
(
∀z. z ≺ x =⇒ z ≺ y

)
⇐⇒ (x ≤ y).

Proof The left hand side is α(y) ⊂ α(z), the reverse implication is monotonicity of α
(part of compatibility, Proposition 3.2) and the forward one says that α ∈ R. □

Notation 3.9 introduced the symbol (⊆) for this relation, but it must satisfy another
condition in order to define a D-coalgebra:

Lemma 5.5 The relations (≺) and (⊆) are compatible iff (≺) is extensional (in the usual
sense) and meta-transitive , i.e.

∀w, x, y. (∀z. z ≺ y ⇒ z ≺ x) ∧ (x ≺ w) =⇒ (y ≺ w).

Proof The relation (⊆) is a preorder (reflexive and transitive) since (⇒) is. It is antisym-
metric by (traditional) extensionality and it satisfies the second compatibility condition for
a coalgebra. Meta-transitivity re-states the first condition for this. □

The reason for the name is the next result.

Lemma 5.6 If (≺) is a well founded meta-transitive relation then it is transitive in the
usual sense and (X,⊆,≺) is a transitive D-coalgebra (Definition 3.6).

Proof Consider the predicate ϕ on X that is defined by

ϕ(x) ≡ (∀y. y ≺ x⇒ y ⊆ x) ≡ (∀yz. z ≺ y ≺ x⇒ z ≺ x).

Then (
∀y. y ≺ x⇒ ϕ(y)

)
≡

(
∀zy. z ≺ y ≺ x⇒ z ⊆ y ≺ x

)
=⇒

(
∀zy. z ≺ y ≺ x⇒ z ≺ x

)
≡ ϕ(x),

so ∀x. ϕ(x) by induction, but this states transitivity in both senses. □

Remark 5.7 The predicate ϕ(x) says that x represents a transitive set in the restricted
sense that is used in set theory, where the usual sense is called hereditarily transitive. The
well founded induction that we have just used may be seen as an example of Pataraia
induction, as explained in [Tay23, §2], namely that the initial segments of (X,≺) are all
transitive in the weaker sense, whence so is the whole structure.
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Example 5.8 Let ξ ∈ Ω be an undecidable truth value (Notation 3.17). Then

{∅, {∅}}

{∅ | ξ} ⊆ {∅}

∅

is a transitive relation but not meta-transitive. The lines indicate (≺), except that the
statement ∅ ≺ {∅ | ξ} is not “completely” true, but has truth-value ξ. Robin Grayson
observed that transitivity does not imply meta-transitivity [Gra77].

If we added {∅ | ξ} as another member of the upper element, it would become meta-
transitive. Example 8.11 is a more elaborate version of this. □

Definition 5.9 A slim ordinal is an R-extensional well founded D-coalgebra, or equiv-
alently a carrier with a meta-transitive extensional well founded relation (≺), along with
(⊆) defined from it as above.

The Example suggests that meta-transitivity might be more natural than the usual
notion. We have arrived at slim ordinals by putting together some commonplace categorical
notions.

By Theorem 5.2, slim ordinals form a preorder, but Example 3.19 shows that their (D-)
homomorphisms need not be P-coalgebra homomorphisms.

L-extensionality: plump ordinals

The characterisation of R-extensionality using meta-transitivity suggests that the relation
(≤) is redundant, but it is misleading to regard this as enough to model subsets:

Definition 5.10 A subset U ⊂ X of a coalgebra is called representable if ∃x. U = α(x),
where extensionality says that x is unique. By definition any representable subset is (≺)-
bounded above and by compatibility it must be (≤)-lower:

∃x:X. ∀u:X. u ∈ U =⇒ u ≺ x and ∀c, u:X. c ≤ u ∈ U =⇒ c ∈ U.

Lemma 5.11 A D-algebra (X,α) or (X,≤,≺) is L-extensional iff every (≺)-bounded
(≤)-lower subset U ⊂↓ α(x) ⊂↓ X is represented as U = α(y) for some unique y ∈ X, with

y ≤ x and ∀u:X. u ∈ U ⇐⇒ u ≺ y.

Proof The conditions make U ∈ D(X), so the property re-states that α : X → D(X) is
a lower inclusion. □
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Definition 5.12 A plump ordinal is an L-extensional well founded D-coalgebra. All
plump ordinals are slim, so they form a preorder, but now all D-homomorphisms between
plump ordinals are P-homomorphisms and in the class L. (We could deduce this directly
from Theorem 5.2.)

Lemma 5.13 The functor D preserves slim and plump ordinals.

Proof D preservesR and L by Lemmas 2.15f and Lemma 3.4 gave the formulae for (≺DX

). From this,
V ⊆ U ⇐⇒ ∀v ∈ V . ∃u ∈ U. v ⊆ u,

so V ⊂ U ⇒ V ⊆ U easily. The converse also holds when the given ordinal is slim or
plump, because then U is (⊆)-lower. □

Examples 5.14 The following are plump ordinals:
(a) ∅, 1 ≡ D∅ and any subset of 1, with the trivial relations;

(b) Ω ≡ D1, Example 3.5;

(c) any (⇒)-lower subset of Ω, with the same relations;

(d)D2 is plump with, for U, V ⊂↓ {⊥,⊤},

V ≺ U ≡ U = {⊥,⊤} ∧ V ⊂ {⊥}.

(e) In DΩ (Example 3.18), (≺) is meta-transitive (since V is lower) and all subsets of {∅}
are represented, by the corresponding element of Ω. Therefore DΩ is L-extensional.

Examples 5.15
(a) Let ⊥ ≺ ⊤ and ⊥ ≤ ⊤ in 2 ≡ {⊥,⊤}. This is slim but not plump, because the

sub-singleton {⊥ | ξ} ⊂ Ω is not representable.

(b) The two-element subset {⊥,⊤} ⊂ (Ω,⇒) is a (≺)-lower subset but is not (≤)-lower,
for the same reason. Then Ω is the plump rank of the thin ordinal 2.

(c) (Michael Shulman) In X ≡ {ξ,⊤} ⊂ Ω,

{ϕ : X | ϕ ≺ ξ} = ∅ = {ϕ : X | ϕ ≺ ⊤},

because ⊥ /∈ X, so X is not extensional, even in the traditional sense. □

The preorder of all plump ordinals

Proposition 5.16 The slice preorder Plump/X over any plump ordinal X is equivalent to
the CCD lattice DX. We have no similarly simple result for Slim.
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Proof By Theorem 5.2, every homomorphism Y → X of plump ordinals is a lower
inclusion (in L), with respect to both (⊆) and (≺), by Corollary 3.12(c). Conversely, if
U ⊂↓ X then

∀x, u:X. (x ≺ u ∈ U) =⇒ (x ⊆ u ∈ U) =⇒ (x ∈ U),

using Lemma 5.6. Hence the inclusion is a homomorphism by Corollary 3.12(c) and U is
a plump ordinal by Lemma 5.11.

Moreover, any homomorphism Y → Z, where Y and Z themselves have homomor-
phisms to X that necessarily form a commutative triangle, amounts to an ordinary inclu-
sion of lower subsets Y ⊂↓ Z ⊂↓ X. That is, the (degenerate) categorical structure of
Plump/X agrees with the poset order (⊆) on D(X). □

Remark 5.17 Plump is a “large” or “class” preorder, cf. Remark 1.6. However, any
single plump ordinal X is “small” — it is a coalgebra structure on an object of a given
elementary topos. Then Plump/X ≃ DX is also an object of that topos, namely a retract
of the powerset of X, so it too is “small”. Since X was arbitrary, this construction covers
the whole large preorder by small posets.

For this to make sense, we must consider change of base: when X is replaced by Y
along a homomorphism i : X → Y , in which i must belong to L, the posets are embedded
by D(i) : D(X) ↣ D(Y ), which is also in L. Using these maps as the arrows in the
diagram, we have an (illegitimate) colimit or union,

Plump ≃ colim
X∈Plump

Plump/X ≃
⋃

X∈Plump

D(X) ≃
⋃

X∈Plump

X.

The additional equivalence on the right follows from the fact that ifX is plump, so is D(X),
whence the left hand side is contained in the right, and conversely any α : X ↣ D(X) is
a change of base. □

Notation 5.18 Here is a new summary of the categories, cf. Notations 3.22 and 4.13.
We also note that, in the literature, ordinals are often compared either

(a) as initial segments of each other, forming a preorder ; or

(b) with order-preserving functions that may duplicate or omit values, forming a category.

Our formulation using D-coalgebras makes categorical sense of these two ad hoc formula-
tions: initial segments are coalgebra homomorphisms belonging to D-CoAlg, whilst the
order-preserving functions forget the coalgebra structure and just use the morphisms from
the underlying category Pos.
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We will use Sans Serif for the preorders and Bold for the categories:

Plump > Plump

Slim
∨

∨

> Slim
∨

∨

D-TrWfCoAlg
∨

∨

> > D-WfCoAlg > > D-CoAlg > Pos
∨

∨

where > > denotes a full and faithful functor and TrWfCoAlg consists of the transitive
well founded coalgebras (Definition 3.6 and Section 7.).

The finite objects in Plump or Slim form the simplex category ∆, functors out of
which are fundamental in homotopy theory, but we leave that subject to others.

Remark 5.19 We can similarly write Ens and Ens for the preorder and category of
extensional well founded P-coalgebras with homomorphisms or plain functions. Ens is the
class preorder of “transitive sets” and set-theoretic inclusions (Remark 1.3). Ens is the
full subcategory of a topos consisting of those objects that can carry such a structure, but
it has fewer categorical properties than you might imagine, cf. Example 5.15(c), because
Zermelo set theory does not work that way.

The next question is whether the inclusions of Slim and Plump have left adjoints. We
consider yet another kind of ordinal in Section 7 and show how fast plump ordinals grow
in Section 11.

6 Extensional reflection: Mostowski and rank

There are constructions in set theory that turn any well founded relation into
� an extensional one (a “set”), known as Mostowski’s theorem; or

� an extensional transitive one (an “ordinal”), known as the rank,
which are traditionally proved using von Neumann’s recursion theorem (and the axiom-
scheme of Replacement, Remark 1.4).

In this this section we will show that they are reflections (left adjoints to forgetful func-
tors) that may be defined using the general categorical tool of factorisation of morphisms.

Factorisation in Set and Pos

We have used “monos” to define extensionality and generalised them to the classes I, R
and L in the previous section, so now we introduce the corresponding “epis”.

28



Definition 6.1 Two maps e : Y >> Q and m : U ⊂ > X in any category are called
orthogonal , written e ⊥ m, if, for any two maps f and g such that the square commutes,
there is a unique morphism h : Q→ U making the two triangles commute:

Y
e

>> Q

U

f

∨
⊂

m
>

h

<...
....
....
....
....
....
....
....
..

X

g

∨

Then a factorisation system is a pair (E ,M) of classes of morphisms such that
(a) the classes E and M each contain all isomorphisms;

(b) they are each closed under composition;

(c) e ⊥ m for every e ∈ E and m ∈ M and

(d) every morphism k : Y → X can be expressed as k = e ;m with e ∈ E and m ∈ M.

The two classes determine one another via orthogonality and we will deal with several
factorisation systems, so, in order to avoid introducing multiple new names, we will write
⊥M instead of E for the orthogonal class to M. Since we are transferring intuitions, we
will call E- or ⊥M-maps “epis”, so we say “plain epi” for those that have the standard
cancellation property (e ; f = e ; g ⇒ f = g), just as we have done for plain monos.

Proposition 6.2 Onto and 1–1 functions define a factorisation system in Set.

Proof The factorisation of the function k : Y → X is via

Q ≡ {ky | y : Y } ∼= {x : X | ∃y :Y . ky = x} ≡ U.

For orthogonality in the diagram above, let q ∈ Q. Since e is onto there is some y ∈ Y with
q = ey and we put u ≡ fy, so mu = mfy = gey = gq. If also q = ey′ then mu = gq = mu′,
so u = u′ since m is 1–1. Hence if we put hy ≡ u then the triangles commute and this is
the only way of doing it. □

The next three results show that the classes that we introduced in Definition 2.8 are
parts of factorisation systems:

Proposition 6.3 The class I ⊂ Pos of plain monos (functions that are 1–1 on points
and preserve but don’t necessarily reflect order) belongs to a factorisation system where
⊥I consists of the regular epis, which are onto functions for which the order on the target
is the transitive closure of the images of instances of the order on the source. The forgetful
functor Pos → Set takes this system to the previous one.

Proof For the underlying sets, ⊥I and I agree with onto and 1–1 functions respectively,
so on points the factorisation Y ↠ Q↣ X and orthogonality are the same as before. Each
of the classes contains all isomorphisms and is closed under composition.
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The order on the intermediate object Q is the transitive closure of instances like this:

q′ = ey′ ≤Q ey = q where y′ ≤Y y.

Therefore, in order to show that h : Q → U is monotone it suffices to consider these
situations, for which

hq′ ≡ fy′ ≤U fy ≡ hq. □

Remember that D does not preserve the class I.

Proposition 6.4 The class R ⊂ Pos of regular monos (1–1 functions that preserve and
reflect order) belongs to a factorisation system where ⊥R consists of plain epis (monotone
functions that are onto on points). The forgetful functor also takes this system to the one
for Set.

Proof Now the order on the intermediate object U ⊂ X is the restriction of that on the
target. For orthogonality, if

q′ = ey′ ≤Q ey = q, u = hq = fy and u′ = hq′ = fy′

then mu′ = mfy′ = gey′ = gq′ ≤X gq = gey = mfy = mu,

whence u′ ≤U u since m reflects order. □

Proposition 6.5 The class L ⊂ Pos of lower inclusions belongs to a factorisation system
where ⊥L consists of cofinal functions : e : Y → Q such that ∀q :Q. ∃y :Y . q ≤ ey.
Beware that these need not be onto or have the cancellation property for plain epis.

Proof Now the factorisation of k : Y → X is via the larger subobject

U ≡ {x ∈ X | ∃y :Y . x ≤X ky} ⊂↓ X.

The values and monotonicity of h are as for R, but we must still check that h is defined
on all of Q. Given q ∈ Q, since e is cofinal there is some y ∈ Y with q ≤Q ey. Then
gq ≤X gey = mfy ∈ U ⊂↓ X, so gq ∈ U and so hq ≡ gq is well defined. □

Lemma 6.6 Factorisation in Set or using (⊥R,R) or (⊥L,L) in Pos lifts to coalgebra
homomorphisms.

TY
Te

> TU >
Ti

> TX

Y

β

∧

e
>> U

γ

∧.........
>

i
> X

α

∧

Proof Since the functor preserves monos, we may use the orthogonality e ⊥ Ti to define
the structure map γ : U → TU and make the squares commute. The other map, Te need
not be epi. □
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Enforcing extensionality

Now we apply the general theory from [Tay23, Section 8] to factorising the structure maps
of P- and D-coalgebras with respect to these systems. The first result says that epis
preserve well-foundedness (cf. Corollary 8.4):

Lemma 6.7 Let (E ,M) be a factorisation system such that D preserves M. Let

(Y,≤Y ,≺Y )
e
▷▷ (Q,≤Q,≺Q)

be a homomorphism in E , where Y is well founded with respect to M as a class of predi-
cates. (The map e need not be onto or plain epi.) Then Q is also well founded. □

Corollaries 6.8 This applies directly to
(a) any onto homomorphism from a well founded P-coalgebra in Set, i.e. a set with a well

founded relation in the traditional sense;

(b) any ⊥R-homomorphism (plain epi) out of a D-coalgebra that is well founded with
respect to predicates in R; and

(c) any ⊥L-homomorphism (cofinal) out of a D-coalgebra that is well founded with respect
to predicates in L. □

In fact, we saw in Section 4 that all of these notions of well-foundedness coincide.
Therefore, although there is no such notion for the class I because D does not preserve it,
there is still a version for (⊥I, I) as a special case of (b), because ⊥I ⊂ ⊥R:

Corollary 6.9 The Lemma also applies to any homomorphism whose underlying map is
in ⊥I, out of a D-coalgebra that is well founded in the traditional sense. □

The first consequence of this in [Tay23, Section 8], for either T ≡ P or D, was this:

Proposition 6.10 The inclusion T -WfCoAlg ↣ T -CoAlg has a right adjoint, given by
the largest well founded initial segment of any coalgebra. □

However, the interesting application uses the “epi” that is given by factorising the
structure map of the coalgebra:

Construction 6.11 The successor quotient (C, γ) of any coalgebra (B, β) is given by
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factorising its structure map β:

TTB

TC

Ti
◁

TB

Tβ

a

Te
▷

Tf
▷ TK

Tg
...............................▷

C

γ

a

i
◁

⊃

B

β

a

f
▷

e
▷▷

K

κ

∪

a

g
..................................▷

We define γ ≡ i ; Te but do not assume that Te ∈ E or Ti ∈ M. Then
(a) both e and i are homomorphisms;

(b) if B is well founded then so is C;

(c) e : B ∼= C iff (B, β) is extensional; and

(d) any homomorphism f : B → K to an extensional coalgebra factors uniquely through C.
□

We can impose extensionality on a coalgebra by iterating this construction, subject to
several conditions on the factorisation system. Firstly, the co-slice category (Y, α)/⊥M of
epis out of an object must be equivalent to an ipo, for which the properties in the next
result are needed. The notion of being well co-powered is the analogue for outgoing epis
of well powered for incoming monos (Remark 4.12(g)).

Lemma 6.12 Onto functions in Set and ⊥I and ⊥R in Pos satisfy the cancellation
property for epis and are well co-powered, whilst ⊥L ⊂ Pos fails both conditions.

Proof For sets, surjective functions out of Y are in bijection with equivalence relations
on Y and therefore contained in P(Y × Y ). The result for ⊥I ⊂ Pos follows from this.

For ⊥R, there may be additional instances of (≤) in the target, but we may represent
these by their inverse images in Y , which form a preorder relation and so an element of
P(Y × Y ).

On the other hand, there are at least ⊥L-maps of the form e : Y → X + Y for any
set X, however large, with ∀yx. x ≤X y, so they cannot be encoded as elements of a single
set. Nor can e control maps out of X. □

The second and more subtle step is that the ipo must be cut down further in order to
ensure that it has a greatest element that is the unique fixed point of the construction.
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The sense in which the following property is analogous to well-foundedness and enables
the use of Pataraia’s fixed point theorem is explored in [Tay23, §§ 2,8].

Definition 6.13 We call a cofinal homomorphism g : A ▷▷ B well projected if it
factors uniquely into every a cofinal homomorphism f : A ▷▷ E with E extensional.

Tf

TA
Tg

▷ TB ................▷ TE

`

A

α

a

g
▷▷ B

β

a

....................▷ E

ϵ

∪

a

f

a
a

As usual, this definition is parametric in the functor T and factorisation system (E ,M).
Where these satisfy Theorem 5.2, so all homomorphisms are in M, all cofinal homomor-
phisms are well projected. This is the case in Set and for ⊥R-maps in Pos.

However, Example 3.16 is a D-homomorphism between well founded I-extensional co-
algebra that is not in I, indeed it’s in ⊥I. Therefore, in order to construct the I-extensional
reflection, which we will need in the next section, we do have to restrict to well projected
⊥I-maps.

When these conditions are satisfied, [Tay23, Section 8] obtained:

Proposition 6.14 Amongst well founded P- orD-coalgebras, the P-, I- andR-extensional
ones form reflective subcategories and the unit is “epi” in the corresponding senses. □

Using Corollaries 6.8(a,b) we may interpret this to yield two familiar constructions in
set theory:

Corollary 6.15 Applied to well founded relations or P-coalgebras in Set, this is the
extensional quotient described in Remark 1.4.

P-WfCoAlg

Mostowski
>>

⊥
< <

Ens

The unit is an onto P-coalgebra homomorphism. □

Since we now know about meta-transitive extensional well founded relations, we tem-
porarily identify them with the classical ordinals and construct the slim rank , as another
example of the extensional reflection. It also illustrates how the phenomena of interest are
subcategories that are like “islands the sea” of general D-coalgebras (Remark 3.21).
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Corollary 6.16 The (slim) ordinal rank imposes R-extensionality on well founded D-
coalgebras:

(X,≺X) > (X,=,≺X)

Ens > > P-WfCoAlg > > D-WfCoAlg

slim rank
>>

⊥
< <

Slim

(Y,⊆,≺Y ) < (Y,≺Y )

The unit is a D-coalgebra homomorphism in ⊥R, i.e. surjective on points.

Proof The right-hand part of this diagram does the main work, for general well founded
D-coalgebras. Therefore, to construct the traditional rank of an (extensional) well founded
relation (P-coalgebra), we first embed that using the discrete order (Corollary 3.15) and
then reflect into the subcategory of slim ordinals that are embedded using (⊆) (Defini-
tion 5.9). The D-coalgebra structure, in particular the reflexive relation, is essential to
formulating the rank as a left adjoint, because otherwise there is no forgetful functor to
serve as the right one. □

Because of the failure of Lemma 6.12 for ⊥L, the plump rank cannot be constructed in
the logic of an elementary topos or Zermelo’s original set theory, as we will see in Section 11.
However, we may already have a bound:

Lemma 6.17 For any plump ordinal X,

WfCoAlg/X
>>

⊥
< <

Plump/X ≃ D(X)

Proof Factorise Z ▷▷ Y ⊂ ▷ X. □

We saw that R- and L-extensionality entail transitivity, but this is not so for I-
extensionality, which is just the usual notion. So we now turn to imposing transitivity
along with I-extensionality, in the next section.
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7 Transitivity

We have now seen how certain native ideas of category theory reproduce several traditional
notions from set theory, in particular sets, ordinals, the inclusion relation and the quotients
that yield Mostowski’s construction and ordinal rank. In fact we have found two forms of
“ordinal” (slim and plump ones), simply by varying what we mean by a “mono” between
posets. However, whilst both of these are classically equivalent to the traditional notion,
neither of them captures the most widely cited constructive definition (Remark 1.1), so we
will now try to adapt the pattern to that.

Unlike in the cases of R- and L-extensionality that entailed transitivity directly, we will
unfortunately need to consider I-extensionality separately. For this we have the orphan
case of Proposition 6.14, which will provide an arena for this section.

Corollary 7.1 In the category of well founded D-coalgebras, the I-extensional ones also
form a reflective preorder,

D-WfCoAlg
>>

⊥
< <

D-ExtTrWfCoAlg

where the unit is an ⊥I homomorphism of D-coalgebras. However, Example 3.16 shows
that the maps in D-ExtTrWfCoAlg need not be 1–1. □

7.1 Thin order

From this general setting, we s

Definition 7.2 A thin ordinal (X,≺) is a set with a transitive extensional well founded
relation, where all of these words are understood in the standard senses.

It turns out that we will need to consider three different poset orders on a thin ordinal.
Instead of adopting one of these and the corresponding homomorphisms by fiat, we will
try to allow the category theory to lead us. Even so, the first construction still looks like
a piece of classical recidivism:

Lemma 7.3 Let (X,≺) be a set with an acyclic binary relation, (≺≺) its transitive closure
and (⪯) its reflexive–transitive closure. Then (X,⪯,≺≺) is a transitive D-coalgebra.

We call (⪯) the thin order .

Proof Since (≺) is acyclic, (≺≺) and (⪯) are antisymmetric, so (X,⪯) is a poset. The
compatibility and transitivity conditions for coalgebras are easy.

Recall from its classical formulation using “infinite descent” that any well founded
relation is acyclic; this remains so constructively (at least when the predicates form full
higher order logic), whilst it also easily follows from extensionality. In the absence of those
properties, the cycles define an equivalence relation, by which we could form the quotient
to make this construction more general, but there is no need for that complication. □
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Our defence that this is structurally motivated is the following result about coalgebra
homomorphisms, which repairs Example 3.16:

Lemma 7.4 Let f : (Y,≤Y ,≺Y ) → (X,⪯X ,≺X) be a D-coalgebra homomorphism, where
(≺Y ) is well founded, (≺X) and (≺Y ) are transitive in the traditional sense and (⪯X) is the
reflexive closure of (≺X). Then f : (X,≺Y ) → (Y,≺X) is a P-coalgebra homomorphism.

This does not assume extensionality.

Proof Recall from Lemma 3.11 that a D-homomorphism f preserves both relations and

x ≺X fy ⇐⇒ (∃y′′. x ⪯X fy′′ ∧ y′′ ≺Y y)

⇐⇒ (∃y′′. x = fy′′ ∧ y′′ ≺Y y) ∨ (∃y′. x ≺X fy′ ∧ y′ ≺Y y),

where we want to show that the second disjunct is redundant.
Consider the predicate ϕx on Y defined by

ϕxy
′ ≡ (x ≺X fy′ =⇒ ∃y′′. x = fy′′ ∧ y′′ ≺Y y′).

In order to prove ∀y. ϕxy by induction, suppose that ∀y′. y′ ≺Y y =⇒ ϕxy
′. In the disjunc-

tive formula for x ≺X fy above, the first case is already

∃y′′. x = fy′′ ∧ y′′ ≺Y y.

The second, together with the induction hypothesis, give

∃y′y′′. x = fy′′ ∧ y′′ ≺Y y′ ≺Y y,

so y′′ ≺Y y by transitivity. In both cases we have ϕxy.
Hence ∀xy. ϕxy, which is the third condition for a P-coalgebra homomorphism. □
Therefore we obtain equivalent categories whether we treat thin ordinals as P-coalgebras

or as D-coalgebras with either the discrete (=) or thin (⪯) poset orders. We cannot use
(⊆) in this role because in Example 5.8 it is not compatible.

Corollary 7.5 Thin ordinals form a full sub-preorder Thin > > Ens. □

On the other hand, the purpose of considering coalgebras over posets was to give
ordinals a meaningful poset order.

However, morphisms of thin ordinals are essentially instances of (⊆). We will also see
in Lemma 9.13 that their binary joins also have to be defined using (⊆) and not (⪯).

Corollary 7.6 Even though thin ordinals are not L-extensional and the functor D does
not preserve them, their homomorphisms are L-maps. Hence there is a full embedding

Thin > > D-TrWfCoAlg defined by (X,≺) > (X,⪯,≺).
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Proof Let f : (Y,⪯Y ,≺Y ) → (X,⪯X ,≺X) be a D-coalgebra homomorphism. By the
previous lemma, f : (Y,≺Y ) → (X,≺X) is a P-coalgebra homomorphism.

Since thin ordinals are extensional P-coalgebras, their homomorphisms are 1–1 and
satisfy

x ≺X fy =⇒ ∃!y′. x = fy′ ∧ y′ ≺Y y,

making them (≺)-lower inclusions. Being (⪯)-lower follows easily from this. □

Corollary 7.7 The slice preorder Thin/X over any thin ordinal X is equivalent to the
CCD lattice DX.

Proof By a similar argument to Proposition 5.16. □

Remark 7.8 As in Remark 5.17 we then have

Thin ≃ colim
X∈Thin

Thin/X ≃
⋃

X∈Thin

D(X),

where D(X) carries its usual (⊆) order, not (⪯). However, we do not have the further
equivalence with

⋃
X, as we did in the plump case. This is because D does not preserve

thin ordinals, so the colimits are over different systems of objects.

Examples 7.9
(a) 2 ≡ {⊥,⊤} with ⊥ ≺ ⊤ and ⊥ ≤ ⊤ is both thin and slim, but not plump;

(b)D1 = (Ω,⇒,≺), also with ⊥ ≺ ⊤, is slim and plump but not thin, because (⇒) is not
the thin order.

(c) The thin order on Ω ≡ D1 is

ϕ ⪯ ψ ≡ (ϕ⇔ ψ) ∨ (¬ϕ ∧ ψ).

(d) The thin order on Ω→ ≡ D2 is

U ⪯ V ≡ (U = V ) ∨ (U ⊂ {⊥} ∧ V = 2).

(e) The thin order on DΩ (Example 3.18) is

U ⪯ V ≡ (U = V ) ∨
(
(⊥ ∈ U) ∈ V

)
.
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7.2 Transitive coalgebras

Thin ordinals are also I-extensional, but we will see that it is more appropriate to consider
them to be well founded first, then transitive and lastly extensional. Forcing a coalgebra
to be transitive ought to be a 2-categorical colimit of some kind, but I do not know what.

Lemma 7.10 Amongst acyclic D-coalgebras, the transitive ones form a reflective subcat-
egory.

(Y,≤Y ,≺Y )
f

> (X,≤X ,≺X)

(Y,≺≺Y ∪ ≤Y ,≺≺Y )

>

>

Proof We add (≤Y ) to Lemma 7.3 by forming its union with the transitive closure (≺≺Y )
(or equivalently with ⪯Y ). Using compatibility of (≺Y ) with (≤Y ), this union is transitive
and compatible with (≺≺Y ), whence it is also antisymmetric and we have a transitive D-
coalgebra.

Now let f : (Y,≤Y ,≺Y ) → (X,≤X ,≺X) be a homomorphism to a transitive D-
coalgebra. Since it takes (≺Y ) to (≺X) and the latter is transitive in the usual sense,
it also takes (≺≺Y ) to (≺X). Since it takes (≤Y ) to (≤X) and the latter includes (≺X), it
also takes (≺≺Y ∪ ≤Y ) to (≤X). For the third condition for D-homomorphisms, if x ≺X fy
then x ≤X fy′ ∧ y′ ≺Y y, so y′ ≺≺Y y. □

Corollary 7.11 In the category of well founded D-coalgebras, the full subcategory of
transitive ones is reflective.

Proof We also need that transitive closure preserves well-foundedness, which follows
from Lemma 6.7 since the carrier stays the same (e is a bijection). □

Beware of the distinction between transitive coalgebras and thin ordinals:

Example 7.12 The operation of replacing the poset order of a transitive coalgebra with
the thin order (⪯) is not a functor. That is, there is no functor

Lean −→ Thin.

Proof Example 3.19 showed that

3 ≡ {0, 1, 2} → DΩ by 0 7→ ∅, 1 7→ {0} and 2 7→ {0, 1}

is a D-homomorphism between extensional transitive well founded coalgebras but it is not
a P-homomorphism. It therefore ceases to be a homomorphism of either kind if the (⊆)
order on DΩ is replaced with (⪯). □
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7.3 I-extensional reflection
Besides this, Example 3.16 shows that transitive closure does not preserve extensionality,
so we need to impose that first. Fortunately, the extensional reflection does preserve
transitivity. To prove this, we add the following to Construction 6.11ff:

Lemma 7.13 Let e : (Y,≤Y ,≺Y ) ↠ (X,≤X ,≺X) be an ⊥I-homomorphism from a tran-
sitive D-coalgebra. Then X is also transitive.

Proof In fact we only need ⊥R, that e be an onto D-homomorphism. By Lemma 3.11,

x ≺X ey =⇒ ∃y′ :Y . x′ ≤X ey′ ∧ y′ ≺Y y

=⇒ ∃y′ :Y . x′ ≤X ey′ ∧ y′ ≤Y y

=⇒ ∃y′ :Y . x′ ≤X ey′ ≤X ey

=⇒ x ≤X ey. □

Lemma 7.14 Let e : (Y,≺Y ) ↠ (X,≺X) be an onto P-homomorphism where (≺Y ) is a
transitive relation. Then (≺X) is also transitive, by the same argument with (=) instead
of (≤X). □

Lemma 7.15 Let e : (Y,⪯Y ,≺Y ) ↠ (X,≤X ,≺X) be an ⊥I-homomorphism, where (⪯Y )
is the thin order. Then (≤X) is also the thin order.

Proof By Proposition 6.3, it suffices to consider the case where x′ ≤X x is the image
of y′ ⪯Y y, so either y′ = y and x′ = x or y′ ≺Y y and x′ ≺ x since any homomorphism
preserves (≺). □

Corollary 7.16 The I-extensional reflection (Corollary 7.1) preserves transitivity of re-
lations and of coalgebras too, and also the thin (⪯) order. Moreover, amongst transitive
well founded P- or D-coalgebras, the I-extensional ones form a reflective subcategory.

Proof Use Pataraia induction [Tay23, Section 2] for Construction 6.11, since onto or ⊥I
maps are epis and well co-powered (Lemma 6.12). □

7.4 Theorem

Theorem 7.17 Any well founded relation has a thin ordinal rank.

Slim
<<

6.16

⊥
> >

Lean
<<

7.16

⊥
> >

D-TrWfCoAlg
<<
7.11

⊥
> >

D-WfCoAlg

Plump

(⊆)

∧

∧

> > Thin

(⪯) 7.6

∧

∧

<<
7.16

⊥
> >

P-TrWfCoAlg

(⪯) 7.4

∧

∧

> > P-WfCoAlg

(=) 3.15

∧

∧
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Proof Peter Freyd’s puncture symbol ( ) [FS90] indicates that the outer squares do
not commute, because we are using the three different order relations. On the left, plump
ordinals are slim with (⊆) but thin with no poset order. In the middle square, thin ordinals
are given the thin (⪯) order, but in the final column the discrete (=) one.

The transitive closure (Corollary 7.11) is defined as a functor, left adjoint to the inclu-
sion, for D- but not P-coalgebras, cf. Example 3.16.

The I-extensional reflection (Corollary 7.1) is defined for both P- and D-coalgebras and
preserves transitivity (Corollary 7.16). However, only for P-coalgebras does the category
become a preorder.

The diagram as shown does not have a path from P-WfCoAlg to Thin, but that is
because we have not drawn a copy of the top row in which the reflexive order is required to
be the thin one (⪯). Lemma 7.3 is the special case of Lemma 7.11 for (=) and yields (⪯).
Then this is preserved by Corollary 7.16, giving a thin ordinal.

We have another example of how the interesting subcategories are like “islands in the
sea” of general D-coalgebras (Remark 3.21). □

This section has unfortunately not met its promise to make the thin rank another
instance of a single extensional reflection for some special class of monos, as we had for the
slim rank. It is still a composite of two operations, the transitive closure and I-extensional
reflection, as in the traditional theory.

To do it as a single operation would require a factorisation system forD-homomorphisms,
whereas we have only defined them for the underlying functions. It is plausible that there
is such a system, but we would need to check a lot of unenlightening details that would
not be relevant to the rest of this paper.

It would be more appropriate to do this in the context of a more general investigation of
ordinals for other KZ-monads (Definition 2.4). Then we might get a better understanding
of the roles of factorisation of homomorphisms and of 2-categories.
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8 Binary meets and joins

We now know that Ens, Thin, Slim and Plump are preorders and have directed joins inherited
from Set or Pos. They have a least element ∅ too. We also know that Ens, Thin and Slim
must have binary joins, because they are obtained by applying the reflection to coproducts
in P- or D-TrWfCoAlg, which are inherited from Set or Pos.

However, that is not very informative, so in this section we study binary joins more
carefully. We show that Ens, Thin and Plump inherit them from pushouts in Set orPos over
their intrinsic binary intersections. This is the behaviour from set theory (Remark 1.3).

We therefore first need to understand the binary meet in these preorders.
Unfortunately, we find that all of this breaks down in the case of Slim. The binary

meets and joins exist and the latter are quotients of the pushouts of their carriers, but
there seems to be no easy way of understanding what order relations they carry.

Binary unions

First, we put coalgebras aside to understand pushouts in the underlying categories (Set
and Pos).

Definition 8.1 A category with finite limits and colimits has the binary union property
with respect to a given class of monos if

B >

A

m

>

>

pbk psh D
h

>

i

>

E

f
∨

C >

j

>
n

>

>

g

∧

(a) the pushout D of a pair of monos B <
m

< A >
n

> C is another pair of monos and is
also a pullback (this is known as the Amalgamation Lemma); and

(b) if additionally A, B, C and E form a pullback with all these maps mono, then the
mediator h : D → E is also mono.

Set or any pretopos satisfy this property.
Now we consider to what extent this behaviour transfers to Pos:

Lemma 8.2 Pos has the binary union property with respect to L as monos.

Proof We begin by taking advantage of the binary union property in Set and let D be
pushout of sets, considering B and C as subsets of it that intersect exactly in A.

We define x ≤ y in D if both x and y belong to B with x ≤B y, or both belong to C
with x ≤C y.
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For transitivity, suppose that x ≤ y ≤ z with x, y ∈ B and y, z ∈ C, so y ∈ B ∩C ≡ A.
But since A ⊂↓ B, we have x ∈ A ⊂↓ C too, so in fact x, y, z ∈ C and already x ≤ z by
transitivity in C. Similarly with B and C reversed.

The order on D is also antisymmetric: if x ≤D y because x ≤B y whilst y ≤D x because
y ≤C x then x, y ∈ B ∩ C ≡ A and x ≤A y ≤A x, so x = y in all four preorders.

Hence D with this order is the pushout in Pos.
Now let h : D → E be the pushout mediator for some pair f : B → E and g : C → E

of L-maps. In particular, they are 1–1 functions, so h is too by the binary union property
for Set and we may regard all of the objects as subsets of E, with B ∪ C = D. The
remaining question is whether D ⊂ E is a lower subset. If E ∋ e ≤E y ∈ B then e ∈ B
too since f : B ⊂↓ E, so e ∈ D, and similarly with C in place of B. Hence h : D ⊂↓ E is
an L-map. □

Example 8.3 The second part of the Definition fails for R.

Proof Let A ≡ ∅, B ≡ {b}, C ≡ {c}, D ≡ {b, c} and E ≡ {b ≤ c} in the previous
diagram. Then A is pullback with either root and D is the pushout, as before. However,
whilst all the other maps are in R, the pushout mediator D → E is not, since it does not
reflect the order b ≤ c. □

Re-introducing the coalgebra structures, we need to transfer the well-foundedness prop-
erty along a homomorphism. Lemma 6.7 did this forwards along an epi, but now we to do
it backwards. This is the result that lies behind “induction on the length, height, depth,
etc.” that is common in mathematics.

Lemma 8.4 If f : A→ B is homomorphism and B is well founded then so is A.

Proof When the objects are P-coalgebras, i.e. sets with binary relations, it suffices that
f preserve the (≺) relation. This is easy to prove using either of the classical definitions of
well-foundedness and it is shown intuitionistically using proof boxes in [Tay99, Prop. 2.6.2].

The results for Pos follow directly because the notions of well-foundedness in Section 4
coincide.

The general categorical proof is in [Tay23, Section 9], where it is also shown that it is
necessary that the functor (D here) preserve inverse images of the chosen monos (in the
role of predicates), so these must be L rather than R (Lemma 2.19ff). It is also necessary
that the inverse image operations f ∗, when applied to L-inclusions, have right adjoints, as
they do. □

Intersections

Now we can calculate intersections of well founded coalgebras. Beware that this is not the
same as in [Tay23, §§9,10].
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Lemma 8.5 The forgetful functors

Thin > > Ens > > P-WfCoAlg > > P-CoAlg > Set

create binary intersections of 1–1 functions, whilst

Plump > > D-WfCoAlg > > D-CoAlg > Pos > Set

create them for L-maps.

TA >
Ti

> TB

A >
i

>

α
<..........<

∨

B

β
<

<

TC

Tj

∨

∨

> > TD
∨

C

j

∨

∨

> >

γ

<

<

D.
∨

∨

δ
<

<

Proof Working in Set, the functor T ≡ P preserves intersections. Hence if B, C and D
carry coalgebra structures then so does their intersection A. By the previous Lemma, if
B or C is well founded then so is A. If B or C is extensional (so β or γ is 1–1) then so is
their subset A, by the cancellation property for 1–1 functions. If B or C is transitive then
so is their subset A.

The same argument may be used in Pos, where T ≡ D preserves intersections of L-
maps (Lemma 2.19), to construct intersections of (well founded) D-coalgebras and plump
ordinals. □

In this construction, beware that, in general, in order to define an intersection as a
pullback in a category, the diagram must first have a root D. If we change the root then
the pullback A will also change.

In a preorder, the root is called a common upper bound. So far we know that these
do exist for (well founded) P- and D-coalgebras and also in Ens and Thin, but we do not
know much about them. We don’t yet know that they exist in Plump and the construction
above does not work for Slim because D does not preserve intersections of R-maps.

However, the ideas from set theory provide these intersections without using an upper
bound. Since it’s a universal property, the two constructions for intersections of plump
ordinals must agree. However, whilst the intersection also exists for slim ordinals, in
Example 8.11 it is not the pullback of their carriers.
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Lemma 8.6 Between any two extensional well founded coalgebras B and C, there is a
greatest span B ◁ ⊃ A ⊂ ▷ C of initial segments.

If they are embedded in some larger extensional well founded coalgebraD byB ⊂ ▷ D ◁ ⊃ C
then this forms a pullback square (in the category of extensional well founded coalgebras
and homomorphisms), irrespectively of the choice of D.

Proof The greatest span is defined recursively, by “zipping” the two coalgebras together
(Remark 1.3 and Theorem 5.2, proved in [Tay23, §7]). It just requires that the functor
preserve monos, as P does in Set and D does for both L and R in Pos.

Any cone over this pullback diagram is also a span, so it is less than the greatest one,
which is to say that it has a mediator to the pullback. □

Binary joins

We use this to show that binary joins behave as expected in Ens, Thin and Plump:

Theorem 8.7 The preorders Ens and Plump have binary joins, given by pushout over the
greatest span.

B ⊂
β

▷ TB

A ≡ B ∩ C
⊂

▷

D
δ

▷

i

⊂

▷
TD

Ti
⊂

▷

C ⊂
γ

▷

j

⊂

▷
⊂

▷
TC

Tj
⊂

▷

Proof Let B and C be well founded coalgebras that are extensional with respect to 1–1
maps in Set or L-maps in Pos, and let B ◁ ⊃ A ◁ ⊃ C be the greatest span between
them.

By the binary union property we may form their pushout D in Set or Pos and this
recovers A as the pullback.

Being a pushout, D carries a well founded coalgebra structure [Tay23, §5] and all of the
maps in diagram belong to the chosen class of monos, apart perhaps from δ : D ▷ TD.

As we have said, A is the pullback for any common bound: not just D but also TD.

Then by the binary union property for the pushout D, the mediator D
δ
▷ TD also

belongs to the chosen class of monos.
Hence this is the binary join in Ens or Plump. □

Corollary 8.8 The same construction also yields the binary join in Thin.

44



Proof We apply the Proposition in Ens, the monos being 1–1 functions in Set. This
restricts to Thin because it is a full subcategory (Definition 7.2), and any sub-coalgebra A
of a thin ordinal B or C is thin.

The remaining question is whether the order (≺) on the binary join D is transitive.
For this we switch to considering a thin ordinal (X,≺) as a transitive coalgebra (X,⪯,≺),

between which the homomorphisms are L-maps (Corollary 7.6), even though the structure
maps of the coalgebras are not.

By Lemma 8.2 the (≤) order on D is the union of the thin (⪯) orders on B and C, but
this is the union of (≺B), (≺C) and (=D), which is (⪯D). Hence D is a thin ordinal. □

We can now describe how to internalise colimits in the large preorders Thin and Plump
(Remark 1.6) as joins in the CCD lattices D(X). Even for Thin we consider joins with
respect to (⊆), because Lemma 9.13 shows that they don’t exist for (⪯).

Remark 8.9 All set-indexed colimits in Thin or Plump are bounded, i.e. they lie within
some slice Thin/X or Plump/X. This means that they are joins in D(X). In fact, we know
this directly from the equivalences Thin/X ≃ D(X) and Plump/X ≃ D(X) that we proved
earlier, whereas there is no such equivalence for Slim.

In the plump case, colimit diagrams in X are represented by elements of X (Defini-
tion 5.10), so there is a partial internal join operation

∨
: D(X)⇀ X.

These colimits or joins are preserved by any change of base, i.e. the embedding Di :
D(X) ↣ D(Y ) induced by a homomorphism i : X ↣ Y . Recall that for thin and plump
ordinals any such homomorphism is a lower inclusion, an L-map.

This is the sense in which the large preorders Thin and Plump are equipped with internal
join operations of any set-indexed arity.

Lemma 9.13 shows why we must use joins with respect to (⊆) for thin ordinals and
not (⪯).

Counterexamples

We conclude this section with some things that go wrong. Whereas it has usually been
enough to consider the presheaf topos Set→ to construct our counterexamples, we need
slightly more complicated settings on this occasion.

Example 8.10 The functor D does not preserve binary joins of plump ordinals.

Proof Let ξ1, ξ2 ∈ Ω be independent non-decidable predicates (cf. Notation 3.17) and
define

B ≡ {ϕ : Ω | ϕ⇒ ξ1} ⊂ Ω

C ≡ {ϕ : Ω | ϕ⇒ ξ2} ⊂ Ω

so B ∪ C = {ϕ : Ω | (ϕ⇒ ξ1) ∨ (ϕ⇒ ξ2)}
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U ⊂↓ Ω ≡ ∀ϕψ. (ψ ⇒ ϕ) ∧ (ϕ ∈ U) ⇒ (ψ ∈ U)

DB = {U ⊂↓ Ω | (∀ϕ ∈ U. ϕ⇒ ξ1)}
DB ∪ DC = {U ⊂↓ Ω |

(
(∀ϕ ∈ U. ϕ⇒ ξ1) ∨

(
∀ϕ ∈ U. ϕ⇒ ξ2))}

Then (B ∪ C) ∈ D(B ∪ C), but if (B ∪ C) ∈ DB ∪ DC then (ξ2 ⇒ ξ1) ∨ (ξ1 ⇒ ξ2). □

Example 8.11 Amalgamation fails for slim ordinals.

Proof Let ξ(−) : N → Ω be a strictly increasing sequence of truth values, for example in
the presheaf topos Setω, so

∀n. ξn =⇒ ξn+1 and ∀n. ¬(ξn+1 =⇒ ξn).

Put an ≡ {∅ | ξn}, so an ⊂ an+1 ⊂ {∅}, b ≡ {∅}∪{an | n even} and c ≡ {∅}∪{an | n odd}.

b c

a0 ⊆ a1 ⊆ a2 ⊆ a3 ⊆ a4 ⊆ a5 ⊆ · · ·

∅

As in Example 5.8, the truth value of ∅ ≺ an and of ∅ ⊆ an is ξn, but the upper lines indicate
(≺) with full truth and we also understand that ∅ ≺ b, c. The inclusions an ⊆ an+1 are
also fully true. Now let

B ≡ {a2n, b | n ∈ N} and C ≡ {a2n+1, c | n ∈ N},

for which membership is meta-transitive. So (B,⪯,≺) and (C,⪯,≺) are thin ordinals,
whilst (B,⊆,≺) and (C,⊆,≺) are slim ones.

Then b and c are distinct in the thin binary union B ∪C (the whole diagram), but are
made equal in its meta-transitive closure D, i.e. as slim ordinals.

The example also shows that the whole development breaks down. The pullback B∩DC
in Pos consists of the top (b = c) and bottom (∅) elements, but their common initial
segment just contains the least element. This is a lower subset of B and of C, as in the
thin case, where the pushout has distinct b and c, not equal as in D.

What about the “shift” functions B ⇆ C by a2n ↔ a2n+1 and b ↔ c? The rightward
one preserves (≺) and (⊆) but fails third condition in Corollary 3.12(b), whilst it is the
opposite for the leftward one, because ¬(ξn+1 ⇒ ξn). □
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9 Successors

Like transitivity (Section 7), the successor operation is derived from the unit η of the
monad structure on P or D.

Definition 9.1 The internal successor operation on a coalgebra (X,α) is given by
the pullback

X
α

> DX

P

sX

∧

pX
> X

ηX

∧

so this is in the first instance a binary relation on X.
By antisymmetry of the poset (X,≤), the maps ηX and sX are mono (indeed in R),

so this relation could be seen as a partial function p : X ⇀ X, which is the immediate
predecessor. However, this is always undefined for the element ∅ ∈ X, if such exists, and
also for ω in the classical ordinals.

On the other hand, when the coalgebra is extensional (in any of our senses), the maps
α and pX are also mono (in the corresponding sense). So there is another partial function
s : X ⇀ X that is the immediate successor and there are plenty of situations in which this
is total:

Example 9.2 For N with its usual orders (≤) and (<), sn = n + 1, whilst pm = m − 1
for m ̸= 0. □

Lemma 9.3 For any I-extensional D-coalgebra (X,≤,≺), if sx is defined for x ∈ X then
they satisfy

∀y :X. y ≺ sx ⇐⇒ y ≤ x so in particular x ≺ sx

and conversely this property characterises sx.

Proof It says α(sx) and ηX(x) are the same member of DX or lower subset of X. □

Corollary 9.4 The successor satisfies Remark 1.1, that

sy ≺ sx ⇐⇒ sy ≤ x =⇒ sy ⊆ x ⇐⇒ y ≺ x

and sy ⊆ sx ⇐⇒ y ≺ sx ⇐⇒ y ≤ x =⇒ y ⊆ x.

Proof The first and fourth equivalences are just the Lemma. The forward directions
of the second and third follow from y ≺ sy and the definition of (⊆). For the reverse
directions,

z ≺ sy ∧ y ≺ x ⇐⇒ z ≤ y ≺ x =⇒ z ≺ x
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by the Lemma and one compatibility law. The other, z ≺ y ≤ x ⇒ z ≺ x, gives the
one-way implications. □

Remark 9.5 The successor therefore preserves all of the order relations iff the poset
order (≤) is (⊆). By Lemma 5.4, this is so iff α ∈ R. We may see this from the pullback
definition: since ηX , α, sX ∈ R, the object P inherits (⊆) from DX via X and s takes it
back to X.

The weaker property that x ⊆ sx holds iff (≺) ⊂ (≤), that is, iff the coalgebra is
transitive (Definition 3.6 and Section 7).

All of these observations depend on the existence of the successor sx for all x ∈ X, so
the following results show that this is “eventually” ensured.

Lemma 9.6 For any homomorphism f : Y → X, if sY y is defined then so is f(sY y) and

f(sY y) = sX(fy).

Proof By naturality of η with respect to f in a commutative cube: if βy′ = ηY y then

α(fy′) = (Df)(βy′) = (Df)(ηY y) = ηX(fy),

so fy′ obeys the defining property of sX(fy). Alternatively,

x ≺ f(sY y) ⇐⇒ ∃y′. x ≤ fy′ ∧ y′ ≺ sXy

⇐⇒ ∃y′. x ≤ fy′ ∧ y′ ≤ y ⇐⇒ x ≤ fy,

so f(sY y) satisfies the property that Lemma 9.3 required of sX(fy). □

Note that sX(fy) may be defined even when sY y is not, indeed there is always a
homomorphism that does this:

Lemma 9.7 For any I-extensional D-coalgebra (X,≤,≺), for all x ∈ X

sDX(αx) = ηX(x).

Proof Again by naturality of η with respect to α, or

U ≺DX sDX(αx) ≡ ∃y ∈ sDX(αx). ∀u ∈ U. u ≺X y

≡ ∃y ∈ ηX(x). ∀u ∈ U. u ≺X y

≡ ∃y. ∀u ∈ U. u ≺X y ≤ x

≡ ∀u ∈ U. u ≺X x ≡ U ⊆DX αx,

which is the condition in Lemma 9.3 with αx for x and U for y. □
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Examples 9.8 From this we recover three familiar constructions: sDX(αx) ≡ ηX(x) is as
follows when the poset order is

(a) discrete (=) {x} ∈ D(X) ≡ P(X) no condition
(b) thin (⪯) {y | y ⪯ x} ≡ α(x) ∪ {x} ∈ D(X) x ⊆ sx
(c) plump (⊆) {y | y ⊆ x} ∈ D(X) s preserves (⊆). □

Now we extend the partial successor operations on individual coalgebras to the large
systems of ordinals.

Proposition 9.9 There is a monotone endofunction S : Plump → Plump that restricts to
all of the partial successors sX : X ⇀ X on plump ordinals.

X
α

> DX
≃

> Plump/X > Plump

X

sX

⇃ α
> DX

sDX

⇃ ≃
>

ηX

>

Plump/X

⇃
> Plump

S

∨

................

Proof Recall that Plump is the illegitimate colimit of its slices, where Plump/X ≃ D(X),
and the colimit diagram consists of all of the homomorphisms (Remarks 1.6 and 5.17).

The simplest way of defining an endofunction of such a colimit is to give a system of
endofunctions of its nodes that commute with the maps. In our case these would be the
partial successors sX or sDX . Another way is to “go up a step”, using the total maps
ηX : X → DX, or rather ηDX : DX → DDX, that were given by Lemma 9.7. These also
commute with the homomorphisms, by naturality of η. □

In the thin case, the partial successors fail to preserve any of the order relations, so we
only have a diagram in Set, not Pos. Besides this, DX is not thin, and it’s no good just
imposing the thin order on it (Example 7.12), but we have an alternative construction:

Lemma 9.10 Let (X,⪯,≺) be a thin ordinal and define (≺) on the set X × 2 by

y0 ≺ x0 ≡ y ≺ x and y0 ≺ x1 ≡ y ⪯ x but y1 ≺ x0, x1 never.

Then (≺) is transitive, antisymmetric and well founded. The partial map s satisfies x0 ≺
sx0 ≡ x1 and x0 ⊆ sx0, but does not preserve any of the order relations.

The inclusion f : X → X × 2 by x 7→ x0 is a P-homomorphism.
The coalgebra X × 2 need not be extensional, since there may already be an element

of X with the property of sx. We write Xs for the I-extensional reflection of X ×2, using
Corollary 7.1.

Proof Simple exercises. □
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Proposition 9.11 There is an endofunction S : Thin → Thin that restricts to all the
partial successors sX : X ⇀ X on thin ordinals. It satisfies id ≤ S but does not preserve
the order relations.

Proof As in Proposition 9.9, Thin is the illegitimate colimit of its slices, Thin/X ≃ D(X)
over all thin ordinals. However, D does not preserve thinness, so for the morphism between
the diagrams we use the total maps from DX to D(Xs) given by Lemma 9.10. Since these
maps don’t preserve order, the diagram is in Set and not Pos. □

Having considered successors and joins for both kinds of ordinals, it remains to show
that these operations generate all of them.

Proposition 9.12 In both the thin and plump cases, every ordinal is the join of the
successors of its elements.

Proof Forming the joins in DX,

αx =
⋃

{ηXy | y ≺ x} =
⋃

{sDX(αy) | y ≺ x}

because z ≺ x ⇐⇒ ∃y. z ≤ y ≺ x ⇐⇒ ∃y. z ≺ sDX(αy) ∧ y ≺ x. □

Now that we have recovered quite a lot of traditional set theory, we can show why we
use (binary) joins with respect to (⊆) and not (⪯). We may perhaps regard this as the
intuitionistic result that underlies the trichotomous, linear or total order on the classical
ordinals.

Lemma 9.13 If x, y ∈ X in a thin ordinal admit the binary join x⋎ y with respect to (⪯)
then they are comparable: x ≺ y, x = y or y ≺ x.

Proof By Lemma 9.10 we may assume that sx, s(sx), sy and s(sy) exist in X and then
use Lemma 9.7 to work in DX, where we have binary unions (∪) with respect to (⊆). We
repeatedly use Corollary 9.4 and the binary disjunction for (⪯).

If there is a cocone x ⪯ z ⪰ y then either x and y are comparable or x ≺ z ≻ y and
so sx ⊆ z ⊇ sy. If the join x ⋎ y exists then its universal property says that any cocone
x ≺ z ≻ y must have either x⋎ y = z or x⋎ y ≺ z.

Now consider the binary unions with respect to (⊆):

x ≺ sx ⊆ (sx ∪ sy) ≻ y and x ≺ sx ≺ s(sx) ⊆
(
s(sx) ∪ s(sy)

)
≻ y,

so these are cocones. Since (∪) in DX is union of the underlying sets,

w ≺
(
s(sx) ∪ s(sy)

)
⇐⇒

(
w ≺ s(sx)

)
or

(
w ≺ s(sy)

)
⇐⇒ (w ⪯ sx) or (w ⪯ sy).

Putting w ≡ x⋎ y in either of these cases,

y ⪯ (x⋎ y) ⪯ sx =⇒ y ⪯ sx =⇒ (x ≺ sx = y) or (y ≺ sx) =⇒ (x ≺ y) or (y ⪯ x),

making x and y comparable, and similarly when they are reversed. □
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10 Recursion

Now we pick up the story of well founded recursion from Section 4 and define transfinite
recursion from it. Previously we justified the following result for any well founded coalgebra
for either P : Set → Set or D : Pos → Pos:

Theorem 10.1 Let (X,α) be a D-coalgebra in Pos that is well founded in any of the senses
in Section 4. Then it has well founded recursion : for any D-algebra θ : D(Θ) → Θ in
Pos, there is a unique coalgebra-to-algebra homomorphism making the square on the left
commute:

X
α

> DX
>

ϵ∗X
>

⊤
<<

DϵX
PX

Θ

r

∨

.................
<

θ
DΘ

Dr

∨

................. >
ϵ∗Θ

>

⊤
<<

DϵΘ
PΘ

Pr

∨

.................

Proof The recursion theorem from [Tay23, §6] is directly applicable to P-WfCoAlg
and to D-WfCoAlg with R or L as predicates and initial segments. This yields a unique
coalgebra-to-algebra homomorphism r : X → Θ that is monotone in the D case.

We can also deduce the result for D from that for P . Recall that any object of the
form PX or DX is a complete

∨
-semilattice. In the square on the right, the rightward

maps are inclusions and the leftward ones form the down-closure of any subset, which is a
monotone and surjective operation. The action of Dr is exactly the three-sided composite
via PX and PΘ (Definition 2.1(b), Lemma 2.7).

The coalgebra (X,α) corresponds to (X,≤,≺) where (≺) is a well founded relation in
the traditional sense, so defines a well founded P-coalgebra, (X,α ; ϵ∗X). (This is not a
functor, cf. Corollary 3.20, but that does not matter here.) By the recursion theorem for
this, there is a unique r : X → Θ in Set making the rectangle commute.

By the previous comments, the left-hand square commutes in Set, so the remaining
question is monotonicity in the case of D. But Pr is monotone for any function r, whence
so are Dr and r because they are composites of monotone functions, since we have assumed
that θ preserves order. □

Transfinite recursion is a universal property that compares Thin or Plump with any
other complete

∨
-semilattice Θ equipped with an endofunction σ : Θ → Θ that satisfies

id ≤ σ and monotonicity respectively. The latter refers to the order on Θ that is derived
from its semilattice structure. Then
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Lemma 10.2 The function θ : DΘ → Θ defined by

θ ≡ Dσ ;
∨

or θU ≡
∨

Θ
{σu | u ∈ U}

preserves the joins and order with respect to Θ and so defines a D-algebra. This does not
require σ to preserve order.

Proof Just as for rX in Theorem 10.1, Dσ preserves order and joins for any function σ.
In symbols, if U ⊂ V then the join defining θU is over a smaller subset than that

defining θV . Also, since the join in DX is union,

θ
(⋃

i
Ui

)
=

∨
{σu | ∃i. u ∈ Ui} =

∨
i

∨
{σu | u ∈ Ui},

in which it doesn’t matter how the values σu behave. □

Corollary 10.3 By Theorem 10.1, for any well founded D-coalgebra (X,≤,≺) there is
unique monotone function rX : (X,≤) → Θ such that

rX = α ;DrX ; θ ≡ α ;DrX ;Dσ ;
∨

or rXx = θ{rXy | y ≺ x} ≡
∨

{σ(rXy) | y ≺ x}.

Monotonicity of rX here means with respect to the given poset orders on X and Θ. When
X is a thin or plump ordinal this order is (⪯) or (⊆) respectively, so

y ≺X x =⇒ y ⪯X x =⇒ rXy ≤Θ rXx or y ⊆X x =⇒ rXy ≤Θ rXx. □

Lemma 10.4 We have rX = α ;RX , where the map

RX ≡ DrX ;Dσ ;
∨

: DX → Θ by U 7→
∨

{σ(rXu) | u ∈ U}

preserves joins, for the same reason as in Lemma 10.2. □

Having dealt with joins, we consider successors.

Lemma 10.5 If σ : Θ → Θ is monotone and (X,≤,≺) is an I-extensional well founded
coalgebra with elements x and sx that satisfy ∀y. y ≺ sx ⇔ y ≤ x as in Lemma 9.3 then
rX(sx) = σ(rXx).

Proof
rX(sx) =

∨
{σ(rXy) | y ≺ sx} =

∨
{σ(rXy) | y ≤ x} = σ(rXx),

where the join is simply the top value of the set because rX and σ preserve the poset
order. □
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That will provide transfinite recursion over plump ordinals. However, the successor for
thin ordinals does not preserve order and this did not matter for Lemma 10.2. We therefore
want to give their universal property without this assumption.

Lemma 10.6 If σ : Θ → Θ has id ≤ σ but is not necessarily monotone and (X,⪯,≺) is a
thin ordinal with elements x and sx that satisfy ∀y. y ≺ sx⇔ y ⪯ x then rX(sx) = σ(rXx).

Proof We still have the same expansion of rX(sx), where (≤) is now the thin order (⪯),
but this is defined as a binary disjunction, so

y ≺ sx ⇐⇒ y ⪯ x ≡ (y = x ∨ y ≺ x).

Therefore, evaluating the recursor at the successor gives

rX(sx) =
∨

{σ(rXy) | y ≺ sx}

= σ(rXx) ∨
∨

{σ(rXy) | y ≺ x}
= σ(rXx) ∨ rXx,

which is just σ(rXx) since id ≤ σ. □

Lemma 10.7 Under the conditions of the previous two Lemmas and in the same sense,
RX : D(X) → Θ commutes with successors.

Proof
RX(sDX(αx)) = RX(α(sx)) α homomorphism

≡ rXx definitions

= σ(rXx) Lemma 10.5 or 10.6

≡ σ(RX(αx)) definitions □

The successor operation on any individual coalgebra or ordinal is typically partial,
but becomes total as an endofunction S of the illegitimate colimits Plump or Thin, as in
Propositions 9.9 or 9.11. We use these to obtain transfinite recursion.

Lemma 10.8 For any homomorphism f : Y → X of thin or plump ordinals, the diagram

Y
β

> DY

Θ

RY

>

rY

>

X

f

∨

α
>

rX
>

DX

Df

∨ RX

>
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commutes.

Proof The square says that f is a homomorphism. Then the bigger triangle commutes
because f ; rX obeys the recursion property for rY :

f ; rX = f ; α ;DrX ; θ = β ;Df ;DrX ; θ.

The little triangles relate r to R (by Corollary 10.3 and Lemma 10.4) and the equilateral
one is

RY = DrY ; θ = Df ;DrX ; θ = Df ;RX . □

Proposition 10.9 This therefore defines functions

Thin ≃
⋃

X∈Thin

D(X)
R

> Θ and Plump ≃
⋃

X∈Plump

D(X)
R

> Θ

that preserve joins and successors.

Proof The previous two lemmas define cocones R(−) : D(−) → Θ (Remark 8.9). □

Lemma 10.10 If there is any function R : Thin → Θ or R : Plump → Θ such that

R(Sx) = σ(Rx) and R(
∨

xi) =
∨

i
R(xi)

then it must be given by rx =
∨

Θ
{s(ry) | y ≺ x}.

Proof Any ordinal is the join of the successors of its elements (Proposition 9.12)

αx =
⋃

{sDX(αy) | y ≺ x},

so since R preserves joins and successors,

rx ≡ R(αx) =
⋃

{σ(R(αy)) | y ≺ x} =
⋃

{σ(ry) | y ≺ x},

which has a unique solution by Theorem 10.1. □

This completes the proof of transfinite recursion:

Theorem 10.11 Let Θ be a complete
∨
-join semilattice and σ : Θ → Θ an endofunction

of it.
(a) If σ is monotone then there is a unique map R : Plump → Θ, whilst

(b) if id ≤ σ then there is a unique map R : Thin → Θ,
such that

R(Sx) = σ(Rx) and R(
∨

Xi) =
∨

i
R(Xi). □

54



11 Growth of plump ordinals

The class L fails Lemma 6.12 and so there is no reflection into the subcategory of plump
ordinals. Indeed, we now show that they grow extremely fast, so that in general they
cannot be constructed in the logic of an elementary topos but require the axiom-scheme of
replacement in some form. Since we show this by a counting argument, our basic reasoning
in this section is classical (using excluded middle). The object model is the one that we
have been using for most of our counterexamples, namely the topos Set→ of presheaves on
a single arrow.

We start with some simple classical lattice-theoretic constructions in Set itself:

Definition 11.1 A subset N ⊂ (X,≤) of a preorder is called an antichain if the restric-
tion of the order to the subset is discrete.

Lemma 11.2 If (X,≤) has an antichain of size 4 then D(X,≤) has one of size 6. [not
needed]

Proof If a, b, c, d ∈ X have no instance of ≤ between any two of them then there is no
containment between any two of the following lower subsets of X:

↓ {a, b}, ↓ {a, c}, ↓ {a, d}, ↓ {b, c}, ↓ {b, d} and ↓ {c, d}. □

Lemma 11.3 If 2×N ⊂ (X,≤) is an antichain then there is an antichain 2N ⊂ D(X,≤).

Proof For each decidable U ⊂ N , let

SU ≡ {x : X | ∃n ∈ N.
(
x ≤ (1, n) ∧ n ∈ U

)
∨
(
x ≤ (0, n) ∧ n /∈ U

)
} ⊂↓ X.

Then SU ⊂ SV =⇒ (U ⊂ V ) ∧ (N \ U ⊂ N \ V ) =⇒ U = V .
Hence the SU for U ∈ 2N provide a big antichain in D(X,≤). □

Now we can start calculating the plump ordinals in our target model.

Definition 11.4 In the category S ≡ Set→

(a) the objects are functions X0 → X1,

(b) the morphisms are commutative squares, and

(c) the products, monos and relations are computed componentwise.

Proposition 11.5 For any object (X0
f→ X1) of S, the powerset Ω(X0→X1) is the object

U1

↑
∅

∣∣∣∣ U1 ⊂ X1

 >


U1

↑
U0

∣∣∣∣ U1 ⊂ X1

↑ ↑ f
U0 ⊂ X0


 ,

or (2X1 −→ {(U0, U1) : 2
X0 × 2X1 | ∀x:X0. x ∈ U0 ⇒ fx ∈ U1}).
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Prove this: Similarly, for any internal preorder (X,≤) in S, the lower set lattice D(X,≤)
is given in the same way, except that each ⊂ becomes ⊂↓. □

Example 11.6 We know in general that the first three plump ordinals are 0, 1 and Ω,
which in Set→ are the objects

0 ≡ (∅ → ∅), 1 ≡ (⋆→ ⋆) and Ω ≡ ({a, b} ⊂ {a, b, c}),

where ⋆ is the singleton set consisting of the identity on ∅ and

a ≡ (∅ → ∅), b ≡ (∅ → ⋆) and c ≡ (⋆→ ⋆).

What is (≺) on Ω, for both total and partial elements?
Guess the coalgebra structures are:

∅ > ⋆
a

> {a, b, c} > {α, ...κ}

a 7→ α
b 7→ β
c 7→ γ

∅

∧

> ⋆

∧

a
> {a, b}

∧

> {α, β, δ, ζ}

∧

0 > 1 > 2 ≡ Ω > 3 ≡ DΩ

Example 11.7 The next ordinal, DΩ, is more complicated:

κ : {a, b} ⊂ {a, b, c}

η : {a, b} ⊂ {a, b}

-

{a} ⊂ {a, b, c} : θ

�

ϵ : {a} ⊂ {a, b}

-�

∅ ⊂ {a, b, c} : ζ

�

γ : {a} ⊂ {a}

-

∅ ⊂ {a, b} : δ

-
�

β : ∅ ⊂ {a}

-
�

α : ∅ ⊂ ∅

6

The 1-part of the S-object that we require is the whole of this lattice and the 0-part is the
subset consisting of the four underlined elements. □
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Remark 11.8 What subobjects of D(Ω) are slim ordinals, i.e. R-sub-D-coalgebras?
R-inclusions that are (≤)-cofinal.

Corollary 11.9 The 1-part of 4 ≡ D2(Ω) has 56 elements, including an antichain of size 6:

∅ ⊂ ↓κ, ↓α ⊂ ↓ ηθ, ↓ β ⊂ ↓ η, ↓ β ⊂ ↓ θ, ↓ δ ⊂ ↓ ϵζ, ↓ ζ ⊂ ↓ γζ,

where the Greek letters denote the elements of the previous lattice and we omit {} for
clarity. □

Theorem 11.10 The 1-parts of the finite plump ordinals in Set→ contain antichains of
size at least

0, 1, 1, 2, 6, 26/2 = 8, 28/2 = 16, 216/2 = 256, . . . ,

so plump ω, ω + 1, ω + 2, . . . have them of size

ℵ0, 2ℵ0 , 22
ℵ0 , . . . .

Therefore plump ω · 2 cannot be defined in the language of an elementary topos with N or
in Zermelo set theory, i.e. without the axiom-scheme of replacement.

Proof We are only applying Lemma 11.3 very weakly: it’s enough to consider X0 ≡ ∅,
although doing so more carefully would yield faster growth for the finite ordinals. However,
all that we need is that ω have an infinite antichain and that its successors grow by classical
cardinal exponentiation as indicated. □

Remark 11.11 By a similar technique, the same can probably be shown for just ω in the
topos of presheaves on some infinite base category. □

Corollary 11.12 Since D preserves infinitary intersections, the preorder Plump of L-
extensional well founded D-coalgebras has them (and hence all limits) and the forgetful
functor Plump → D-WfCoAlg preserves them. However, this functor need not have a left
adjoint unless we assume some form of the axiom-scheme of replacement. □

12 Further work
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